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Abstract.  In this work, we propose a complete methodology to identify the parameters of        

a dynamical system from a data set using genetic algorithms. Considering the search for the 

model parameters as an inverse problem, we numerically solve the differential equations of the 

dynamical system; each set of parameters is then considered as an individual of the 

population that evolves in the genetic algorithm. As a fitness function we use the distance L1 

between the numerical solution and the data. 
 

 
1. Introduction 

In many fields of science, events that cannot be repeated and it is not possible to have 
experimental control are studied. As a consequence, modeling these events requires the 
solution of an inverse problem. In science, an inverse problem is a process in which, 
from a set of observations, the causal factors that produced them are calculated. In 
adopting this strategy, the scientist must assume that the analytical model is correct; then 
the problem is to find the initial conditions or parameters of the model that best fit the 
observational data up to a certain margin of error. And it is particularly useful when 
observational data are a time series, that is, time-dependent data sets, such as daily 
records of some event. 

Among others, some of the problems that we can analyze with this method are the 
following: coupled oscillators and systems analogous to them, such as electrical circuits 
or the mass flow between communicating vessels, dynamics of biological systems of the 
predator-prey type. 

In all the previous problems, there is at least one conserved quantity: energy, mass, 
population,  etc.  The conservation of that quantity is translated mathematically to the 
need  to model the described system by means of a set of coupled differential equations, 
characterized by certain parameters, which we wish to properly determine. 

In this article we are interested in determining numerically the  parameters  of a dynamic 
model using a set of observations and a genetic algorithm (GA). Our intention is to 
propose a general methodology that allows us to use GA. Similar approaches can be found 
in [1] and [2].  

For a description of the proposed methodology, we use the data from a problem called 
Influenza in a boarding school cited in [3] and [4], where they solve the same problem 
presented here, with a different method. The problem is the following: in January 1978, 
after a winter holiday, 763 male students returned to their boarding school. After one week, 
one of the students developed the flu, then two more followed, and so on. By the end of 
the month almost half of  the students were sick.  Most of the school had been affected, 
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and by mid-February the epidemic was over [4]. 
 

2. Problem formulation 

In this section we present the bases of the SIR model and the data set used to implement 
the technique that we propose in this paper. 

 

2.1. The SIR model 
The SIR model consists of a system of three coupled non-linear ordinary differential 
equations that have no explicit analytical solution. This is the most basic model of infectious 
diseases, however, from its complete analysis very useful information can be extracted, 
which derives in public health policies [5]. 

In this model, developed by Ronald Ross, William Hamer and others in the early 20th 
century [6], a population is divided into three groups: Susceptible, S = S(t), Infected, I = 
I(t), and Removed, R = R(t); hence the initials in the model name. The dynamical 
equations are as follows: 

 

dS 
 

dt 
dI 
dt 

dR 
 

dt 

 

where a is the transmission rate and b is the average recovery rate. At any time the total 
population is N  = S + I + R and it remains constant as Ṅ =Ṡ + İ+ Ṙ  = 0, where overdot 
implies derivative with respect to time t. 

This system can be numerically integrated to obtain solutions such as those shown in 
the figure 1. From the beginning, the greatest interest in the study of this model arises 
from its 

 

 

 

Figure 1. General form of the numerical solutions of the SIR model for an epidemic case. 
 

ability to model epidemics. Because, even without knowing the analytical form of the 
solution, it is possible (using Dynamical Systems techniques) to know the behaviour of 
the solutions and to establish measures to control the growth of the infection. 

= −aSI, (1) 

= aSI − bI, (2) 

= bI, (3) 
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Initially, S(t) is approximately equal to N and I(t) is very small. In an outbreak, 
typically I(t) will increase every day until reaching a maximum and then tender decrease 
slowly, as seen in figure 1. 

It is particularly useful to determine the reproductive number, defined as 𝑅0 =
𝑎

𝑏
      

since the analysis of the dynamical system indicates that [5]: 

 
I𝑚𝑎𝑥

𝑁
= 1−

1

𝑅0
(1 + 𝑙𝑜𝑔𝑅0)                                             (4) 

 

Thus, determining the parameters of the model leads to determining the maximum 
number of infected, a quantity that can be useful to develop public health actions. Even 
after the event has occurred, it is interesting to know the parameters a and b of the model, 
since they serve to characterize the disease. This is precisely the problem that we are 
interested in solving: determining the pair of parameters (a, b) of the SIR model from a 
data set. 

 

2.2. Data 
Marinov et. al. raises this same problem for a data set called reported in Influenza in a 
boarding school [4]. These data were first cited in [3] and it is reproduced in the table 1 
and figure 2, where we also present the graph corresponding to these data, together with 
the solution obtained by Murray. According to [3], the values of parameters a and b are as 
follows: a ≈ 0.00218 and b ≈ 0.4485. 

 
 

 Table 1. Data of Influenza in a boarding school [3]  

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

I(t) 1 3 6 25 73 222 294 258 237 191 125 69 27 11 4 

 

 

 

 
 

Figure 2. The numerical solution from the parameters obtained by Murray [3]. 
 

We use this data set as a preliminary test of the method. Later, we will try to apply it   
with more data and/or more difficult conditions. As can be seen, the data gives us the 
initial conditions, I(0) = 1, so, when determining the parameters of the system of 
equations, the model will be totally known. 
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3. Numerical methods 

Genetic Algorithms (GA) are computational techniques inspired in the Darwinian evolution 
of biological species, and implement the biological notion of fitness, that is, the ability to 
survive  and reproduce [7]. The figure 3 shows the flow chart of an GA. 
 

 

 

Figure 3. Flow chart of a Genetic Algorithm (GA). 

 

 
In order to apply an GA, it is often necessary to code the solutions to the problem and 

define the search space; this coding is known as chromosome.  The first step of the algorithm 
consists   in the random generation of a population P of possible solutions (points in the 
search space). 

The fitness function of each individual in the population is then evaluated. The fitness  
function must be carefully constructed to give us a direct measure of how good an 
individual is as a solution to the problem at hand. In this way, the evaluation of the 
fitness function allows us to identify and select the most promising individuals to solve 
the problem. The latter is done through a selection operator. There are several ways to 
construct such an operator. The individuals with the best fit are chosen to be passed on 
to the next generation and also to generate similar individuals through the crossover 
operator. The crossover operator generates new solutions from selected solutions. In 
general, from two-parent solutions it generates two child solutions. Here, there are also 
several ways to implement such an operator. GAs involve a third operator: the mutation 
operator. By analogy with the biological mutation, this operator randomly alters some 
individuals in the population. 

The flow of GA is repeated over n generations. Some of the termination conditions 
may be that the number of generations reaches the n value, or that a threshold value in 
the accuracy of the best solution in the population is reached, or that the best solution 
does not change for a certain number of generations. 

The chromosomes in our experiment consist of ordered pairs (a, b), corresponding to 
particular values of the SIR model parameters, taken randomly in the following interval: 
(0, 1). This is established because it is known historically that in this range are the 
characteristic values for a and b of past epidemics. For each of these ordered pairs of the 
population, we numerically solve the system of differential equations of the SIR model; so 
that each ordered pair corresponds to a single numerical solution. Some examples of 
random individuals we obtained for our population are shown in figure 4. By inspection, 
we can see that some solutions are closer to the data than others. The GA’s job will be to 
choose the individual that best approximates the data. The approximation to the data is 
quantified by evaluating the fitness function. 

The fitness function can be chosen in many ways, we choose as a fitness function the 
Manhattan distance (or L1 standard norm) between the numerical solution and the data at 
time t. Another option for the fitness function can be a Chi-square to measure the 
error of the numerical solution. The GA was implemented with the DEAP Python library 
[8] and is available in [9]. 
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Figure 4. In our proposed procedure, each individual in the search space is coded by the 
parameter pair, a and b, of the differential equation system of the SIR model and is 
equivalent to a single numerical solution. Here are some examples of such individuals. 

 
 

4. Results 

A GA was implemented in which a population of 100 individuals was generated in a 
bidimensional search space of ordered pairs (a, b) in the interval (0, 1) over n = 500 
generations, a crossover probability of 0.9 and a mutation probability of 0.4. We use the 
tournament method, which consists of choosing two individuals randomly from the 
population and selecting the one with the best fit. 

In order to compare the results when using the Manhattan distance, the Chi-square 
distance was also analyzed as a fitness function, it was observed that the results do not vary 
significantly. Once we have implemented the GA, the values of parameters a and b that we 
obtained are as follows: a≈0.00205 and b≈0.43552.  The figure 5 shows the best solution 
obtained, and also the evolution of the best fitness during the execution of the GA. As 
shown in right panel in figure 

 

 

 

Figure 5. Left panel: Best individual (green line) obtained by the GA to adjust the data set. 
Right panel: Evolution of the best fitness (red) and the average fitness (green) of the 
population. 
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5, although the algorithm quickly reaches the best individual, the average fitness function 

of the population fluctuates, this is due to the value of the mutation operator, which is 

responsible for exploring new solutions. 

 

5. Concluding remarks 

In this paper we have presented a methodology that uses GA to adjust parameters in a 

simple dynamical system, such as the SIR epidemiological model, when a given data set 

is available. 

The values for the parameters that we have found by this method are in agreement 

with those previously obtained by other statistical and mathematical techniques [4]. It is 

possible, for example, to perform a parameter adjustment using the Monte  Carlo 

method, for readers interested in a basic exposition of this method we recommend [10] 

and [11]. However, we can comment that the relevance of the method used here is its 

ability to determine the model parameters without making a statistical approximation, 

which requires modeling the data, assuming that they follow a certain distribution. The 

use of GA releases us from that modelling process, and ensures that a good solution can 

be found when gradient-based optimisation methods fail. 

The GA method presented in this paper can be applied to similar models and its use 

for large data-sets can only be limited by available computer resources. Precision can be 

improved by reducing time interval partitioning to smooth out numerical solutions. 

There are aspects of the general problem raised here that are of great interest and that 

we will address in the future. One of them is the determination of parameters from 

incomplete or in-progress data. Something that is currently of great interest in certain 

scientific fields. 

Another aspect of interest in this area is the solution of problems in which the initial 

conditions are unknown, something that can be extremely complicated for a system of 

higher order differential equations, where it is also possible that chaos can occur. 
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