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Throughout cosmological simulations, the properties of the matter density field in the initial conditions
have a decisive impact on the features of the structures formed today. In this paper we use a random-
forest classification algorithm to infer whether or not dark matter particles, traced back to the initial
conditions, would end up in dark matter halos whose masses are above some threshold. This problem
might be posed as a binary classification task, where the initial conditions of the matter density field
are mapped into classification labels provided by a halo finder program. Our results show that random
forests are effective tools to predict the output of cosmological simulations without running the full
process. These techniques might be used in the future to decrease the computational time and to
explore more efficiently the effect of different dark matter/dark energy candidates on the formation
of cosmological structures.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

The evidence gathered over the past twenty years consis-
ently points out that the Universe is made up of about 96%
f dark energy and dark matter. This conclusion is one of the
ain foundations of the standard cosmological model (ΛCDM),
hich despite its success in describing the observations does not
rovide yet a complete answer on the physical nature of these
omponents. In this regard, the process of structure formation
s a very useful tool to characterize the properties of the dark
ector and to assess its impact on the historical evolution of the
niverse.
Cosmological structure formation is a process determined

ainly by the gravitational interaction of dark matter. This pro-
ess can be broken down into three major stages:
Linear regime. Initially, dark-matter perturbation modes re-

ain frozen, and they start growing once they enter the causal
orizon of the Universe. During this stage, density fluctuations
emain small enough to be described by linear perturbation the-
ry.
Intermediate regime. As density fluctuations keep growing, a

ransition to non-linear regime takes place in which perturbations
ollapse into denser regions called halos. This transition process
an be described in its essentials by semi-analytic models, such
s the spherical collapse model.
Non-linear regime. Finally, halos group into larger structures

hat give rise to a cosmic network of filaments and knots. These
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structures serve as gravitational wells around which visible mat-
ter accretes, so by mapping the distribution of clusters of galaxies,
quasars, and gas clouds, we expect to reconstruct the underlying
skeleton of dark matter.

While the linear evolution and the transition to the non-
linear regime can be approached by analytical methods, structure
formation in the non-linear regime can only be studied using
numerical simulations. These simulations are virtual laboratories
by which is possible to study in detail the characteristics of the
structures that stem from the dynamics of different candidates
of dark matter and dark energy. By comparing the predictions
of each model with observations, it is possible to evaluate the
feasibility of each one of these scenarios.

Until a few decades ago, numerical simulations were pro-
hibitive in terms of the amount of the computational resources
required, but recently the progress in hardware and the devel-
opment of new algorithms have made these tools accessible to
more research groups. Still, the cost remain high and for some
tasks they will remain out of reach in the foreseeable future.
In this sense, there is an incentive to develop artificial intelli-
gence/machine learning solutions that allow the prediction of
important features in numerical simulations without the need of
completely executing them or, at most, running a small number
of simulations.

The method described in this work is based on a similar
approach made in Lucie-Smith et al. (2018), which uses the ability
of machine learning algorithms to learn complex relationships in
large data sets. We aim to find out howmuch information provide
the features of the initial conditions to determine the formation
of dark matter halos in cosmological simulations.
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The content of this paper is as follows. In Section 2 we provide
short review of machine learning fundamentals. We extend

he discussion to two supervised learning algorithms: decision
rees and random forests. In Section 3 we review some metrics
f performance. In Section 4 we discuss the problem of halo
ormation as a binary classification problem. Then, we present
he setup of our simulations, the construction of the training and
est sets, and the process of hyperparameter tuning. Finally, in
ection 7 we present our conclusions and a brief discussion of
he results achieved.

. Machine learning

Machine Learning (ML) refers to the set of methods used
o train computers in order to find patterns in data and make
nferences without human intervention. Although this is still a
emote possibility for certain applications, currently ML methods
re successfully applied to several problems that require the
nalysis of large volumes of information, for which the cost in
erms of human resources needed may represent a serious issue.
L methods are usually classified into two broad categories:
Supervised learning. Supervised methods need a set of la-

eled samples characterized by some features. In this case com-
uters are trained to find a relationship among the features
nd the labels, so that the labels of new samples may be pre-
icted based on the learned relation. Examples of these algo-
ithms are: Logistic Regression, Decision Trees, Neural Networks,
upport Vector Machines, etc (Gron, 2017). Some works apply-
ng these methods in cosmology can be found in Gómez-Vargas
t al. (2021), Xu et al. (2013), Hajian et al. (2015), Moster et al.
2020), Kamdar et al. (2016), Buncher and Carrasco Kind (2020),
erraudin et al. (2019).
Unsupervised learning. Unsupervised methods are aimed for

aking inferences on data sets where samples are not labeled.
n this case computers are trained to find hidden patterns in
he data, letting the information speak for itself. Examples of
hese algorithms are: Cluster Analysis, Correlation and Principal
omponent Analysis (PCA) (Goodfellow et al., 2016). Some appli-
ations in cosmology can also be found in Sharma et al. (2020),
garwal et al. (2018), D’Addona et al. (2021), Cheng et al. (2020),
each (2011), Hocking et al. (2017), Cheng et al. (2021).

.1. Supervised learning

Since the main goal of this paper is classification we will make
se of supervised learning, whose task is the following:
Given a training set of N input–output pairs

x1, y1), (x2, y2), . . . , (xN , yN ), (1)

where each yj is computed using a y = f (x) function, the objective
is to find a function g that approximates the true function f .
The function g is a hypothesis and the variables x and y can
take any value and not necessarily a numeric one, that is, it can
be an attribute. The learning is carried out through a search,
within the space of possible hypotheses, of a function that has
a good performance, even when it is fed with new examples
beyond the training set. In order to test out the accuracy of the
hypothesis, a test set, different from the training set, is provided.
The hypothesis g is said to generalize well to the function f if
it correctly predicts the values of y for several inputs. Further-
ore, the dependent variable y can turn out to be categorical,
lso called qualitative. The values of a categorical variable are
utually exclusive and in that case the learning problem is called
classification problem, which in turn is referred as Boolean or
binary classification if only two values are possible.

2

Fig. 1. Sketch of a Random Forest Algorithm. Being an assembly of decision
trees, it allows different tests to be carried out on a random selection of
attributes, the final class being a vote on a majority obtained in each individual
tree.
Source: Figure from Medium.

2.2. Decision trees

These type of algorithms resemble a chart flow for data, where
terminal blocks represent classification decisions. The elements
of a decision tree are the root (where the data is stored), the
branches (the path the tree takes to make decisions) and nodes
(consisting of sets of elements that have a determined character-
istic after a decision is made). Given a dataset, we can calculate
the inconsistency within the set, or in other words, find its
entropy in order to divide or split the set until all data is within
a given class (Quinlan, 1986).

A decision tree reaches a conclusion by carrying a series of
tests. Its nodes perform tests over the attributes on the input
values Ai and the branches that come from the node are labeled
with the possible values of the attribute Ai = vik. The leaf nodes
in the tree specify a value that needs to be computed by the
function. A good decision algorithm is developed by splitting the
data, so the attribute with the greatest weight or with the highest
information gain is obtained, so it is expected to have a correct
classification with the least possible number of tests (Louppe,
2014).

2.3. Random Forest

The Random Forest algorithm consists of a large number of
decision trees that operate together as an ensemble (Hastie et al.,
2009). The ‘‘randomness’’ of the algorithm comes from the fact
that operations and predictions from the forest are not hierar-
chically taken, but a subset of elements (like number of trees,
number of attributes, length of data, etc.) is taken in a random
way. Each individual tree in the Random Forest chooses a class
prediction and the class with the most votes becomes the model
prediction. This is due to a simple but powerful concept: The
wisdom of the crowds. The reason that Random Forest is such
a good algorithm is because a large number of relatively un-
correlated trees operating together will perform better than any
individual model that constitutes it (Breiman, 2001). The key
is the low correlation among models. Uncorrelated models can
produce joint predictions that are more accurate than any of the
individual predictions that make them up. The trees protect each
other from their individual errors (as long as those errors are not
in the same direction). If some trees have errors, others may get
correct predictions, so that as a group the trees can move to the

correct direction (see Fig. 1).

https://medium.com/swlh/random-forest-classification-and-its-implementation-d5d840dbead0
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Fig. 2. The entropy for two classes with probability p and (1 − p). Shannon’s
ntropy is a way of measuring the relative quantity between the two classes.
he entropy value is maximum if there are the same number of classes.
ource: Taken from Shannon (1948).

.4. Information and entropy

Decision algorithms like decision trees and random forest
erform data division, also called split in order to obtain more
nformation after the division is made. This split can be thought
f as a way to organize data, thus the learning process should
e focused on obtaining a better vision of the analysis process.
his comes directly from information theory: the most valuable
nformation comes from unlikely events rather than events that
ccur frequently. A way to determine the sought information
n a more formal and specific way is by considering that the
ost probable events provide few information, while the least
robable events provide the highest amount of information.
The equation that satisfies these conditions is the information

ontent of an event xi

(xi) = − log2 P(xi), (2)

here P(x) is the probability that event xi occurs. To account for
he whole set of events, a probability distribution is built by using
he Shannon entropy (Shannon, 1948)

(x) = −

∑
i

P(xi) log2 P(xi), (3)

where the sum of i is over all possible events. That is, the Shannon
entropy is the expected amount of information in an event of a
probability distribution as observed in Fig. 2. The change in the
information obtained before and after the division is known as
information gain. Therefore, the split is made when the infor-
mation gain is greater.

3. Evaluation of classification models

Evaluating the performance of an algorithm is a fundamental
aspect in machine learning. The model must be trained with the
training set and then evaluated with the test or validation set,
consisting of totally new data not yet evaluated by the algorithm.
During the evaluation is important to measure and understand
the quality of the classifier and to tune the parameters in the
iterative process of discovering the data.

3.1. ROC curves

Binary classification models are evaluated in the Receiver Op-
erator Characteristics (ROC) space (Fawcett, 2006). A ROC graph is
used as a visual representation of the classifier based on its per-
formance. This type of curve shows how the number of correctly
classified as true examples changes with respect to the number
3

Fig. 3. The ROC curve and the value of the Area Under the Curve (AUC) of
a binary classifier. Being a graphic representation, the performance can be
evaluated at various prediction thresholds. For different classifiers, the shape of
the ROC curve can be very similar, the fairest way to compare them is through
the value of the AUC. GitHub ChJazhiel.

of incorrectly classified as negative examples. In ROC space we
can define the True Positive Rate (TPR) as

TPR =
TP

TP + FN
, (4)

and the False Positive Rate (FPR) as

FPR =
FP

FP + TN
. (5)

These two quantities are plotted in order to obtain the ROC
curve, see Fig. 3 for reference. The FPR measures the fraction of
negative examples incorrectly classified as positive, while the TPR
measures the fraction of positive examples correctly classified.
The convex part of a family of ROC curves can include points
located further toward the northwestern boundary of the ROC
space. If a line passes through the convex part, then there is
no other line with the same slope that passes through another
point with a larger TP intersection. In this way, the classifier at
that point is optimal under any distribution assumption with that
slope (Rokach and Maimon, 2008).

3.2. Area Under Curve (AUC)

Using continuous-type measures such as ROC curves some-
times can lead to misinterpreting the results. In the case of the
ROC curves, for example, for two classifiers there may be an
overlap in the curves within the ROC space, so that it becomes
difficult to determine which model performed better. If there is
no dominant model, it cannot be determined which of them is
the best.

The Area Under Curve (AUC) is a quite useful metric to visual-
ize the performance of a classifier, since it is independent of the
decision criteria and prior probabilities. Given two classifiers, if
the ROC curves intersect then the AUC is an average of the com-
parison between both models. The AUC does not depend on any
imbalance of the training data, so comparing this quantity for two
classifiers is fairer and more informative than comparing their
misclassification rates, for example. We evaluate the performance
of an algorithm with this metric with the range values between
0.5 and 1.0. A value of 0.5 is only as good as a random classifier.
Then 0.6–0.7 is considered as a regular classification, 0.71–0.8 a
good classification, 0.81–0.9 very good classification and 0.91–1.0
an excellent one.

https://github.com/ChJazhiel/ML_ICF/blob/master/DT_data_nbody.ipynb
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.3. Overfitting and generalization

Overfitting is a general phenomenon and occurs in all kinds of
earning algorithms, even when the target function is not random
t all. It becomes more likely as the hypothesis space and the
umber of input attributes grow, and is less likely as the number
f training examples increases.
For random forest and decision tree algorithms, there exist a

echnique, called pruning, that aims to avoid overfitting. Pruning
orks by removing nodes that are not clearly relevant. The ques-
ion is, how do you detect that a node is testing an irrelevant
ttribute? Assuming that a node consists of p positive examples
nd n negative examples. If the attribute is irrelevant, it would
e expected to divide the examples into subsets, so that each
ne has approximately the same proportion of correctly classified
positive) examples as the complete set, p/(p+n), in this way the
nformation gain would be close to zero.

How big must the information gain be so that it can be divided
n a particular attribute? This question is answered using a
ignificant statistical test where the null hypothesis is that no
elationship or underlying pattern exists. The actual data is then
nalyzed to calculate the degree to which it deviates from a
erfect absence of a pattern. Given a training set S with input
ttributes A = a1, a2, . . . , an and a nominal target attribute of
nknown fixed distribution D on the instance space, the goal is
o induce an optimal classifier with minimal generalization error.

In other words, given a training set with a finite number of
ttributes and a set of classes to be determined, find the algorithm
hat best generalizes the model with a minimal error.

.4. Learning curve

These curves are graphs of the learning performance of the
odel over experience or time. They are a diagnostic tool widely
sed in machine learning for algorithms that learn incrementally
rom a training set. The model can be evaluated on the training set
nd on a validation dataset after each update during the training.
raphs of the measured performance can be viewed to show the
earning curves.

Reviewing the learning curves of the models during training
an be used to diagnose learning problems, such as an under-
itting or overfitting model, as well as whether the training and
alidation data sets are adequately representative, as seen in
ig. 4.
The evaluation in the validation set offers an idea of how

apable the model is of ‘‘generalizing’’. In the space of the learning
urve there are two curves:

• Train Learning Curve: computed from the training set that
gives an idea of how well the model is learning.

• Validation Learning Curve: computed from the validation set
that gives an idea of how good the model is at generalizing.

ecause the metrics to evaluate an algorithm are diverse, a simple
ay to create a learning curve is through accuracy, although it can
lso be created through an error percentage. To ensure optimal
earning, the dataset is divided into subsets of samples called
-Fold Cross-validation. The procedure has a parameter k that
efers to the number of groups the dataset will be divided. It is a
imple method to understand and to help the model to decrease
ariance and avoid bias. This method has the following steps:

1. Shuffle the dataset randomly.
2. Split the dataset into k groups.
3. For each unique group:

(a) Take a group as a test set.

(b) Use the remaining k − 1 groups as training set.

4

Fig. 4. Learning curves with accuracy metrics of a binary classifier. The algo-
rithm is said to be learning when the validation set curve is close to the training
set curve. In this graph, it is observed that the model does not require changing
its hyperparameters since the learning set is quite close to the training curve
and does not seem to be overfitted. GitHub ChJazhiel.

Fig. 5. The k-fold cross validation. The dataset is randomly mixed and a test
group is chosen, leaving the rest of the data as training. The iterations are used
to carry out this method in a defined way in order to minimize the variance
and the bias of the model (Seni and Elder, 2010)..

(c) Adjust the model with the training set and evaluate
it with the test set.

(d) Save the score of evaluation and discard the model.

4. Gather model skills using the model score sample.

his approach involves randomly dividing the set of observations
nto k groups, of approximately the same size. The first group is
treated as a validation set and the method fits the remaining k−1
roups (James et al., 2014).
Graphically, it can be understood with Fig. 5. From here it

s clearly observed how this method mixes and divides the set
andomly, so that a small group is the test or validation set and
he rest of the data is the training set. This process is carried out
ecursively to avoid some type of bias or variance of the model.

. Numerical cosmology as a binary classification problem

After carrying out a series of simulations for various config-
rations (for more details see Chacón et al., 2020) we obtain
one-to-one relationship of dark matter halos formed at time
= 0 with the initial conditions. This allows to identify the dark
atter halos, called parents or hosts and in turn we are able to
etermine substructures or subhalos of the same host. We select
dark matter mass threshold to identify halos, in this way it is
ossible to identify the particles that end up in a dark matter halo
iven the mass threshold, as well as those that do not end in a

https://github.com/ChJazhiel/ML_ICF/blob/master/DT_data_nbody.ipynb
https://github.com/ChJazhiel/ML_ICF/blob/master/DT_data_nbody.ipynb
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alo, that is, they are free particles or they belong to halos of
ower mass. As it can be deduced, this leads to treat the process
f dark matter evolution as a classification problem.

.1. Data selection

To carry out the process, we chose a cosmological simulation
f a ΛCDM Universe made with the cosmological code GADGET-
(Springel, 2005), with cosmological parameters Ωm = 0.268,

ΩΛ = 0.683, Ωb = 0.049, h = 0.7. The simulation has a
gravitational softening of ϵ = 0.89 kpc and it evolves a total
of 1923 particles, each with a mass of 1.3 ×109 M⊙ in a box
of comoving length L = 50h−1 Mpc from z = 23 to z = 0.
Halos (both host and subhalos) are identified with ROCKSTAR
halo finder (Behroozi et al., 2013). We made two classes, [Not
in Halo, In Halo] by selecting a mass threshold of M ≥ 1.2 ×

1012 M⊙, so that the class in Halo will be in halos that exceed this
threshold while the particles Not in Halo are in halos with mass
less than said threshold or they are not linked to any halo. The
final snapshot counted a total of 4000 dark matter halos whose
masses fall within the range (1011

≤ M/M⊙ ≤ 1014).
Each particle will have a 10 component vector associated

with it and a label: 1 for the class In halo, 0 for the class Not
in halo. The properties of the particles are extracted from the
initial conditions of the simulation (z = 23) and are used as an
input data for the decision tree and random forest algorithms.
The components are the mass densities centered in each particle
linked to the local density of the initial redshift. A subset of all the
particles was chosen within the simulation with their respective
label. The training was carried out with an 80/20 split of the
subset (80% training and 20% test/validation).

Supervised machine learning algorithms require the use of
characteristics of a structured database, in this case there is a
structured data set with attributes extracted from the density
field. This assignment comes from analytical works related to
the halo mass function (HMF) by Press–Schechter (Press and
Schechter, 1974). This function predicts the density of the number
of halos of dark matter depending on their mass and the density
field. The density will form a halo of a certain massM at a redshift
z. If it exceeds a critical value δc(z), these values will be called
overdensities at a given redshift z.

The main idea is that the matter of a halo will be enclosed in a
dense spherical region, where the density contrast will be given
by the relation

δ(x) =
ρ(x) − ρ̄

ρ̄
, (6)

where ρ̄ is the average matter density of the Universe. For a
sphere of radius R (Dodelson and A.P.L. 1941–1969, 2003), it is
well understood that the overdensity is

δ(x, R) ≡

∫
d3x′δ(x′)WR(x − x′). (7)

In Eq. (7), WR is a window function of the top hat model, given
by

WR =

{
3

4πR3
if |x| ≤ R

0 if |x| > R.
(8)

A window function with radius R corresponds to a mass scale
M = ρ̄V (R). The expected value of the overdensity in Eq. (7) is
the normalization term of the power spectrum σR

σ 2
R = ⟨δ2(x, R)⟩. (9)

The choice of attributes of the structured data for the machine
learning algorithms reside in the density contrasts calculated
with the top hat type window function that is derived from a
5

Table 1
Optimal hyperparameters for the algorithms..
Description Symbol Value

Decision criteria criterion entropy
Max depth max_depth 8
Class balance class_weight balanced
No. of estimators n_estimators 2000
Min. No. of particles n_particles 200

mass scale MR in the radius R, centered on the position of a
particle, from the initial conditions and the initial redshift z = 23.
The result is a quantity of 10 overdensities δ1, . . . δ10, each one
associated with their respective class or label. This 10-component
vector along with their corresponding labels makes a dataset that
achieves well performance. That is, when we chose more than 10
component vectors, which means using bigger regions of study,
we saw no further improvement in our training. On the other
hand, if less vectors were studied we observed a low accuracy
performance in the algorithms. The mass range was selected
taking into account two main features. First, the data we selected
had more massive halos and less massive halos and free particles,
the mass range was an average of the halos found. Second, the
mass range was also a calculation from the approximation of
the spherical collapse model, which gave us the number for the
threshold (see Fig. 6).

4.2. Training

Algorithms used for this section were decision trees and ran-
dom forest, included in the machine learning package from Scikit-
Learn (Pedregosa et al., 2011). The initial number of particles was
50,000 randomly selected, but a preprocessing was performed
before i.e. labels [Not in Halo, In Halo] were converted to a set
of labels 0 and 1, respectively. After this preprocessing, the total
number of particles is reduced to 28,600. The algorithms were
tested for both quantities and no reduction in performance was
observed when reducing the number of particles. The dataset
is selected randomly so there is no bias when performing the
classification. The training set, as mentioned above, is 80% of the
total particles, so that 22,880 particles served as the training set,
while the validation set was the remaining 5720 particles.

Both decision trees and random forest algorithms were fine
tuned by making tests in a hyperparameter grid. This grid had
elements such as the maximum depth of the tree, the element
split criterion, the maximum number of particles per node, the
minimum number of particles to make a split, and in case of
random forest, the total number of estimators. Starting from the
number of estimators in random forest at 100, increasing by 100,
the depth of the tree starting at 1 and reaching 20 increasing by 1,
the minimum number of particles at 50, up to 200, increasing by
50, thus finding the optimal values in order to avoid blind testing.
The optimal hyperparameters are highlighted in Table 1, being
the same in almost all values except for the number of estimators,
exclusive to random forest. The codes already trained predict the
final label of the particles in the test set, which is compared
with the real labels in order to obtain the performance of each
algorithm. This evaluation was carried out under two tests, the
ROC curve along with the AUC of the ROC curve and the learning
curve.

5. Dark matter particles classification

Due to the probability distribution obtained for each overden-
sity range, it is not necessary to perform an extensive preprocess-
ing (see Fig. 7). This figure describes the class distribution (Not in
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Fig. 6. Diagram of the method to select the properties of the initial density field conditions that will eventually form the structure in the simulation. The process
starts from extracting properties of the initial conditions in the local neighborhood of the density field around dark matter particles and associates them to the final
position in the halo distribution. The final classification Not in halo, In Halo depends on the mass threshold chosen to determine whether a dark matter particle will
elong in a halo or if it is not bound to any other object Chacón (2021).
n
i
a
t
=

d
w
t
c

o
T
p
p
i
t
d
i
d
B
t
T
o
c

6

r
a
p
c
w

t
t
a
ϵ
k

Fig. 7. Histogram of classes for an overdensity obtained in the data preprocess-
ing. The shape of the distribution suggests: (1) It is not necessary to do a data
rescaling, since the similarity with a Gaussian curve is evident. (2) The use of
the ROC curve metric is sufficient due to the distinction of classes in this range
of overdensity values.

Halo: label = 0, In Halo: label = 1) depending on the density
ontrast δi. The overdensities δ5, δ6, δ7 correspond to mass
alues 1.2 × 1012M⊙, 2 × 1012M⊙, 1.1 × 1013M⊙ respectively
nd radius R ranging from 3 kpc to 6 kpc, coinciding with the
imit that we chose to make a decision (1.2 × 1012M⊙). The
lassification algorithms do not need a rescaling of characteristics
ince they make decisions through the gain of information, unlike
ther methods where a subtle difference, for example, the same
istance (with different units) can affect the performance of the
lgorithm. The results are the probability of each class for all
articles. That is, the result of belonging to one class or another
s determined by a probability threshold value.

After taking this into account, the performance of the al-
orithms is quantified. A perfect classifier will consist of true
ositive and true negative values in its confusion matrix. The
rue positive rate (TPR) and the false positive rate (FPR) are the
haracteristic quantities of a ROC curve.
 i

6

The number of particles correctly classified (TPR) and the
umber of particles incorrectly classified as true (FPR) are shown
n Fig. 8. The tests performed for the decision tree gave an
ccuracy value of 0.77 ± 0.01, with a value of AUC = 0.846. For
he random forest, the accuracy was 0.78 ± 0.01 and AUC value
0.866.
It can be seen in Fig. 8 that TPR decreases as the FPR also

ecreases. Decision algorithms have been able to predict in a good
ay whether a particle will end up in a halo or not, depending on
he overdensity of the dark matter density field from the initial
onditions.
Also as part of the algorithm evaluation, the learning curves

f the decision tree and random forest are described in Fig. 9.
he upper part corresponds to the decision tree, while the lower
art represents the random forest. Both methods adjust their
erformance well as the number of tests and validation elements
ncrease, reaching a value almost parallel to that reported by the
raining set. As the training curves neither increase nor the vali-
ation curves fall after performing the tests with cross-validation
t is possible to conclude that both methods are well fitted. Ad-
itionally other methods like Logistic Regression and even Naive
ayes were tested, nevertheless the process of decision making of
hose algorithms does not quite fit the overall result we aim for.
he use of Random Forest and Decision Trees has the advantage
f being more visual, less biased and with no overfitting when it
omes to making decisions for unseen data.

. Test on new initial conditions

The training and tests sets used on the classification algo-
ithms have been generated during the N-body simulations. The
dvantage is that an evaluation can be carried out on an inde-
endent set of initial conditions and the prediction effectiveness
an be tested. For this purpose, four new sets of initial conditions
ere created, these being listed in Table 2.
In three of them the initial seed was changed, which is essen-

ially a pseudo-random creator of numbers that are transmitted
o the positions of the particles into the initial conditions. In
nother simulation, the gravitational smoothing length parameter
was also changed (the first simulation has a value of ϵ1 = 0.89
pc). The value of ϵ1 is not trivial, this arises from the analyt-

cal calculation of force and acceleration of a top-hat spherical
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i

Fig. 8. ROC curves of a decision tree and a random forest algorithm trained in
the GADGET simulation. The performance is remarkable given that both have
an AUC value ≥ 0.8, highlighting the improvement that random forest has over
the decision tree.

Table 2
Initial conditions for the cosmological simulations.
Description Symbol Value

Dark Matter Density Ωm 0.268
Dark energy Density ΩΛ 0.683
Baryonic Matter Density Ωb 0.049

Boxsize L 50 Mpc
Particle No. N 1923

Initial Redshift zinit 23
Final Redshift zf 0
Hubble’s Parameter h 0.7
Matter Power Spectrum Normalization σ8 0.8
Seed for IC-generator Seed 100,200,300,400

Another Technical Quantities
ErrorTolIntAccuracy 0.025
MaxRMSDisplacementFact 0.2
CourantFact 0.15
MaxSizeTimestep 0.03
ErrorTolTheta 0.5
TypeOfOpeningCriterion 1
ErrTolForceAcc 0.005

collapse model. In these calculations, the gravitational softening
ϵ1 widely fits how acceleration between particles in a simula-
tion should be in order to acquire results that are in agreement
with other cosmological studies. The three different seeds were
determined to add stochasticity to the particle generation in the
initial conditions, this stochasticity was required in order to make
the decision less biased and to prove the generalization of the
decision algorithms.

In the new simulation we changed the smoothing length, by
ncreasing it to ϵ = 1 kpc. Remembering that this length is the
2

7

Fig. 9. Learning curves of the decision tree and random forest algorithms. The
training curve starts out very high because we have few samples to make a
prediction. As the samples increase, the learning curve of the validation set
also increases, showing that there is neither overfitting nor underfitting. It is
noteworthy that the learning curve of the random forest has less variance, since
the low correlation between characteristics prevents a change in this value.

minimum distance that two dark matter particles can be together
in the simulation (Zhang et al., 2019), the distribution of matter
is expected to change, which can be corroborated with the mass
power spectrum, observed in Fig. 10. The properties around the
particles in the dark matter density field were again extracted
and a new evaluation of the performance of the decision tree and
random forest was carried out.

Fig. 11 shows the comparative ROC curve of the two algo-
rithms in the realization with the new gravitational smoothing
ϵ, when training and testing them with the data from the initial
simulation, as well as when doing the test with the new initial
conditions, without carrying out a complete computational run.
The upper part shows the performance of the decision tree in the
previous training and testing set and the prediction for the new
initial conditions. The bottom part shows the same for the ran-
dom forest. Decision algorithms produce consistent ROC curves
for the new set of initial conditions. The AUC on both approaches
fell ∼ 2% since there was less structure formation.

On the other hand, the change of seed realizations had a
performance similar to that described in the previous paragraph.
We had the ΛCDM simulation as a training set, and the per-
formance was tested on the new initial conditions. Though the
complete simulations were not executed, the algorithms were
able to identify the classification of dark matter particles that fell
or not into halos of dark matter given a threshold value. Fig. 12
shows the performance of the decision tree in the upper part,
and the random forest in the lower part. Both algorithms perform
proficiently with their ΛCDM simulation training counterparts.
The only change in the initial conditions of these new realizations
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Fig. 10. Matter power spectrum of the new initial conditions (ϵ2 = 1.0 kpc)
and the simulation above; the spectrum obtained with CAMB is shown in the
solid line (Lewis and Bridle, 2002). The difference between both simulations
is indicated in the figure and is approximately 15%. The power spectrum was
obtained in the same way as in the previous realizations. It is evident that the
distribution of matter for the new conditions is different, since there is less
structure formation.

was in the pseudo-random seed generator, so that the predictive
power of the algorithms becomes more evident with this figure.

In Fig. 13 we can see the Precision–Recall scores obtained for
the decision algorithms (decision tree and random forest), with
Precision defined as

Precision =
TP

TP + FP
, (10)

nd Recall defined as

ecall =
TP

TP + FN
. (11)

e can see that Recall is another name for False Positive Rate.
s we know, precision and recall both indicate accuracy of the
odel. Precision means the percentage of the results which are

elevant, while recall refers to the percentage of total relevant
esults correctly classified by the algorithms. The AUC of the
R curve for both decision tree and random forest are between
0.76, 0.82], and [0.78, 0.84], respectively. The result given sug-
ests that the learning process did have a good trade-off between
recision and recall across all different IC seeds. We therefore
onclude that the overall accuracy had no impact while making a
mall change in the initial conditions. Additionally, the F1-score,
efined as

1 = 2
Precision · Recall
Precision + Recall

, (12)

nd Fβ score defined as

β = (1 + β2)
Precision · Recall

β2Precision + Recall
, (13)

here β = 0.5 is chosen such that Recall is considered β
times as important as Precision, were calculated. Table 3 lists the
averaged weighted F-scores. This result determines the overall
good performance by both algorithms and remarks better results
obtained by the random forest.
8

Table 3
F-score of decision algorithms.
Algorithm F1 Fβ

Decision Tree 0.775 0.777
Random Forest 0.780 0.0.781

Fig. 11. ROC curves of the decision tree and random forest algorithms of
the initial conditions with a new gravitational smoothing ϵ, compared to the
performance previously shown. The curves are fairly consistent. The value of
the AUC fell ∼ 2%. The tests demonstrate the great capacity of the algorithms
to predict the final labels of different simulations.

Labels predicted by the machine learning algorithms are com-
puted from the density properties of the initial conditions. In
simulations, the algorithms are able to predict the final classi-
fication result with fairly good accuracy. By carrying out a new
test for the different initial conditions, without running the full
simulation, both methods were able to predict the final label
accurately. Granted a non negligible change in initial conditions
did affect the outcome.

7. Final discussion and future work

Throughout the process, several factors emerged that could
be decisive on the results. One of the most relevant was the
use of a simulation and its probable deviation or bias due to
different numerical parameters independently of the physical
processes. As is well known, simulations require knowing many
numerical parameters in addition to knowing in depth the code.
Even though we were not delved into these aspects, it should
be a priority to have a better certainty that the results obtained
can be comparable with a workable physical system and have no
preference for bias or variance.

It has been emphasized that the algorithm training process
has to be more refined, since the number of selected particles
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Fig. 12. ROC curves of the decision tree and random forest algorithms of the
nitial conditions whose seeds were different. The AUC drops an average of
.2% for new realizations. The generalization of the predictive power of the
raining is evident since the algorithms are able to decide in a good way the
inal destination of the dark matter particles from their position at an initial
oment.

epresents a minor contribution of the total number of particles
ithin the simulation. This can certainly be decisive since at the
nd there was an array of approximately 317,680 elements that
hould have been used as training data. Even so, another test
as performed for a choice of 57,000 particles, performing the
rocedure described in Section 4.2. The AUC of the algorithms
sed did not show an improvement since both realizations have
imilar results (0.85 for decision tree and 0.86 for random forest).
his fact shows that the use of a larger volume of particles is not
ecisive in the identification process.
Finally, the aim of this work was to show how we can use

ree-like decision algorithms to aid cosmological simulations and
redict the outcome of a future run without the need of evolving
ark matter particles with codes that consume a lot of time,
iving results that are similar to the ones obtained in a full run.
urthermore, we saw that using less data, we obtained a good
verall result in predictions for new initial conditions datasets,
esulting in models that are able to learn the relationship be-
ween the initial conditions (position and region of overdensity)
f the dark matter particles and their final position within halos
iven a certain threshold mass. Additionally, the data used for this
ork can be retrieved from our GitHub repository,1 in which the
ata and code necessary to perform our analysis is available. We
ncourage the reader to visit this site and perform their own tests.

1 GitHub ChJazhiel.
9

Fig. 13. Precision–Recall scores obtained in the learning process of decision
algorithms. We see that for a particular seed, the decision tree Precision drops
up to 0.78, this is likely because there were more cases of False Negatives in this
dataset, whereas the random forest only drops to 0.85, meaning that the random
forest performs generally better than the decision tree. The figure suggests a
good accuracy performance on the new seeds generated for the training process,
resulting in a reliable algorithm that serves as our binary classifier for dark
matter particles within the simulation.

7.1. Numerical simulations assisted with artificial intelligence

There is another alternative to the complete realization of
a numerical simulation, using Generative Adversarial Networks
(GAN). These networks basically take databases or images from
which the algorithm generates two networks, a generator and a
discriminator. The networks begin a competition between each
other, both networks were trained with the same data set, but
the first must try to create variations of the data that it has
already seen. The discriminatory network must identify whether
the image created is part of the original training or is a false image
that the generative network created. The more datasets generated
the better the generative network is at creating them, and the
more difficult it is for the discriminatory network to identify
whether the image is real or false. The generative network needs
the discriminator to know how to create an imitation so realistic
that the second one cannot distinguish it from a real image.

In this regard, numerical simulations come in handy, because
the displacement density field is shown as a 3-dimensional im-
age with 3 channels, each channel corresponds to the displace-
ment vector, the deep learning model takes the displacements
of the low-resolution simulation and generates a possible high-
resolution realization, so this result can be seen as a high reso-
lution simulation with more particles and higher mass resolution

https://github.com/ChJazhiel/ML_ICF/blob/master/DT_data_nbody.ipynb
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Li et al., 2020). A goal in the future will be understanding and im-
lementing deep learning frameworks that can yield better res-
lution simulations without requiring more computational time
nd resources, and obtaining results similar to the ones obtained
n the numerical code method.
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