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The properties of the matter density field in the initial conditions have a decisive impact on the features
of the large-scale structure of the Universe as observed today. These need to be studied via N-body
simulations, which are imperative to analyze high density collapsed regions into dark matter halos. In this
paper, we train machine learning algorithms with information from N-body simulations to infer two
properties: dark matter particle halo classification that leads to halo formation prediction with the
characteristics of the matter density field traced back to the initial conditions, and dark matter halo
formation by calculating the halo mass function, which offers the number density of dark matter halos with
a given threshold. We map the initial conditions of the density field into classification labels of dark matter
halo structures. The halo mass function of the simulations is calculated and reconstructed with theoretical
methods as well as our trained algorithms. We test several machine learning techniques where we could
find that the random forest and neural networks proved to be the better performing tools to classify dark
matter particles in cosmological simulations. We also show that, by using only a few data points, we can
effectively train the algorithms to reconstruct the halo mass function in a model-independent way, giving us
a highly accurate fitting function that aligns well with both simulation and theoretical results.

DOI: 10.1103/PhysRevD.107.123515

I. INTRODUCTION

By studying the cosmological structure formation in the
standard model, also known as ΛCDM, we are able to
determine that the total amount of the Universe is divided
among several constitutes: visible matter (baryonic matter),
which takes about 4.9% of the total amount; neutrinos and
photons which today are estimated that from less than 0.1%
of the total content; dark matter, a hypothetical constituent

of the Universe with purely gravitational interaction that
collapses into filaments, halos and structures that even-
tually ended up merging the visible matter that creates
galaxies and adds up about 23% of the total content of the
Universe and finally dark energy, another hypothetical
constituent, but this one being responsible for the current
accelerated expansion of the Universe, with the remaining
72% of the total content of the Universe [1].
The presence of dark matter and dark energy, the so-

called dark sector of the Universe, can be inferred from
observational evidence of large-scale structures, which can
be studied with analytical and semianalytical models.
Nevertheless, only numerical simulations are capable to
emulate the small scale structures and substructures
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observed in the Universe, that give rise to a cosmic network
of filaments, voids, and groups. These structures act as
gravitational wells around the visible matter, which even-
tually merge visible matter to create clusters of galaxies,
quasars, and gas clouds.
Using numerical simulations as virtual environments, we

can evaluate and evolve a set of initial conditions of matter
and energy that will eventually end up merging the
structures as observed today by different telescopes and
available probes. These environments can be considered as
virtual laboratories that allow us to study different candi-
dates of dark matter and dark energy. However, until a few
years ago, numerical simulations were very restrictive in
terms of computational resources, and only accessible to a
few research groups. In this regard, there has been a rising
amount of alternative methods, hardware and algorithms
that would allow to lower the computational resources
required to carry a full run of a cosmological simulation.
Using artificial intelligence and other machine learning
(ML) methods is becoming more accepted to model
relevant features in numerical simulations. Within this area
of study, there has been a variety of tasks and hardware
development to enhance the analysis of cosmological
structure formation and data. Some of these methods range
from classification, clustering, regression, statistics, and
optimization among others [2–10].
Themain idea presented in thisworkwas described in [11]

and originally based on the studies first made in [12];
however, this new approach was carried out on larger N-
body simulations that increase the dataset with more dark
matter particles and we tested them on a variety of machine
learning algorithms. Hence we obtained improved results
compared to those achieved in the previous work, also
because the important statistics, such as the matter power
spectrum, which remain intact even with the change in scale.
Implementing awidevariety ofmachine learning algorithms,
which can be used for classification, helps to test their
efficiency and viability in terms of computational cost,
therefore we evaluated their classification performance
and their computational runtime. We find out how much
information the features in the initial conditions provide in
order to determine the formation of dark matter halos in
cosmological simulations. In addition, to explore another
machine learning application in this cosmological field, we
implement a neural network and a Gaussian process to
reconstruct, in a model-independent way, the halo mass
function, given only a few of points from simulations, which
in most cases are computationally expensive to produce.
The content of this paper is as follows. In Sec. II, we

describe briefly the ML classification methods. In the
Secs. III and IV we describe how we used our dataset as
a binary classification problem. For this purpose, we
present a dark matter particle halo formation framework,
which uses information about local density field features in
the initial conditions of the simulation, and the final dark

matter halo formation. In Sec. V we present our discussion
of the results achieved; in particular Sec. VA contains our
classification results with several machine learning meth-
ods, and Sec. V B includes the model-independent recon-
structions for the halo mass function. Finally, Sec. VI
shows our final discussion and conclusions.

II. MACHINE LEARNING ALGORITHMS

ML is the field of artificial intelligence that is focused on
the statistical modeling of data. Common tasks in ML are
classification, clustering, pattern recognition, and time
series analysis, among others. In this paper, we use ML
algorithms to perform the classification of particles fromN-
body simulations in order to know whether they are within
a dark matter halo, or they are not. Then, we briefly
introduce the algorithms used in this work.

A. Logistic regression

Logistic regression, or logit regression, is a linear model
for classification. It is one of the pioneer classification
algorithms in machine learning, which relies its mechanism
on assigning, to each instance, a probability of belonging to
a particular class using the logistic function (also called
sigmoid):

σðxÞ ¼ 1

1þ e−x
: ð1Þ

This algorithm works in the same way as a linear
regression, with the difference of converting its outputs
into probabilities using the logistic function. We can
describe the logistic regression as follows:

p̂ ¼ σðθT · xÞ; ð2Þ

where θ represents the straight-line parameters and x the
features of the input data. Therefore, the classification ypred
is given by

ypred

�
0 if p̂ < 0.5

1 if p̂ ≥ 0.5
; ð3Þ

where 0 and 1 are two different classes.

B. Bayes classifier

A Bayes classifier obtains the conditional probability of
each class Ci given a set of of n attributes A ¼ A1;…; An
through the Bayes rule:

PðCijAÞ ¼
PðCiÞPðAjCiÞ

PðAÞ ; ð4Þ

where the associated parameters are the prior probability
for each class PðCiÞ and the conditional probability for
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each attribute given a class PðAjCiÞ; these parameters can
be estimated from the dataset using frequencies, i.e., this is
a frequentist approach of the Bayesian rule.
The simplest Bayes classifier, known as a naive Bayes,

assumes that the attributes are conditionally independent;
however, in several datasets, this condition is not satisfied
and for this reason, some proposals have emerged that are
its extensions, such as the naive-Bayes complement [13],
Gaussian naive Bayes [14], and multimodal naive
Bayes [15]. In this work, we use these mentioned exten-
sions and the classical naive-Bayes algorithm.

C. Support vector machines

A support vector machine (SVM) is a supervised
learning method that uses separating hyperplanes in
high-dimensional spaces to perform classification. It is
particularly useful for solving problems where the number
of features exceeds the number of observations, and the
data points are not easily separable.
The primary concept behind SVM is to identify the

hyperplane that separates the data points of distinct classes
to the maximum extent possible. This hyperplane is chosen
in a way that maximizes the margin, which refers to the
distance between the hyperplane and the nearest data points
of each class. The support vectors are the data points that
are closest to the hyperplane and are used to define the
hyperplane. The objective of SVM is to determine the
optimal boundary between the potential classes. While
there are several hyperplanes that could potentially separate
the classes, the best option is the one that has the greatest
distance between the points of different classes, known
as the maximum-margin hyperplane. Therefore, SVM
involves a maximization problem.
SVMs have the ability to handle high-dimensional data

and they are robustness to overfitting. A concise explan-
ation about SVM is available in Ref. [16] and for
mathematical details we recommend the Ref. [17].

D. Decision trees and random forest

Decision trees refer to a paradigm of learning based on
approximating discrete target functions, in which the
learned function is represented by a decision tree [18].
The elements of a decision tree are the roots (where the data
is stored), the branches (the path the tree takes to make
decisions) and the nodes (consisting of sets of elements that
have a determined characteristic after a decision is made).
Given a dataset, we can calculate the inconsistency within
the set, or in other words, find its entropy in order to divide
or split the set until all data are within a given class [19].
When there exist a large number of decision trees that
operate together as an ensemble, we are referring to the
random forest algorithm [20]. The randomness of this
algorithm comes from the fact that operations and pre-
dictions from the forest are not hierarchically taken but a

subset of elements (like the number of trees, number of
attributes, length of data, etc.) is taken in a random way.

E. Artificial neural networks

Artificial neural networks (ANNs) are able to model
large and complex datasets and any nonlinear function [21].
They are computational models that represent the synapse
of biological neurons through interconnected layers of units
called neurons or nodes, which make up its basic informa-
tion processing elements. In the simplest type of neural
network, the Multilayer perceptron (MLP) (also called
feedforward neural network), there are three types of
layers: an input layer that receives the input, hidden layers
responsible for extracting patterns and producing non-
linearity effects, and finally the output layer that presents
the results of the prediction.
For a full background of neural networks we recommend

the references [22–24]; or, for a basic introduction in the
cosmological context, see [25].

F. Gaussian processes

The Gaussian processes (GPs) algorithm [26,27] is a
powerful probabilistic approach used in machine learning
to model the relationship between inputs and outputs. It
offers several advantages, including the ability to handle
noisy or incomplete data and provide uncertainty estimates
for predictions. GPs define a prior distribution over
functions, where any finite set of function values follows
a joint Gaussian distribution. Given a set of observed input-
output pairs, the goal is to infer the underlying function that
best explains the data and quantify the uncertainty in
predictions.
Mathematically, GPs are characterized by a mean func-

tion and a covariance function (kernel). The mean function
represents the expected value of the process at any input
location, while the covariance function captures the sim-
ilarity between inputs. By incorporating observed data, GPs
compute a posterior distribution over functions. Predictions
for new inputs can then be made by calculating the
predictive mean and variance. Gaussian processes are
widely used in machine learning, especially in applications
involving small datasets, because they can handle noisy or
incomplete data and provides a measure of uncertainty in
their predictions.

III. DARK MATTER HALO FORMATION AS A
BINARY CLASSIFICATION FRAMEWORK

Using the set of numerical simulations described in [28],
we are able to obtain a relational database that includes
information about the merged dark matter halos at cosmo-
logical time z ¼ 0. We obtained numerical features within
the initial conditions of the dark matter particles used
for the simulations. Additionally, we identified host halos
and subhalos that allow us to associate dark matter
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substructures to larger merged halos, in order to determine
a dark matter halo mass classification threshold.

A. Data selection

We performed a simulation with the cosmological code
GADGET-2, [29] assuming a ΛCDM Universe. The data
output was designed such that the dimensionless density
parameters were Ωm ¼ 0.268, ΩΛ ¼ 0.683, Ωb ¼ 0.049,
h ¼ 0.7, and with a gravitational softening of ϵ ¼ 0.89 kpc.
The total number of darkmatter particles is 1923, eachwith a
mass of 1.3 × 109M⊙ in a box of comoving length L ¼
50h−1 Mpc running from z ¼ 23 to z ¼ 0. To identify dark
matter halos and subhalos we use ROCKSTAR halo
finder [30]. The final snapshot has a total of 4000 dark
matter halos whose masses fall within the range
ð1011 ≤ M=M⊙ ≤ 1014Þ. This given mass will be used as
the binary threshold to classify dark matter particles: if a
selected particle falls within a halo with mass between
1011 ≤ M=M⊙ ≤ 1014, then the dark matter particle will
have a classification label of 1, otherwise if this condition is
not met, then the dark matter particle will have a classi-
fication label of 0.
The properties from the density field of the initial

conditions of the simulation serve as an input data to
our ML models. The attributes of the dataset are calculated
from analytical works related to the halo mass function
(HMF) by Press and Schechter [31]. This function predicts
the number density of dark matter halos depending on their
mass and the density field. The density generates a halo of a
certain mass M at a given redshift z. If it exceeds a critical
value δcðzÞ, these values will be called overdensities at
redshift z.
The core idea is that the dark matter halos enclose their

mass in a dense spherical region, where the density contrast
will be given by the following relation:

δðxÞ ¼ ρðxÞ − ρ̄

ρ̄
; ð5Þ

where ρ̄ is the average matter density of the Universe.
For a sphere of radius R, the overdensity is defined as
follows [32]:

δðx; RÞ≡
Z

d3x0δðx0ÞWRðx − x0Þ: ð6Þ

In Eq. (6), WR is a window function of the top hat model,
given by

WR ¼
� 3

4πR3 if jxj ≤ R

0 if jxj > R
: ð7Þ

A window function with radius R and volume V corre-
sponds to a mass scale M ¼ ρ̄VðRÞ. The expected value of
the overdensity in Eq. (6) is the normalization term of the

power spectrum σR, which is defined by the following
relation:

σ2R ¼ hδ2ðx; RÞi: ð8Þ

The attributes that we are able to define with Eqs. (6) and
(7) allow us to create a structured database, with the
information of overdensities at different radius R values,
derived from a mass scaleMR centered on the position of a
particle, from the initial conditions at redshift z ¼ 23. This
allows us to create a ten-component vector, namely,
δ1;…δ10, with their respective classification label. The
data we selected takes into account two main features; first,
the data that we are occupying makes use of the average
mass range of the halos found; second, the range of mass
was also a calculation from the spherical collapse model,
which gave us the range of ð1011 ≤ M=M⊙ ≤ 1014Þ for the
threshold.

IV. METHODOLOGY

The framework described in the previous section allowed
us to implement the ML algorithms described in Sec. II,
all of them available in the PYTHON libraries: SCIKIT-
LEARN [33] and TensorFlow [34]. The dataset consists of
106 randomly selected dark matter particles, each of them
with a ten-component vector, whose features are the over-
densities δ1;…δ10 at different values of radius R. This
selection upscales the previous work [11], where we used
50,000 randomly selected particles, up to 2 orders of
magnitude, allowing our models to be more competitive
with the training and validation tests. Since the particles are
randomly sampled from the simulation, it is unlikely they
are in some way correlated, this allows us to reduce the bias
and overfitting at the moment of evaluation in the test sets.
Figure 1 shows a schematic picture for our entire pipeline to
train our algorithms.
All classification algorithms were fine-tuned by perform-

ing a hyperparameter grid search. This grid has a variety of
hyperparameters depending on the algorithm we were
testing. Each algorithm will have as an outcome the
accuracy, precision, recall, and F1 score as their perfor-
mance metrics. The algorithms were successfully trained
and we tested their ability to predict the final label of the
particles in the test set, which is compared with the real
labels in order to obtain the performance of each algorithm.
This evaluation was carried out under the receiving
operation characteristics (ROC) curve [35] along with
the area under curve.

V. RESULTS

A. Dark matter particles classification

Wewere able to test nine binary classification algorithms
using the N-body simulation data as input. In Fig. 2 we plot
the dark matter particle distribution labels, where we
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observe how our selection is evenly distributed. This is an
indicator to verify the results using the ROC curve and the
area under curve score, resulting in the performance plotted
in Fig. 3. Additionally, we detail the performance metrics in
Table I. It is interesting to point out that the best performing
classifier was the multilayer perceptron, which obtained a

high accuracy of 80%, and that its closest contender was the
random forest, with 78% accuracy.
On the other hand, logistic regression has good perfor-

mance in terms of accuracy and execution time, this is due
to the own algorithm’s design, which is performing quick
calculations with the sigmoid function, but it lacks pre-
cision, which means it is predicting a high amount of false
positives. Support vector machines are another example
where having a high accuracy does not imply having high
precision, this low percentage is giving rise to almost 50%
data as false positives. These results are not optimal for
prediction purposes.
Regarding other classifiers, even though they have a

good performance overall, they fail to perform better on
unseen data due to the low precision and recall, as it
turns out, some of these classifiers are very well adapted
to categorical data, like naive Bayes categorical or

FIG. 1. Diagram of the method to select the properties of the initial density field conditions that will eventually form the structure in the
simulation. The process starts by extracting properties of the initial conditions in the local neighborhood of the density field around dark
matter particles and associate themwith the final position in the halo distribution. The final classificationNotinhalo,InHalo depends
on the mass threshold chosen to determine whether a dark matter particle will belong to a halo or if it is not bound to any other object.

FIG. 2. Dark matter particle number density distribution ac-
cording to a defined overdensity δ5. It can be noticed that our
dataset is evenly distributed, we have more particles in the In
Halo class rather than the Not In Halo class. Given this, we
can use both ROC and Precision-Recall curves to test the
accuracy of the algorithms.

TABLE I. Metrics and scores of binary classifiers.

Classifier Accuracy Precision Recall F1 score

Logistic regression 0.722 0.498 0.711 0.727
Naive Bayes Gaussian 0.718 0.516 0.757 0.748
Naive Bayes Bernoulli 0.699 0.495 0.757 0.730
Naive Bayes multinomial 0.611 0.316 0.554 0.527
Naive Bayes complement 0.608 0.316 0.554 0.527
Naive Bayes categorical 0.699 0.370 0.578 0.568
Support vector machines 0.723 0.473 0.753 0.702
Random forest 0.785 0.767 0.792 0.792
Multilayer Perceptron 0.806 0.764 0.794 0.794
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multinomial, and since we used only numerical data, their
precision is lower, this is an indicator to discard these types
of algorithms as predictors in the test set.
An interesting result we obtained was with the neural

network performance, in which we see the highest
accuracy among all other algorithms tested. For this
particular method, we use three hidden layers with 200,
200, and 50 nodes respectively, 50 epochs, 1024 as batch
size, 0.2 for dropout value, sigmoid as activation function
and with the Adam gradient descent algorithm. With this
configuration, Fig. 4 shows a good performance for the
neural network in the accuracy metric and in the loss
function for the training and test sets. Furthermore, the
Multilayer Perceptron obtained the highest metric values
among all other classifiers, with a fairly low execution
time. As we can observe from Fig. 4, the training and
test accuracy curves after 50 epochs are practically the
same, which means that the neural network is correctly
classifying unseen data and, additionally, the training
and test loss values are diminishing after less than 10
epochs. This result is an indicator that our model is not
overfitting.

B. Halo mass function reconstruction

We were also able to reproduce some interesting results
regarding the HMF at redshift z ¼ 0 with our different

algorithms. As we know, the halo mass function is a very
important tool for understanding the large-scale structure of
the Universe and the eventual formation of galaxies. It
describes the statistical distribution of the masses of the
dark matter halos and provides information of mass
accretion at different cosmological redshifts. It is a funda-
mental ingredient in both cosmological simulations and
theoretical models of structure formation. It allows us to
test and refine the underlying nature of the dark matter and
the laws of physics governing our Universe. In this work,
the halo number density in function of its mass is one of the
main results that we want to focus when we evaluate a
simulation output. The density profile has been widely
studied since 1974, and one of the most important density
profiles is the Press-Schechter profile [31], which was used
in this work as a benchmark.
Since halo formation is hierarchical, the less massive

halos merge to create the most massive halos. The HMF is
often displayed in log10 scale. This profile can be solved
analytically using some parametric modifications of the top
hat spherical collapse model. With this information, we use
the parametric results of the Press-Schechter density profile
with HMFcalc [36], an online tool to obtain the HMF with
the Press-Schechter formalism, with initial conditions
similar to the ΛCDM scenario of our simulation, as
described in Sec. III. 1.

FIG. 3. ROC and Precision-Recall curves of the 9 ML classifiers used. It can be seen that the performance rate drops drastically,
especially for the naive Bayes-like classifiers. This is related to the case that some of these classifiers perform better with categorical data
rather than numerical data. These classifiers may not be used as predictors.
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Upsampling data with machine learning algorithms is an
important technique that has a significant impact on the
performance of many machine learning models and pre-
diction. Increasing the number of samples in a dataset where
the number of samples is significantly smaller than the
predictionwewant to achieve. Using various techniques like
data augmentation from theMLPwe can, therefore, balance
the distribution and prevent the model from being biased
towards the objective function, in this case, the halo mass
function. This results in improved accuracy and precision in
predicting and further generalization of unobserved data.

C. Predicting the HMF with Gaussian processes
and artificial neural networks

In this particular scenario, we aimed to train a Gaussian
process algorithm in order to upscale and upsample the
training dataset that we obtained directly from our simu-
lation. Due to the scarcity and limitation of observations, it
is a challenge to find the best hyperparameters needed to
reconstruct the HMF without losing relevant physical
information. Our dataset is passed through the GP algo-
rithm in 50 iterations with the training data. The results are
observed in Fig. 6.

FIG. 5. Left: halo mass function reconstructed by the ANN (green line) trained and fitted with the ΛCDM simulation data (blue line).
Since the ANN does not learn very well from the extreme values [37], it is visible that the ANN does not follow the pattern on values
higher than 1013M⊙ and fewer than 1011M⊙. Right: halo mass function reconstructed by the ANN (green line) trained and fitted with
HMFCalc data (red line). We were able to upsample the initial data points available with this treatment.

FIG. 4. Left: accuracy plot for the training and test sets for the Multilayer Perceptron through 50 epochs. The low gap between training
and test sets is an indicator of how well is performing our neural network. Right: loss function behavior on the training and test sets of the
Multilayer Perceptron.
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Using only 13 data points from cosmological simula-
tions, we were able to reconstruct the HMF with an ANN,
being careful with the selection of its hyperparameters [4].
Figure 5 shows the result of using only the ANN, where we
can see how the reconstruction fits the data of the
simulation as well as the theoretical curve of HMFcalc.
On the left side, we observe the HMF reconstructed with
the training and fitting data from the ΛCDM simulation,
whereas, on the right, we upsampled the data available
using the HMFCalc values from the Press-Schechter
formalism. In Fig. 6 we can see the result of using
simulation and HMFCalc as training data for our ANN
and GP methods. Particularly, the GP process was done in
50 iterations. Notice how the low sample points retrieved
from the ΛCDM simulation are upsampled with the use of
the MLP and how the GP fits with a continuous line,
because these algorithms are extrapolating data in order to
achieve better results, fitting the HMF. Since we are using a
50 Mpc box size, halo formation in the higher mass scale is
somehow affected by this resolution. By using these two
methods, we can predict higher mass halo merging, while
in the lower bound, less massive halos are still within the
range of the simulation, this may be due to the neural
network does not learn very well from extreme values [37].
Nevertheless, the prediction of both algorithms fits in the

½1012M⊙; 1013M⊙� halo mass range. This result may seem
contradictory, because it is known that in order to have a
reliable result in the performance of an algorithm it is
required to have a big amount of data, however, the
performance of both algorithms showed to be good in
the higher bound mass values. The Multilayer Perceptron
and the Gaussian process were trained in the middle range
values and their predictions fit the results of both theoretical
and simulated data.

VI. FINAL DISCUSSION AND FUTURE WORK

Wewere able to improve the results found in Ref. [11] by
implementing more classification algorithms to an enlarged
data selected from a N-body cosmological simulation, our
emphasis was to show a selected number of ML classifiers
and see how well the performance showed on unseen
data. As it turned out, some machine learning methods
outperformed, like random forest and neural networks,
since they rely more on iterative processes over numerical
data to train and test their predictions, whereas categorical
algorithms do not fit our binary classification purposes. We
can conclude that our dataset, consisting of feature selec-
tion of the initial conditions of the dark matter density
field together with the final halo formation, has enough

FIG. 6. Halo mass function reconstruction with the ANN (green line), Gaussian processes (dark line), compared with both simulation
data (blue line) and HMFCalc with a Press-Schechter profile (red line). As observed, we obtained few data from the simulation, however,
with our implementation, it is possible to obtain more information with the neural network. The NN performs specially well in the
½1012; 1013M⊙� range, whereas in the more extreme values, it tends to extrapolate the result with the simulated data. GPs also perform
well and generate a good model even at extreme values.
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information to provide insight into the algorithms used as
well as the physical properties within the data selected. The
training process was refined up until it gets the best
hyperparameters, and since the number of selected particles
represents a bigger percentage of the total number of
particles within the simulation, we observed an improve-
ment in performance compared to our previous results.
On the other hand, we have achieved significant findings

through our employment of ANNs and Gaussian processes
for model-independent reconstructions. Our approach
presents an alternative perspective on the formation of
halo number density in cosmological simulations, utilizing
a relatively small dataset. Remarkably, our results exhibit
exceptional accuracy within the halo mass range of
½1012M⊙; 1013M⊙� halo mass range, obviating the necessity
for a large volume of training data. Both methods demon-
strate excellent agreement with the Λ Cold Dark Matter
simulation, suggesting their efficacy as computational

models for the halo mass function. Furthermore, these
models enable rapid interpolations based on sparse data
points, eliminating the need for additional simulations.
We are encouraged to continue this work with advanced

deep learning techniques using image information from
N-body simulations in the near future to enrich our
classification and regression applications.
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