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Abstract: Genetic algorithms are a powerful tool in optimization for single and multimodal functions.
This paper provides an overview of their fundamentals with some analytical examples. In addition,
we explore how they can be used as a parameter estimation tool in cosmological models to maximize
the likelihood function, complementing the analysis with the traditional Markov chain Monte Carlo
methods. We analyze that genetic algorithms provide fast estimates by focusing on maximizing
the likelihood function, although they cannot provide confidence regions with the same statistical
meaning as Bayesian approaches. Moreover, we show that implementing sharing and niching
techniques ensures an effective exploration of the parameter space, even in the presence of local
optima, always helping to find the global optima. This approach is invaluable in the cosmological
context, where an exhaustive space exploration of parameters is essential. We use dark energy
models to exemplify the use of genetic algorithms in cosmological parameter estimation, including
a multimodal problem, and we also show how to use the output of a genetic algorithm to obtain
derived cosmological functions. This paper concludes that genetic algorithms are a handy tool
within cosmological data analysis, without replacing the traditional Bayesian methods but providing
different advantages.

Keywords: parameter estimation; dark energy; machine learning; genetic algorithms

1. Introduction

Genetic algorithms (GAs), established for decades, are tools from evolutionary com-
putation [1–5] that solve many function optimization problems. Evolutionary computation
is focused on algorithms exploiting randomness to solve search and optimization problems
using operations inspired by natural evolution [6]. It includes several methods for stochas-
tic or metaheuristic optimization [7,8]; notable examples are Particle Swarm Optimization
(PSO) [9] based on the social behavior of organisms of the same species such as birds, the
Giant Trevally Optimizer (GTO) [10–12] inspired by the hunting behavior of predatory fish,
and Artificial Rabbits Optimization (ARO), drawing inspiration from social interactions
among rabbits [13,14]. Within evolutionary computation, the most relevant methods are
genetic algorithms [15,16], genetic programming [17], and evolutionary strategies [18];
their success is due to their ability to navigate intricate, non-linear, and high-dimensional
search spaces.

In particular, genetic algorithms stand out as powerful tools for optimization problems
because they mathematically always guarantee, under certain conditions, to find the best
solution. Despite challenges posed by local optimum values [19], this property puts them
at an advantage over other techniques. Rooted in the emulation of natural selection and
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evolution, the iterative process of GAs involves generating a population, subjecting it to
fitness-based selection, and applying genetic operators, such as crossover and mutation.
This iterative approach drives the evolution of increasingly optimal solutions over gen-
erations. GAs thrive in situations with multiple optima, irregular landscapes, or where
an analytical solution is difficult to achieve. Its adaptability allows for the simultaneous
exploration of numerous candidate solutions, making them effective in various optimiza-
tion challenges. Unlike traditional optimization methods, GAs have the advantage of
not relying on derivatives, providing excellent robustness in high-dimensional or more
complex problems. Inspired by natural evolution, these algorithms efficiently explore vast
and unknown search spaces [20]. Their ability to solve complex and dynamic projects
makes them valuable in diverse fields, including medicine [21–23], epidemic dynamical
systems [24,25], geotechnics [26], market forecasts [27], and industry [28], among others. A
particularly successful application in the Deep Learning era is the optimization of neural
networks, which are huge computational models in which genetic algorithms help to find
optimal combinations of hyperparameters [29–31].

With the accelerated development of computational resources, genetic algorithms and
other machine learning algorithms have been exploited in several scientific fields in recent
years. Remarkably, they have resulted in significant advances in understanding particle
physics [32–34], astronomical information [35–38], and cosmological phenomena [39–44].

Genetic programming, another method from evolutionary computation, has been
widely used in astrophysics and cosmology [45–50], which allows for symbolic regression
for a given dataset, treating regression as a search problem to find the best combination
of mathematical operators generating an expression fitting the data. Although genetic
programming and genetic algorithms solve different tasks, they use similar operators to
find solutions. In this work, we focus on genetic algorithms, mentioning genetic program-
ming for reference, assuming the astrophysical community may be more familiar with
it. Moreover, genetic algorithms are the most fundamental and successful evolutionary
computation technique, and understanding them is useful for studying other evolutionary
computation methods, including genetic programming.

On the other hand, parameter estimation in cosmology is a very relevant task that
finds a combination of values for parameters describing a cosmological model based on
observational data. The goal is to refine theoretical models to align with observations for
a more precise understanding of the universe. In cosmological parameter estimation, the
most robust and successful algorithms are Markov chain Monte Carlo; however, these
methods sometimes are computationally expensive, and recent advancements try to attack
this issue with new statistical or machine learning techniques, including the iterative
Gaussian emulation method [51], adaptive importance sampling, parallelizable Bayesian
algorithms [52], Bayesian inference accelerated with machine learning [53–55], or likelihood-
free methods [56,57].

This paper aims to achieve two primary objectives: firstly, to provide a comprehensive
introduction to genetic algorithms and elucidate their application in cosmological parameter
estimation, and secondly, to demonstrate the complementarity of GAs with traditional
Bayesian inference methods. We include illustrative examples of optimization problems
and their applications in cosmology. Particularly, we delve into using genetic algorithms
to constrain the parameter space of dark energy models based on observational data. It is
pertinent to mention that GAs cannot perform the same tasks as MCMC methods, and we
do not try to replace them; we only perform parameter estimation with GAs by optimizing
the likelihood function, whereas MCMC methods sample the posterior probability function.
However, we analyze their relevance as an alternative and complementary method, as
discussed in Section 4.1.

The structure of this paper is as follows: In Section 2, we present the basics of genetic
algorithms and an insight into their functionality. In Section 3, we provide some examples
of the optimization of analytical functions by applying genetic algorithms. Section 4.1
describes the path to perform cosmological parameter estimation using these algorithms.
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Section 4.2 contains examples of multimodal problems in cosmology, and in Section 4.3,
we justify how to obtain cosmological-derived parameters from a likelihood optimization.
Finally, Section 5 summarizes our final remarks.

2. Fundamentals of Genetic Algorithms
2.1. Biological Fundamentals

Bioinspired computing is a field of computer science based on observing and imitating
natural processes and phenomena to develop algorithms and computational systems [58].
These algorithms seek to solve complex problems. The bioinspired computation is classified
into three main categories [58]: evolutionary algorithms (such as genetic algorithms),
particle swarm intelligence (imitating collective behaviors) [7,59–61], and computational
ecology (inspired by ecological phenomena) [8,62].

Genetic algorithms solve optimization [1–5] and search problems inspired by funda-
mental concepts of genetics and evolution [8,63,64]; some of its key points are as follows:

• Natural selection—This is the central principle in the theory of evolution. Just as
better-adapted organisms are more likely to survive and reproduce in nature, GAs
favor the fittest or most promising solutions from a population of candidate solutions.
In nature, over several generations, the most promising characteristics of individuals
survive to be inherited by the new generations. This is what genetic algorithms seek
to do to have better solutions as more generations pass by.

• Crossing—Also called recombination, it is a process in which genes from two parents
are combined to create offspring with characteristics inherited from both parents. GAs
apply the idea of crossover by combining partial solutions from two individuals in the
population to generate new solutions that can inherit desirable characteristics from
both parents.

• Mutation—A mutation is recognized as the stochastic alterations in an organism’s
genetic material. In the GAs, a mutation introduces random changes in a small part
of the candidate solutions, e.g., it may change the value of a bit, which increases the
diversity of possible solutions and improves the exploration of the search space.

• Reproduction and inheritance—In the same sense as in nature, in genetic algorithms,
these operations allow for the transmission of some characteristics of the parent
solutions to the solutions of the next generation (offspring).

2.2. Genetic Algorithm Operations

John Holland was the first to introduce the genetic algorithm in 1975 in his book
Adaptation in Natural and Artificial Systems [3,15]. According to the GA context, a
population is a set of possible solutions to a given problem. Each individual has a genotype
encoded in bits, which is then expressed as a phenotype in the problem context. The way
to encode the possible solutions is fundamental to attacking a problem with GAs, and there
are several options to perform it, for example, with binary, integer, or real encoding, among
others [65].

Alternatively, assessing an individual’s quality or a potential solution involves employ-
ing a metric or target function, which is ideally expected to approach its optimal value in
the final generations. For the analogy of natural selection, this target function, or objective
function, is called the fitness function. In practice, in GAs, the fitness function is directly the
function to be optimized. This is unlike genetic programming, where the fitness function is
a measure of the error between the algebraic expression found and the dataset used due to
the regression task that genetic programming addresses.

The continuous evaluation of all the individuals (possible solutions) of a population
with this fitness function and the applications of genetic operations to produce new gener-
ations allow for GAs to find the optimal value of this function. In the following list, we
describe the fundamental procedures of genetic algorithms [66]:

• Selection—It is the method of choosing the best solutions to play the role of parents
and improve the quality of the offspring. Several selection methods include the
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roulette [67], random [68], ranking [69], tournament [70], and Boltzmann entropy
selections [71].

• Crossover—It is also called recombination, which generates a new possible solution
given two previously selected parents. There are several crossover methods, such
as one point, two points, N points, uniform, three parents, random, and order. The
crossover operation has an associated probability (Pc) that determines how many
individuals recombine given the population, with Pc = 1 indicating that all the
products come from the recombination and Pc = 0, meaning they are exact copies of
the parents.

• Mutation—After crossover, mutations make it possible to maintain diversity in the
population and prevent it from stagnating at the local optima [72]. There are several
types of mutation operators, such as flipping a gene if it is in the same position as in the
parent; swapping values at random positions; flipping values from left to right, or in a
random sequence; and shuffling random positions. Mutation also has a probability
associated with it that indicates how likely it is to randomly change a gene (bit) of a
possible solution. The mutation value must be low for an efficient search within the
genetic algorithm1.

• Replacement—The last step is the replacement, which keeps the population size
constant by eliminating individuals after recombination. There are three methods:
strong replacement (random), weak replacement (the two fittest), and replacing both
parents (the children replace both parents).

• Elitism and Hall-of-Fame—The elitism method ensures that the best individuals are
not discarded but transferred directly to the next generation. Hall-of-Fame is an
integer that indicates how many individuals are considered under elitism to be re-
tained in the next generation. Elitism is necessary to ensure that genetic algorithms
always find the best solution [19]. Elitism and Hall-of-Fame are often considered
distinct from the general replacement strategy. While the replacement strategy pri-
marily focuses on selecting individuals for reproduction and forming the next gener-
ation, the elitism and Hall-of-Fame mechanisms specifically address preserving the
best-performing individuals.

• Stopping criteria—A mechanism is needed to finalize the execution of the genetic
algorithm. Some ways to perform it are to stop after a fixed number of generations,
after a specific time-lapse, to finish the process if the best fitness does not change for
several generations (steady fitness), or to stop it if there are no improvements in the
objective function for several consecutive generations (generation stagnation).

In this way, we can summarize that genetic algorithms are a process that involves
some crucial steps: the initialization of a population form of solutions, selection of parents
according to their fitness, recombination of genes by crossing, introduction of variability
by mutation, substitution of individuals, and running the algorithm until the stopping
criterion is satisfied. The operations described above are repeated within a loop, generation
after generation, until a satisfactory solution or convergence criterion is reached.

2.3. Schema Theorem

The heuristic search of genetic algorithms is based on Holland’s schema theorem,
which states that the chromosomes have patterns called schemas. This schema theorem
deals with the decomposition of chromosomes into schemas and their influence on the
evolutionary dynamics of the population.

A schema is a binary string of fixed length representing a chromosome pattern. For
example, in a chromosome of length 6, the schema 001X00 defines a string that starts with
001, has an unknown bit X, and ends with 00.

The fitness of a schema refers to how many individuals in the population contain that
specific schema. It can be represented as a fitness function F(S) that denotes the fitness of
the schema S.
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The schema theorem states that high-fitness schemas are more prevalent in future
generations. This is because schemas with high fitness are more likely to be selected and
recombined, leading to population improvement in terms of fitness. Mathematically, we
can express this as:

F(St+1) ≥ (1− pm) · F(St), (1)

where F(St+1) is the fitness of the schema S at the next generation (t+ 1), F(St) is the fitness
of the schema S in the current generation (t), and finally, pm is the mutation probability.

This equation indicates that the fitness of the schema in the next generation is at least
equal to the current fitness, modulated by the mutation probability. If pm is low, schemas
with high fitness will likely survive and propagate in future generations, contributing to
population improvement.

3. Genetic Algorithm Application

In this section, we implement a genetic algorithm to optimize univariate functions and
extend its application to higher-dimensional problems. The general structure of a genetic
algorithm is provided in the Algorithm 1.

Algorithm 1 Simple Genetic Algorithm
Parents← {randomly generated population}
While not (termination)
Calculate the fitness of each parent in the
population
Children← ∅
while |Children| < |Parents|
Use fitness to probabilistically select a pair of
parents for mating
Mate the parents to create children c1 and c2
Children← Children ∪{c1, c2}
Loop
Randomly mutate some of the children
Parents← Children
Next generation

Several libraries incorporate genetic algorithms, such as Distributed Evolutionary
Algorithms (DEAP) [73], Karoo GP [74], Tiny Genetic Programming [75], and Symbiotic
Bid-Based GP [76]. These libraries simplify the implementation of genetic algorithms. In
this paper, we have utilized the DEAP library, which boasts comprehensive documentation.

3.1. Single Variable Functions

Considering the following three functions, we aim to use a custom genetic algorithm
to find their global maxima:

• f1(x) = (x2 + x) cos(2x) + x2;
• f2(x) = sin2(3x + 45) + 0.9 sin3(9x)− sin(15x + 50) cos(2x− 30);
• f3(x) = −x6/60− x5/50 + x4/2 + 2x3/3− 3.2x2 − 6.4x.

In Figure 1, it can be seen how the above functions are optimized by a genetic algorithm,
using a population size of 100 individuals, with a Hall-of-Fame size equal to 1, a mutation
probability of 0.2, and a crossover probability of 0.5, over 50 generations. Note that as the
generations progress, the individuals are closer to the global maxima. Another interesting
feature is that, despite the local optima, the genetic algorithm in all the functions can find
the global optima, as it is mentioned in the Introduction and Ref. [19].
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Figure 1. The search space exploration is presented for three different generations: 1, 25, and 50. As
we advance through the generations, a greater concentration of individuals (yellow dots) is seen at
the global maxima. In the top panels, f1(x). In the central panels, f2(x). In the bottom panels, f3(x).

3.2. Multimodal Functions

Genetic algorithms can also address problems with multiple dimensions and maxima
by modifying the representation of candidate solutions and the operators used to generate
new solutions. They can explore complex search spaces efficiently and identify global or
local optima by appropriately designing crossover and mutation operators and analyzing
different encoding techniques.

We use the Himmelblau function to demonstrate how genetic algorithms can be used
to optimize these types of multimodal functions. We use the DEAP library, a robust Python
framework for evolutionary computation, to achieve our goal. The following equation
defines Himmelblau’s function:

f (x, y) = (x2 + y− 11)2 + (x + y2 − 7)2. (2)

The niching and sharing technique is employed to identify all the global optima within a
single genetic algorithm run. This concept draws inspiration from nature, where regions
are divided into sub-environments or niches, enhancing population efficiency and survival.
Individuals compete for resources in these niches independently of those in other niches.
By integrating a sharing mechanism into the genetic algorithm, individuals are incentivized
to explore new niches, discovering multiple optimal solutions, each considered as a niche.
Typically, this is achieved by dividing an individual’s fitness value by the sum of distances
from all other individuals. This approach penalizes overpopulated niches by distributing
the local rewards among their individuals [77].

Niching involves dividing the population into subpopulations, each assigned to
explore a specific region in the solution space. This encourages diversity by allowing
genetically engineered individuals to compete for fitness locally. Conversely, sharing
ensures a fair distribution of the fitness resources among individuals within the same
niche. An individual’s fitness is influenced not only by its performance but also by the
performance of its neighbors, preventing overemphasis on a specific region and promoting a
balanced exploration. This approach prevents premature convergence to a local maximum,
allowing for the simultaneous exploration of different regions and ultimately facilitating
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the identification of the global maximum. Applying this technique effectively requires
a larger population size and more generations than a simple genetic algorithm. This is
essential to spread the population across the sample space, targeting different niches and,
consequently, identifying multiple optimal maxima. In our experiment, we executed the
algorithm with 200 individuals and 200 generations, and the outcomes are summarised in
Figure 2 and Table 1.

Figure 2. On the left panel, we have Himmelblau’s function, while the center panel displays its
contour diagram. The red points on the contours represent the global minima of the function. On
the right panel, we can observe the application of the genetic algorithm with niching and sharing,
specifically for Himmelblau’s function, the blue dots are individuals and the red dots represent the
best solutions.

Table 1. A comparison is made among the four real global optima of Himmelblau’s function [77] and
those found by the genetic algorithm using niching and sharing.

Real Optimum Optimum Found by GA

(3.000, 2.000) (3.010, 1.998)

(−2.805, 3.131) (−2.802, 3.133)

(−3.779,−3.283) (−3.774,−3.292)

(3.584,−1.848) (3.585,−1.847)

As can be seen in Table 1, these results are remarkably similar to the real values.
Improving these results is possible by increasing the number of individuals and generations.
It should also be noted that this technique is not limited to three dimensions but can be
generalized to N dimensions and can support the search for global M optima. However, it
is important to remember that as the number of dimensions increases, more computational
resources are required to search effectively.

3.3. Statistical Analysis

Genetic algorithms are handy tools in statistical applications for optimizing likelihood
functions, thereby determining the parameters of a scientific model (which is precisely
what this article aims to demonstrate). However, reporting a confidence interval for the
output of a genetic algorithm can be more complex than in classical statistical methods. The
most rigorous technique relies on having a mathematical model of the genetic algorithm’s
convergence that extends beyond Holland’s schema theory for the simple genetic algorithm
published in 1975.

Because the state of the population in a genetic algorithm depends solely on the previ-
ous state in a probabilistic manner, Markov chains have been studied as suitable models for
specific applications, and more recently, others have been modeled as martingales [78,79].
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However, it is possible to resort to less rigorous techniques. One approach is to assume
a distribution for the optimized parameters. For instance, assuming the parameters follow a
normal distribution, the confidence interval can be calculated based on standard deviations,
and the confidence ellipses can be computed using Fisher matrices. This is the procedure
employed in this article. Another procedure involves using the Bootstrap method or other
re-sampling techniques [80].

4. Application in Cosmology

In observational cosmology, one of the fundamental tasks is to determine the values of
the free parameters for a given theoretical model based on observational measurements.
This involves creating a function that captures the discrepancies between observed data and
theoretical predictions and using it to obtain a parameter estimate that fits the data well. The
likelihood function is typically used to represent the data’s conditional probability given
the theory and its parameters. Although Bayesian inference is the most robust method
for parameter estimation in cosmology, as it allows for sampling the posterior probability
of parameters given the data, it can be computationally intensive (see the nomenclature
under the Bayesian formalism of Bayes’ theorem [81,82]); instead of sampling the posterior
probability function to estimate parameter values efficiently, optimization algorithms can
be used to find the maximum likelihood function. In Reference [82], there is an exciting
overview of the difference between sampling and optimization, and it can be seen that they
are two different tasks that can be complementary. This section presents three applications
that show how genetic algorithms can be applied to analyze cosmological data. First, we
offer parameter estimation in three cosmological models: ΛCDM, CPL, and PolyCDM. We
then discuss how genetic algorithms can be used in a cosmological model with multiple
maximum values, such as the graduated dark energy model presented in Ref. [83].

The datasets utilized in this section comprise 31 cosmic chronometers [84–91], Baryon
Acoustic Oscillation measurements (BAO) [92–97], 1048 Type Ia supernovae (SNeIa) sourced
from the Pantheon compilation [98], and binned data from the Joint Light Analysis SNeIa
compilation [99].

Considering the datasets mentioned above, we employ the following log-likelihood
functions for the Bayesian inference and optimization methods:

logLi = −
1
2
(Di

th − Di
obs)

T · C−1
i · (Di

th − Di
obs), (3)

where the index i ranges from 1 to 3, corresponding to the three datasets: cosmic chronome-
ters [Di=1 = H(z)] and BAO [Di=2 = DA(z)], where DA(z) represents the Hubble, volume
averaged, and angular distance; and SNeIa [Di=3 = µ(z)], where µ(z) denotes the distance
modulus. In this context, Dobs represents the observed measurements, while Dth repre-
sents the theoretical values for the cosmological models. The matrices Ci encompass the
covariance information, accounting for systematic and statistical errors.

We implemented a module to work with the DEAP genetic algorithms within the
SimpleMC2 code for our cosmological parameter estimation [100]. In some of the subsequent
results, we compare the genetic algorithm’s outcomes with those of Bayesian inference
obtained using the nested sampling algorithms, a specialized type of Markov chain Monte
Carlo (MCMC) technique [81,101]. Additionally, we utilize the Fisher matrix formalism
described in Refs. [102,103] to calculate the confidence intervals and generate error plots
for the genetic algorithm-based parameter estimation. It is important to emphasize that
genetic algorithms are not employed to generate posterior samples; instead, they are used
to explore maximum likelihood estimation, which can yield similar and quicker results than
parameter estimation. However, they cannot replace the robustness of MCMC methods.
Furthermore, we conducted maximum likelihood estimation using a classical optimization
method, specifically the L-BFGS algorithm [104], for comparison purposes and to assess
the advantages of genetic algorithms.
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4.1. Cosmological Parameter Estimation

As previously mentioned, we employ genetic algorithms to evaluate their effectiveness
in parameter estimation. As a proof of the concept, and for simplicity, we consider three
cosmological models, ΛCDM, CPL, and PolyCDM, which are described below:

• ΛCDM. The ΛCDM model serves as the standard cosmological model and comprises
two primary components: cold dark matter (CDM), which plays a pivotal role in the
universe’s structure formation, and dark energy, which exhibits a counter-gravitational
behavior, leading to the universe’s accelerated expansion. The cosmological constant,
denoted by Λ, is the simplest and most straightforward representation of dark energy,
which exerts a pressure equal in magnitude but opposite in sign to the universe’s
energy density (p = −ρ). For a flat universe in the late stages of its evolution, the
equation governing its expansion is given by H2 ≡

( ȧ
a
)2

= ρm(t) + ρΛ(t), where a
represents the scale factor, the dot denotes the derivative with respect to time, ρm
signifies the density of dark matter and baryons, and ρΛ accounts for the dark energy
content in the form of a cosmological constant. These two parameters describe the
evolution of the universe’s content. Incorporating their initial conditions denoted with
a subscript 0, this equation can be re-expressed in terms of the redshift 1 + z = 1/a
as follows:

H2 = H2
0 [ΩCDM,0(1 + z)3 + ΩΛ,0], (4)

where H0 denotes the Hubble constant, providing the present rate of expansion of
the universe. The parameters ΩCDM,0 and ΩΛ,0 are specific to the ΛCDM model. The
former represents the current dimensionless density of dark matter (plus baryons),
while the latter signifies the dimensionless density of dark energy. These parameters
are subject to the constraint ΩCDM,0 + ΩΛ,0 = 1; when this equality holds, we have
a flat universe [105]. Consequently, for this model, we effectively have two free
parameters, namely, h and ΩCDM,0, which we simplify by denoting ΩCDM as Ωm
for brevity.

• CPL model. One can discern dark energy’s characteristics by investigating its state
equation, denoted as w(z), where p and ρ represent the pressure and dark energy
density, respectively [106]. Chevallier, Polarski, and Linder introduced the following
parametrization for the equation of state, w(z) = w0 + wa

z
1+z , where w0 signifies the

current value of the equation of state. In contrast, wa represents its rate of change over
time [106]. This equation of state leads to the following derivation:

H(z)2 = H2
0 [Ωm,0(1 + z)3+

(1−Ωm,0)(1 + z)3(1+w0+wa)e−
3waz
1+z ].

(5)

Now, the parameter estimation consists of finding the free parameters H0, Ωm,0, and
w0 and wa.

• PolyCDM. We can consider an extension of dynamical dark energy by introducing spa-
tial curvature, Ω1, which adapts to the evolution of dark energy at low redshifts [41].
By performing a Taylor series expansion of the Equation (4) [107], we arrive at the
PolyCDM model:

H2 = H2
0(Ωm,0(1 + z)3+

Ω1,0(1 + z)2 + Ω2,0(1 + z)

+ (1−Ωm,0 −Ω1,0 −Ω2,0)),

(6)

where Ωm,0 represents the dark matter; and baryon, contribution, and Ω2,0 can be
interpreted as the “lost matter” [107]. PolyCDM can be considered a parametrization
of the Hubble parameter [108].
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For all the models mentioned above, we use a genetic algorithm with elitism, using
50 generations, a mutation probability of 0.2, a crossover probability of 0.7, a population
comprising 100 individuals, and a Hall-of-Fame size of 2 to maximize the likelihood
probability function. Table 2 and Figure 3 present the parameter estimation results obtained
throughout the three methods outlined earlier. It is noticeable that, in most cases, the
genetic algorithm results closely align with the parameter estimations derived from the
nested sampling. Consequently, although they are slower than optimization methods
like the L-BFGS method, genetic algorithms offer greater precision while remaining faster
than MCMC algorithms. It is important to note that genetic algorithms maximize the
likelihood function rather than sampling the posterior distribution. This distinction can
be computationally advantageous compared to Bayesian inference procedures in specific
scenarios. However, GAs lack the assignment of weights to individuals, as found in
Bayesian inference samples, and their exploration of parameter space differs from MCMC
methods, which rely on Markov chains and probabilistic conditions. Genetic algorithms,
instead, focus on achieving improved solutions in each generation.

Figure 3. Two-dimensional posterior distribution plots showing the parameter mean estimates from
nested sampling and the parameter values obtained through likelihood maximization using the
L-BFGS and genetic algorithm methods (see color labels). Note that the confidence intervals are
different due to their nature: optimization methods that maximize the likelihood function (L-BFGS
and genetic algorithms) make use of the Fisher matrix formalism to approximate the errors (see
Section 3.3), while the MCMC (nested sampling) method constructs its confidence intervals from
sampling the posterior probability function. In the nested sampling results, the darker red regions
represent 1σ, and the lighter red regions represent 2σ.
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Table 2. Parameter estimation via genetic algorithms for the ΛCDM, CPL, and PolyCDM models
utilizing cosmic chronometers, BAO, and SNeIa datasets. The −2 logL value represents the optimal
fitness value.

Data: CC + BAO + SNeIa

Model Parameters L-BFGS Optimizer Genetic Nested

ΛCDM

h0 0.6972± 0.0170 0.6964± 0.0170 0.6963± 0.0160

Ωm 0.2950± 0.0133 0.2958± 0.0133 0.2960± 0.0134

−2 logL 1049.2424 1049.2476 1049.2445

CPL

h0 0.6864± 0.0259 0.6916± 0.0258 0.6901± 0.0240

Ωm 0.2853± 0.0221 0.2919± 0.0218 0.2892± 0.0211

w0 −1.0082± 0.0840 −0.9803± 0.0912 −0.9909± 0.0861

wa 0.2556± 0.5188 0.0330± 0.6035 0.0679± 0.5296

−2 logL 10483.9018 1049.0778 1048.9415

PolyCDM

h0 0.6913± 0.0283 0.6916± 0.0283 0.6916± 0.0250

Ωm 0.2899± 0.0290 0.2931± 0.0294 0.2945± 0.0198

Ω1,0 0.0150± 0.4254 0.0947± 0.4271 0.1232± 0.1795

Ω2,0 0.0136± 0.1995 −0.0147± 0.2007 −0.0298± 0.0903

Ωk −0.0013± 0.0703 −0.0076± 0.0702 −0.0004± 0.0117

−2 logL 1049.0688 1049.0660 1049.1286

4.2. Multimodal Models

Parameter inference in some models can lead to the identification of multiple optima,
meaning that posterior probability functions can have multimodal distributions. To address
this complexity, Bayesian nested inference algorithms, such as multinest [109], are a sam-
pling method designed to deal with multimodal distributions, allowing for the effective
sampling of the parameter space. In contrast, classical optimization algorithms are limited
to finding a single maximum. Genetic algorithms, thanks to niche and sharing techniques
(see Section 3.2), have the ability to exhaustively explore the parameter space, even in the
presence of local maxima. An example of a model with multiple maxima in its posterior
distribution is the case of graduated dark energy [83], which is governed by the following
Friedmann equation:

H2 = H2
0 [Ωr,0(1 + z)−4 + Ωm,0(1 + z)−3+

ΩDE,0sgn[1− ψ ln a]|1− ψ ln a|
1

1−λ ],
(7)

where ΩDE,0 is the dimensionless density parameter of the dark energy with ψ < 0 and
λ = 0,−2,−4, . . .. Also, ψ is defined in terms of λ and another parameter γ in the following
way: ψ ≡ −3γ(λ− 1). One maximum value corresponds to the ΛCDM model, whereas
the other is present to alleviate the Hubble tension. This model resembles a rapid transition
of the universe from anti-de Sitter vacua to de Sitter vacua; see the details of the model in
the references [83,110–113].

For the genetic algorithm with elitism used in this case, we set 20 generations, 200
individuals for the population, crossover and mutation probabilities of 0.5 and 0.2, respec-
tively, and a Hall-of-Fame of size 2. Therefore, the free parameters for the graduated dark
energy model are Ωm,0, h0, λ, and γ. For this example, to appreciate the multimodality
in the graduated DE model, we use the same data as that in the original work (Ref. [83]),
i.e., cosmic chronometers, BAO, and SNeIa (binned data from the Joint Light Analysis
compilation [99]), but for simplicity, we do not use the Planck information. We also fix
λ = −20. Performing Bayesian inference on this model, the posterior distribution for the γ
parameter is shown in Figure 4, in which two modes exist. In Table 3, we can analyze the
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outputs of the parameter estimation using nested sampling through posterior distribution
sampling, the L-BFGS optimization method, and a genetic algorithm maximizing the likeli-
hood distribution function; we can notice that the results maximizing the likelihoods are
roughly consistent with the parameter estimation with Bayesian inference; however, for
the γ value, the L-BFGS method is unable to find a value different to zero, and it is far from
the estimation of this parameter using the same data.

As mentioned above, some algorithms for Bayesian inference, such as multinest
nested sampling, could explore the regions with these two maxima; however, most MCMC
methods cannot achieve this task. Using genetic algorithms with the niching and sharing
techniques, we can quickly find and explore the parameter space with these two optima
without performing a Bayesian inference process; we can notice them in the histograms
of Figure 5, in which the GAs explore the regions of both modes of the γ parameter.
Therefore, we can have more confidence in the results of a genetic algorithm than a classical
optimization method.

To conclude this section, it is worth noting that there are other multimodal cosmo-
logical models, mainly involving neutrinos and spatial curvature, documented in the
literature [114–118], and it is worth exploring in future works where these techniques could
prove valuable for conducting efficient and rapid assessments.

Table 3. Parameter estimation with nested sampling (sampling the posterior probability distribution
function), L-BFGS, and genetic algorithm. In these cases, we only consider the maximum likelihood
found in the three methods and their corresponding parameter values.

Nested Sampling L-BFGS Genetic

Ωm 0.3264 0.2991 0.2959

h 0.6947 0.6760 0.6765

γ −0.0129 0.0000 −0.0127

−2 logL 55.8700 60.5781 61.6997

Figure 4. Posterior plots with nested sampling for h and γ parameters of the graduated DE model
using HD + BAO + SN, where the bi-modality is shown. Left: Two-dimensional posterior plot
for h vs. γ. The darker red region represents 1σ, and the lighter red region represents 2σ. Right:
One-dimensional posterior distribution plot for γ parameter.
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Figure 5. Comparison between the histograms of nested sampling (red) and individuals through
generations of the genetic algorithm (blue) for γ parameter of graduated dark energy model.

4.3. Derived Functions

As an additional application, taking advantage of the genetic algorithms’ nature, we
can use the saved individuals along generations to maximize the likelihood function and
calculate the derived functions to analyze their phenomenological behavior. This technique
is usually used with the samples of the posterior probability with Bayesian inference
algorithms, mapping the sampling of an estimated parameter to another derived one. For
example, the library fgivenx [119] allows for this mapping. In the case of the individuals
of likelihood optimization using genetic algorithms, the statistical meaning of the plots is
not directly related to the posterior probability function; however, it can provide an idea of
the behavior of the derived functions given the estimated parameters.

In Figure 6, we compare the equation of state reconstructed from the outputs of
Section 4.1 for the CPL model, and we use the samples for the w0 and wa from the nested
sampling and the values of these same parameters from the history of the individuals
of the genetic algorithm population. We can notice that the behavior of the equation of
state, analyzing the darkest regions, is similar in both cases, and it suggests that for a quick
test, we can use this technique with genetic algorithms. Regarding the confidence regions,
because we are only optimizing the likelihood function with the genetic algorithms, we
cannot have a formal way to estimate them correctly.

Figure 6. Equation of state for CPL model plotted with fgivenx from (left) nested sampling and
(right) genetic algorithms. ’The darker zones represent 1σ’ and the lighter 2σ. The dotted blue line
represents the value of the Equation of State to ΛCDM.

5. Conclusions

In this study, we have leveraged genetic algorithms as an effective tool to estimate the
free parameters of four cosmological models. Individuals generated in each genetic algo-
rithm population have demonstrated the ability to achieve faster parameter estimates than
those obtained using MCMC methods, thus reducing the number of likelihood function
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evaluations required. In addition, these genetic algorithms allow for a rapid computation
of derived parameters, which adds flexibility and efficiency to the estimation process.

However, it is important to note that genetic algorithms differ from Bayesian ap-
proaches in their sampling process. While MCMC methods fully sample the posterior
probability function, genetic algorithms focus on maximizing the likelihood function. This
distinction implies that genetic algorithms cannot directly provide confidence regions with
the same statistical significance as Bayesian inference procedures. However, they offer
significant advantages, such as a faster speed and better results than other optimization
methods, such as the L-BFGS algorithm.

Additionally, we have explored the usefulness of sharing and niche techniques in
genetic algorithms, ensuring practical parameter space exploration, even in local or global
optima. These features may be especially valuable in cosmology as a prior analysis to
maximize the likelihood function before undertaking more computationally expensive
Bayesian parameter estimation.

Throughout this paper, we can understand why genetic algorithms have been a very
promising field of research over the last decades. Their flexibility allows for their applica-
tion in diverse tasks, such as optimization, combinatorics, statistics, and even to speed up
computational algorithms. The potential future applications of genetic algorithms in cosmo-
logical research are vast. With the presented study, we show the prospect of using them as
a complement within cosmological data analysis. This is in agreement and complementary
with the existing research that also focuses on the statistical applications of evolutionary
computation [39,120]. In our case, we have not proposed a novel method or algorithm;
however, we have analyzed how to use GAs so that they can complement a traditional
analysis of cosmological data and be an alternative to optimize the likelihood function. We
are convinced that genetic algorithms are a great technique with diverse cosmological and
statistical applications. For example, in a parallel work, we have explored their usefulness
to improve cosmological neural reconstructions [31] and to reduce the computational time
of Bayesian inference routines. Therefore, we are confident that genetic algorithms are an
excellent complementary element to the cosmological data analysis toolkit.
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Notes
1 Let us consider a binary representation of a genetic algorithm where each individual is a sequence of binary values representing

a potential solution. Suppose an individual’s chromosome (binary sequence) is 101010. A mutation operation might involve
flipping one of the bits, resulting in a new chromosome, like 111010 or 100010. A mutation probability determines the choice
of which bit to flip. If the mutation probability is low, only a few bits are expected to change, maintaining some of the original
information. This process introduces diversity in the population, allowing the algorithm to explore different regions of the search
space and preventing premature convergence to suboptimal solutions. In a genetic algorithm, a bit denotes the smallest unit of
information representing a decision within a solution. Unlike a bit in memory, it symbolizes binary choices in a solution space
rather than directly storing data.

2 https://igomezv.github.io/SimpleMC (accessed on 18 December 2023).

https://igomezv.github.io/SimpleMC


Universe 2024, 10, 11 15 of 18

References
1. Srinivas, M.; Patnaik, L.M. Genetic algorithms: A survey. Computer 1994, 27, 17–26. [CrossRef]
2. Tomassini, M. A survey of genetic algorithms. In Annual Reviews of Computational Physics III; World Scientific: Singapore, 1995;

pp. 87–118.
3. Mitchell, M. Genetic algorithms: An overview. Complex 1995, 1, 31–39. [CrossRef]
4. Kumar, M.; Husain, M.; Upreti, N.; Gupta, D. Genetic Algorithm: Review and Application; SSRN: New York, NY, USA, 2010.
5. Katoch, S.; Chauhan, S.S.; Kumar, V. A review on genetic algorithm: Past, present, and future. Multimed. Tools Appl. 2021,

80, 8091–8126. [CrossRef]
6. Dumitrescu, D.; Lazzerini, B.; Jain, L.C.; Dumitrescu, A. Evolutionary Computation; CRC Press: Boca Raton, FL, USA, 2000.
7. Yang, X.S. Nature-Inspired Metaheuristic Algorithms; Luniver Press: Bristol, UK, 2010.
8. Sadeeq, H.T.; Abdulazeez, A.M. Metaheuristics: A Review of Algorithms. Int. J. Online Biomed. Eng. 2023, 19, 142–164. [CrossRef]
9. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural

Networks, Perth, Australia, 27 November–1 December 1995; IEEE: Piscataway, NJ, USA, 1995; Volume 4, pp.1942–1948.
10. Sadeeq, H.T.; Abdulazeez, A.M. Giant trevally optimizer (GTO): A novel metaheuristic algorithm for global optimization and

challenging engineering problems. IEEE Access 2022, 10, 121615–121640. [CrossRef]
11. Sadeeq, H.T.; Abdulazeez, A.M. Car side impact design optimization problem using giant trevally optimizer. Structures 2023,

55, 39–45. [CrossRef]
12. Hashish, M.S.; Hasanien, H.M.; Ullah, Z.; Alkuhayli, A.; Badr, A.O. Giant Trevally Optimization Approach for Probabilistic

Optimal Power Flow of Power Systems Including Renewable Energy Systems Uncertainty. Sustainability 2023, 15, 13283.
[CrossRef]

13. Wang, L.; Cao, Q.; Zhang, Z.; Mirjalili, S.; Zhao, W. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm
for solving engineering optimization problems. Eng. Appl. Artif. Intell. 2022, 114, 105082. [CrossRef]

14. Alsaiari, A.O.; Moustafa, E.B.; Alhumade, H.; Abulkhair, H.; Elsheikh, A. A coupled artificial neural network with artificial rabbits
optimizer for predicting water productivity of different designs of solar stills. Adv. Eng. Softw. 2023, 175, 103315. [CrossRef]

15. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence; MIT Press: Cambridge, MA, USA, 1992.

16. Holland, J.H. Genetic algorithms and the optimal allocation of trials. SIAM J. Comput. 1973, 2, 88–105. [CrossRef]
17. Langdon, W.B. Genetic Programming and Data Structures: Genetic Programming + Data Structures = Automatic Programming! Kluwer

Academic Publishers: Boston, MA, USA, 1998.
18. Beyer, H.G.; Schwefel, H.P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002, 1, 3–52. [CrossRef]
19. Rudolph, G. Convergence analysis of canonical genetic algorithms. IEEE Trans. Neural Netw. 1994, 5, 96–101. [CrossRef]
20. García, J.; Acosta, C.; Mesa, M. Genetic algorithms for mathematical optimization. J. Phys. Conf. Ser. 2020, 1448, 012020. [CrossRef]
21. Anastasio, M.A.; Yoshida, H.; Nagel, R.; Nishikawa, R.M.; Doi, K. A genetic algorithm-based method for optimizing the

performance of a computer-aided diagnosis scheme for detection of clustered microcalcifications in mammograms. Med. Phys.
1998, 25, 1613–1620. [CrossRef]

22. Bevilacqua, A.; Campanini, R.; Lanconelli, N. A distributed genetic algorithm for parameters optimization to detect microcalcifi-
cations in digital mammograms. In Proceedings of the Workshops on Applications of Evolutionary Computation, Como, Italy,
18–20 April 2001; Springer: Berlin/Heidelberg, Germany, 2001; pp. 278–287.

23. Ghaheri, A.; Shoar, S.; Naderan, M.; Hoseini, S.S. The applications of genetic algorithms in medicine. Oman Med. J. 2015, 30, 406.
[CrossRef]

24. Zelenkov, Y.; Reshettsov, I. Analysis of the COVID-19 pandemic using a compartmental model with time-varying parameters
fitted by a genetic algorithm. Expert Syst. Appl. 2023, 224, 120034. [CrossRef]

25. Esquivel, R.M.; Gómez-Vargas, I.; Montalvo, T.R.; Vázquez, J.A.; García-Salcedo, R. The inverse problem of a dynamical system
solved with genetic algorithms. J. Phys. Conf. Ser. 2021, 1723, 012021. [CrossRef]

26. Simpson, A.R.; Priest, S.D. The application of genetic algorithms to optimisation problems in geotechnics. Comput. Geotech. 1993,
15, 1–19. [CrossRef]

27. Drachal, K.; Pawłowski, M. A review of the applications of genetic algorithms to forecasting prices of commodities. Economies
2021, 9, 6. [CrossRef]

28. Victorino, I.R.d.S.; Maciel Filho, R. Application of Genetic Algorithms To the Optimization of an Industrial Reactor. IFAC Proc.
Vol. 2006, 39, 857–862. [CrossRef]

29. Kuri-Morales, A. Closed determination of the number of neurons in the hidden layer of a multi-layered perceptron network. Soft
Comput. 2017, 21, 597–609. [CrossRef]

30. Whitley, D.; Starkweather, T.; Bogart, C. Genetic algorithms and neural networks: Optimizing connections and connectivity.
Parallel Comput. 1990, 14, 347–361. [CrossRef]

31. Gómez-Vargas, I.; Andrade, J.B.; Vázquez, J.A. Neural networks optimized by genetic algorithms in cosmology. Phys. Rev. D
2023, 107, 043509. [CrossRef]

32. Abel, S.; Constantin, A.; Harvey, T.R.; Lukas, A. Evolving Heterotic Gauge Backgrounds: Genetic Algorithms versus Reinforce-
ment Learning. Fortschritte Der Phys. 2022, 70, 2200034. [CrossRef]

33. Bourilkov, D. Machine and deep learning applications in particle physics. Int. J. Mod. Phys. A 2019, 34, 1930019. [CrossRef]

http://doi.org/10.1109/2.294849
http://dx.doi.org/10.1002/cplx.6130010108
http://dx.doi.org/10.1007/s11042-020-10139-6
http://dx.doi.org/10.3991/ijoe.v19i09.39683
http://dx.doi.org/10.1109/ACCESS.2022.3223388
http://dx.doi.org/10.1016/j.istruc.2023.06.016
http://dx.doi.org/10.3390/su151813283
http://dx.doi.org/10.1016/j.engappai.2022.105082
http://dx.doi.org/10.1016/j.advengsoft.2022.103315
http://dx.doi.org/10.1137/0202009
http://dx.doi.org/10.1023/A:1015059928466
http://dx.doi.org/10.1109/72.265964
http://dx.doi.org/10.1088/1742-6596/1448/1/012020
http://dx.doi.org/10.1118/1.598341
http://dx.doi.org/10.5001/omj.2015.82
http://dx.doi.org/10.1016/j.eswa.2023.120034
http://dx.doi.org/10.1088/1742-6596/1723/1/012021
http://dx.doi.org/10.1016/0266-352X(93)90014-X
http://dx.doi.org/10.3390/economies9010006
http://dx.doi.org/10.3182/20060402-4-BR-2902.00857
http://dx.doi.org/10.1007/s00500-016-2416-3
http://dx.doi.org/10.1016/0167-8191(90)90086-O
http://dx.doi.org/10.1103/PhysRevD.107.043509
http://dx.doi.org/10.1002/prop.202200034
http://dx.doi.org/10.1142/S0217751X19300199


Universe 2024, 10, 11 16 of 18

34. Akrami, Y.; Scott, P.; Edsjö, J.; Conrad, J.; Bergström, L. A profile likelihood analysis of the constrained MSSM with genetic
algorithms. J. High Energy Phys. 2010, 2010, 57. [CrossRef]

35. Charbonneau, P. Genetic algorithms in astronomy and astrophysics. Astrophys. J. Suppl. 1995, 101, 309. [CrossRef]
36. Fridman, P. Radio astronomy image enhancement in the presence of phase errors using genetic algorithms. In Proceedings of

the 2001 International Conference on Image Processing (Cat. No. 01CH37205), Thessaloniki, Greece, 7–10 October 2001; IEEE:
Piscataway, NJ, USA, 2001; Volume 3, pp. 612–615.

37. Rajpaul, V. Genetic algorithms in astronomy and astrophysics. arXiv 2012, arXiv:1202.1643.
38. Holl, B.; Sozzetti, A.; Sahlmann, J.; Giacobbe, P.; Ségransan, D.; Unger, N.; Delisle, J.B.; Barbato, D.; Lattanzi, M.; Morbidelli, R.;

et al. Gaia Data Release 3-Astrometric orbit determination with Markov chain Monte Carlo and genetic algorithms: Systems with
stellar, sub-stellar, and planetary mass companions. Astron. Astrophys. 2023, 674, A10. [CrossRef]

39. Axiak, M.; Kitching, T.; van Hemert, J. Evolution Strategies for Cosmology: A Comparison of Nested Sampling Methods. arXiv
2011, arXiv:1101.0717.

40. Luo, X.L.; Feng, J.; Zhang, H.H. A genetic algorithm for astroparticle physics studies. Comput. Phys. Commun. 2020, 250, 106818.
[CrossRef]

41. Gómez-Vargas, I.; Medel-Esquivel, R.; García-Salcedo, R.; Vázquez, J.A. Neural network reconstructions for the Hubble parameter,
growth rate and distance modulus. Eur. Phys. J. C 2023, 83, 304. [CrossRef]

42. Kamerkar, A.; Nesseris, S.; Pinol, L. Machine learning cosmic inflation. Phys. Rev. D 2023, 108, 043509. [CrossRef]
43. Chacón, J.; Gómez-Vargas, I.; Méndez, R.M.; Vázquez, J.A. Analysis of dark matter halo structure formation in N-body simulations

with machine learning. Phys. Rev. D 2023, 107, 123515. [CrossRef]
44. de Dios Rojas Olvera, J.; Gómez-Vargas, I.; Vázquez, J.A. Observational cosmology with artificial neural networks. Universe 2022,

8, 120. [CrossRef]
45. Arjona, R.; Nesseris, S. What can Machine Learning tell us about the background expansion of the Universe? Phys. Rev. D 2020,

101, 123525. [CrossRef]
46. Nesseris, S.; Garcia-Bellido, J. A new perspective on Dark Energy modeling via Genetic Algorithms. J. Cosmol. Astropart. Phys.

2012, 2012, 033. [CrossRef]
47. Wang, K.; Guo, P.; Yu, F.; Duan, L.; Wang, Y.; Du, H. Computational intelligence in astronomy: A survey. Int. J. Comput. Intell.

Syst. 2018, 11, 575. [CrossRef]
48. Bogdanos, C.; Nesseris, S. Genetic algorithms and supernovae type Ia analysis. J. Cosmol. Astropart. Phys. 2009, 2009, 6. [CrossRef]
49. Nesseris, S.; Shafieloo, A. A model-independent null test on the cosmological constant. Mon. Not. R. Astron. Soc. 2010,

408, 1879–1885. [CrossRef]
50. Alestas, G.; Kazantzidis, L.; Nesseris, S. Machine learning constraints on deviations from general relativity from the large scale

structure of the Universe. Phys. Rev. D 2022, 106, 103519. [CrossRef]
51. Pellejero-Ibáñez, M.; Angulo, R.E.; Aricó, G.; Zennaro, M.; Contreras, S.; Stücker, J. Cosmological parameter estimation via

iterative emulation of likelihoods. Mon. Not. R. Astron. Soc. 2020, 499, 5257–5268. [CrossRef]
52. Wraith, D.; Wraith, D.; Kilbinger, M.; Benabed, K.; Capp’e, O.; Cardoso, J.F.; Cardoso, J.F.; Fort, G.; Prunet, S.; Robert, C.P.

Estimation of cosmological parameters using adaptive importance sampling. Phys. Rev. D 2009, 80, 023507. [CrossRef]
53. Graff, P.; Feroz, F.; Hobson, M.P.; Lasenby, A. BAMBI: Blind accelerated multimodal Bayesian inference. Mon. Not. R. Astron. Soc.

2012, 421, 169–180. [CrossRef]
54. Nygaard, A.; Holm, E.B.; Hannestad, S.; Tram, T. CONNECT: A neural network based framework for emulating cosmological

observables and cosmological parameter inference. J. Cosmol. Astropart. Phys. 2023, 2023, 025. [CrossRef]
55. Gómez-Vargas, I.; Esquivel, R.M.; García-Salcedo, R.; Vázquez, J.A. Neural network within a bayesian inference framework. J.

Phys. Conf. Ser. 2021, 1723, 012022. [CrossRef]
56. Alsing, J.; Charnock, T.; Feeney, S.; Wandelt, B. Fast likelihood-free cosmology with neural density estimators and active learning.

Mon. Not. R. Astron. Soc. 2019, 488, 4440–4458. [CrossRef]
57. Leclercq, F. Bayesian optimization for likelihood-free cosmological inference. Phys. Rev. D 2018, 98, 063511. [CrossRef]
58. Bagavathi, C.; Saraniya, O. Evolutionary Mapping Techniques for Systolic Computing System. In Deep Learning and Parallel

Computing Environment for Bioengineering Systems; Elsevier: Amsterdam, The Netherlands, 2019; pp. 207–223.
59. Passino, K.M. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst. Mag. 2002, 22, 52–67.
60. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
61. Faris, H.; Aljarah, I.; Al-Betar, M.A.; Mirjalili, S. Grey wolf optimizer: A review of recent variants and applications. Neural Comput.

Appl. 2018, 30, 413–435. [CrossRef]
62. Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
63. Mitchell, M. An Introduction to Genetic Algorithms; MIT Press: Cambridge, MA, USA, 1998.
64. Waddington, C.H. An Introduction to Modern Genetics; Routledge: London, UK, 2016.
65. Kumar, A. Encoding schemes in genetic algorithm. Int. J. Adv. Res. Eng. 2013, 2, 1–7.
66. Beasley, D.; Bull, D.R.; Martin, R.R. An overview of genetic algorithms: Part 1, fundamentals. Univ. Comput. 1993, 15, 56–69.
67. Mirjalili, S.; Mirjalili, S. Genetic algorithm. Evolutionary Algorithms and Neural Networks: Theory and Applications; Springer: Cham,

Switzerland, 2019; pp. 43–55.
68. Sivanandam, S.; Deepa, S.; Sivanandam, S.; Deepa, S. Genetic Algorithms; Springer: Berlin/Heidelberg, Germany, 2008.

http://dx.doi.org/10.1007/JHEP04(2010)057
http://dx.doi.org/10.1086/192242
http://dx.doi.org/10.1051/0004-6361/202244161
http://dx.doi.org/10.1016/j.cpc.2019.06.008
http://dx.doi.org/10.1140/epjc/s10052-023-11435-9
http://dx.doi.org/10.1103/PhysRevD.108.043509
http://dx.doi.org/10.1103/PhysRevD.107.123515
http://dx.doi.org/10.3390/universe8020120
http://dx.doi.org/10.1103/PhysRevD.101.123525
http://dx.doi.org/10.1088/1475-7516/2012/11/033
http://dx.doi.org/10.2991/ijcis.11.1.43
http://dx.doi.org/10.1088/1475-7516/2009/05/006
http://dx.doi.org/10.1111/j.1365-2966.2010.17254.x
http://dx.doi.org/10.1103/PhysRevD.106.103519
http://dx.doi.org/10.1093/mnras/staa3075
http://dx.doi.org/10.1103/PhysRevD.80.023507
http://dx.doi.org/10.1111/j.1365-2966.2011.20288.x
http://dx.doi.org/10.1088/1475-7516/2023/05/025
http://dx.doi.org/10.1088/1742-6596/1723/1/012022
http://dx.doi.org/10.1093/mnras/stz1960
http://dx.doi.org/10.1103/PhysRevD.98.063511
http://dx.doi.org/10.1016/j.advengsoft.2013.12.007
http://dx.doi.org/10.1007/s00521-017-3272-5
http://dx.doi.org/10.1109/TEVC.2008.919004


Universe 2024, 10, 11 17 of 18

69. Goldberg, D.E.; Deb, K. A comparative analysis of selection schemes used in genetic algorithms. In Foundations of Genetic
Algorithms; Elsevier: Amsterdam, The Netherlands, 1991; Volume 1, pp. 69–93.

70. Miller, B.L.; Goldberg, D.E. Genetic algorithms, tournament selection, and the effects of noise. Complex Syst. 1995, 9, 193–212.
71. Lee, C.Y. Entropy-Boltzmann selection in the genetic algorithms. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2003, 33, 138–149.
72. Marsili Libelli, S.; Alba, P. Adaptive mutation in genetic algorithms. Soft Comput. 2000, 4, 76–80. [CrossRef]
73. Fortin, F.A.; De Rainville, F.M. Distributed Evolutionary Algorithms. Available online: https://github.com/deap (accessed on 18

December 2023).
74. Staats, K. Karoo_gp. Available online: http://kstaats.github.io/karoo_gp/ (accessed on 18 December 2023).
75. Sipper, M. Tiny Genetic Programming. Available online: https://github.com/moshesipper/tiny_gp (accessed on 18 December

2023).
76. Bonson, J.P.C. Symbiotic Bid-Based GP. Available online: https://github.com/jpbonson/SBBFramework (accessed on 18

December 2023).
77. Wirsansky, E. Hands-On Genetic Algorithms with Python: Applying Genetic Algorithms to Solve Real-World Deep Learning and Artificial

Intelligence Problems; Packt Publishing: Birmingham, UK, 2020.
78. Eiben, A.E.; Rudolph, G. Theory of evolutionary algorithms: A bird’s eye view. Theor. Comput. Sci. 1999, 229, 3–9. [CrossRef]
79. Oliveto, P.S.; Witt, C. On the runtime analysis of the simple genetic algorithm. Theor. Comput. Sci. 2014, 545, 2–19. [CrossRef]
80. Šílenỳ, J. Earthquake source parameters and their confidence regions by a genetic algorithm with a ‘memory’. Geophys. J. Int.

1998, 134, 228–242. [CrossRef]
81. Esquivel, R.M.; Gómez-Vargas, I.; Vázquez, J.A.; Salcedo, R.G. An introduction to Markov Chain Monte Carlo. Boletín EstadíStica

Investig. Oper. 2021, 1, 47–74.
82. Hogg, D.W.; Foreman-Mackey, D. Data analysis recipes: Using markov chain monte carlo. Astrophys. J. Suppl. Ser. 2018, 236, 11.

[CrossRef]
83. Akarsu, Ö.; Barrow, J.D.; Escamilla, L.A.; Vazquez, J.A. Graduated dark energy: Observational hints of a spontaneous sign switch

in the cosmological constant. Phys. Rev. D 2020, 101, 063528. [CrossRef]
84. Jimenez, R.; Verde, L.; Treu, T.; Stern, D. Constraints on the equation of state of dark energy and the Hubble constant from stellar

ages and the cosmic microwave background. Astrophys. J. 2003, 593, 622. [CrossRef]
85. Simon, J.; Verde, L.; Jimenez, R. Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D 2005, 71, 123001.

[CrossRef]
86. Stern, D.; Jimenez, R.; Verde, L.; Kamionkowski, M.; Stanford, S.A. Cosmic chronometers: Constraining the equation of state of

dark energy. I: H(z) measurements. J. Cosmol. Astropart. Phys. 2010, 2010, 008. [CrossRef]
87. Moresco, M.; Verde, L.; Pozzetti, L.; Jimenez, R.; Cimatti, A. New constraints on cosmological parameters and neutrino properties

using the expansion rate of the Universe to z ∼ 1.75. J. Cosmol. Astropart. Phys. 2012, 2012, 053. [CrossRef]
88. Zhang, C.; Zhang, H.; Yuan, S.; Liu, S.; Zhang, T.J.; Sun, Y.C. Four new observational H(z) data from luminous red galaxies in the

Sloan Digital Sky Survey data release seven. Res. Astron. Astrophys. 2014, 14, 1221. [CrossRef]
89. Moresco, M. Raising the bar: New constraints on the Hubble parameter with cosmic chronometers at z ∼ 2. Mon. Not. R. Astron.

Soc. Lett. 2015, 450, L16–L20. [CrossRef]
90. Moresco, M.; Pozzetti, L.; Cimatti, A.; Jimenez, R.; Maraston, C.; Verde, L.; Thomas, D.; Citro, A.; Tojeiro, R.; Wilkinson, D. A 6%

measurement of the Hubble parameter at z ∼ 0.45: Direct evidence of the epoch of cosmic re-acceleration. J. Cosmol. Astropart.
Phys. 2016, 2016, 014. [CrossRef]

91. Ratsimbazafy, A.; Loubser, S.; Crawford, S.; Cress, C.; Bassett, B.; Nichol, R.; Väisänen, P. Age-dating luminous red galaxies
observed with the Southern African Large Telescope. Mon. Not. R. Astron. Soc. 2017, 467, 3239–3254. [CrossRef]

92. Alam, S.; Ata, M.; Bailey, S.; Beutler, F.; Bizyaev, D.; Blazek, J.A.; Bolton, A.S.; Brownstein, J.R.; Burden, A.; Chuang, C.H.; et al.
The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Cosmological analysis of the DR12
galaxy sample. Mon. Not. R. Astron. Soc. 2017, 470, 2617–2652. [CrossRef]

93. Ata, M.; Baumgarten, F.; Bautista, J.; Beutler, F.; Bizyaev, D.; Blanton, M.R.; Blazek, J.A.; Bolton, A.S.; Brinkmann, J.; Brownstein,
J.R.; et al. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: First
measurement of baryon acoustic oscillations between redshift 0.8 and 2.2. Mon. Not. R. Astron. Soc. 2018, 473, 4773–4794.
[CrossRef]

94. Blomqvist, M.; Des Bourboux, H.D.M.; de Sainte Agathe, V.; Rich, J.; Balland, C.; Bautista, J.E.; Dawson, K.; Font-Ribera, A.; Guy,
J.; Le Goff, J.M.; et al. Baryon acoustic oscillations from the cross-correlation of Lyα absorption and quasars in eBOSS DR14.
Astron. Astrophys. 2019, 629, A86. [CrossRef]

95. de Sainte Agathe, V.; Balland, C.; Des Bourboux, H.D.M.; Blomqvist, M.; Guy, J.; Rich, J.; Font-Ribera, A.; Pieri, M.M.; Bautista,
J.E.; Dawson, K.; et al. Baryon acoustic oscillations at z = 2.34 from the correlations of Lyα absorption in eBOSS DR14. Astron.
Astrophys. 2019, 629, A85. [CrossRef]

96. Beutler, F.; Blake, C.; Colless, M.; Jones, D.H.; Staveley-Smith, L.; Campbell, L.; Parker, Q.; Saunders, W.; Watson, F. The 6dF
Galaxy Survey: Baryon acoustic oscillations and the local Hubble constant. Mon. Not. R. Astron. Soc. 2011, 416, 3017–3032.
[CrossRef]

97. Ross, A.J.; Samushia, L.; Howlett, C.; Percival, W.J.; Burden, A.; Manera, M. The clustering of the SDSS DR7 main Galaxy sample–I.
A 4 per cent distance measure at z = 0.15. Mon. Not. R. Astron. Soc. 2015, 449, 835–847. [CrossRef]

http://dx.doi.org/10.1007/s005000000042
https://github.com/deap
http://kstaats.github.io/karoo_gp/
https://github.com/moshesipper/tiny_gp
https://github.com/jpbonson/SBBFramework
http://dx.doi.org/10.1016/S0304-3975(99)00089-4
http://dx.doi.org/10.1016/j.tcs.2013.06.015
http://dx.doi.org/10.1046/j.1365-246x.1998.00549.x
http://dx.doi.org/10.3847/1538-4365/aab76e
http://dx.doi.org/10.1103/PhysRevD.101.063528
http://dx.doi.org/10.1086/376595
http://dx.doi.org/10.1103/PhysRevD.71.123001
http://dx.doi.org/10.1088/1475-7516/2010/02/008
http://dx.doi.org/10.1088/1475-7516/2012/07/053
http://dx.doi.org/10.1088/1674-4527/14/10/002
http://dx.doi.org/10.1093/mnrasl/slv037
http://dx.doi.org/10.1088/1475-7516/2016/05/014
http://dx.doi.org/10.1093/mnras/stx301
http://dx.doi.org/10.1093/mnras/stx721
http://dx.doi.org/10.1093/mnras/stx2630
http://dx.doi.org/10.1051/0004-6361/201935641
http://dx.doi.org/10.1051/0004-6361/201935638
http://dx.doi.org/10.1111/j.1365-2966.2011.19250.x
http://dx.doi.org/10.1093/mnras/stv154


Universe 2024, 10, 11 18 of 18

98. Scolnic, D.M.; Jones, D.; Rest, A.; Pan, Y.; Chornock, R.; Foley, R.; Huber, M.; Kessler, R.; Narayan, G.; Riess, A.; et al. The complete
light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined
pantheon sample. Astrophys. J. 2018, 859, 101. [CrossRef]

99. Betoule, M.; Kessler, R.; Guy, J.; Mosher, J.; Hardin, D.; Biswas, R.; Astier, P.; El-Hage, P.; Konig, M.; Kuhlmann, S.; et al. Improved
cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples. Astron. Astrophys. 2014, 568, A22.
[CrossRef]

100. Vazquez, J.; Gomez-Vargas, I.; Slosar, A. Updated Version of a Simple MCMC Code for Cosmological Parameter Estimation
Where Only Expansion History Matters. 2023. Available online: https://github.com/ja-vazquez/SimpleMC (accessed on 18
December 2023).

101. Skilling, J. Nested sampling. AIP Conf. Proc. 2004, 735, 395–405.
102. Padilla, L.E.; Tellez, L.O.; Escamilla, L.A.; Vazquez, J.A. Cosmological parameter inference with Bayesian statistics. Universe 2021,

7, 213. [CrossRef]
103. Sivia, D.; Skilling, J. Data Analysis: A Bayesian Tutorial; OUP, Oxford University Press: Oxford, UK, 2006.
104. Zhu, C.; Byrd, R.H.; Lu, P.; Nocedal, J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained

optimization. ACM Trans. Math. Softw. (TOMS) 1997, 23, 550–560. [CrossRef]
105. Liddle, A. An Introduction to Modern Cosmology; John Wiley & Sons: Hoboken, NJ, USA, 2015.
106. Linden, S.; Virey, J.M. Test of the Chevallier-Polarski-Linder parametrization for rapid dark energy equation of state transitions.

Phys. Rev. D 2008, 78, 023526. [CrossRef]
107. Vazquez, J.A.; Hee, S.; Hobson, M.; Lasenby, A.; Ibison, M.; Bridges, M. Observational constraints on conformal time symmetry,

missing matter and double dark energy. J. Cosmol. Astropart. Phys. 2018, 2018, 062. [CrossRef]
108. Zhai, Z.; Blanton, M.; Slosar, A.; Tinker, J. An evaluation of cosmological models from the expansion and growth of structure

measurements. Astrophys. J. 2017, 850, 183. [CrossRef]
109. Feroz, F.; Hobson, M.; Bridges, M. MultiNest: An efficient and robust Bayesian inference tool for cosmology and particle physics.

Mon. Not. R. Astron. Soc. 2009, 398, 1601–1614. [CrossRef]
110. Acquaviva, G.; Akarsu, Ö.; Katırcı, N.; Vazquez, J.A. Simple-graduated dark energy and spatial curvature. Phys. Rev. D 2021,

104, 023505. [CrossRef]
111. Akarsu, Ö.; Kumar, S.; Özülker, E.; Vazquez, J.A. Relaxing cosmological tensions with a sign switching cosmological constant.

Phys. Rev. D 2021, 104, 123512. [CrossRef]
112. Akarsu, O.; Di Valentino, E.; Kumar, S.; Nunes, R.C.; Vazquez, J.A.; Yadav, A. LambdasCDM model: A promising scenario for

alleviation of cosmological tensions. arXiv 2023, arXiv:2307.10899.
113. Akarsu, Ö.; Kumar, S.; Özülker, E.; Vazquez, J.A.; Yadav, A. Relaxing cosmological tensions with a sign switching cosmological

constant: Improved results with Planck, BAO, and Pantheon data. Phys. Rev. D 2023, 108, 023513. [CrossRef]
114. Kreisch, C.D.; Park, M.; Calabrese, E.; Cyr-Racine, F.Y.; An, R.; Bond, J.R.; Dore, O.; Dunkley, J.; Gallardo, P.; Gluscevic, V.; et al.

The Atacama Cosmology Telescope: The Persistence of Neutrino Self-Interaction in Cosmological Measurements. arXiv 2022,
arXiv:2207.03164.

115. Camarena, D.; Cyr-Racine, F.Y.; Houghteling, J. The two-mode puzzle: Confronting self-interacting neutrinos with the full shape
of the galaxy power spectrum. arXiv 2023, arXiv:2309.03941.

116. Cedeno, F.X.L.; Nucamendi, U. Revisiting cosmological diffusion models in Unimodular Gravity and the H0 tension. Phys. Dark
Universe 2021, 32, 100807. [CrossRef]

117. Park, M.; Kreisch, C.D.; Dunkley, J.; Hadzhiyska, B.; Cyr-Racine, F.Y. Λ CDM or self-interacting neutrinos: How CMB data can
tell the two models apart. Phys. Rev. D 2019, 100, 063524. [CrossRef]

118. de Cruz Pérez, J.; Park, C.G.; Ratra, B. Current data are consistent with flat spatial hypersurfaces in the Λ CDM cosmological
model but favor more lensing than the model predicts. Phys. Rev. D 2023, 107, 063522. [CrossRef]

119. Handley, W. fgivenx: A Python package for functional posterior plotting. arXiv 2019, arXiv:1908.01711.
120. Surendran, S.P.; Thomas, R.; Joy, M. Evolutionary optimization of cosmological parameters using metropolis acceptance criterion.

arXiv 2022, arXiv:2205.01752.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3847/1538-4357/aab9bb
http://dx.doi.org/10.1051/0004-6361/201423413
https://github.com/ja-vazquez/SimpleMC
http://dx.doi.org/10.3390/universe7070213
http://dx.doi.org/10.1145/279232.279236
http://dx.doi.org/10.1103/PhysRevD.78.023526
http://dx.doi.org/10.1088/1475-7516/2018/07/062
http://dx.doi.org/10.3847/1538-4357/aa9888
http://dx.doi.org/10.1111/j.1365-2966.2009.14548.x
http://dx.doi.org/10.1103/PhysRevD.104.023505
http://dx.doi.org/10.1103/PhysRevD.104.123512
http://dx.doi.org/10.1103/PhysRevD.108.023513
http://dx.doi.org/10.1016/j.dark.2021.100807
http://dx.doi.org/10.1103/PhysRevD.100.063524
http://dx.doi.org/10.1103/PhysRevD.107.063522

	Introduction
	Fundamentals of Genetic Algorithms
	Biological Fundamentals
	Genetic Algorithm Operations
	Schema Theorem

	Genetic Algorithm Application
	Single Variable Functions
	Multimodal Functions
	Statistical Analysis

	Application in Cosmology
	Cosmological Parameter Estimation
	Multimodal Models
	Derived Functions

	Conclusions
	References

