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Abstract The main aim of this paper is to perform a model
comparison for some reconstructions of the key properties
that describe the dark energy of the Universe i.e. energy den-
sity and the equation of state (EoS). We carry out this pro-
cess by using a binning and a linear interpolation methodolo-
gies, and on top of that, we incorporate a correlation func-
tion mechanism. An extension of the two of them was also
introduced, where internal amplitudes are allowed to vary
in height as well as in position. The reconstructions were
made with data from the Hubble parameter, Supernovae Type
Ia and Baryon Acoustic Oscillations (H+SN+BAO), all of
which span a range from z = 0.01 to z = 2.34. First we
perform the parameter estimation for each of the reconstruc-
tions to then provide a model selection through the Bayesian
Evidence. Throughout our process we found a better fit to
the data, up to 40 compared to ACDM, and the presence
of some interesting features, i.e. an oscillatory behaviour at
late times, a decrease in the dark energy density component
at early times and a transition to the phantom divide-line in
the EoS. To discern these features from noisy contributions,
we include a principal component analysis and found that
some of these characteristics should be taken into account to
satisfy current observations.

1 Introduction

Since the discovery of the current accelerated expansion of
the Universe, cosmologists have been challenged to explain
the cause of this mysterious phenomenon. In order to pro-
vide a possible explanation, the idea of a new exotic source
was introduced, called dark energy (DE). In addition to the
cosmological constant A, being the simplest assumption to
be the dark energy, there is also a still-unknown key compo-
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nent for structure formation in the Universe, coined as Cold
Dark Matter (hereafter CDM). These two dark components
comprise the basis of the standard cosmological model or
ACDM. Even though the ACDM model has had remarkable
achievements, i.e. satisfies most of the current cosmological
observations on different scales, it still presents several short-
comings. On the theoretical side, for instance, a disagreement
encountered by cosmology and quantum field theory about
the vacuum predictions [1]; on the observational side several
problems began to arise, for example the discrepancy on the
measurements of the Hubble constant Hy among datasets
[2]. This so-called Hubble tension seems to be enhancing
as observations become more precise [3] and even a vari-
able Hy (also named “running”) has also been found [4-8],
further indicating the standard model’s inability to reconcile
late-time data with high-redshift data. The presence of these
issues opens up the possibility to consider alternatives beyond
the ACDM model. A natural extension to the cosmological
constant is to allow a redshift dependency either through the
equation of state (EoS) wpg(z) or the energy density ppg(z)
for the dark energy. Different proposals with a dynamical
behaviour have been presented. Some of them include scalar
fields in the form of Quintessence, Phantom [9-11] or the
two of them combined, called Quintom models [12]; others
intent to modify the theory of general gravity known as f(R)
models [13], anisotropic massive Brans—Dicke gravity [14]
or theories with extra dimensions such as brane world models
[15,16].

On the other hand, in the absence of a fundamental and
well defined theory, several parameterizations to cosmologi-
cal functions have been suggested to get insights of the gen-
eral DE behaviour and hence to look for possible deviations
from the cosmological constant [17]. Some of them include
quantities such as the deceleration parameter g (z) [18-20],
the jerk parameter j(z) [21,22] or, more predominantly, the
dark energy EoS wpg(z). Focusing on the EoS we can find a
plethora of parameterizations to express wpg(z) (or wpg(?)),
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for instance in terms of power-law, logarithmic, exponen-
tial and trigonometric components, or combinations of them
[17,23,24]. These approaches can even be classified depend-
ing on the number of parameters that describe wpg(z), i.e.
with a single, two or more parameters [25,26]. Similarly,
there have been, although not as many as for the equation of
state (EoS), parameterizations for the dark energy density, i.e.
the Generalised Emergent Dark Energy (GEDE) [21,27,28],
the Graduated Dark Energy (gDE) [29-32], the Early Dark
Energy (EDE) [33] and the Energy—Momentum Log-gravity
(EMLG) [34]. Generally, in these models it can be obtained
an associated EoS but the main assumptions come from the
density, that is, the GEDE considers directly the evolution of
the density parameter, and in the gDE model an inertial mass
density is introduced which allows a possible transition to
negative effective energy densities. Even though these para-
metric forms usually provide a better fit to the data, they
have the limitation of assuming an a priori functional form
which may lead to some bias or misleading model-dependent
results, regardless of the DE nature. To avoid these possible
issues, non-parametric and model-independent techniques
are used. They allow us to extract information directly from
the data to detect features within cosmological functions.
That is, the goal of non-parametric and model-independent
approaches is to reconstruct (infer) an unknown quantity
without a predefined shape. Non-parametric reconstructions
may include Artificial Neural Networks or Gaussian pro-
cesses, as they have proven to be useful in cosmology as
more data become available [35-46]. Examples of model-
independent ones are higher order terms on a Taylor series
[17], Fourier series expansion [47] and the Padé approxima-
tion [48], just to mention a few. Another example of a model-
independent reconstruction (relevant to this work) was intro-
duced by [49] that considers adding a correlation function
term to the data. An interesting result, by using this technique,
found that a dynamical form of wpg(z) is preferred over the
constant value with a 3.5¢ significance level [3]. Also, in
[50] this same method was used directly with the DE energy-
density, finding a dynamic behavior and even evidence in its
favor when compared with the standard model, although this
only happened when reducing some of the parameters’ priors.
Moreover, a similar path consists of combining the Principal
Component Analysis (PCA) with the Goodness of Fit [51],
where PCA helps to remove noisy oscillations induced by
the reconstruction method to find deviations from the cos-
mological constant [52]. In a similar fashion, the study in
[53]introduced the nodal reconstruction in which a piecewise
linear interpolation (or cubic splines) represents the main
functional form to be reconstructed. This approach has been
utilized to recover the EoS directly from the data [53] and its
final form presented a well constrained redshift dependency
with a small bump at z &~ 1.3, but beyond z & 1.5 the data
was too inaccurate to provide a good prescription. Later on,
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a similar form of this method was also applied in [54,55]
and in [56] (although here it is referred as knot-spline recon-
struction) and showed that this type of model-independent
approach can be used to find specific features by allowing
some central knots to vary both in height and position. More
recently an improvement of these methods has been applied
to the dark energy EoS [57].

The main aim of this work is to perform model-independent
reconstructions of the dark energy features and to provide
a model comparison through the Bayesian evidence and
goodness-of-fit. Our analysis is carried out among the nodal
reconstruction [57], the correlation function method [49], an
extension of the two of them where internal amplitudes are
allowed to vary in height as well as in position, and finally,
for comparison, to include some of the parametric proposals.
Even though these techniques are applicable to any function
describing the dark energy, we focus on the EoS and the
energy density. After the reconstruction is carried out, some
of the cosmological functions can therefore be derived, i.e.
Hubble parameter H (z), deceleration parameter ¢ (z) and the
Om(z) diagnostic. Finally we perform the PCA to discern
possible important features from noise contributions. The
novelty in this work is the joint study of the EoS and the
energy density by using the model-independent approaches
(nodal and step functions) to then perform model compari-
son through the Bayesian evidence, derived some functions
in terms of the results and carried out the PCA to find pre-
ferred behaviours of DE to then keep, discard or propose
other models/parameterizations.

The paper is organized as follows: in Sect. 2 we describe
the reconstruction methodology, the PCA method is also
introduced and explained. Then in Sect. 3 we provide a brief
review of the underlying theory, datasets and some specifi-
cations about the parameter estimation and model selection.
In Sect. 4 we present the main results, and finally in Sect. 5
we give our conclusions.

2 Reconstruction methodology

One of the primary reconstruction methods used in this paper
is built on a set of step functions. In this approach steps or
bins are utilized to describe any function f, where the steps
are connected together via hyperbolic tangents to preserve
continuity. The target function looks like this:

& fi — f 72—z
f(z)=f1+;T<l+tanh< : )), D

where N is the number of bins, f; the amplitude of the bin
value, z; the position where the bin begins in the z axis and
& a smoothness parameter.
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Fig. 1 Example of the reconstruction plot for the f(z) function with
8 nodes and bins. We observe the difference in the reconstruction when
using two values for the smoothness parameter &

Another approach used in this paper is the nodal recon-
struction [57]. This type of reconstruction consists of per-
forming interpolations, either by using linear, cubic or higher
order splines, to fill in the gaps amongst certain number of
nodes. The simplest example is the linear interpolation, that
is, given two coordinates (z;, f;) and (zj+1, fi+1), the inter-
polated function is as follows
f@=fi+ I g,

i+l — 2

z € [zi, zig1]. (2)

The interpolation could also be made with higher order poly-
nomials (or splines) to preserve smoothness, nonetheless it
may present heavy correlations between nodes or introduce
unwanted noise to the reconstruction, it may also present
numerical problems when the amplitude values are changing
too abruptly or when the nodes are positioned too close, as
shown in the appendix of [53].

In both types of reconstructions the nodes are located in
space at certain positions z; and with variable amplitudes
fi. For instance, Fig. 1 displays an arbitrary function f(z)
with amplitudes randomly selected (N = 8) at fixed equally
distant positions and for two values of the smoothness param-
eter, along with the interpolation method.

A modified version of the binning and nodal reconstruc-
tion techniques is to consider the internal positions z; be free
parameters, which will allow us to capture more specific fea-
tures at certain places [55,56]. Notice that in this version, the
internal variable positions have to be sorted in a way to avoid
possible overlapping in the reconstructions. This approach
gives more degrees of freedom (one for each variable z;) to
the reconstruction. When using the linear interpolation the
expected behavior is straightforward, as it only varies the
lines between nodes, however in the binning process it will
affect the width of the bins, so it would be easier to find spe-
cific features on the positions rather than on the amplitudes.

Finally, there exists the possibility of either overfitting by
using a very complex model with a large amount of bins
(nodes) or underfitting by not capturing enough features due

to the use of just few bins (nodes). Both of these possible
issues can be managed by performing a model comparison
among reconstructions through the Bayesian Evidence, that
is, we modulate the impact of additional parameters and their
priors to find out the most suitable to the data. This method
follows the principle of simplicity and economy of explana-
tion known as Occam’s Razor [58] which states: “the sim-
plest theory compatible with the available evidence ought to
be preferred”.

Correlation function method

This method is applied on top of the binning approach in
order to obtain a function that evolves smoothly [59]. The
idea behind it is to treat the function in place as a random
field evolving along with a correlation function &, for instance

5O
()

with £(0) being the normalization factor and z. represents
a smoothing distance. The correlation function (3), named
CPZ [49], has a characteristic correlation length after which
its contribution decreases, hence providing stronger corre-
lations between neighboring bins when they are located at
distances smaller than z.. There exist several alternatives
that can reproduce this behaviour up to a certain degree, like
the exponential fall-off £(8z) = £(0)e~%¢/% or the power
law £(8z) = (8z/z¢)™", but the CPZ has a more transpar-
ent dependency in the parameters f;, a relatively simpler
behaviour and it constrains the high frequency modes bet-
ter [49]. Throughout this work, we use the following values
ze = 0.3 and £(0) = 0.1 since they normalize the shorter
wavelength modes of the data [59].

Assuming every amplitude f; are equally distributed with
the same width-location A = z;4| — z;, then the average of
f(z) over each f; is

£(82) = 3

Zi+A
fi= / f(2)dz. O]

The variation from the fiducial model averaged over the bin
is8fi = fi — ffd, where the fiducial model is the underlying
scheme upon which our reconstruction will be dependant on.
In this way the covariance matrix can be obtained by

LA zj+A
CUEEQﬁSﬂﬁzi/. dz/, dEQa—n. )

j
and therefore the associated prior

Porior e—%(f—fﬁd)TC’l(f—fﬁd)‘ (6)
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Finally, once the prior is given (or equivalently Xprior =
—21n Ppior), our total X2 to minimize becomes

2 2 2
X~ = Xdata T Xprior- (7

The fiducial model could be one previously known, for
instance in the case of the dark energy EoS, it could be the cos-
mological constant with wpg(z)= —1 or ppg(z)=constant.
However, demanding a behaviour like the cosmological con-
stant may create a bias when performing the reconstruction.
The same would be true for any other fixed fiducial model,
so we opted for the floating prior proposed by [49], where

fyecons
J

= : ®)

N .
|Zj —zil<zc ]

here z; is the position of the amplitude f; and N; is the
number of amplitudes that fulfill the condition |z; —z;| < z.
This floating prior makes sure that the parameter values stay
continuous by evaluating the mean value of each parameter
with its immediate neighbors.

It is important to mention that the correlation function
method applied here is used as an “agnostic”” way of reduc-
ing overfitting, agnostic in the sense that our imposed cor-
relations are mainly obtained via a data-driven approach,
not a theory-driven one, i.e. effective field theories (EFTs)
such as Quintessence or Horndeski [60—64]. This could pro-
vide a small bias against EFTs, particularly Quintessence, as
explained in [60]. Also, since this method is being used as a
way to diminish overfitting it could even prevent some inter-
esting features to appear or even wither existing ones, such
as the disappearance of wiggles in [63,64] when using a the-
ory prior. To see if any possible bias may arise we will have
an instance where we do not use the Correlation Function
method (as seen in Fig. 5).

Bayesian statistics

In order to perform the parameter estimation we follow the
definition of the Bayes Theorem

P|D. M) = L‘(D|u,M)P(u|M), ©)

E(D|M)

being u the vector of parameters of our hypothesis M
(or model) to assess, D is the experimental (observa-
tional) data, P(u|D, M) the posterior probability distribu-
tion, L(D|u, M) the likelihood, P (u|M) the prior distribu-
tion and E (D|M) the Bayesian evidence. Once the Bayesian
evidence is computed for two models M| and M>, the Bayes
factor is defined as

_ E(DIM))
- E(DIMa)
This quotient, together with the Jeffrey’s scale shown in
Table 1 [58,65], is a great empirical tool for performing

Bia (10)
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Table 1 Jeffreys’ scale for model selection with the logarithm of the
Bayes’ factor.

In By Odds Probability Strength of evidence
< 1.0 < 3:1 < 0.75 Inconclusive

1.0 ~3:1 0.750 Weak evidence

2.5 ~12:1 0.923 Moderate evidence
5.0 ~150:1 0.993 Strong evidence

Using the convention from [58]

model selection, that is, it gives an insight of how good a
model M is when compared to model M;. An example of
this method can be seen in [66] where the authors compared
some DE models to ACDM. In this work, M| will correspond
to ACDM and M; will be any of our reconstructions in order
to make a direct comparison with the standard model. Even
S0, it is important to mention that Jeffreys’ scale is empirical
in nature and sometimes rule out the true model [67]; added
to this we have the dependence of the Bayesian evidence on
priors and on model constrains [68]. So, even though it is
a great tool for comparison, it should not be taken as com-
pletely decisive when performing model selection.

Principal component analysis

After doing the reconstruction we can perform a process
known as Principal Component Analysis (PCA) on the
parameter space to draw conclusions about the data and
how well they are constraining the parameter space. Once
the parameter inference is complete, we compute the Fisher
matrix of the parameters w;, which is F = C ~1 where C
is the covariance matrix. Then, we diagonalize F to find a
basis where the parameters are uncorrelated, so that

F=wT'Dw, (11)

where the rows of W are the eigenvectors e;(z) of the basis
in which our parameters are uncorrelated and D is a diagonal
matrix. If p is the vector of the best-fit values of our f; then
the new uncorrelated parameters are ¢ = W p. Being d; the
diagonal elements of D sorted outsuch thatd; > dp > --- >
dy, and also their corresponding e¢;(z) and ¢;. These d; are
related to the errors as o; = L Then, we can reconstruct

Jd;

the function in place

N
@ =) qiei), (12)

i=1

with standard deviation

N 1/2
o (f(zn)) = <Zaz(q,~)e?(zn>> , (13)

i=1
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where z,, is the location for each parameter f;. Now we can
choose any number of principal components (PCs) to recon-
struct the function (from one PC up to the original number of
parameters in the reconstruction). If we have the same num-
ber of PCs as there are bins then the reconstruction will look
the same as no variance has been removed, but by removing
the PCs with smaller d; contribution, then we remove the
noisiest aspects of the reconstruction (with the biggest errors
0;). A common practice is to remove enough PCs to maintain
95% of the information or variance.

3 Theory and datasets

For a homogeneous and isotropic flat universe given by the
Friedmann—Robertson—Walker metric, the Friedmann equa-
tion describing the dynamical evolution, in terms of redshift
Z, can be written as

H@ _ 4 3
7 ro(1+2)" 4+ Qmo(1 +2)” + Q4 0, (14)

0

where the Hubble parameter H (z) represents the expansion
rate of the Universe, with Hj being its value today. Here,
we have the components of the Universe written in terms of
the dimensionless density parameters Q2;(z) = p;(z)/pc(2),
where their contribution at the present time (represented
by subscript 0) are €2 o for the relativistic particles, m 0
describes the matter content (baryons and dark matter) and
Q4.0 is associated to the cosmological constant; p. is the
critical density of a spatially flat Universe.

By letting aside the cosmological constant and allowing
a dynamical dark energy component, the last term in the
Eq. (14) is replaced by Q24 0 — ppr(2)/pc,0. Furthermore,
if the dark energy is assumed to be a perfect fluid with a
barotropic EoS, then once we compute the EoS we are able
to derive the energy density through

z 7 d7 ’
IOIZE( ) _ Qpg ge> Jo Tiz (Hwne@). (15)
c,0

On the other hand, the dark energy density could, in general,
come from an effective model contribution and not necessar-
ily from a physical component. Hence ppg(z) may have any
shape (including negative values). Therefore, if the shape of
poe(2)/pc.o 1s obtained from any process, then we are able
to derive its associated equation of state:

1 dIn ppr(z)

3din(l +z)° (16)

wpe(z) = —

Finally, if the shape of the energy density is obtained,
either directly or through wpg(z), we are able to compute
some derived functions, for instance the Om diagnostic,

which provides a null test for the cosmological constant [69]

h?(x) — H(x)
0 = , = 1, h(x)= , 17
m(z) o1 FTF + (x) Ho a7
and the deceleration parameter
@) =1+ din H (18)
=T Ty
Data sets

The Hubble parameter tells us the expansion rate of the Uni-
verse, and it can be expressed as a function of the redshift
through the Friedmann equation. This parameter can also be
assembled by gathering measurements of old stars known as
cosmic chronometers as they work as “standard clocks” in
cosmology. That is, H(z) can be obtained by calculating the
derivative of the cosmic time with respect to the redshift as

Hn) = -1 Az 19

@~ T oA (19)
where the rate Az/At is measured with the difference in age
of the cosmic chronometers. In this work we will use the
collection of these cosmic chronometers [70-76] (written as
H in the datasets), which can be found within the repository
[77].

Similarly to standard clocks, the type la supernovae
(SNIa) are coined as the “standard candles”. The distance
modulus of the SNIa is derived from the empirical relation
when observing light curves

MSN:mE—i—aX—ﬂC—MB, (20)

where X is the stretch parameter, C is the color parame-
ter, M p is the absolute magnitude, m7 is the B-band appar-
ent magnitude, o and B are nuisance parameters. The Pan-
theon Sample measured the apparent magnitude mp =
my + aX — BC, with fix absolute magnitude Mp. Also,
for a given cosmological model the distance modulus is

Dy (2)

) =51
n(z) og Mpe

+25=mp — Mg, 21

from which the luminosity distance, Dy (z) = Hod[(z), can
be calculated in terms of redshift as d; (z) = (1 + 2)r(2),
with 7 (z) being the comoving distance
1 < Hy ,

0= Jy BT

In this work we use the full catalogue of 1048 supernovae
from the Pantheon SN Ia sample, covering a redshift range
of 0 < z < 2 [78] (written as SN in the datasets). The full
covariance matrix associated is comprised of a statistical and
a systematic part, and along with the data, they are provided
in the repository [79].

On the other hand, the baryon acoustic oscillations (BAOs)
are used as “standard rulers” in cosmology, as they measure

(22)
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Table 2 Additional parameters

and their flat prior range Model wpe(2) po(2)/pe.0
Parameterizations wCDM Sigmoid
we @ [=2.0,0.0] Zeut © [0.0, 3.0]
CPL
wo : [—2.0,0.0], w, : [—2.0,2.0]
Binning/nodal w(zi) : [—2.5,1.0] p(zi) :[0.0,1.5]ifz; < 1.5
i=1---6,20) :[—1.5,1.5]if z; > 1.5

Binning-internal z;

z1 :[0.2, 1.4]
22 :[1.6,2.8]

w(zi)]i=a : [-2.5,1.0]

pzi)li=3 1 [0.0, 1.5]if z; < 1.5
:[—=1.5,1.5]ifz; > 1.5

z1:[0.2,1.4]

72 :[1.6,2.8]

the angular distance D4 = r(z)/(1 + z). The BAO scale is
set by the radius of the sound horizon

® ¢s(2) y
w HE@)

with ¢, (z) being the sound speed of the baryon-photon fluid
and z4 the drag epoch [80]. Since the size of r; depends on the
cosmological model, the BAO actually constrains D (z)/rg
(with DA(z) = Hoda(z)), H(z)/rq and the volume aver-
age distance Dy (z)/rg = [(1 + z)2D/24 (z)cz/H (2)]/3.
The sound horizon is calibrated by using Big Bang Nucle-
osynthesis [81]. The BAO datasets used here contain the
SDSS DR12 Galaxy Consensus, BOSS DR14 quasars (and
eBOSS), Lyman-o DR14 auto-correlation, SDSS MGS and
6dFGS located at different redshifts up to 2.36. For a more
complete explanation see [82-87] and references therein.
To compute the x? for each data sample, we have

Xt = (dim — diobs)Ci s @jm — djobs), (24)

where d,,, and dop are our model predictions and the observ-
ables respectively; Cgaa is the covariance matrix associated
to each of the datasets. Since observations of each dataset are
independent from each other, the joint X2 can be calculated
as

(23)

rq =

2 2 2 2
Xiotal = X T XSN + XBao- (25)
Models and priors

Since the Bayesian evidence is very susceptible to the num-
ber of parameters and their prior distribution, it is worth to
be careful when selecting them. A summary of the addi-
tional parameters along with their prior ranges is displayed
in Table 2.

First, to provide a comparison to the reconstructions, we
constrain some parameterization models. For instance, the
wCDM model which corresponds to a constant EoS wpg (z)=
w, and the Chevallier—Polarski-Linder (CPL) EoS [26] in
which wpr(z)= wo + walﬁ, being wy, w, and w, free

@ Springer

parameters to be estimated with data. The flat priors for wg
and w, are the same [—2.0, 0.0] and the flat prior used for
w, is [—2.0, 2.0]. Then, inspired by the idea of a density
capable of performing a possible transition to ppg < 0 athigh
redshifts, similar to the one introduced by [29], we propose a
simple parameterization with the shape of a sigmoid function:

. ) ; (26)

PpE(2)
1+e 10(z—2zcut)

- QDE,O (kO -
Pc,0

with z¢y the redshift value where the transition may occur
and ko = 1+ m is a constant which compensates the
necessary amount so that ppg(z = 0)/pc.0 = 1 — Qm.o,
to account for the Friedmann constraint. The parameter zcy¢
has a flat prior within the range [0.0, 3.0]. The sharp part
of this sigmoid function comes from the argument in the
exponential, if this number is larger (smaller) its transition
to zero would be sharper (smoother).

Throughout all the reconstructions we let the data to decide
the level of complexity of the two main functions within the
range 0 < z < 3, that is, we place the nodes and bins (free
parameters) over thisrange, and for z > 3 we adopt a constant
value corresponding to the last amplitude.

In the first set of reconstructions, the position of the nodes
and bins are kept fixed and uniformly distributed within
z = [0, 3]. In both types of reconstructions it is relatively free
to choose any number of amplitudes, thus we used from 1 to
6 (and then, without loss of generality, jump to 20) to see the
improvement of the fit to the data and how well the Bayesian
evidence responded. Notice that the wCDM model is equiva-
lent to the EoS reconstruction with one bin. In particular, we
allow the possibility of having negative energy density, hence
the amplitudes for the nodes and bins for ppg(z)/pc.0 Were
set to move freely on the ordinate with flat priors [0.0, 1.5]
if z < 1.5, otherwise the prior is set to [—1.5, 1.5], since it is
beyond z = 1.5 where a switch to negative energy density is
generally presented. For the amplitudes in the EoS we have
flat priors of [—2.5, 1.0]. An important point is that when
incorporating the correlation function method with a float-



Eur. Phys. J. C (2023) 83:251

Page 7of 17 251

Table 3 Mean values, and

standard deviations, for the Model Parameters ho $2m.0 In Bacpm.i AX ’
cosmological parameters. ACDM - 0.683 (0.008) 0.306 (0.013) 0 0
wCDM 1 0.680 (0.017) 0.305 (0.015) 2.56 (0.14) —0.14
Sigmoid 1 0.688 (0.009) 0.312 (0.013) —0.12 (0.13) —2.56
CPL 2 0.674 (0.021) 0.299 (0.019) 3.54 (0.15) —0.68
wpEk () Binning
2 0.692 (0.017) 0.316 (0.015) 3.02 (0.16) —0.83
3 0.681 (0.018) 0.307 (0.016) 3.60 (0.15) —2.88
4 0.681 (0.017) 0.303 (0.015) 2.93 (0.16) —5.15
5 0.681 (0.017) 0.305 (0.016) 4.72 (0.16) —3.57
6 0.676 (0.016) 0.299 (0.015) 3.11 (0.17) —8.86
4y2x 6 0.684 (0.017) 0.309 (0.015) 2.86 (0.16) —8.03
20 0.691 (0.015) 0.298 (0.014) 2.33 (0.18) —15.74
X ior 20 0.688 (0.015) 0.298 (0.015) 5.52 (0.18) ~9.97
Linear-nodal
2 0.681 (0.021) 0.307 (0.019) 3.96 (0.15) —-0.12
3 0.677 (0.018) 0.301 (0.018) 3.61 (0.16) —2.98
4 0.682 (0.018) 0.302 (0.017) 3.46 (0.16) —3.74
5 0.683 (0.017) 0.305 (0.016) 5.03 (0.16) —-3.19
6 0.681 (0.017) 0.302 (0.016) 4.15(0.17) —5.06
4y2x 6 0.681 (0.017) 0.302 (0.016) 3.02 (0.16) —6.22
poE(2)/Pc.0 Binning
1 0.694 (0.013) 0.318 (0.015) —0.01 (0.13) —0.77
2 0.683 (0.013) 0.309 (0.015) —0.42 (0.13) —3.04
3 0.681 (0.013) 0.307 (0.015) —0.59 (0.14) —4.24
4 0.677 (0.014) 0.304 (0.016) 0.53 (0.14) —3.61
5 0.682 (0.015) 0.309 (0.016) 0.54 (0.14) —5.72
6 0.683 (0.015) 0311 (0.016) 1.23 (0.15) —8.04
3y2x 5 0.686 (0.012) 0313 (0.014) —0.49 (0.14) 447
20 0.685 (0.014) 0.318 (0.014) 236 (0.16) —11.60
Lror 20 0.685 (0.015) 0317 (0.014) 5.20 (0.16) —9.96
Linear-nodal
2 0.683 (0.017) 0.311 (0.015) 0.57 (0.14) -2.72
3 0.685 (0.019) 0.311 (0.017) 1.58 (0.14) —2.47
4 0.686 (0.018) 0.313 (0.016) 1.50 (0.14) —2.73
5 0.691 (0.017) 0.314 (0.016) 1.65 (0.15) —3.71
6 0.685 (0.017) 0.308 (0.015) 1.85 (0.15) —4.13
3y2x 5 0.691 (0.016) 0315 (0.015) 1.11 (0.14) ~3.38

For each model, the last two columns present the Bayes Factor, and the A x2 = XIZ\CDM — xiz for fitness
comparison. The datasets used are BAO+H+SN. Here In E ycpm = —530.79(0.12)

ing prior ( Xgri or) Or CPZ, itis recommended to choose a large
number of bins. In our case, we used 20 bins and obtained
consistent results.

In the first set of reconstructions, the positions z; for each
parameter remained fixed, however one may argue that the
location of the amplitudes could bias the results. To check this
point, in the second set of reconstructions every amplitude
varies as well as the internal positions are allowed to move

freely, spanning over the z-direction (but without overlapping
each other). For the reconstruction of wpg(z) we consider 6
parameters: 4 varying amplitudes and 2 internal positions;
similarly for ppr(z)/pc,0 we use 5 parameters: 3 amplitudes
and 2 internal positions. We will refer to them as 4y2x (3y2x)
or simply internal z;. Whereas the priors for the amplitudes
remain the same as in the first set, the priors for the internal
z; positions are [0.2, 1.4] and [1.6, 2.8] respectively.
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Regarding the cosmological parameters, we have: the
reduced dimensionless Hubble parameter hgy = Hp/
100 km s~ Mpc~! with a flat prior of [0.6, 0.8], the baryon
density Qbh% with prior [0.021, 0.024] and the matter density
parameter Q2 o with a prior of [0.2, 0.4].

To perform the reconstruction analysis we used a modified
version of the SimpleMC code [88] along with dynesty
[89], a nested sampling algorithm which allows to compute
efficiently the Bayesian evidence. For the number of live
points we followed the general rule [90] of using 50 x ndim
live points, where the dimensionality ndim corresponds to
the number of parameters, so the total number of live points
depends on the reconstruction and the amount of bins/nodes.
As for the stopping criterion we have an accuracy of 0.01,
which indicates the maximum difference between samples.
Within the SimpleMC code we have also implemented the
Principal Component Analysis and the correlation function
method with the floating prior. For the functional posterior
confidence contour plots we used a python package named
fgivenx [91]. See Ref. [92], and references therein, for
an extended review of the cosmological parameter inference
and model selection procedure.

4 Results

We present the results in four subsections: regarding the EoS,
the energy density, the derived functions in terms of our
results and the PCA analysis to distinguish noise from signal.
The best-fit parameter values, the logarithm of the Bayes’ fac-
tor (In Bacpm, i) and the goodness of fit (A x 2) are presented
in Table 3; complementary to this table, both quantities are
displayed in Fig. 2. The regions of confidence for the param-
eterizations are shown in Fig. 3, whilst the reconstructions
are shown in Figs. 4 and 5.

Dark energy equation of state

The best-fit values (with standard deviations) for the wCDM
and the CPL parameterization, correspond to w, = —0.99 &
0.06, wp = —1.01£0.08 and w, = 0.12£0.47 respectively.
That is, the models with one or two parameters, wCDM,
CPL and the 2-parameter reconstructions produce very sim-
ilar results, which means they are statistically consistent
with the cosmological constant, within the 68% confidence
region (see Fig. 3 and the first column of Fig. 4). Also, these
results can be validated when comparing the A x? presented
in Table 3.

When computing the Bayes’ factors of all the models
(green region of the top panel in Fig. 2) one observes, in gen-
eral, a moderate evidence against the reconstructions regard-
less of the number of extra parameters, compared to the stan-
dard model. However, in the reconstructions certain features
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Fig. 2 In this graph we show the differences in the Ax? and the
Bayes factor between ACDM and our reconstructions for wpg(z) and
poe/pPc,0. The green shades show the strength-of-evidence according
to the Jeffrey’s scale and the orange shades show the 1 to 4-o levels
of statistical significance S/N = /|Ax2|. Ideally we want the upper
markers to stay as close as possible to the black line at O (preferably to
cross it), which it is an indication of a better Bayes’ factor, and the lower
ones to be far away from zero, which indicates a better fit to the data.
The stars indicate the fitness of the reconstruction of the CPL EoS (top)
and the energy density with a sigmoid (bottom), the crosses indicate the
internal z; reconstructions and the triangles the reconstructions with 20
bins plus correlation function. The binning reconstructions are plotted
with blue lines, whereas the nodal with red lines

at high redshift become apparent as more parameters are
added, and therefore an enhancement in the goodness of fit.
For instance, when using three amplitudes (second column
of Fig. 4), abump-like shape appears at z =~ 1.5 and after that
the general form prefers a crossing of the phantom-divide-
line (PDL), i.e. for z 2 2 the amplitude values lean toward
wpg < —1 outside the 68% confidence region, which rep-
resents an improvement of Ax2 ~ —3. If we continue the
process of adding amplitudes to the reconstructions, the main
trend preserves a bump but now located at about z &~ 1.2 and
acrossing of the PDL atz ~ 1.5. This is not true though when
having 5 extra parameters (and we will have a similar problem
with the density with 4 extra parameters), although the reason



Eur. Phys. J. C

(2023) 83:251

Page9of 17 251
wCDM Sigmoid 1 bin
-0.8 .
‘ 1.0
0.6 2
-0.9 B IS IS 05 7
° °
8 o) 204 g
& -1.0 o N & 00
s N % E 1o
11 02 -05
1.2 2.0 00 -10
00 05 10 15 20 25 3.0 00 05 1.0 15 20 25 30 00 05 1.0 15 20 25 30 00 05
z z z

Fig. 3 These plots show the functional posterior probability: the prob-
ability of wpg(z) or ppr(z)/pc,0 as normalised in each slice of constant
z, with colour scale in confidence interval values. The 68% (lo) and

to right: parameterized equations of state for wCDM and CPL, phe-
nomenological sigmoid and 1-bin energy density reconstructions. The
dashed black line corresponds to the standard ACDM values

95% (20) confidence intervals are plotted as black lines. From left
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3 parameters 4 parameters
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Fig. 4 From top to bottom: reconstructed wpg(z) with bins (and nodes), reconstructed ppg(z)/pc.0 With bins (and nodes). It is easy to observe
there is more structure (more apparent features) in the reconstructions as the number of parameters increases (from left to right)
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for this is mainly related to the reconstruction methodology,
for a detailed explanation please refer to Appendix A. We
also obtained that the cosmological constant is slightly out-
side of the 95% confidence contours at several places (see last
column of Fig. 4), and according to the Table 3 by using the
definition of statistical significance in terms of the standard
deviation o, that is, the signal-to-noise ratio S/N = /|Ax 2],
it represents a ~ 3o deviation from ACDM based on the
improvement in the fit alone. These two features play a key
role in identifying the correct dark energy model. If future
surveys confirm their existence, the cosmological constant
and single scalar field theories (with minimal assumptions)
might be in serious problems as they cannot reproduce these
essential features, and therefore alternative models should
be taken into account. Furthermore, in the internal-z; recon-
structions the internal positions are able to localize the posi-
tion for the bump and the PDL, and the results resemble the
previous ones, see the last two columns of Fig. 5. Besides
the presence of the bump and crossing of the PDL, we notice
that at z = 0 the 68% confidence contour lays down right
below the limits of wpg < —1. An important point to stress
out is that the freedom of the internal positions led to a better
fit to the data, compared to the reconstructions with the same
number of parameters but fixed positions; displayed as the
x-markers in the top panel of Fig. 2.

Finally, to corroborate our findings, we include two recon-
structions with 20 parameters: binning and binning with CPZ
correlation function, shown in the column 1 and 2 of Fig. 5.
For these particular reconstructions, we have only focused on
the binning method as it provides a better fit to the data. As
commented above, the correlation method is incorporated to
create a function that evolves smoothly, and in general, they
both share the same structure: a bump located at z &~ 1.2,
a crossing of the PDL at z ~ 1.5 and a slight preference of
wpe < —1 at z = 0. Besides these three features (found
already in the internal models), there is also an oscillatory
behaviour throughout the whole structure, which yields to a
deviation of about 40 to the ACDM. Even though this result
may be considered as an overfitting due to the large number
of parameters and small A x2, its Bayes factor is as good as
the reconstruction with fewer amplitudes. Also, the authors
in [47] obtained a similar shape by using only three param-
eters in a Fourier basis and concluded a deviation of about
30 from the cosmological constant, as we did here through
a different mechanism.

Dark energy density

Similarly to the previous section, with one extra parameter,
through the z.y+ in the sigmoid function for ppg, we have got
a better fit to the data by more than 1o, and its Bayes’ factor
results on a negative value Bycpm,; = —0.124£0.131, indi-
cating a slight evidence in its favor, although it is still within
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the 1o for the error. The constraints of the z.y+ parameter
corresponds to 2.101 £0.413, which provides an insight of a
possible vanishing energy density beyond z = 2. This feature
is also noticeable when looking at the 1-bin reconstruction
where the cosmological constant is on the edge of the 68%
confidence contour for z > 1.5 (see Fig. 3).

By incorporating additional parameters to the reconstruc-
tion of ppr(z)/pc.o the fit to the data becomes better than the
standard model, as shown by the negative values of the A x>
on the bottom panel of Fig. 2. Even though this behaviour is
expected by the increased of complexity, it is accompanied
by a penalization incorporated into the Bayes Factor, shown
in the green part of Fig. 2. As the number of nodes/bins
increases we expect the values of Bacpm,; to do so too,
however, an important point to note is the existence of a val-
ley on this factor up to 4 parameters, where the first three
have negative values indicating an evidence in favor (but still
inconclusive) to our reconstructions, and also reflected on
the improvement of the x2. This may be happening due to
the data having a preference for an energy density with a
bump located at z &~ 1.2 and then as the redshift becomes
larger ppge(z) decreases until reaching a zero value, and even
passing through negative values, but still statistically consis-
tent with zero. That is, by having at least two amplitudes our
reconstruction methodology is flexible enough to present this
behavior, as seen in the first three columns of Fig. 4. As we
continue adding more parameters, the presence of a possi-
ble sign change in the energy density is more pronounced.
This transition occurs near z & 2, and in the region around
z & 2.5 the deviation from the cosmological constant peaks.
The general behaviour of our reconstructions is reflected by
these two main features, which together provide a deviation
up to 2.80 from the standard model.

In the same manner as the reconstruction for the EoS, one
may say that the position of these two features (the bump
at z ~ 1.2 and the vanishing energy density behaviour for
z > 1.5) could be biased because the particular location for
the amplitudes. Even so, it is stated in [93] that these particu-
lar features and their positions are prompted by the Lyman-«
BAO data (as we will further discuss in the PCA subsection).
In order to find an optimal place for the internal positions, we
set them free by allowing them to move around the z-axis.
Because of this additional freedom, the internal reconstruc-
tion (or 3y2x model) is able to localize these features and
provides a better fit to the data, compared to the reconstruc-
tion with three fixed amplitudes. Moreover, despite having 5
extra parameters, the binning reconstruction has a negative
Bayes factor which favours this model over the rest of the
reconstructions (displayed as crosses in the bottom panel of
Fig. 2).

Lastly, as was made with the EoS, we incorporated a 20
bins and 20 bins with the correlation function reconstruc-
tions. Both present more substructures like an oscillatory-
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Fig. 6 Derived functions for the reconstructed wpg(z) and ppg(z)/pc
wpg (z) corresponds to the best-fit values

like behavior at late times and also have a transition to a null
or negative density in z > 2, as seen in Fig. 5. Analogous
to the guidance offered by the oscillatory demeanor found
in the EoS reconstruction, its apparent wavering nature in
z < 1.5 could encourage the study of an oscillatory basis
such as a Fourier series. Looking at the Ax? we notice a
deviation from the ACDM of about 3.40, and a Bayes factor
comparable with the few-parameter reconstructions.

The drop-off behaviour of ppg(z) and, perhaps, a transi-
tion to a negative energy density has been captured in other
works [29,50,93-97], as it seems to alleviate the tension
that arises by estimating the Hubble constant Hy with dif-
ferent datasets. It was also found in [8] that, when consider-
ing flat ACDM and binning the data, negative energy densi-

From wpe(z) From wpe(z)

q(z)

05 10 15 20 25
z

From ppe(2)/pc,0 From poe(2)/pc,0

05 10 15 20 25
z

q(z)

05 10 15 20 25
z

.0 with 20 bins plus correlation function. The red dotted line in the derived

ties (2,0 > 1) are expected for higher redshifts. Hence, it
may be pertinent to study models with a similar demeanor.
This behaviour does not necessarily imply a negative physi-
cal energy density per se, but it may be the indication of an
effective energy density, i.e. similar to the one generated by
the curvature component [98,99].

In general, and throughout the reconstruction process, we
have found different features beyond the cosmological con-
stant, which result in deviations up to 4o . One final interest-
ing observation is that the reconstructions when using bins
are generally better than with nodes and also the Bayes factor
shows an improvement. Likewise, there is a preference for
the reconstruction with 20 bins over 20 bins plus the corre-
lation function, reflected on the A x 2 in fact there is a strong
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evidence against using the 20 bins+prior model, according
to the Jeffreys’ scale.

Derived functions

Once we have obtained the general form of both the EoS
and the energy density we proceed to obtain their respec-
tive derived functions, these being: the Hubble parameter
H (z)/(14+2z),the Om diagnostic and the deceleration param-
eter ¢ (z). For the reconstructed energy density, we get as a
derived the EoS and similarly for the reconstructed EoS, the
energy density is an inferred one. These derived functions
correspond to the 20 bin reconstruction, which produced
the best fit, and their posterior probabilities are displayed
in Fig. 6. In general, the functions coming from the energy
density show an enhanced oscillatory behaviour, compared
to the functions derived from the EoS.

When comparing the reconstructed EoS with the one
deduced from ppgr/pc,0 we notice an important difference:
we allowed for negative energy density values, hereby the
derived EoS presents a discontinuity at about z ~ 2, seen in
the best-fit model denoted by the red dotted line in Fig. 6.
Such type of discontinuities have been found and stud-
ied in other reconstructions and different models, such as
[29,100,101]. Regarding the derived energy density: when
reconstructing ppr/poc,o directly its freedom in the parame-
ter space allowed it to reach null values of the energy den-
sity, and even negative ones at high redshifts; but when a
barotropic EoS is imposed, through the conservation equa-
tion, the derived energy density remains always positive with
a bump located at z &~ 1.5 and a smooth drop out at high red-
shifts.

Considering the H(z)/(1 + z), the best-fit reconstructed
function passes through the observational H(z) values (red
error bars in Fig. 6), Hy = 69.8 + 0.8 kms~! Mpc~! from
the TRGB [102], consensus Galaxy BAO (from zef =
0.38, 0.51, 0.61) and DR14 Ly-« BAO (from zef =
2.34, 2.35) [83,85,87], and hence the best-fit is slightly bet-
ter compared to the ACDM model (black dashed line).

In general, the Om diagnostic shows consistency with sev-
eral parameterizations and reconstructions [103,104]. Nev-
ertheless, in our reconstructions we have found a mixed
behaviour between quintessence and phantom components,
corroborated by the EoS. That is, we have certain places
where Om(z) > Qm,o (quintessence) and others with
Om(z) < Qm,0 (phantom).

Finally, the deceleration parameter g(z) for the recon-
structed EoS gives a value for the transition to an acceler-
ated Universe around z ~ 0.6, which is statistically con-
sistent with the ACDM value, and with results previously
obtained [19,104,105]. On the other hand, when ¢(z) is
reconstructed through the energy density, the universe goes
through several short periods of acceleration-deceleration (a
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similar behaviour was seen in [50]), however the main accel-
eration transition corresponds to z ~ 0.45, unlike in ACDM,
where the acceleration starts at z ~ 0.7.

PCA and the Bayes’ factor

By applying the principal component analysis to remove the
noisiest modes (enough to preserve 95% of the variance)
of the reconstructions, we see that the biggest changes hap-
pened mainly at z > 2.0. An example of this can be seen
in Fig. 7, where we used the reconstruction with 20 bins for
the energy density and the EoS. Since the only information
here is coming from the Lyman-o BAO (z ~ 2.3) it may be
reasonable to argue that the main tensions amongst models
come from these high-redshift data (as has been also sug-
gested in [106-108]), or perhaps it exists the possibility that
large systematic errors are present in this dataset. This may
be an indication that the dynamical DE behavior, referring to
the crossing of the PDL for the EoS and the null energy den-
sity at early times, is merely due to noisy data, although this
will be confirmed until a significant amount of information
is obtained in this redshift region. This also has an effect in
the Bayesian Evidence. As the parameters beyond z = 1.5
are the least constrained they contribute little to nothing to
the final evidence of the reconstruction and thus means that
we have to be very careful when utilizing the Bayes’ Factor
to directly perform model selection. Added to this is the fact
that the Evidence is pretty susceptible to the prior range. Such
problems are common when performing reconstructions, but
a possible solution has been proposed in [68], although it is
still a work in progress.

Nevertheless, something that should be borne in mind is
that certain characteristics pointing out to dynamics are still
present even when removing the noisiest PCs. These charac-
teristics, in the energy density, are the oscillatory nature at low
redshift and the transition to a null or negative energy density
in z &~ 1.5; with the EoS the preserved features include the
oscillatory behavior, the bump in z &~ 1.3, a preference for
values below wpg = —1 at z = 0, and the crossing of the
phantom divide line in late times.

5 Conclusions

Throughout this work we have studied several parametric
forms and model-independent reconstructions of two prop-
erties of the Dark Energy: the EoS and the energy den-
sity. Regarding the parametric forms, we have analyzed the
wCDM and CPL models, whereas for the energy density
we introduced a simple form given by a sigmoid function to
describe a transition behaviour. Then, to introduce more flex-
ibility for the recovered functions, we also included two types
of reconstructions: based on step functions smoothly con-



Eur. Phys. J. C (2023) 83:251

Page 13 0f 17 251

0.00 -
—0.25 A
—0.50 A
N —0.75
d
¥ 100 e e o
—1.25 A
~1.50 4 === LCDM
Before PCA
—1.75 A After PCA (15 pc)
0.0 0.5 1.0 15 2.0 2.5 3.0
z
0.8 A
0.6 1
0.4
& 024
o)
g
& 0.0
—0.2 A
--- LCDM
—0.4 1 Before PCA
After PCA (15 pc)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

z

Fig. 7 Applying the principal component technique to our reconstruc-
tions of the EoS and the energy density with 20 bins. By eliminating
5 PCs (which add up to about 5% of the total variance for each recon-
struction) we obtain the orange figures with slightly overestimated errors
localizedin z > 1.5

nected (bins) and linear interpolations (nodes). Each of the
reconstructions may have several amplitudes as free param-
eters with fixed locations, as well as variable positions to
localize possible features. On the top of the bin reconstruc-
tion we incorporated a floating prior that averages the set of
neighboring amplitudes to behave as a mean between bins,
hence to preserve continuity among heights.

The wCDM and CPL parameterizations of the EoS
showed little to no improvement over ACDM. However, with
just a single parameter, the sigmoid function for the energy
density had a better fitness to data as well as a better Bayes’
factor when compared to ACDM. Even though this parame-
terization is phenomenological, it could be an indication that
these type of models should be further studied upon.

By adding complexity in the model-independent recon-
structions, through extra amplitudes with fixed positions,
the general outcome presented a dynamical behavior beyond
the cosmological constant. In both reconstructed functions,
ppe(z) and wpg(z), there is a presence of a bump located
at about z ~ 1.2. This feature along with a crossing to the
phantom-divide-line in the EoS, and a transition to a null
energy density (or even negative values) yield to deviations

from a constant energy density of about 30. However, for
these type of reconstructions the Bayes factor penalized the
incorporation of parameters and displayed a moderate evi-
dence against the reconstruction of wpg(z) and an inconclu-
sive to weak evidence for ppg(z).

In order to avoid a possible bias due to the location of the
amplitudes, we have let the internal points to move freely
in the z-space. The autonomy of the internal positions led
to localize the features, previously mentioned, and to an
improvement on the fit of about 1o, in comparison to the
same number of amplitudes with fixed positions. Another
point to stress out about the internal reconstructions, is the
enhancement of the Bayes’ factor which could get even neg-
ative values, i.e. for ppg(z) with bins and the 3y2x method.

Finally, when considering 20 parameters in the binned
reconstruction we noticed an improvement in the fitness up
to about 40. Nevertheless, a key result to bear in mind is
that for the case of 20 bins+prior the Bayes’s factor showed
a strong evidence against this type of reconstruction. This is
also reflected on a worse A xz, when compared to a recon-
struction with the same number of parameters.

In general, the derived functions inherited the behaviour
from the reconstructed ones: an oscillatory shape. These
functions also exhibited consistency with other reconstruc-
tion methods. For instance, a dynamical DE behaviour, a dif-
ferent redshift transition from a decelerating universe to an
accelerating one, a better agreement to the BAO data. From
the energy density reconstruction, the derived EoS presents
a discontinuity at redshift around z ~ 2, which is necessary
if the energy density transitioned to negative values; found
in several models and parameterizations.

By performing a principal component analysis we found
that, in both types of reconstructions, the amplitudes beyond
z = 1.5 are the least constrained, where the predominant data
around these redshift values is the BAO Lyman-«. This shows
that current Lyman-o BAO prefers a nearly null or negative
energy density, or a transition from quintessence to a phan-
tom dark energy. However, more precise data in this region
is necessary to fully discern a dynamical DE, also, consid-
ering that the parameters in this region are unconstrained, it
directly affects the estimation of the Bayesian Evidence, so
any remarks about the Bayes’ Factor should be made care-
fully. Nevertheless it was found that some features could
indeed be considered as signal, like the general oscillatory
behaviour, the bump located at z =~ 1.2 and the wpg < —1
at the present redshift.

Some concluding remarks can be summarized as follow:
(i) the binned reconstruction provided better results than the
node method; (ii) when incorporating the correlation func-
tion, the fitness and the Bayes’ Factor worsen considerably,
even when the final shape is very much alike; (iii) our model-
independent reconstructions resulted in a better fit to the data
(up to 40) and, in some cases a better Bayes’ Factor; (iv) if
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future surveys confirm our results, the cosmological constant
and single scalar field theories (with minimal assumptions)
might be in serious problems as they cannot reproduce these
essential features. This could be a great incentive to study DE
models with this type of dynamical behavior and encourage
direct reconstruction of other functions, such as those that
may lead to discontinuities in the EoS. Finally, (v) the PCA
analysis showed a great promise for some of the reconstructed
features, such as the oscillations and a bump at intermediate
redshifts.

As a future prospect, it remains the addition of other
datasets that contain information from linear perturbations,
such as the cosmic microwave background and the matter
power spectrum data. Also, with the resulting shape provided
by our model-independent reconstructions, we may search
for a parameterization or a physical model that incorporates
the important characteristics already found. It would also be
interesting to study some alternative PCA methods that have
amathematical basis to truly discern important features from
noise.
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Appendix A: Capturing features with the right amount
of parameters

Given the mathematical structure of the binning scheme and
linear interpolation of our reconstructions there are some sub-
tleties that are not obvious at first glance. In particular one
that has an effect to this work: a bigger number of parame-
ters does not necessarily means a better fitness to the data.
We can only guarantee it to be true when the bigger number
of parameters is a multiple of the one being compared. For
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Fig. 8 Visual representation of the possibility of underfitting data with
more parameters

example if we compare a reconstruction with 2 parameters
we can only guarantee that the ones with 2n, n € N param-
eters will perform better at fitting the data (and this is true
for any number of parameters, not only 2). This is because
the bins/nodes are all equally spaced in the redshift range
[0, 3]. When we use, lets say 2 and 4 parameters, the recon-
struction with 2 having parameter positions of (1.5,3.0) isa
special case of the one with 4 with parameters positions of
(0.75, 1.5, 2.25, 3.0), and the same is true for any multiple
of 2.

This also means that there may be some features that a cer-
tain number of bins/nodes will not be able to capture since
they are located in a region not accessible by the larger num-
ber of bins/nodes. As seen in Fig. 8 where the data (black
dots) are being modeled with 2 and 3 bins. The data clearly
show a transition in z = 1.5 and the 3 bins cannot, by design,
correctly model this transition since the positions of the bins
interfere. It is also important to note that these problems
appear with an interpolation reconstruction (linear, cubic and
so forth). This happens almost exclusively to reconstructions
with a low number of nodes/bins because as more parameters
are utilized the resolution of the reconstruction becomes a lot
better.

Everything here discussed also applies for the nodes in the
interpolation and for the reconstructed density.

Even if these effects could seem generally unimportant
they are quite relevant to this work since they are both present.
When reconstructing either the EoS or the density with 4 and
5 parameters we should expect a better fit to the data with 5
parameters because it has more degrees of freedom, but the
Ax? says otherwise. By separating and analyzing the A2
in its components via Eq. (25) we see some differences as
expected, but the component responsible for the bad fitness
when utilizing 5 bins is the A X%[ with a difference of 3.36
when compared to the 4 bin reconstruction (for reference we
also have AX§N = —1.38 and AXI%AO = —0.4 in favor
of the 5 bin reconstruction). This indicates that there might
be some feature present in the 4 bin reconstruction which
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Fig. 9 Functional posteriors of the EoS reconstruction, from up to down, with 4, 5 and 6 bins using only Hubble parameter data

favours it specifically with the Hubble parameter data, and it
is not present in the 5 bin one. This feature is also present in
the 6 bin reconstruction, as represented by its A XI21 =5.26
(when compared with the 5 bin one).

The absent feature becomes obvious when reconstructing
the EoS with 4, 5 and 6 bins with only Hubble parameter
data, which is the data where 5 bins has trouble with. The
functional posterior of these reconstructions can be seen in
Fig. 9. Paying attention to the 1o region of 4 and 6 bins a
bump can be seen followed by a slump in the interval 0.7 <
z < 2.0. The 5 bin reconstruction is completely missing
this bump and subsequent slump. As explained at the start
of the appendix, the reason for the inability with 5 bins to
reproduce this behaviour comes from its bins’ positions. The
important bin is the one that starts in 1.2 and ends in 1.8,
since the transition from bump to slump happens in z = 1.5
it is impossible for this bin to correctly capture such trait.
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