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Abstract

We test the mutual consistency between the baryon acoustic oscillation measurements from the eBOSS SDSS final
release and the Pantheon supernova compilation in a model-independent fashion using Gaussian process
regression. We also test their joint consistency with the ΛCDM model in a model-independent fashion. We also use
Gaussian process regression to reconstruct the expansion history that is preferred by these two data sets. While this
methodology finds no significant preference for model flexibility beyond ΛCDM, we are able to generate a number
of reconstructed expansion histories that fit the data better than the best-fit ΛCDM model. These example
expansion histories may point the way toward modifications to ΛCDM. We also constrain the parameters Ωk and
H0rd both with ΛCDM and with Gaussian process regression. We find that H0rd= 10,030± 130 km s−1 and
Ωk= 0.05± 0.10 for ΛCDM and that H0rd= 10,040± 140 km s−1 and Ωk= 0.02± 0.20 for the Gaussian
process case.

Unified Astronomy Thesaurus concepts: Cosmology (343); Baryon acoustic oscillations (138); Redshift surveys
(1378); Dark energy (351); Type Ia supernovae (1728); Astrostatistics techniques (1886)

1. Introduction

ΛCDM (Λ for a cosmological constant and CDM for cold
dark matter) has emerged as the concordance model of
cosmology. This model explains a number of data sets well,
at least individually. In broad strokes, the ΛCDM model
explains well the anisotropies in the cosmic microwave
background, how those anisotropies cluster and grow into the
observed large-scale structure of the universe, and how the
expansion of the universe accelerates at late times.

However, there have emerged a number of tensions in the
ΛCDM parameters inferred by different data sets. Most notably
is the so-called “H0 tension,” which is a 4.4σ discrepancy
between the present-day expansion rate directly observed from
the Cepheid anchoring of supernova distances (SN; Riess et al.
2019) and that rate inferred from Planck measurements of the
cosmic microwave background (Planck Collaboration et al.
2020). Other low-redshift distances, including strong lens time
delay distances (Liao et al. 2020; Wong et al. 2020) and the Tip
of the Red Giant Branch (Freedman et al. 2020) measurements
also show some tension, though these are less precise. There
are a number of other tensions involving the growth of
structure (Hildebrandt et al. 2017; Heymans et al. 2020) and the
inferred curvature (Handley 2021; Di Valentino et al. 2020).
Taken together, these may point toward a discrepancy between
high- and low-redshift physics (Keeley et al. 2019).

The H0 tension is primarily about the absolute scale of the
distance–redshift relation, but the shape of this relation can
point toward a possible extension to ΛCDM that may explain
the H0 tension. Two tracers of the shape of the distance–
redshift relation are SN distances and the baryon acoustic
oscillations (BAO) feature in the clustering of galaxies. Jointly,
the SN and BAO data sets are particularly relevant for this H0

tension because they are anchored by the two data sets in
question (Cepheids and the CMB). Indeed, if the H0

measurement from the Cepheids is taken to anchor the SN and
rd, the size of the sound horizon at the drag epoch, is taken to
anchor the BAO, then the distances inferred from the two data
sets are discrepant regardless of any cosmological interpreta-
tion of those distances (Knox & Millea 2020). Thus, the two
data sets, even on their own and unanchored, can indicate what
new physics might be needed to explain the H0 tension.
While there have emerged a large number of explanations

that have reconciled the Planck “TT” data set and the Cepheid
data set, most have not been able to jointly explain every
cosmological data set. Notably, modifying the physics at high
redshift can alleviate the tension between the temperature data
set and the SH0ES data set, though since the posterior does not
shift much, but just expands, adding in the polarization data
sets causes tension to reemerge (Bernal et al. 2016; Agrawal
et al. 2019; Poulin et al. 2019; Hill et al. 2020). Similarly, low-
redshift modifications tend to have trouble simultaneously
explaining both the BAO and SN distances (Keeley et al. 2019;
Li & Shafieloo 2019, 2020). Rather than iterate through a
possibly infinite number of nested extensions to ΛCDM or
discrete alternative models, it can be more fruitful to use
model-independent methods. That is, it is better to use data-
driven techniques to reconstruct the distance–redshift relation
from the data directly. With the reconstructions, one can then
build a model around what is revealed by the data.
In this paper, we first (Section 2) seek to use model-

independent methods to test that the SN and BAO distances
are, in fact, consistent with each other and that they are jointly
consistent with the ΛCDM model. In Section 3, we then
reconstruct the expansion history of the universe (h(z)) inferred
from these two data sets, as well as additional diagnostics that
test the consistency with ΛCDM (om(z) and q(z)). We continue
in Section 4 where we use our model-independent methods to
constrain the relative anchoring of the two SN and BAO
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distance data sets (H0rd) as well as constrain the curvature (Ωk).
We compare the model-independent results with those inferred
by ΛCDM. We discuss these results and conclude in Section 5.

2. Consistency Tests

In this section, we use Gaussian process (GP) regression to
perform model-independent tests of the mutual consistency of
the Pantheon (Scolnic et al. 2018) and SDSS (Blanton et al.
2017) eBOSS (Dawson et al. 2016; eBOSS Collaboration et al.
2020) BAO data sets and their joint consistency with the
ΛCDM model. It is important to perform consistency tests to
answer whether there are any systematics that might hinder the
ability to interpret these distances accurately. Further, if the
data sets have some certain systematic between them, any
attempt to derive cosmological parameters from a joint
inference of the two data sets will yield inaccurate and
artificially precise results. The inferred posteriors would be
meaningless. Additionally, it is important to perform these
kinds of tests in a model-independent manner so that we can
avoid making assumptions that we would want to test, thus
making any outcome of the test more robust.

Previous tests of the consistency between SN and BAO have
relied on model assumptions. The most recent of such tests is
found in the eBOSS cosmology interpretation paper (eBOSS
Collaboration et al. 2020). This test calculates the posterior of
the individual data sets and see if they overlap. They found that
the posteriors overlap in the curved-ΛCDM parameter space,
though the conclusion that the data sets are consistent is
necessarily contingent on the assumed model. If additional
extensions to ΛCDM were used, then it is conceivable the
posteriors would no longer overlap. Our model-independent
method tests the consistency for a large class of expansion
histories and thus relaxes the assumption of the model and
makes the conclusions more robust.

2.1. Data Sets

Both the Pantheon (Scolnic et al. 2018) and SDSS BAO
(eBOSS Collaboration et al. 2020) data sets are unanchored, so
it is trivial to get the absolute scale of the data sets to agree.
Therefore, we are effectively only testing if the shapes of the
inferred expansion histories are consistent. In other words,
these two data sets, on their own, will not be able to adjudicate
which value of H0 is correct, but they will be able to adjudicate
the kinds of beyond-ΛCDM modifications can explain the
tension. If the two data sets are consistent with each other and
with ΛCDM, then we can be more sure that the modification
must occur outside the redshift range of the data sets. One
possible interpretation of any inconsistency that might be found
is that the cosmic distance duality relation is violated, that the
angular diameter distances (DA(z)) and the luminosity distances
(DL(z)) are related by ( ) ( ) ( )+ =z D z D z1 1A L

2 (Liao 2019).
The Pantheon SN data set is composed of 1048 Type Ia SN

between z= 0.01 and z= 2.3. SN are able to constrain
cosmological distances because they are empirically assumed
to be standardizable candles. That is, SN with the same
lightcurves, modulo the color and stretch of the SN and
properties of the host galaxy, are thought to have the same
intrinsic luminosity. This intrinsic luminosity, parameterized by
Mb, is unknown, however, and degenerate with H0. Therefore,
measuring the brightnesses of SN can yield information about
the relative distances of the SN but not their absolute distances.

SN constrain the shape of the expansion history but they are
unanchored.
The SDSS BAO data set measures the correlation function of

galaxies. This correlation function contains a “BAO feature”
that is an overdensity of power at the drag scale rd. This feature
arises from sound waves in the plasma of the early universe.
This scale is fixed in comoving units and is encoded in the
clustering of galaxies.
The SDSS eBOSS final release measures the BAO feature in

a variety of tracers over a variety of redshifts, with the Main
Galaxy Sample at z= 0.15 (Howlett et al. 2015; Ross et al.
2015), the BOSS Luminous Red Galaxy sample at redshifts
z= 0.38 and 0.51 (Alam et al. 2017; Beutler et al. 2017; the
z= 0.61 bin from this sample is merged into the eBOSS
sample), the eBOSS Luminous Red Galaxy sample at redshift
z= 0.70 (eBOSS Collaboration et al. 2020), the eBOSS
Emission-line Galaxy sample at redshift z= 0.85 (eBOSS
Collaboration et al. 2020), the eBOSS quasar sample at redshift
z= 1.48 (eBOSS Collaboration et al. 2020), and the BOSS/
eBOSS Lyα forest and quasar sample at z= 2.33 (du Mas des
Bourboux et al. 2017, 2020). We use the full likelihoods of the
SDSS/eBOSS collaboration.6

2.2. Gaussian Process

A GP is an infinite collection of correlated random variables
characterized by a covariance function (Rasmussen & Wil-
liams 2006). Where a Gaussian distribution draws a single
number, a GP generalizes this concept and draws a function.
So, in a sense, GP can be thought of as a sampling method, but
instead of sampling over a finite dimensional parameter space
as in Markov chain Monte Carlo (MCMC), GP samples an
infinite dimensional function space.
GP generally can take an input called a mean function, a

function about which the random fluctuations of the GP varies.
Therefore, the draws of a GP can be thought of as
hyperfunctions (not the holomorphic variety, just a general-
ization of a hyperparameter, i.e., a function to be marginalized
over), and therefore GP can be used as a method to look for
deviations away from this mean function. To test ΛCDM, we
can choose it as the mean function for our GP inferences.
Using GP to perform a regression utilizes both these

understandings of GP. We essentially take a GP as the prior
in a Bayesian analysis. In proper Bayesian fashion, we
marginalize over this family of hyperfunctions drawn from
the GP prior. Each of these hyperfunction samples is weighted
by their likelihood, by how well they fit the data. Histogram-
ming each of these weighted hyperfunctions then allows us to
calculate the posterior, not in terms of a set of parameters, but
directly in terms of the reconstructed cosmological functions,
for instance, the expansion history H(z). We can summarize the
methodology up to this point with the equation via Bayes’
theorem,

( ( )∣ ) ( ∣ ( )) ( ) ( ) ( )/ò f f f= P H z D d D H z P P D, , 1GP GP GP

where fGP is the family of hyperfunctions from the GP, D is
the data, P(H(z)|D) is the posterior, ( ∣ ( ))f D H z, GP is the
likelihood, P(fGP) is the prior, and P(D) is the evidence. The
hyperfunctions are related to the expansion history by the

6 https://svn.sdss.org/public/data/eboss/DR16cosmo/tags/v1_0_0/
likelihoods/
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following formula,

( ) ( ) ( ( )) ( )f=H z H z zexp , 2mf

where Hmf(z) is the expansion history of the mean function.
From the posterior, we can calculate quantities like the 68%
and 95% confidence levels (CL) for the value of H(z) at any
particular redshift. Joining the CLs for various redshifts allows
us to generate the “band” plots, which if the data significantly
prefer some amount of evolution in the expansion history,
relative to the mean function, then it will show up in these
plots.

As mentioned previously, a GP is characterized by a
covariance function. This covariance function can be quite
general so long as it satisfies some general properties like being
symmetric and positive semidefinite. We specifically use a
squared-exponential covariance matrix with the following
form,

( ) ( ) ( )( ) ( )f f sá ñ = - -s s e , 3f
s s ℓ

1 2
2 21 2

2 2

where our evolution variable is ( ) ( ) (= + +s z zlog 1 log 1
)zmax . We take =z 3max . Importantly, the covariance function

is characterized by two hyperparameters. Parameter σf
determines the heights of the random fluctuations of the GP,
i.e., the scale of the deviations away from the mean function. If
the data prefer additional information or flexibility beyond the
input mean function, they will pick out a value for σf above
zero. Parameter ℓ determines the length of the random
fluctuations. In simple terms, 1/ℓ is roughly the number of
independent random fluctuations in the range. So GP samples
with large ℓ and large σf would have a few large deviations,
while small ℓ and small σf would have many smaller deviations.
Because these hyperparameters encode information about the
inferred expansion histories, the hyperparameters must be fit
for and cannot be assumed.

One might be concerned that this sort of analysis is prone to
overfitting. If ℓ is small, say ℓ∼ 0.001, that is, in effect, ∼1000
degrees of freedom and the worry is that this analysis could
easily achieve an arbitrarily good χ2 value. It is possible for GP
to generate a sample that has this feature, however, for a GP
with ℓ∼ 0.001, the variety of functions that it can produce is
vast and so it would be rare for the GP to actually generate this
hypothetical example. In other words, because we marginalize
over the space of possible functions, we avoid overfitting.
Bayesian analyses are typically safe from the overfitting
problem.

It is these hyperparameters that can be used for testing
whether the data are consistent with the mean function of the
GP regression (Shafieloo et al. 2012, 2013; Aghamousa et al.
2017; L’Huillier et al. 2019; Keeley et al. 2020). Since σf
determines the size of the deviations away from the mean
function, the test of the consistency of the mean function with
the data amounts to testing if σf is consistent with 0. So in
effect, we calculate the posterior for the hyperparameters σf and
ℓ and see where CLs end up. This GP code is based in gphist
(Kirkby & Keeley 2017), which is first introduced in Joudaki
et al. (2018) and later refined in Keeley et al. (2019, 2020). We
use scale invariant priors for σf and ℓ.

2.3. Testing ΛCDM

Now that we have a general methodology to test whether the
mean function of a GP is consistent with the data, we can test if
the two data sets are jointly consistent with the ΛCDM model.
This is achieved simply by fitting ΛCDM to the two data sets,
finding which parameters fit them best, and then using the
expansion history of this best-fit ΛCDM model as the mean
function. Thus if the posterior of σf is consistent with 0, then
ΛCDM is consistent with the two data sets jointly. We see the
results of this test in the bottom panel of Figure 1. There the
posterior is shown with the color corresponding to

( ( ∣ ))s- P ℓ Dlog ,f and the 68%, 95%, and 99.7% CLs. We
see that σf= 0 and therefore ΛCDM is consistent with the two
data sets.

2.4. Testing Mutual Consistency

In order to test the mutual consistency of the two data sets
we can choose the mean function to be a GP reconstruction of
one of the data sets to serve as the mean function for a GP
reconstruction of the other. Schematically, we start with the
best-fit ΛCDM expansion history to the SDSS BAO data set,
for example, which we use as a mean function for a GP
regression of that same data set. We then use the median GP
reconstruction of the SDSS BAO data set as a mean function
for a GP regression of the Pantheon data set. The posterior of
the hyperparameters for this second GP regression is what is
shown in the upper panels of Figure 1. The top-left panel of
that figure corresponds the GP regression of the SDSS BAO
data set with a GP reconstruction from the Pantheon data set as
a mean function. The top-right panel is the reverse, a GP
regression of the Pantheon data set with a mean function taken
from the GP reconstruction from the SDSS BAO data set. In
both cases, we see that the posteriors of the hyperparameters
are consistent with σf= 0 and therefore the data prefer no
additional information beyond the mean function. The
distances inferred from the SDSS BOSS and Pantheon data
sets are consistent.

3. Reconstructions

In this section, we present reconstructions of various
parameters of the universe’s expansion history that are
independent of the absolute scale of the expansion history,
including h(z)=H(z)/H0, the deceleration parameter q(z), and
the om diagnostic om(z); (Sahni et al. 2008). The deceleration
parameter is given by the following formula,

( ) ⃛
̈

( )
( )

( )= - = - +
+

q z
aa

a

d H z

d z
1

log

log 1
, 4

2

and the om diagnostic is given by

( ) ( )
( )

( )=
-

+ -
om z

h z

z

1

1 1
. 5

2

3

Each of these parameters are potentially useful for testing
whether the GP reconstructions are consistent with ΛCDM or if
some evolution is preferred. The dimensionless expansion
history, h(z), is the most obvious and direct quantity to
reconstruct from the data, however, its interpretation is more
uncertain because the variation within ΛCDM can look
categorically similar to the variation within models of evolving
dark energy. Specific functions of h(z), however, can make
more robust tests of ΛCDM or not ΛCDM.

3
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For instance, om(z) should be constant and equal to the
matter density Ωm if ΛCDM correctly described the low-
redshift distances. Any evolution in the expansion history, for
example from an evolving dark energy, would show up as an
evolution in this parameter. Since this parameter has divided
out the ΛCDM evolution from h(z), any potential beyond-
ΛCDM evolution will be more prominent in this function than
in h(z).

Similarly, for ΛCDM ( ) ( )
( )

+ = W +
W

q z1
3

2
z

z

1m
3

crit
, so at high

redshifts it is equal to 3/2 and then transitions to 3/2Ωm by
z= 0. Since this parameter is, effectively, the second derivative
of the data, using a model-independent method to constrain this
quantity will necessarily give uncertain and noisy results.

The results of these reconstructions are shown in Figure 2.
The lighter blue shaded regions correspond to the 68% and
95% CLs of the GP regression. These quantities are calculated
by taking each GP reconstruction, calculating h(z), om(z), and q
(z) for each, then, for each redshift, grabbing the quantity at that
redshift, and then making a histogram over all of the different
reconstructions, weighted by their likelihoods. We use these
histograms to calculate the 68% and 95% CLs.

In orange, we show the corresponding CLs, but for the case
where ΛCDM is assumed. The notable feature here is that the
ΛCDM case yields tighter constraints on these functions of the
expansion history. This feature is expected, since, by
construction, the GP case is more agnostic about the expansion
history.
On top of these bands, we plot specific GP reconstructions

that have a better χ2 than the best-fit ΛCDM. The reconstruc-
tions of om(z) have some noticeable, though rare, evolution
toward low redshift, though this is the region where this
quantity is least constrained by the data.
From these reconstructions, we can see that the Pantheon and

SDSS BAO data sets prefer no significant evolution with
respect to ΛCDM model and show a nonexhaustive set of
example expansion histories that happen to fit these data sets
better then the best-fit ΛCDM.
However, there do exist a number of GP reconstructions that

fit the data better than the best-fit ΛCDM model (see Table 1).
An examination of the GP hyperparameters that generated
these reconstructions can give insight into what features of the
data the reconstructions are fitting better than ΛCDM. Most of
these better-than-ΛCDM reconstructions have large ℓ values

Figure 1. Hyperparameter posteriors for three different cases of consistency checks. The solid, dashed, and dotted white lines correspond to the 1σ, 2σ, and 3σ
contours of the posterior, respectively. The top-left case corresponds to a GP inference of the SDSS data with a mean function taken from a best-fit GP sample to the
SN data; the top-right is the same but switched: a GP inference of SN data with a mean function taken from a best-fit GP sample to the SDSS data. The bottom case
corresponds to a GP inference of both the SN and SDSS data with a mean function taken from the best-fit ΛCDM fit to the two data sets.
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while only having a better fit by Δχ2∼ 0.1−1.0. The GP
reconstructions that have the best fit to the data (Δχ2= 6) also
have the smallest values of ℓ, which, in some sense, translates
to a large number of degrees of freedom, so these reconstruc-
tions have rapidly varying h(z). They vary in such a way that h
(z) is not monotonically increasing with redshift, indicating for
that reconstruction that the inferred dark energy density would
have to be negative at some point. It might be reasonable to
reject any reconstruction that would have a negative dark
energy density at any point on purely a priori grounds, but it is
still interesting to see what sort of expansion history is needed
to fit the data better than ΛCDM. Taken together, each of these
discussed features point toward the conclusion that these
reconstructions that fit the data better than ΛCDM are merely
overfitting the noise in the data.

4. Anchors and Curvature

In this section, we use the SDSS BAO measurements
alongside the Pantheon SN distances to constrain H0rd. This
parameter is the relative anchor of these two unanchored data
sets. The SN constrain unanchored distances, or similarly, they
constrain h(z)=H(z)/H0. The individual BAO constraints
measure H(z)rd or DM/rd at various redshifts. However, to get
H0rd, one still needs to make assumptions to project down to
z= 0. This is where the SN enter, since it is in this region that
they have the greatest constraining power. Therefore, combin-
ing the two data sets can yield robust and tight constraints on
H0rd, even with model-independent methods.
It is trivial to calculate this in the ΛCDM case. The low-

redshift expansion history and distances are simply given by
the typical parameters H0, Ωm, and Ωk. We also fit forMb and rd
to calibrate the distances from the Pantheon and SDSS BAO
data sets. Where normally, within ΛCDM, rd is a derived
parameter that depends on the other parameters of the
background model (e.g., any extra radiation before recombina-
tion could affect rd), in this analysis, because we are only fitting
low-redshift distances, we seek to remain agnostic about any
potential beyond-ΛCDM modifications that might affect rd.
Therefore, we treat rd as an independent parameter and fit for it

Figure 2. GP reconstructions of h(z), q(z), and om(z). The blue bands represent the 68% and 95% confidence levels for the GP reconstructions and the darkest blue
lines represent example GP samples that fit the data better than the best-fit ΛCDM model. The orange lines enclose the 68% and 95% confidence levels for the
ΛCDM case.

Table 1
Best-fit χ2 Values for the ΛCDM and GP Cases

SN SDSS SN+SDSS

ΛCDM 1027 7 1034
GP 1023 5 1028

5
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independently of the other parameters. In summary, we vary
the five mentioned parameters (H0, Ωm, Ωk, Mb, and rd) and use
MCMC to calculate the posterior of these parameters. Thus, it
is relatively trivial to express the constraint in terms of H0rd;
the samples of H0rd are simply the multiplication of the
samples of H0 and rd.

Each sample from the GP is a randomly generated H(z), so H0

in this case is simply H(z= 0). For the GP case, we also treat Mb

and rd as nuisance parameters, so we also fit for these parameters
alongside the expansion histories generated from the GP. Thus,
again, the samples of H0rd are simply the multiplication of the
samples of H(z= 0) and rd. Since the BAO data set constrains
both the angular diameter distances DM(z) and the expansion rate
H(z), the GP can constrain the curvature, since

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( )/ò= W W ¢ ¢-D z c dz H zsinh . 6M k k

z
1 2 1 2

0

The GP case cannot constrain the matter density in a similar
way since for any Ωm, one can then choose w(z) to get the H(z)
needed for the GP reconstruction.

As seen in Figure 3 for the ΛCDM case, we find that
H0rd= 10,030± 130 km s−1, Ωm= 0.28± 0.04, and Ωk=
0.05± 0.10, and for the GP case, we find that that H0rd=
10,040± 140 km s−1 and Ωk= 0.02± 0.20.

5. Discussion and Conclusions

These results can be used to constrain the low-redshift
expansion history and so SN and BAO can adjudicate low-
redshift explanations for the H0 tension, e.g., curvature or
evolving dark energy.

These results can also be used to constrain any potential
evolution of the SN. It has been claimed (Kim et al. 2019) that SN
might not show any evidence for an accelerating universe or for
dark energy. The claim instead is that SN evolve with redshift,
that either the lightcurve calibration with SALT-2 or the Tripp
formula would need extra freedom to account for properties of the
host galaxy. Our methodology implicitly constrains these ideas.

Since we found that both the reconstructed expansion histories
from the SN and from the BAO are consistent with each other and
with ΛCDM, any astrophysical evolution would break this
consistency and thus be disfavored.
This shows that the inference of dark energy is dependent on

not just the SN data set; the BAO data set confirms this as well.
In this paper, we use GP regression to show that the SN and

BAO data sets are consistent with each other and with ΛCDM.
Further, we reconstruct dimensionless functions of the expansion
history of the universe, h(z), q(z), om(z). This allows us to visually
inspect the consistency between these data sets and the ΛCDM
model and to demonstrate that there is still some flexibility
allowed at low redshifts. Finally, we calculate ΛCDM posteriors
from the two data sets finding that H0rd= 10,030± 130 km s−1,
Ωm= 0.28± 0.04, and Ωk= 0.05± 0.10. We also constrain H0rd
and Ωk using our nonparametric GP method, finding that
H0rd= 10,040± 140 km s−1 and Ωk= 0.02± 0.20.
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