Cosmology with ML
- Home
- Cosmopy
Python Lectures
- Python
Temario.
- Why Python ?
Intro.key , python vs C?
- Installation: There are two recommended ways to install it:
1.- With Anaconda which contains a complete data science toolkit.
Anaconda.
2.- Plain python - which is much lighter -
Python.
- Bibliography:
1.- Mathematical Methods for Physics and Engineering. Riley, Hobson and Bence.
2.- Learning Python: Powerful OO Programming, Mark Lutz.
3.- Python for Data Analysis: Data Wrangling with Pandas, Numpy, and Ipython, Wes McKinney.
4.- Numerical Analysis, Richard L Burden, Faires.
5.- Numerical Methods for Engineers and Scientists, Joe D. Hoffman.
6.- Numerical Methods for Engineers, Steven Chapra.
Python
- An starting guide to Python, and in general to data science:
The Python compendium on github:
GitHub.
- Lectures:
Using the Notebook, along with H-W:
Lectures.
In particular Lecs: 16, 17 & 23, 24
Cosmo
- Comology Lectures, along with H-W:
Lectures.
Lectures
- HW1. Repaso de Python, etc.. :
Tarea 1b.
HW 2. Resolver:
2a,
2b,
2c,
2d,
2e,
2f,
2g,
2h.
Entregar: Martes 4.Feb 9:30am
- Lecture 1:
Symbolic python:
Sympy,
Tutorial.
Sympy 1,
Sympy 2.
FLRW metric:
B(r),
FRW.
HW3. Analytical Calculations:
HW_a,
HW_b,
HW_c,
HW_d.
Entregar: Martes 11.Feb 9:30am
HW4. GR and Einstein:
HW_a.
HW_b.
HW4. Distances and World models:
HW_c.
HW_d.
Entregar: Jueves 13.Feb 9:30am
Links: Gravipy,
Eisteinpy,
Sagemath,
Project 1 (Pert), Project 2 (E-L), Files.
k=k(a)?, More metrics?.
- Lecture.py:
Numpy:
Numpy 1,
Numpy 2,
Numpy summary.
Intro a Scipy:
Notebook.
Stats, Integrals and ODEs:
Notebook.
Tarea Numerica,
GitHub. .
Files: file_f,
file_g.
HW5. Numeric: HW_b,
HW_d.
HW5. Entregar: Martes 18.Feb 9:30am
-
HW6. Likelihood: HW_a,
datos_1,
datos_2,
datos_3,
Hz_all.dat.
HW6. Entregar: Martes 25.Feb 9:30am
HW7. Observables: HW_b.
HW7. Entregar: Jueves 27.Feb 9:30am
Diapositivas 1-3.
- Lecture.plots:
Files and Matplotlib:
Notebook.
More plotting:
Notebook.
Seaborn, Bokeh and D3:
Seaborn and D3.
Tortuga: 1py,
2py.
Animation: Codes,
Notebook.
HW8: HW.
HW8: Entregar Martes 11.Mar 9:30.
- Pandas :
Just in case:
Pandas.
- Optimization :
Algoritmos bioinspirados:
Paper.
The Genetic Algorithm:
Paper,
More biblio,
GA in influenza.
Thesis:
(GA) Alfredo (2022_05 Divulgae, White, CNF),
Cosmological Parameter Estimation with Genetic Algorithms:
paper,
Codes:
Code 1,
Code 2,
Code 3a,
Code 3b,
Code 3c,
Cosmo.
HW9: HW.
HW9: Entregar Jueves 13.Mar 9:30.
Particle Swarm Optimization:
Thesis:
(PSO) Daniel.
PSO.py
Genetic Programming:
Thesis:
Mario,
Jimena.
Code:
GP.
HW10: HW.
HW10: Entregar Jueves ?.Mar 9:30.
- CMB :
CLASS:
Curso Dra. Gabriela,
Colab.
CAMB:
Documentation,
Notes.
Some links:
Notes.
HW11: HW.
HW11: Entregar Jueves ?.Mar 9:30.
Project 3, Files.
- Lecture MCMC:
An introduction to Markov Chain Monte Carlo:
Paper.
github:
Notebook.
random.py
Cosmological Parameter Inference with Bayesian Statistics:
Paper.
Paper's Nb:
Notebook,
MCMC Nb:
Notebook,
datos.
chains.py
Monte Python: Notas,
Notebook,
Notas A. Cuesta.
CosmoSis ,
Cobaya.
HW12: HW.
Correr MPython con datos ligeros y generar posteriors
* Nested
* Parallel
* Tarea MPI, Proyecto de Convergencia
- Reconstructions:
Thesis:
L Escamilla.
Reconstructing the Universe: Testing the Mutual Consistency Data Sets with Gaussian Processes.
Paper.
Model selection applied to reconstructions of the Dark Energy.
Paper.
Model independent reconstruction of the Interacting Dark Energy Kernel: Binned and Gaussian process.
Paper.
Reconstruction of the Dark Energy equation of state.
Paper.
Gaussian Process.
Thesis:
J de Jesus,
Paper,
Notebook.
Gapp.
Principal Component Analysis Notas 1,
Notas 2,
Notebook,
Scikit-Learn,
Link.
- Artificial Neural Networks:
Una Aplicación de las Redes Neuronales Artificiales en la Cosmología.
Paper.
Observational cosmology with Artificial Neural Networks.
Paper.
Code:
code.
Neural network reconstructions for the Hubble parameter, growth rate and distance modulus.
Paper.
Code:
code.
Physically Informed Neural Networks.
Thesis: Juan.
Code:
code.
- ANN+GA:
Neural Networks Optimized by Genetic Algorithms in Cosmology.
Paper.
Code:
code.
Deep Learning and genetic algorithms for cosmological Bayesian inference speed-up.
Paper.
Code:
code.
- Classification + N-body:
Algoritmos de clasificacion aplicados a simulaciones de formacion de estructura cosmologica
Thesis.
Classification algorithms applied to structure formation simulations.
Paper.
Code:
code.
Analysis of Dark Matter Halo Structure Formation in N-body Simulations with Machine Learning.
Paper.
Code:
code.
Clasificación de modelos cosmológicos en simulaciones de N-cuerpos con aprendizaje profundo
Thesis.
Code:
code.
Funciones de correlación de dos puntos con algoritmos de agrupamiento.
Thesis.
Code:
code.