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Abstract This paper introduces a new approach to recon-
struct cosmological functions using artificial neural networks
based on observational measurements with minimal theoreti-
cal and statistical assumptions. By using neural networks, we
can generate computational models of observational datasets,
and then we compare them with the original ones to verify the
consistency of our method. This methodology is applicable
to even small-size datasets. In particular, we test the pro-
posed method with data coming from cosmic chronometers,
f σ8 measurements, and the distance modulus of the Type
Ia supernovae. Furthermore, we introduce a first approach to
generate synthetic covariance matrices through a variational
autoencoder, using the systematic covariance matrix of the
Type Ia supernova compilation.

1 Introduction

One of the biggest challenges for the cosmological commu-
nity is the explanation of the current accelerated Universe
expansion. A theoretical conception, commonly called Dark
Energy (DE), is introduced to explain this mysterious phe-
nomenon and whose nature is still unraveled [1–3]. The stan-
dard model of cosmology, or simply �CDM, is the homo-
geneous and isotropic cosmological model whose material
content is as follows: ordinary matter, the simplest form of
Dark Energy known as cosmological constant � and, finally,
a key component for the formation of structures in the Uni-
verse called Cold Dark Matter (CDM). It has had signifi-
cant achievements, such as being in excellent agreement with
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most of the currently available data, for example, measure-
ments coming from the Cosmic Microwave Background radi-
ation [4], Supernovae Ia (SNeIa) [5], Cosmic Chronometers
(CC) [6] and Baryon Acoustic Oscillations (BAO) [7]. Nev-
ertheless, the �CDM model has its drawbacks: on theoretical
grounds, the cosmological constant faces several problems,
i.e., fine-tuning and cosmic coincidence [8,9], and from an
observational point of view, it also suffers to the so-called
Hubble tension, a measurement disagreement of the Hubble
parameter H0 among different datasets [10]. The presence of
these issues opens the possibility to extensions beyond the
standard cosmological model by considering, for instance, a
dynamical DE, modifications to the general theory of rela-
tivity [11] or other approaches.

The search for possible signatures for cosmological mod-
els beyond the �CDM has led to the creation of an impres-
sive set of high accuracy surveys, already underway or being
planned [12–14], to gather a considerable amount of informa-
tion that constrains the properties of the universe. A viable
cosmological model that leads to the current accelerating
universal expansion is demanded to comply with all the rel-
evant observational data. Extensions to the cosmological
constant that allow a redshift-dependent equation-of-state
(EoS) w(z) include extra dimensions [15], modified grav-
ity [16], scalar fields [17], scalar-tensor theories with non-
minimal derivative coupling to the Einstein tensor [18], grad-
uated dark energy [19], just to mention a few. However, in
the absence of a fundamental and definitive theory of dark
energy, a time-dependent behavior can also be investigated
by choosing an EoS mathematically appealing or a param-
eterized form in a simple way; examples of these forms
in terms of redshift include a Taylor expansion [20], poly-
nomial [21], logarithmic [22], oscillatory [23,24], a com-
bined form of them [25] or in terms of cosmic time [26].
Nonetheless, the a priori assumption of a specific theoreti-
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cal model may lead to misleading model-dependent results
regardless of the dark energy properties. Hence, instead of
committing to a particular cosmological model, the non-
parametric inference techniques allow extract information
directly from the data to detect features within cosmolog-
ical functions, for instance, w(z). The main aim of a non-
parametric approach is to infer (reconstruct) an unknown
quantity based mainly on the data and make as few assump-
tions as possible [8,27]. Several non-parametric techniques
are used to perform model-independent reconstructions for
cosmological functions directly from the data, such as his-
togram density estimators [28], Principal Component Anal-
ysis (PCA) [29], smoothed step functions [30], gaussian pro-
cesses [31–34], Simulation Extrapolation method (SIMEX)
[35] and Bayesian nodal free-form methods [36,37].

After the reconstruction is performed, the function can
be considered as a new model to look for possible devia-
tions from the standard �CDM. In other words, the result of
a model-independent reconstruction may be used to analyze
its similarity with different theoretical models and, therefore,
to select its best description for the data. There are several
examples of model-independent reconstructions of cosmo-
logical functions, some of them focus on dark energy fea-
tures [28,30,38,39], on the cosmic expansion [35], decelera-
tion parameter [34], growth rate of structure formation [33],
luminosity distance [40,41] and primordial power spectrum
[42,43], among many others.

On the other hand, the recent increase in computing power
and the vast amount of coming data have allowed the incur-
sion of machine learning methods as analysis tools in obser-
vational cosmology [44–49]. In this work, we focus on
the computational models called Artificial Neural Networks
(ANNs). They have been used in a variety of applications,
such as image analysis [50,51], N-body simulations [52,53]
and statistical methods [54–58].

In a similar way that model-independent reconstructions
are used to recover the baseline function, the main goal of
this paper is to propose a new method based on artificial neu-
ral networks using solely the current datasets with the most
minimal theoretical assumptions. Here, we refer to the neu-
ral networks output as model-independent reconstructions
because they do not incorporate any a priori cosmological
assumption to generate the model from the datasets. This
work is similar to previous research in which neural networks
produce reconstructions of cosmological functions [59–61].
However, the novel differences here are the exploration of
more cosmological datasets, the null consideration of a fidu-
cial cosmology in the reconstructions, the exclusive use of
the observational data to train the neural networks (even if
they are small), and the new treatment to the non-diagonal
error covariance matrices.

A benefit of using well-trained neural networks is that
these do not consider a fiducial cosmology; the data gener-

ated can be assumed as new observations of the exact nature
of the original dataset. Another advantage of neural networks
over other standard interpolation techniques is that, due to
their nonlinear modeling capabilities, these do not require
consideration of any statistical distribution for the data. In
addition, neural networks also allow us to generate compu-
tational models for the errors of the observational datasets;
when the errors have no correlations (diagonal covariance
matrices), we develop a single neural network model that
considers measurements and errors from the original dataset.
However, we must generate a different neural model when the
error matrices are non-diagonal. We show that our methodol-
ogy can apply to several astronomical datasets, including full
covariance matrices with correlations among measurements,
for which we introduce a special treatment with variational
autoencoders.

The rest of the paper has the following structure. In Sect. 2,
we briefly introduce the cosmological and statistical concepts
used throughout this work: cosmological models, functions
and observations in Sect. 2.1; a short summary of Bayesian
inference in Sect. 2.2 and an overview of neural networks in
section 2.3. Section 3 describes the methodology used during
the neural network training to generate computational models
based on cosmological data. Section 4 contains our results,
in Sect. 4.1 we show the generation of model-independent
reconstructions using neural networks from observational
measurements of the Hubble distance H(z), a combination of
the growth rate of cosmological perturbations times the mat-
ter power spectrum normalization f σ8(z) and the distance
modulus μ(z) along with its covariance matrix. In Sect. 4.2,
we use Bayesian inference on two cosmological models to
check the consistency of our reconstructions in compari-
son with the original data and the expected values of the
cosmological parameters. Finally, in Sect. 5 we expose our
final comments. Furthermore, within the appendices, a brief
description of feedforward neural networks and variational
autoencoders is included, as well as the training process used
for the networks and our experimental method to learn the
covariance matrix.

2 Cosmological and statistical background

This section introduces the cosmological models, functions,
and datasets used throughout this work. The datasets are used
to develop the model-independent reconstructions with our
method and the cosmological models are used to compare
these reconstructions with the theoretical predictions. We
also provide a brief overview of the relevant concepts of
Bayesian inference, which we use as a consistency test for
the results of our neural network reconstructions, and of the
essential elements of Artificial Neural Networks, which are
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the core of our proposed method. Throughout this paper we
use the geometric unit system where h̄ = c = 8πG = 1.

2.1 Cosmological models and datasets

Models

The Friedmann equation describing the late-time dynamical
evolution for a flat-�CDM model can be written as:

H(z)2 = H2
0

[
�m,0(1 + z)3 + (1 − �m,0)

]
, (1)

where H is the Hubble parameter and �m is the matter den-
sity parameter, subscript 0 attached to any quantity denotes its
present (z = 0) value. In this case, the DE EoS is w(z) = −1.

A step further to the standard model is to consider the
dark energy being dynamic, where the evolution of its EoS is
usually parameterized. A commonly used form of w(z) is to
take into account the next contribution of a Taylor expansion
in terms of the scale factor w(a) = w0 + (1 − a)wa or
in terms of redshift w(z) = w0 + z

1+zwa ; we refer to this
model as CPL [20,62]. The parameters w0 and wa are real
numbers such that at the present epoch w|z=0 = w0 and
dw/dz|z=0 = −wa ; we recover �CDM when w0 = −1
and wa = 0. Hence the Friedmann equation for the CPL
parameterization turns out to be:

H(z)2 = H2
0

[
�m,0(1 + z)3

+(1 − �m,0)(1 + z)3(1+w0+wa)e− 3wa z
1+z

]
. (2)

Datasets

Cosmic chronometers (CC) are galaxies that evolve slowly
and allow direct measurements of the Hubble parameter
H(z). These measurements have been collected over sev-
eral years [6,63–69], and now 31 data points are available
within redshifts between 0.09 and 1.965, along with their
independent statistical errors.
The growth rate measurement is usually referred to the
product of f σ8(a) where f (a) ≡ d ln δ(a)/d ln a is the
growth rate of cosmological perturbations given by the den-
sity contrast δ(a) ≡ δρ/ρ, being ρ the energy density and
σ8 the normalization of the power spectrum on scales within
spheres of 8h−1Mpc [70]. Therefore, the observable quan-
tity f σ8(a), or equivalently f σ8(z), is obtained by solving
numerically:

f σ8(a) = a
δ′(a)

δ(1)
σ8,0. (3)

The f σ8 data are obtained through the peculiar velocities
from Redshift Space Distortions (RSD) measurements [71]
observed in redshift survey galaxies or by weak lensing [72],

where the density perturbations of the galaxies are propor-
tional to the perturbations of matter. We used an extended ver-
sion of the Gold-2017 compilation available in [73], which
includes 22 independent measurements of f σ 8(z) with their
statistical errors obtained from redshift space distortion mea-
surements across various surveys (see references therein); the
authors explain that the data used from the f σ 8 combination
has been shown to be unbiased.

Table I of [73] contains the f σ 8(z) measurements along
with their standard deviations used in this work to form our
training dataset. In the same Table, it is indicated the refer-
ence matter density parameter �m,0 for each measurement
and other details of the dataset.

Supernovae (SNeIa). The SNeIa dataset used in this work
corresponds to the Joint Lightcurve Analysis (JLA), a com-
pilation of 740 Type Ia supernovae. It is available in a binned
version that consists of 31 data points with a covariance
matrix CJLA ∈ R

31×31 related to the systematic measure-
ment errors [5]. As a proof of the concept, we focused on
the binned version because, even though the treatment of
a matrix in R

740×740 from the entire dataset is a straight-
forward process, it is very computationally expensive (see
Appendix 1 for details). However, it can be implemented on
more powerful computers.

Let us assume a spatially flat universe, for which the rela-
tionship between the luminosity distance dL and the comov-
ing distance D(z) is given by:

dL (z) = 1

H0
(1 + z)D(z), with D(z) = H0

∫
dz

H(z)
.

(4)

Using dL defined in Eq. (4), and considering that the dis-
tance is expressed in Mega parsecs, the distance modulus is
defined as follows:

μ(z) = m − M = 5 log10 dL(z) + 25, (5)

where m is the apparent magnitude and M refers to the abso-
lute magnitude. According to Ref. [5], in order to use the JLA
binned data, and to perform the Bayesian parameter estima-
tion, we need to apply the following likelihood:

logL = rT · C−1
JLA · r, (6)

where r = μb − M − 5 log10 dL(z) and μb is the distance
modulus obtained from the binned JLA dataset.

We can use the definition for the theoretical distance mod-
ulus from Eq. (5) and obtain r = μb − μ(z) + (25 − M),
and for simplicity, we fixed M because the prior knowledge
suggests a constant value [2]. However, reference [5] warns
about the importance of treating the absolute magnitude M
as a free parameter in the Bayesian inference when using
the binned dataset to avoid any potential issues with the esti-
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mated value of the Hubble parameter. Nevertheless, as our
main aim is to use the Bayesian inference as a proof of the
concept for our methodology and not to draw a cosmologi-
cal conclusion from the results, we have fixed M to the same
value in all the tests for the sake of simplifying computations
with the data and their covariance matrix.

Details about the calibration of the Type IA supernovae
binned dataset, and its covariance matrix used in this work
are contained in appendices E and F of the Ref. [5].

2.2 Bayesian inference

Given a set of observational data and a mathematical expres-
sion for a cosmological model, a conditional probability
function can be constructed regarding the model parameters
and the observables. There are many ways to infer the com-
bination of parameters that best fit the data. In cosmology,
Bayesian inference algorithms have been used prominently
[74–76]; however, methods such as the Laplace approxi-
mation [77], genetic algorithms [46,78], simulated anneal-
ing [79] or particle swarm optimization [80] have also been
explored.

Bayesian statistics is a paradigm in which probabilities
are computed given the prior knowledge of the data [81,82].
It can perform two essential tasks in data analysis: parameter
estimation and model comparison. The Bayes’ Theorem on
which it is based is as follows:

P(θ |D) = P(D|θ)P(θ)

P(D)
, (7)

where D represents the observational dataset and θ is the
set of free parameters in the theoretical model. P(θ) is the
prior probability density function and represents the previous
knowledge of the parameters. L = P(D|θ) is the likelihood
function and indicates the conditional probability of the data
D given the parameters θ of a model. Finally, P(D) is a nor-
malization constant, that is, the likelihood marginalization,
and is called the Bayesian evidence. This quantity is very
useful in model comparison, for example, it has been used in
several papers to compare dark energy models through the
Bayes factor and Jeffrey’s scale [17,36].

Considering the datasets described above, we use the fol-
lowing log-likelihoods:

logLi = −1

2
(Di

th − Di
obs)

T · C−1
i · (Di

th − Di
obs), (8)

where i = 1, 2, 3 correspond to the three datasets: cosmic
chronometers [Di=1 = H(z)] and growth rate measurements
[Di=2 = f σ8(z)]. Dobs represents the observational mea-
surements, while Dth is the theoretical value for the cos-
mological models. Ci=1 and Ci=2 are diagonal covariance
matrices. The log-likelihood for the SNeIa has been previ-
ously defined (see Eq. 6).

2.3 Artificial neural networks

Artificial Neural Networks (ANNs) are computational
models that learn the intrinsic patterns of a dataset. A neural
network consists of several sets of neurons or nodes grouped
into layers, and between the nodes of different layers some
connections are associated with numbers called weights. The
training of a neural network aims to find the best values for
all the weights to produce a generalization of the data, and
this is done through the minimization of an error function
(called loss function) that measures the difference between
the values predicted by the neural network and the actual val-
ues of the dataset (see Appendix A for more details and in
Ref. [83] for an introduction to the subject).

The Universal Approximation Theorem [84] states that an
Artificial Neural Network with at least one hidden layer with
a finite number of neurons can approach any continuous func-
tion if the activation function is continuous and nonlinear.
Therefore an ANN is capable of learning the intrinsic func-
tions inside cosmological datasets and generating a model
based only on the data. Two types of artificial neural net-
works are implemented in this work: Feedforward Neural
Networks (FFNN) and AutoEncoders (AE). The FFNN, also
called multilayer perceptrons or deep feedforward networks,
are the quintessential deep learning models [85]. In this type
of ANN, the connections and information flow are feed-
forward, i.e., from the first to the last layer without loops.
These consist of one input layer, at least one hidden layer,
and an output layer. The input consists of the dataset’s inde-
pendent variables (or features), while the output contains the
dependent variables (or labels).

On the other hand, the autoencoders [86] are trained to
generate a copy of its input on its output. We use this type of
network to learn the errors of a dataset when they conform
to a non-diagonal covariance matrix. We use the Variational
Autoencoders (VAE). Details about autoencoders are in the
Appendix B.

3 Methodology

The datasets in this work contain redshifts, an observable
for each redshift and the corresponding statistical errors. Our
goal is to generate neural network models for the data despite
the complex dependency of these three variables. That is, we
take advantage of the ability of neural networks to model the
relationship between these variables. Neural networks, with a
structure based on multiple neurons and nonlinear activation
functions, allow us to generate computational models utterly
independent of any existing cosmological model or statistical
assumptions.

Even though neural networks are standard in the treatment
of large datasets, there is no mathematical constraint in using
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Fig. 1 Neural network architectures chosen to model the data from cos-
mic chronometers (CC), f σ8 measurements and the JLA SNeIa compi-
lation, respectively; the batch size found for each case was: 16, 1 and 1.
In the last architecture, there is only one node in the output layer because
the errors are computed with a variational autoencoder (described in the

Appendix D) given the original non-diagonal covariance matrix of the
systematic errors. Blue numbers indicate the nodes in each layer. It is
worth mentioning that, in all diagrams, both the redshift functions and
the errors in the output layers refer to observational measurements, and
no functional form of any cosmology is being considered

them for any size of a given dataset, and it is probed in [87]; in
particular, it is demonstrated that neural models can be used
with a total number of weights larger than the number of sam-
ple data points. New approaches in neural network research
that focus on small datasets are the references [88,89], and
a machine learning field, so-called few shot learning [90],
uses only a few of samples to train the network. It is worth
mentioning that using small datasets, although the computing
resources are not demanding, it could become challenging to
find the hyperparameters that generate an acceptable model.
By monitoring the behavior of the loss function both in the
training and the validation sets, we can check the equilib-
rium between the bias and variance to have certainty about
the excellent calibration of the neural network.

In all our datasets, we use their lowest and highest red-
shifts as the limits of the training set, and then we select a
random 20% as the validation set. We do not use a test set
due to the small size of the dataset. However, we test several
combinations of parameters to select those that generate an
excellent neural network model.

For the analysis of cosmic chronometers and f σ8 mea-
surements, we work with the FFNNs because their diagonal
covariance matrices can be arranged into a single column of
the same length as the number of observational measures.
For these networks, we use the mean squared error (MSE)
as a loss function which is a usual selection in regression
problems:

MSE = 1

n

n∑
i

(Yi − Ŷi )
2, (9)

where Yi is a vector with predictions of the ANN, Ŷi a vector
with the expected values, and n is the number of predictions
(or the length of Yi and Ŷi ).

In the case of SNeIa data, we use a FFNN to learn the
distance modulus and a Variational Autoencoder for the non-
diagonal covariance matrix of the systematic errors.

In addition, we implemented the Monte Carlo Dropout
(MC-DO) method [91] in all our FFNNs. This method allows
the output of a neural network to have an uncertainty associ-
ated with it and to generate robust models due to the dropout
being a regularization technique. In the last part of Appendix
A, we describe the basic definitions of Dropout and MC-DO.

We found the best architectures (shown in Fig. 1) among
several combinations of the intrinsic parameters (hyperpa-
rameters) of the neural networks. Appendix C describes our
careful selection of the hyperparameters of the feedforward
neural networks, such as epochs, number of nodes, and how
we have applied the MC-DO method. On the other hand,
Appendix D explains how we configure the VAE neural net-
work, its loss function and other details about its training,
with the non-diagonal covariance matrix of the binned JLA
compilation.

Once the neural networks are well trained, they consti-
tute a model-independent reconstruction, for which we can
compare with observations and theoretical predictions. As
a consistency test of our neural reconstructions, we per-
form Bayesian inference for �CDM and CPL models, and
the expected posterior probabilities would be very similar
between the reconstruction and the original datasets; oth-
erwise, another neural network architecture must be chosen.
We use the following flat priors: for the matter density param-
eter today �m ∈ [0.05, 0.5], for the physical baryon den-
sity parameter �bh2 ∈ [0.02, 0.025], for the reduced Hub-
ble constant h ∈ [0.4, 0.9], and for the amplitude of the
(linear) power spectrum σ8 ∈ [0.6, 1.0]. When assuming
the CPL parameterisation, we use w0 ∈ [−2.0, 0.0] and
wa ∈ [−2.0, 2.0]. The h parameter refers to the dimension-
less reduced Hubble parameter today H/100 kms−1Mpc−1.
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Fig. 2 Hubble distance reconstruction with FFNNs. Left: Purple points
represent the FFNN predictions for H(z) along with their error bars in
red color. Right: Similarly to FFNN but adding MC-DO, we executed
100 times the Monte Carlo dropout to compute the uncertainties of the
predictions. Therefore the purple points are the average predictions of
the MC-DO executions, and the red error bars are the uncertainties of

the FFNN plus the error predictions (see Eq. 16). In both cases, we com-
pare the neural reconstructions with the original cosmic chronometers
(green bars) and H(z) from �CDM, as shown in the labels. The small
panels show the individual behavior of the loss function (MSE) in the
training (red) and validation (green) sets, and these plots suggest that it
is an excellent neural network model with no overfitting or underfitting

4 Results

From the observational datasets, we have trained the neu-
ral networks to reconstruct the Hubble parameter H(z), the
growth rate f σ8(z) and the distance modulus μ(z), their
predictions conform the corresponding model-independent
reconstructions. Finally, we have performed the parameter
estimation to test the consistency of the reconstructions.

4.1 Reconstructions

H(z) data

To visualize the H(z) reconstructions performed by the
FFNN using the CC, we generate predictions of H(z) and
their corresponding errors given 1000 different redshifts. In
Fig. 2 we show the FFNN alone (left) and the FFNN using
MC-DO (right), where the original data points with their sta-
tistical errors are green, while in magenta the neural network
reconstruction along with their predicted errors. Also in this
figure, we compare the outputs of the neural network mod-
els with the theoretical predictions of �CDM using the two
values that yield the Hubble tension H0 = 73.24 km s−1

Mpc−1 and �m = 0.27 coming from the Cepheid variables
[92] and, on the other hand, H0 = 67.40 km s−1 Mpc−1 and
�m = 0.316 measured by the Planck mission [4].

We can notice that the FFNN alone and with MC-DO gen-
erate reconstructions in agreement with the theoretical pre-
dictions, exclusively based on the observable measurements
and their statistical errors. The observational data points are
only a few, therefore the scatter of the measurements is under-
estimated; however, based on their curves for the loss func-

tion, we can confirm that the neural networks generate good
models. The dispersion in the FFNN+MC-DO reconstruction
is higher because it performs statistics on several predictions
and includes the uncertainty of the method itself, therefore
its results are more robust and reliable than FFNN alone.

It is worth mentioning that the reconstructions performed
by our method with FFNNs are consistent with the H(z)
reconstructions of other works performed with Gaussian pro-
cesses [47,93–95] and with neural networks [60], where
the training dataset consists of H(z) evaluations from a flat
�CDM cosmology, redshifts are distributed under a gamma
distribution, and errors are produced by an analytical expres-
sion [96]. In this sense, the advantages of our results are that
they have no statistical assumptions on the data as Gaus-
sian processes usually do, we do not use either the Fried-
mann equation or another cosmological equation to aug-
ment the datasets, and the neural networks learned directly to
model observational errors without imposing some analytical
expression beforehand.

f σ8(z) data

We trained the FFNNs with the extended Gold-2017 compi-
lation of growth rate measurements and their statistical uncer-
tainties, we generate 1000 predictions from the trained neu-
ral nets to visualize the f σ8(z) reconstructions. In Fig. 3, we
plot the original data with their uncertainties (green), while
the neural network predictions and their errors are displayed
in red (left panel is the FFNN alone and right panel corre-
sponds to FFNN+MC-DO). We also draw some curves of
f σ8(z) from the analytical evaluation of the CPL model for
different values of w0 and wa . We notice that the models are
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Fig. 3 Neural reconstructions for f σ8(z) (red lines) and their respec-
tive errors. The original observations are in green with their uncertain-
ties. Left: The f σ8 reconstruction performed by FFNN alone. Right:
f σ8 reconstruction predicted by the FFNN using Monte Carlo dropout,
the averages of 100 executions of MC-DO are indicated with the red

data and their standard deviations are added to the error predictions. In
both cases, the small panels display the behavior of the loss function
(MSE) in the training (red curve) and validation (green curve) sets; in
this case, these curves also show a good neural network model

within the reconstructions in both cases. Hence, this dataset
by itself may provide loose constraints on the CPL parame-
ters, mainly because there are very few points and relatively
large statistical errors. However, the values w0 = −0.8 and
wa = −0.4 (yellow line) seem to have a better agreement
with the reconstruction.

We can analyze Fig. 3 to compare the two results. We
can deduce that it is better to use the MC-DO than just the
FFNN alone because MC-DO provides a dropout as a reg-
ularization technique, avoiding overfitting and producing a
more general data model. The small dataset makes for the
FFNN alone difficult to learn at redshifts close to zero; how-
ever, FFNN+MC-DO performs better in that respect. Regard-
ing the MC-DO improvement, it can be noticed that in the
case of the FFNN method, several data points are outside
the reconstruction, while in the reconstruction generated by
FFNN+MC-DO only the f σ8(z = 0.17) = 0.51 point is
excluded. Despite the significant errors and its sparsity, the
FFNNs could generate a model consistent with the under-
lying cosmological theory of the �CDM and CPL models.
Moreover, the reconstructions produced by the FFNNs have
a similar trend to other model-independent reconstructions of
f σ8(z) made by Gaussian processes [33,97] with the advan-
tage of letting aside any statistical assumption of the data
distribution.

Distance modulus μ(z) data

Our reconstruction methodology for the distance modulus
differs from those previously presented; in this case, the main
aim is modeling the errors of the observational measure-
ments when they are correlated, that is, when the covariance
matrix is non-diagonal. For this purpose, we introduce a new
method based on a variational autoencoder (VAE) along with

an FFNN to perform the whole neural network modeling for
this dataset.

With the distance modulus reconstruction, performed by
the FFNNs, we have generated synthetic data points from
31 log-uniformly distributed redshift values z ∈ [0.01, 1.3]
plus a small Gaussian noise for both the FFNN alone and
the FFNN+MC-DO. For comparison, in the Fig. 4 are the
percentage differences between the �CDM predictions with
the original observations from the binned JLA compilation
(in green), and with the neural networks reconstructions (in
red).

We can generate several points at any different values of
redshift from the neural network models trained with the dis-
tance modulus and model the errors with a VAE neural net-
work (see Appendix D for details of the developed method).
Our motivation for using autoencoders for the covariance
matrix is that an autocoder is trained to generate an out-
put of the same nature as the input while encoding a com-
pressed representation in the part between the encoder and
the decoder. In addition, if we use a VAE, during train-
ing this compressed representation is also sampled through
variational inference and, at the end of training, we can
know the probability distribution that characterizes it and
perform interpolations, sweeping the latent space, to gener-
ate new covariance matrices. Furthermore, we can force the
dimension of this compressed representation (latent space)
to be one-dimensional, for easier interpretation or to map to
another 1D distribution.

A limitation of our method is that the new points, and
errors, should correspond to the dimensionality of the matrix,
in our case 31. Figure 5 shows the absolute error for the out-
puts of the VAE trained with the non-diagonal covariance
matrix of the JLA systematic errors; it can be seen that in
both cases (VAE+FFNNN and VAE+FFNNN+MC-DO) the
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Fig. 4 Comparison between the percentage error times 100 between
the �CDM theoretical predictions for the distance modulus with the
observational measurements and the neural network reconstructions. In
the small panels of both figures, the behavior of the loss function, in
logarithmic scale, is shown for both the validation (green curve) and

training (red curve) sets along with the number of epochs for each case
(300 and 1800); it can be seen that after the training process, we obtain
acceptable models for the binned JLA dataset. Left: With FFNN alone.
Right: FFNN with Monte Carlo Dropout

Fig. 5 Left: Original covariance matrix with systematic errors from
JLA compilation (binned version) with 961 entries. Middle: Absolute
error for the covariance matrices predicted by the VAE+FFNN concern-

ing the original ones. Right: Absolute error for the covariance matrices
predicted by the VAE+FFNN with MC-DO

differences are two or more orders of magnitude lower than
the original matrix; therefore the new matrices are in agree-
ment with the original one. Nonetheless, in Sect. 4.2, we test
these covariance matrices predicted by the neural networks
in a Bayesian inference framework to verify whether they are
statistically consistent with the original data.

From Fig. 4, it can be seen that the reconstructions are in
better agreement with the �CDM model than to the original
data points; this may occur because when the neural network
generates a model for all data points, it underestimates some
of the observational variances and focuses more on the simi-
larity of all observations. The FFNN alone has a smaller error
in the first prediction, but the FFNN+MC-DO reconstructs
the last redshifts better; however, based on the behavior of
the loss function, we can say that the computational models
generated by the neural networks for the binned JLA com-
pilation are acceptable, both in the case of the FFNN alone,
and with MC-DO.

4.2 Testing reconstructions with Bayesian inference

We use a Bayesian inference process for testing the consis-
tency of the reconstructions obtained with the neural net-
works. In addition to the three original datasets (cosmic

chronometers, f σ8 measurements, and binned JLA compila-
tion), we have created two datasets for each type of observa-
tion from the trained FFNNs with and without MC-DO. As
proof of the concept, the new datasets for CC and f σ8 con-
sist of 50 random uniformly distributed points in redshift. At
the same time, for SNeIa, they were 31 log-uniformly dis-
tributed in redshift (same size as the original dataset). We
also generated its respective covariance matrix for the SNeIa
case with the decoder part of the trained VAE. We performed
the Bayesian inference with the data from the neural net-
works reconstructions and with the original data to evaluate
the quality of the reconstructions. For this purpose, we ana-
lyze the �CDM and CPL models. The idea is that if the neural
network reconstructions are satisfactory, the Bayesian esti-
mation of the parameters for the theoretical models should
be very similar from those obtained with the original obser-
vations, i.e., they should have similar means and standard
deviations in the posterior distributions. If this condition is
not satisfied, it is necessary to retrain the neural networks or
use another hyperparameter configuration.

We have used the data from CC, f σ8 measurements, and
JLA separately. The most representative results are in Fig. 6,
along with Table 1, which contains mean values and stan-
dard deviations, and they have been sorted according to the
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Fig. 6 2D marginalized posterior distributions from different com-
binations of datasets: original data, reconstructions data points from
FFNN and FFNN+MC-DO. The green dashed lines (w0 = −1, wa = 0)

and (�1 = 0, �2 = 0) correspond to the �CDM model. The constraints
are plotted with 1σ and 2σ confidence contours

datasets used as a source (original, FFNN, and FFNN+MC-
DO), and to the two models involved (�CDM and CPL).
Results are displayed for the reduced Hubble parameter h,
σ8, w0 and wa parameters for the CPL model. In addition,
the last column of the Table 1 contains the −2 lnLmax of the
Bayesian inference process for each case. One thing to note is
that the neural networks make models that could be thought of
as a function g : z ∈ R → v ∈ R

2, v = ( f (z), err( f (z))),
where both f (z) and the error of the observational measure-
ments are being modeled, so when neural network predic-
tions are used to make Bayesian inference, the errors are of
the same order of magnitude as the original ones. Before ana-
lyzing each scenario separately, it is worth mentioning some
generalities in the results. First, it can be noted that when
using a single source separately, the constraints are consis-
tent. They all have a similar best fit (maximum likelihood),
and secondly, the results agree with the �CDM model.

In the case of parameter estimation, displayed in Table 1,
and posterior distributions shown in Fig. 6, we notice that the
best-fit values are mutually contained within their 1σ stan-
dard deviations, in agreement with the �CDM and CPL val-
ues. Therefore, the neural network models generated by cos-

mic chronometers, f σ8(z) measurements and distance mod-
ulus, through the Bayesian parameter estimation, are statis-
tically consistent with each other.

5 Conclusions

Throughout this work, we generated neural network models
for cosmological datasets between redshifts z = 0 and z =
2 (cosmic chronometers, f σ8 measurements, and SNeIa).
We used the neural models to generate model-independent
reconstructions of H(z), f σ8(z) and μ(z). Then, we applied
Bayesian inference to data points from the reconstructions
to verify that they can reproduce the expected values of the
cosmological parameters in �CDM and CPL models.

We have shown that well-calibrated artificial neural net-
works can produce computational models for cosmological
data, even when the original datasets are small. The neu-
ral network models generate model-independent reconstruc-
tions of the Hubble distance H(z), f σ8(z) and distance mod-
ulus μ(z) exclusively from observational data and without
assuming any cosmological model. Our results are consistent
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Table 1 Parameter estimation using Bayesian inference with datasets from different sources: original, FFNN alone, and FFNN using Monte Carlo
dropout

Datasets CC

Source Model h w0 wa −2 ln Lmax

Original �CDM 0.678 ± 0.039 – – 14.502

CPL 0.703 ± 0.064 −1.223 ± 0.447 −0.061 ± 1.075 14.290

FFNN �CDM 0.698 ± 0.057 – – 0.176

CPL 0.703 ± 0.071 −1.072 ± 0.431 −0.179 ± 1.025 0.042

FFNN+MC-DO �CDM 0.699 ± 0.063 – – 0.346

CPL 0.689 ± 0.078 −1.014 ± 0.450 −0.227 ± 1.003 0.284

Datasets f σ8

h w0 wa σ8

Original �CDM 0.648 ± 0.147 – – 0.787 ± 0.115 11.932

CPL 0.638 ± 0.135 −0.742 ± 0.264 −0.144 ± 0.468 0.777 ± 0.111 11.908

FFNN �CDM 0.650 ± 0.144 – – 0.694 ± 0.172 0.292

CPL 0.648 ± 0.142 −0.701 ± 0.271 −0.290 ± 0.540 0.777 ± 0.111 0.284

FFNN+MC-DO �CDM 0.651 ± 0.147 – – 0.652 ± 0.170 0.984

CPL 0.632 ± 0.140 −0.674 ± 0.270 −0.156 ± 0.489 0.775 ± 0.110 0.960

Datasets JLA

h w0 wa

Original �CDM 0.638 ± 0.146 – – 33.214

CPL 0.652 ± 0.141 −0.901 ± 0.238 −0.216 ± 0.899 32.354

FFNN �CDM 0.645 ± 0.144 – – 14.670

CPL 0.640 ± 0.137 −1.092 ± 0.277 0.287 ± 0.957 13.888

FFNN+MC-DO �CDM 0.643 ± 0.142 – – 16.446

CPL 0.641 ± 0.135 −1.037 ± 0.248 −0.245 ± 0.996 16.274

with previous works using different non-parametric inference
techniques.

In general, the results of the neural networks with MC-DO
are better because they are considering the uncertainty of the
produced models, and the dropout technique provides regu-
larization generating a more robust model. On the other hand,
the standard deviations (or variance) of the FFNN+MC-DO
predictions are small, which gives us the certainty that the
neural network is well-trained. The FFNN+MC-DO predic-
tions may have more variance than the FFNN alone, and
the fact that the results obtained with both models are close
allows us to conclude that the FFNN predictions are accept-
able.

Because we are taking into account the original statistical
errors as part of the training datasets, in the reconstructions
of H(z) and f σ8, the errors have also been modeled by the
neural networks. We are generating models for the errors;
therefore, the new error bars are independent of a real data
point at a given redshift, which is not the case in the Gaussian
processes.

As seen in the appendices, a disadvantage of our method
is that the neural networks training and their hyperparam-
eter tuning are computationally more complex and have a

higher CPU consumption than other interpolation or non-
parametric inference techniques. However, our method offers
some advantages that can make it a viable alternative:

• Well-trained neural network models can be generated
even with few data points.

• No fiducial cosmology is necessary to generate model-
independent neural reconstructions consistent with cos-
mological theory.

• No assumptions have to be made about the statistical
distribution of the data.

• It allows computational models for observational data
and their errors, even if they have correlations among
them.

We have explored the generation of synthetic covariance
matrices through a VAE neural network, and the results have
allowed us to carry out Bayesian inference without draw-
backs. The results we have obtained, as a first approach, are
in agreement with other techniques. For larger datasets, we
consider that using more complex architectures of autoen-
coders and a slightly different approach for dealing with the
computing demand will be convenient.
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It is worth mentioning that the results obtained in this work
are for the chosen observations and have been sufficient to
show some interesting features from the data alone. In this
way, we can see that using neural networks for the model-
independent reconstructions can complement the analysis
of cosmological models and improve the interpretations of
their behaviors. We plan to apply similar techniques to other
data types, including a full set of covariance matrices, and
also incorporate more sophisticated hyperparameter tuning
to improve reconstructions.
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Appendix A: Neural networks basics

Here, we present the learning mechanism of an ANN with
some of the settings we have used throughout this work:

• Before the ANN training, we split the original datasets
into training and validation sets with 80% and 20%,
respectively. The first set is used to train the ANN, while
the validation set contains unseen values. Therefore, it
helps test the performance of the ANN and evaluate its
ability to produce an excellent model for the input dataset.

• The first layer of neurons reads the dataset’s features (or
columns). Each connection between neurons is assigned
a random number called weight (we use random numbers
with a normal distribution centered on 0 with a standard
deviation of 0.01). The input data make up a matrix X1

and provide the values for the first layer of nodes. The Xi

refers to the values of nodes in the i th layer. The weights
make up another matrix Wi , which are the values for the
connections between the i th and the (i + 1)th layers. In
addition, each connection has a bias term bi . The product
Z of these two matrices plus the bias is as follows:

Zi+1 = WT
i Xi + bi , (10)

where Wi ∈ R
m×n , with m and n the number of nodes in

the i th and (i + 1)th layers respectively. Xi corresponds
to the i th layer, therefore, has m dimensions. It is worth
applying the transpose of Wi to allow the matrix product.

• An activation (or transfer) function φ modulates Zi and
assigns values to the next layer of neurons. This process,
known as forward propagation, is repeated until the last
layer is reached. The values of neurons in subsequent
layers are given by:

Xi+1 = φ(Zi+1). (11)

• The value of the neurons in the last layer must be eval-
uated by an error function (or loss function) which mea-
sures the difference between the value given by the ANN
and the expected one. In order to find the better val-
ues of weights, the loss function is minimized by an
optimization method such as gradient descent combined
with the backpropagation algorithm to compute gradi-
ents [98,99].

• During backpropagation, the weights are updated, then
forward propagation is performed again. This is repeated
until the loss function reaches the desired precision, and
then the neural network is trained and ready to make pre-
dictions. The number of samples propagated through the
network before updating the weights is known as batch
size, and each iteration of the entire dataset constitutes
an epoch.

Another essential concept is the dropout (DO), a regu-
larization technique [100] that allows smaller values to be
achieved in the loss function and prevents overfitting. It con-
sists in randomly turning off neurons during training, so the
neurons that operate at each epoch are different. The associ-
ated hyperparameter is a scalar value that indicates the proba-
bility of turning off a neuron in each epoch. Due to its random
nature, the dropout can be used as a Monte Carlo simulation.
When an ANN is trained, the dropout can be interpreted as
a Bayesian approximation of a gaussian probabilistic model,
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during training the active neurons are different, hence differ-
ent weight configurations are saved, and in each prediction,
the neural network uses a different one, such as in each case
we use a different neural network, with other neurons turned
off. Therefore, it is possible to make several predictions and
thus obtain the average and standard deviations. Using this
formalism, dubbed Monte Carlo dropout (MC-DO) [91], we
can get a statistical uncertainty of a trained ANN model. We
apply the dropout method to the FFNNs implemented in this
work and compare the results with those solely with FFNNs.

The intrinsic parameters of an ANN are known as hyperpa-
rameters: the number of layers, number of nodes, batch size,
dropout value, optimizer algorithm, or number of epochs,
among others. It is worth carefully selecting a good com-
bination of them to guarantee that the ANN model has the
capability of generalization. An incorrect choice of them can
produce undesirable models, either underfitted or overfitted
concerning the data.

Appendix B: Autoencoders

Autoencoders can be thought as two symmetrical coupled
ANNs, where the first (encoder) makes a dimensional reduc-
tion for the input and obtains a coded representation (vector
embedding or latent space) of the original data. The second
part (decoder) takes the coded representation of the data and
recovers an instance with the same data type and dimension
as the original input. The encoder is a function f that maps
the input x with dimension l to an encoded vector h with
dimension m, with m < l:

f : x ∈ R
l → h ∈ R

m, (12)

where hi := fi (x) = φe(WT
i Xi + bei ), i = 1, 2, ...,m with

φ being the activation function and the e index refers to the
encoder. The decoder is the following g function that maps
the encoded representation with dimension m into an output
x̂ with the same dimension l as the original input x :

g : h ∈ R
m → x̂ ∈ R

l , (13)

with x̂ j = g j (h) = φd(W ′
j h + bdj ), i = 1, 2, ..., l, where

the d index refers to the decoder. The goal of the autoen-
coder training is to find the parameters of the functions shown
in Eqs. (12) and (13): [W1, ...,Wm], be for the encoder and
[W ′

1, ...,W
′
m], bd for the decoder. If the activation function is

the identity function, i.e., φ(x) = x , then this type of neural
network is analogous to the Principal Component Analy-
sis (PCA) technique. In this work, we use a particular type
called variational autoencoder (VAE), which belongs to the
so-called generative neural networks [101,102].

VAE neural networks use variational inference to sample
the compressed representation (or latent space) and, there-
fore, allow us to know the probability function associated

precisely, with the compressed representation. Unlike clas-
sical autoencoders, such as those described earlier in this
work, two layers of the same dimension as the latent space
are designed before the compressed representation, whose
function is to generate values to sample the mean μ and vari-
ance σ , which are the parameters of the statistical distribution
that produces an input data (matrix or image) of the VAE to
generate a point z of the latent space.

To construct a latent space distribution similar to the pro-
posed Gaussian distribution, the Kullback–Leiber divergence
(KL) is used [103]. Thus, the selection of the relevant loss
function to train the VAE is as follows:

lossVAE = MSE + KL(q(z|x)||p(z)), (14)

where q(z|x) is the probability density function to generate
a z point of the latent space given an input x . On the other
hand, we can assume that p(z) = N (0, I ) with p a proba-
bility density function of the z points in latent space and N
a normal distribution centered at 0 with covariance matrix
equal to the identity matrix. Because VAEs are widely used
in image processing, it is more common to choose binary
cross entropy [104] instead of MSE. However, our interest is
in the numerical information of the covariance matrices and
not just in a classification problem in image generation.

For an extended review about Variational Autoencoders,
we recommend [105,106].

Appendix C: Feedforward neural networks training

This appendix describes some aspects we consider in training
our feedforward neural networks. Although the goal of the
neural network training is to minimize the loss function, also
the following relationship should be taken into account:

MSE = bias2 + variance, (15)

where the bias measures how far away the neural network pre-
dictions are from the actual value, while the variance refers
to how much the prediction varies at nearby points. As the
ANN model gets more complex, the bias can decrease while
the variance can increase. This is called the bias-variance
dilemma [107]. A model with high variance will be overfit-
ted, while a model with high bias will be insufficient to learn
the complexity of the data (underfitting).

In both cases, the model generated by the neural network
would have inaccurate predictions. One way to avoid this
problem is by monitoring the behavior of the loss function
throughout the training epochs, both in the training set and in
the validation set, both of them must have similar behavior.
For example, in Fig. 7, we can see the effect of the num-
ber of epochs in two of our neural networks used in this
work. A common practice to prevent an incorrect fitting in the
ANN model is increasing the training set’s size. Otherwise,
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Fig. 7 Reconstructions from Artificial Neural Networks trained with
different numbers of epochs. The effect of the epochs can be noticed in
training with the CC dataset (top) and with the f σ8(z) measurements
(bottom). The first case (20 epochs) shows underfitting while consid-
ering 1000 epochs shows overfitting. In the f σ8 dataset, the cases for

500 and 1000 epochs present overfitting. In both cases, we choose 100
epochs due to the lowest value of MSE in the validation set. Green
points display real data points with error bars, and in purple the neural
reconstructions along with red error bars

it is worth it to carefully calibrate the ANN models’ hyper-
parameters to achieve acceptable results. There are several
approaches to tune the hyperparameters [108–111]. Because
our ANNs have relatively simple architectures (between two
and five hidden layers and just a few thousand neurons), we
use a common empirical strategy based on a grid of hyperpa-
rameters [108] where several combinations of hyperparam-
eters are evaluated to choose the best of them.

In general, for the three types of cosmological observa-
tions (CC, f σ8 and SNeIa), we have followed the next steps
to find out a suitable neural network model for the corre-
sponding data:

• We train several neural network configurations to gain
insights into the complexity of their architecture to model
the data. According to the loss function results, we choose
a number of layers.

• Several values are suggested for each hyperparameter of
the neural network. Based on the intuition achieved in the
first step, a grid is formed that must be traversed to find
the combination that provides the minimum value of the
loss function. Among the hyperparameters are the batch
size, the number of nodes per layer, and, in some cases,
the dropout.

• The best FNNN architectures found for each case are
shown in Fig. 1. The first two correspond to the CC and
f σ8 datasets, respectively, for which 320 combinations
were tested up to three hidden layers: number of nodes in
{50, 100, 150, 200} and the batch size in {1, 4, 8, 16, 32}.
We found that for the compressed JLA dataset, a one-
layer neural network works best, so we refined the third
architecture among 20 combinations, varying the number

of nodes in {30, 50, 100, 150, 200} and the batch size in
{1, 2, 4, 8}.

• We train the neural network with the combination of
hyperparameters chosen in the previous step with a cor-
rect number of epochs. We verify the behavior of the loss
function in the training and validation sets to check that
our model is neither underfitted nor overfitted.

• Once the neural network is trained, we can generate
model-independent reconstructions with several predic-
tions and compare it with the original data.

• We compare the parameter estimation using data points
from reconstructions with the original datasets to verify
they are statistically consistent; if they are not, the neural
networks must be retrained or other architecture to be
used. For Bayesian inference, we use the SimpleMC1

package, initially released at [112], along with a modified
version of the dynesty nested sampling library [113],
which allows to do the parameter estimation.

On the other hand, through the analysis of the JLA SNeIa
compilation, we also use an FFNN to learn the behavior of the
data from measurements of the distance modulus in a similar
fashion we did for the CC and f σ8. However, to handle the
full covariance matrix, we use a VAE as described in the
Appendix D; using this type of neural network allows us
to map the distribution of the distance modulus data to the
distribution of the coded representation of the autoencoder
to generate new covariance matrices.

One restriction of this method to bear in mind is that the
new matrix must have the same dimension as the original one.
However, we can generate any matrix given a combination

1 www.github.com/ja-vazquez/SimpleMC.
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of new redshifts, provided that this set has the same length
as the original measurements.

In addition to the above procedure, we slightly modify the
FFNNs to implement MC-DO. In this way, we add dropout
between the layers of the FFNNs and run the MC-DO sev-
eral times to obtain average values and uncertainties for each
prediction (as described in Sect. 2.3). We combine our FFNN
designs with the implementation of MC-DO layers from
astronn [114] and compare the results of this method with
the previous ANNs implementations. Because dropout is a
regularization technique, the number of epochs is irrelevant
for a large enough set. The error predictions and the uncer-
tainties are independent; therefore, the total standard devia-

tion is:

σ =
√
erp +

∑
i

u2
i , (16)

where ui is the epistemic uncertainty involved with the FFNN
used and erp is the error prediction.

Besides the intrinsic error associated with the datasets,
we consider an uncertainty related to the FFNN by adding
a Monte Carlo dropout between each layer of the chosen
FNNN architecture. Among several tests to dropout val-
ues between [0, 0.1, 0.2, 0.3, 0.4, 0.5], we evaluated the loss
function of the neural networks trained with these dropout
values and found that the lower value of the loss function
in the test and validation sets is with a dropout of 0.3 along
1000 epochs to the cosmic chronometers data, 0.1 along 2000

Fig. 8 VAE results. Top left: VAE architecture. Top right: Samples of
the mean and variance layers. Lower left: Sampled distribution of the
latent space. Lower right: Comparison between the distributions for the

modulus distances from different sources mapped into the latent space
to generate a new covariance matrix with the VAE decoder
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epochs to fσ8 data, and 0.01 to the SNeIa data with 1000
epochs. After training the FFNNs with MC-DO, we made
100 executions of MC-DO for each prediction.

Appendix D: Variational autoencoder for non-diagonal
covariance matrix

In this appendix, we explain a new method used to gener-
ate synthetic covariance matrices from the original matrix of
the JLA SNeIa binned version. When the VAE is trained, it
samples the probability distribution of the latent space, and
because this covariance matrix is associated with the distance
modulus measurements, therefore, we map its distribution to
the latent space distribution.

To have a dataset to train our VAE, we generated thousands
of matrices by adding Gaussian noise of the same order of
magnitude for each entry of the original covariance matrix.
We assume that predictions at new redshifts within the cur-
rent range of redshifts could have a similar covariance matrix,
this assumption may be useful to test the method in a first
approximation. We designed the VAE architecture, shown
in the first panel of Fig. 8, to generate synthetic covariance
matrices from a single point in the latent space. This VAE
was trained on a dataset created from the systematic error
covariance matrix of the JLA binned version. μ and σ rep-
resent two layers connected to the last layer of the encoder
and the latent space; in this case, both layers have a single
neuron (the same dimension as the latent space). We use a
batch size of 32 and the hyperbolic tangent as the activation
function.

Since we are interested on mapping the distribution of
the distance modulus to the latent space, we design the VAE
with a 1-dimensional latent space, so its mean μ and vari-
ance σ are also 1-dimensional. After training the VAE, as in
other generative neural networks, we can use the decoder part
to generate new covariance matrices that traverse the latent
space. Once the VAE is trained, we can explore the mean,
variance, and latent space layers, as seen in the second and
third panels of Fig. 8. To generate covariance matrices from
the predictions of the modular distances coming from the
FFNNs, using their means and standard deviations, we have
assigned them a Gaussian distribution (fourth panel in Fig. 8).
We have related the original measurements to the most likely
region of the latent space. The deviations from the original
measurements can be linearly mapped to the latent space to
generate a new covariance matrix, as shown in Fig. 5.

In our case, the VAE only learns to generate 31 × 31
covariance matrices, so we can only generate 31 predicted
SNeIa sets. We use a variational autoencoder because the
latent space has a probability distribution sampled during
training. We map this distribution and the distance modu-
lus using the decoder map. We generate a new covariance

matrix for a different modulus of distance values; it is an
experimental procedure, but it seems to work.
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