Citas bibliográficas

SCF–CI Calculations on HCN Excited States  Vázquez G.J., Gouyet J.F., Chem. Phys. Lett., 57, 385 (1978)

  1. Perić M., Peyerimhoff S.D., Buenker R.J., Ab Initio Calculation of the Vibrational Structure in the Electronic Spectra of HCN and DCN between 1700 and 2000 Å, Can. J. of Chem., 20, 55 (1977)
  2. Child M.S., Fluendy M.A., Sutton D., Jackson W.M., General G., Donav R.J., Addison M.C., Butler J.E., Gorry P.A., Faraday Discuss., D(1979), 343 (1979)
  3. Lee L.C., CN(A$^2$${\Pi}$${\rightarrow}$X$^2$${\Sigma}^+$) and CN(B$^2$${\Sigma}^+$${\rightarrow}$X$^2$${\Sigma}^+$) Yields from HCN Photodissociation, J. Chem. Phys., 72, 6414 (1980)
  4. Hirst D.M., Dynamics of the Excited State, John Wiley & sons, 1980
  5. Nagata T., Kondow T., Ozaki Y., Kuchitsu K., Absorption Spectra of Hydrogen Cyanide and Deuterium Cyanide in the 130–180 nm Range, Chem. Phys., 57, 45 (1981)
  6. Nagata T., Kondow T., Kuchitsu K., Polarization of CN (B2$\Sigma$+$\rightarrow$X2$\Sigma$+) Emission Produced in the Photodissociation of HCN and DCN at 121.6 nm, Chem. Phys. Lett., 81, 391 (1981)
  7. Devonshi R., Bk N◦ 22457, R 11, 1 (1981)
  8. Chuljian D.T., Simons J., Photofragment Spectrum of C–State HCN. Theoretical Interpretation, J. Am. Chem. Soc., 104, 646 (1982)
  9. Davidson E.R., Mc. Murchie L.E., Ab–initio Calculations of Excited State Potential Energy Surfaces of Polyatomic Molecules, Excited State, 5, 1 (1982)
  10. Heather R.W., Light J.C., Photodissociation of Triatomic Molecules. Rotational Scattering Effects, J. Chem. Phys., 78, 5513 (1983)
  11. Jain, Ashok, Norcross D.W., Ab initio Calculations of Low–energy Electron Scattering by HCN Molecules: Dependence on Internuclear Distance in Linear Geometry, J. Chem. Phys., 84?, 739 (1986)
  12. Perić M., Dohman H., Peyerimhoff S.D., Buenker R.J., Potential Surfaces for Valence–type Singlet Electronic States, Z. Phys. D. 5, 65 (1987)
  13. Chattopadhyay S., Plummer P.L.M., Ab–initio Studies on the Dimer of Sulfur Dioxide and Hydrogen Cyanide, J. Chem. Phys., 93, 4187 (1990)
  14. Marudarajan V., Scheiner S., Deprotonation Energy of Ground and Excited States of HCN, Chem. Phys. Lett., 186, 356 (1991)
  15. Ashfold M.N., Lambert I.R., Mordaunt D.H., Morley G.P., Western C.M., Translational Spectroscopy of H atom Photofragments, Optical Methods for Time–and-state–resolved Chemistry, Western School of Chemistry, University of Bristol, Bristol BS8 ITS, (1992)
  16. Morley G.P., Lambert I.R., Ashfold M.N.R., Rosser K.N., Western C.M., Dissociation Dynamics of HCN (DCN) Following Photoexcitation at 121.6 nm, J. Chem. Phys., 97, 3157 (1992)
  17. Goudhil K., Brenot J.C., Durup–Ferguson M., Fayeton J.A., Dynamical Study of Competing Reactions in the CN–H2 Collisional System by a Multicoincident Detection, Chem. Phys., 179, 573 (1994)
  18. Wang J.H., Hsu Y.T., Liu K.P., Photodissociation Dynamics of C2H2, C2D2, and C2HD at 121.6 nm., J. Phys. Chem., 101, 6593 (1997)
  19. Xu D.G., Xie D.Q., Guo H., A New Ab Initio Potential Energy Surface of HCN(11A ’’) and the Predissociative Resonances of HCN and DCN, Chem. Phys. Lett., 345, 517 (2001)
  20. Xu D.G., Xie D.Q., Guo H., Theoretical Study of Predissociation Dynamics of HCN/DCN in their First Absorption Bands, J. Chem. Phys., 116, 10626 (2002)
  21. Xu D.G., Xie D.Q., Guo H., Predissociation of HCN/DCN in Two Lowest–lying Singlet Excited States: Effect of Fermi Resonances on Spectra and Dynamics, J. Chem. Phys. A, 106, 10174 (2002)
  22. Muchová E., Spirko V., Hobza P., Nachtigallová D., Theoretical Study of Photoacidity of HCN: the Effect of Complexation with Water, Phys. Chem. Chem. Phys., 8 (42), 4866 (2006)

SCF–CI Calculations on HCN: H–CN Dissociation Curves Vázquez G.J., Gouyet J.F., Chem. Phys. Lett., 65, 515 (1979)

  1. Hirst D.M., Dynamics of the Excited State, John Wiley & sons, 1980
  2. Lee L.C., CN(A$^2\Pi$–X$^2\Sigma^+$) and CN(B$^2\Sigma^+$–X$^2\Sigma^+$) Yields from HCN Photodissociation, J. Chem. Phys., 72, 6414 (1980)
  3. Takatsuka K., Gordon M.S., Expansion Approach to Photodissociation Dynamics. Effects of Anharmonicity, Chem. Phys. Lett., 78, 328 (1981)
  4. Nagata T., Kondow T., Kuchitsu K., Polarization of CN(B$^2\Sigma^+$–X$^2\Sigma^+$) Emission produced in the Photodissociation of HCN and DCN at 121.6 nm, Chem. Phys. Lett., 81, 391 (1981)
  5. Nagata T., Kondow T., Ozaki Y., Kuchitsu K., Absorption Spectra of Hydrogen
    Cyanide and Deuterium Cyanide in the 130–180 nm Range, Chem. Phys., 57, 45 (1981)
  6. Bigot B., et al., J. Org. Chem., 46, 2872 (1981)
  7. Chuljian D.T., Simons J., Photofragment Spectrum of C–state HCN. Theoretical Interpretation, J. Am. Chem. Soc., 104, 646 (1982)
  8. Heather R.W., Light J.C., Photodissociation of Triatomic Molecules. Rotational
    Scattering Effects, J. Chem. Phys., 78, 5513 (1983)
  9. Mitrenin Y.V., et al., Theor. Eksp. K.N., 19, 720 (1983)
  10. Home T.A., Hutchinson J.S., Vibrational Energy Flow into a Reactive Coordinate: a Theoretical Prototype for a Chemical System, J. Chem. Phys., 83, 2860 (1985)
  11. Jain A., Norcross D.W., Ab–initio Calculations of Low Energy Electron–scattering by HCN Molecules. Dependence on Internuclear Distance in Linear Geometry, J. Chem. Phys., 84, 739 (1986)
  12. Perić M., Dohmann H., Peyerimhoff S.D., Buenker R.J., Potential Surfaces for Valence–type Singlet Electronic States of the HCN Molecule, Z. Phys. D., 5, 65 (1987)
  13. Dachsel H., Quapp W., An Analytical Computation of Christoffel Symbols for
    Reaction Coordinate and Trajectory Treatments under Internal Coordinates, J. Math. Chem., 6, 77 (1991)
  14. Morley G.P., Lambert I.R., Ashfold M.N.R., Rosser K.N., Western C.M., Dissociation Dynamics of HCN (DCN) following Photoexcitation at 121.6 nm, J. Chem. Phys., 97, 3157 (1992)
  15. Rayez M.T., Halvick P., Rayez J.C., Millie P., Levy B., Ab–initio Study of the
    Potential Energy Surfaces for the Reaction ..., Chem. Phys., 188, 161 (1994)
  16. Wang J.H., Hsu Y.T., Liu K.P., Photodissociation Dynamics of C2H2, C2D2, and
    C2HD at 121.6 nm., J. Phys. Chem. A, 101, 6593 (1997)
  17. Xu D.G., Xie D.Q., Guo H., A New Ab Initio Potential Energy Surface of
    HCN(11A ”) and the Predissociative Resonances of HCN and DCN, Chem. Phys. Lett., 345, 517 (2001)
  18. Xu D.G., Xie D.Q., Guo H., Predissociation of HCN/DCN in Two Lowest–lying
    Singlet Excited States: Effect of Fermi Resonances on Spectra and Dynamics, J. Chem. Phys. A, 106, 10174 (2002)
  19. Xu D.G., Xie D.Q., Guo H., Theoretical Study of Predissociation Dynamics of
    HCN/DCN in their First Absorption Bands, J. Chem. Phys., 116, 10626 (2002)
  20. Muchova E., Spirko V., Hobza P., Nachtigallová D., Theoretical Study of Photoacidity of HCN: the Effect of Complexation with Water, Phys. Chem. Chem. Phys., 8 (42), 4866 (2006)

SCF–CI Potential Energy Surfaces for the HCN–HNC Isomerization Reaction Vázquez G.J., Gouyet J.F., Chem. Phys. Lett., 77, 233 (1981)

  1. Szanto P.G., Anderson T.G., Saykally R.J., Piltch N.D., Dixon T.A.,Woods R.C., A Microwave Subtitution Structure for Protonated Nitrogen N2H+, J. Chem. Phys., 75, 4261 (1981)
  2. Chuljian D.T., Simons J., Photofragment Spectrum of C–state HCN. Theoretical Interpretation, J. Am. Chem. Soc., 104, 646 (1982)
  3. Winter M.J., Jones W.J., Vibration–rotation Infrared–Emission Spectrum of Hydrogen Isocyanide, HNC, at 2.75 μm, J. Chem. Soc. Faraday Trans II, 78, 585 (1982)
  4. Mitrenin Y.V., Redistribution of Electron Density in HBO$\rightarrow$BOH Isomerization. Theoretical and Experimental Chemistry, 19, 665 (1984)
  5. Bertran J., Lledos A., Water Chain Intervention in HNC$\rightarrow$HCN Tautomeric Interconversion. An Ab initio Study, J. Mol. Struc. (Theochem), 24, 211 (1985)
  6. Eggers M.D., Livant P.D., McKee M.L. Ab–initio Study of Sulfuranes, Teochem., 55, 69 (1989)
  7. Quapp W., Internal Vibrational–energy Redistribution and Vibrationally Induced Non–linearity of HCN, J. Mol. Struct., 218, 261 (1990)
  8. Talaty E.R., Huang Y., Zandler M.E., Are there any 10–valence–electron HXY Species Bent in the Ground–State Ab–initio Optimized Energies and Shapes of HBO, HBS, HAlO, HAlS, HCS+ and their Isomers?, J. Am. Chem. Soc., 113, 779 (1991)
  9. Goudjil K., Brenot J.C., Durup–Ferguson M., Fayeton J.A., Dynamical Study of Competing Reactions in the CN–H2 Collisional System by a Multicoincident Detection, Chem. Phys., 179, 573 (1994)
  10. Varandas A.J.C., Rodriguez S.P.J., Double Many–Body Expansion Potential– energy Surface for Ground–State HCN Based on Realistic Long–range Forces and Accurate Ab–initio Calculations, J. Chem. Phys., 106, 9647 (1997)
  11. Varandas A.J.C., Voronin A.I., Jimeno P., Conical Intersections between the Two Lowest 1A′, Potential–energy Surfaces of HCN, and the Role of 3–body Effects, J. Chem. Phys., 107, 10014 (1997)
  12. Dagaut P., Glarborg P. Alzueta M.U., The Oxidation of Hydrogen Cyanide and Related Chemistry, Progress in Energy and Combustion Science, 34, 1 (2008)
  13. Gutiérrez–Oliva S., Díaz S., Toro–Labbé A., Lane P., Murray J., Politzer P., Revisiting the Seemingly Straightforward Hydrogen Cyanide/Hydrogen Isocyanide Isomerisation, Mol. Phys., 112, 349 (2014)

 

On the Anomalous Production of CN(X$^2\Sigma^+$, v<4) in Photodissociation of RCN Molecules Vázquez G.J., Il Nuovo Cimento, 63 B, 446 (1981)

  1. Wodtke A.M., Lee Y.T.C., Photodissociation of Acetylene at 193.3 nm, J.Phys. Chem. 89, 4744 (1985)
  2. Osamura Y., Mitsuhashi F., Iwata S.A., Theoretical Study of the Photodissociation of Acetylene in its Lowest Excited Singlet State, Chem. Phys. Lett., 164, 205 (1989)
  3. Cool T.A., Goodwin P.M., Otis C.E., H/D Isotope Effect in the Predissociation of C2HD, J. Chem. Phys., 93, 3714 (1990)
  4. Zhang J., Riehn C.W., Dulligan M., Wittig C., Propensities toward C2H((Ã) (2)$\Pi$) in Acetylene Photodissociation, J. Chem. Phys., 103, 6815 (1995)
  5. Varandas A.J.C., Voronin A.I., Jimeno P., Conical Intersections between the Two Lowest 1A′, Potential–energy Surfaces of HCN, and the Role of 3–body Effects, J. Chem. Phys., 107, 10014 (1997)
  6. Xu D.G., Xie D.Q., Guo H., A New Ab Initio Potential Energy Surface of HCN(11A ”) and the Predissociative Resonances of HCN and DCN, Chem. Phys. Lett., 345, 517 (2001)
  7. Sato H., Photodissociation of Simple Molecules in the Gas Phase, Chem. Rev. 101, 2687 (2001)

On Two-electron Phenomena in Molecular Photoexcitation and Photoionization. An Outlook on the HO2, HO+2 and HO2 Species Vázquez G.J., Notas de Física, UNAM, 10, 201 (1987).

MRD–CI Study of the Photodissociation of HO2 into OH (X2$\Pi$) + O(3P, 1D)
Vázquez G.J., Peyerimhoff S.D., Buenker R.J., Chem. Phys., 99, 239 (1985)

  1. Sears T.J., Takacs G.A., Howard C.J., Rotational Spectroscopy of DO2 by FIR LMR and Millimeter–wave Absorption, J. Mol. Spect., 118, 103 (1986)
  2. Buenker R.J., Photodissociation and other Reactions, Report Sonderforschungsbereich 42 (1983–85), 1986
  3. Troe J., Potential and Rate Parameters for Reactions Attractive Potential Energy Surface. Application to the Reaction HO + O$\leftrightarrow$HO2$\rightarrow$H + O2,  J. Phys. Chem., 90, 3485 (1986)
  4. Buenker R.J., Ab–initio MRD–CI Calculations for the Decay of Molecular Excited States via Radiative and Dissociation Mechanisms, Theochem, 1, 34 (1987)
  5. Lemon W.J., Hase W.L., A Potential Energy Function for the Hydroperoxyl Radical, J. Phys. Chem. 91, 1596 (1987)
  6. Morgan M.S., van Trieste P.F., Garlick S.M., Mahon M.J., Smith A.L., Ultraviolet Molar Absorptivities of Aqueous Hydrogen Peroxide and Hydroperoxyl Ion, Analytica Chimica Acta, 215, 325 (1988)
  7. Wolfrum J., Laser Spectroscopy for Studying Chemical Process, Appl. Phys. B, 46, 221 (1988)
  8. Wolfrum J., Laser Stimulation and Observation of Simple Gas Phase Radical Reactions, Laser Chem., 9, 171 (1988)
  9. Varandas A.J.C., Double Many–body Expansion of Molecular Potential Energy Functions and the Role of Long–range Forces in the Rates of Chemical Reactions, J. Mol. Struc. Theochem, 43, 59 (1988)
  10. Davidsson J., Nyman G., Extended Langevin Model for Rate-constant Calculations of Exothermic Atom Diatom Reactions. Application to O+OH, Chem. Phys., 125, 171 (1988)
  11. Varandas A.J.C., Brandao J., Quintales L.A.M., A Realistic HO2(X2A′′) Potential-energy Surface from the Double Many-body Expansion Method, J. Phys. Chem., 92 3732, (1988)
  12. Schurman B.L., Knowles D.B., Hirsh G., Buenker R.J., An Ab–initio CI Study of the Lowest Electronic States of the HPF Molecule, Chem. Phys. Lett., 145, 529 (1988)
  13. Davidsson J., Nyman G., Extended Langevin Model for Rate Constant Calculations of Exotermic Atom–Diatom Reactions, Chem. Phys., 125, 171 (1988)
  14. Varandas A.J.C., Brandao J., Quintales L.A.M., A Realistic HO2(X2A'') Potential Energy Surface from the Double Many-body Expansion Method, J. Chem. Phys., 92, 3732 (1988)
  15. Wolfrum J., How to attack Complex Gas–phase Combustion Systems, Comb. and Flame, 78,13 (1989)
  16. Troe J., Present State of Predicting Limiting High–pressure Rate Coefficients for Pyrolysis Reactions, Comb. and Flame, 78, 59 (1989)
  17. Troe J., Toward a Quantitative Understanding of Elementary Combustion Reactions, In Symposium (International) on Combustion, 22, 843 (1989)
  18. Pastrana M.R., Quintales L.A.M., Brandao J., and Varandas A.J.C., Recalibration of Single–valued Double Many–body Expansion Potential Energy Surface for Ground–state HO2 and Dynamics Calculations for the O + OH $\rightarrow$ O2 Reaction, J. Phys. Chem., 94, 8073 (1990)
  19. Bulatov V.P., Vereshchuk S.I., Dzegilenko F.N., Sarkisov O.M., Photooxidative Conversion of H2S in the Presence of O2 and NO2, Khimicheskaya Fizica, 9, 1214 (1990)
  20. Rai S.N., Buenker R.J., Hirsch G., An Ab–Initio CI Study of the Geometry and Spectrum of the HSe2 Radical, Chem. Phys. Lett., 170, 39 (1990)
  21. Davidsson J., Nyman G., A Low–energy Quasi–classical Trajectory Study of O(3P) + OH(X2$\Pi$) $\rightarrow$ O2(3$\Sigma$g ) + H(2S). 1. Cross Sections and Reaction Dynamics, J. Chem. Phys., 92, 2407 (1990)
  22. Adhikari N., Hamilton I., Vibrational Splittings for Hydrogen–atom Exchange in HO2. The Effect of O–O Displacement and Vibration, J. Phys. Chem., 95, 6470 (1991)
  23. Lightfoot P.D., Cox R.A., Crowley J.N., Destriau M., Hayman G.D., Moortgat G.K., Zabel F., Organic Peroxy Radicals: Kinetics, Spectroscopy and Tropospheric Chemistry, Atmospheric Environment, 26, 1805 (1992)
  24. Chapman D., Bowman J.M., Gazdy B., Time Dependence of the OH Overtone Relaxation in the Hydroperoxyl Radical, J. Chem. Phys., 96, 1919 (1992)
  25. Varandas A.J.C., Excitation Function for H + O2 Reaction: A Study of Zero–point Energy Effects and Rotational Distributions in Trajectory Calculations, J. Chem. Phys., 99, 1076 (1993)
  26. Sinha A., Coleman J., Barnes R., Photodissociation Dynamics of HO2 at 220 nm. Determination of the O(1D)–O(3P) Branching Ratio, J. Chem. Phys., 98, 12462 (1994)
  27. Joens J.A., A Model for the Temperature Dependence of the Near UV Absorption Spectra of Organic Peroxy Radicals, J. Phys. Chem., 98, 1394 (1994)
  28. Troe J., From Molecular Processes to Global Mechanisms of Chemical Transformations, Chem. Phys., 98, 1399 (1994)
  29. Kendrick B., Pack R.T., Potential Energy Surfaces for the Low–lying ... States of HO2. Use of Diatomics In Molecules Model to Fit Ab–initio Data, J. Chem. Phys., 102, 1994 (1995)
  30. Hynes A.J., Richter R.C., Nien C.J., Laser Photofragmentation Laser–induced Fluorescence Detection of the Hydroperoxyl Radical. Photofragment Energy Distributions, Detection Sensitivity and Kinetics, Chem. Phys. Lett, 258, 633 (1996)
  31. Lock M., Barnes R., Sinha A., Vector Correlation Studies of HO2 Photodissociation at 220 nm, J. Chem. Phys., 104, 1350 (1996)
  32. Fink E.H., Ramsay D.A., High–Resolution Study of the Ã2A′ − X2A′′ Transition of HO2. Analysis of the 000–000 Band, J. Molecular Spectroscopy, 185, 304 (1997)
  33. Maric D., Crowley J.N., Burrows J.P., Application of a Gaussian Distribution Function to Describe Molecular UV–Visible Absorption Continua. 2. The UV Spectra of ρ(2) Center–dot Radicals, J. Phys. Chem., 101, 2561 (1997)
  34. Mar P.L.,Werpetinski K.S., Cook M., A Study of the Reaction H + O2 $\rightarrow$ HO2 $\rightarrow$ O + OH at Four Levels of Density–Functional Theory, Chem. Phys Letters, 287, 195 (1998)
  35. Harding L.B., Maergoiz A.I., Troe J., et al., Statistical Rate Theory for the HO+O Double Left Right Arrow HO2 Double Left Right Arrow H+O-2 Reaction System: SACM/CT Calculations Between 0 and 5000 K, J. Chem. Phys. 113, 11019 (2000)
  36. Tyndall G.S., Cox R.A., Granier C, et al., Atmospheric Chemistry of Small Organic Peroxy Radicals, J. Geophys. Res., 106, 12157 (2001)
  37. Rai–Constapel V., Liebermann H.P., Buenker R.J., Rai S.N., A Theoretical Study of TeOH in its Electronic Ground State, J. Mol. Spectrosc., 244, 102 (2007)
  38. Kulatilaka W.D., Frank J.H., Patterson B.D., Settersten T.B., Analysis of 205- nm Photolytic Production of Atomic Hydrogen in Methane Flames, App. Phys. B., 97, 227 (2009)

The Electronic Structure of HO+2 . An MRD–CI Study  Vázquez G.J., Buenker R.J., Peyerimhoff S.D., Mol. Phys., 59, 291 (1986)

  1. Ohno K., Quantum Chemistry Literature Data Base 6. Bibliography of Ab initio Calculations for 1986, Theochem, 39, 1–314 (1987)
  2. Grimbert D., Lassier–Govers B., Sidis V., Model Potential and Related Diabatic State for the H+ + O2 Collisional System, Chem. Phys., 124, 187 (1988)
  3. Schneider F., Zulicke L., Digiacomo F., Gianturco F.A., Paidarova I., Polak R., DIM Model Calculations for the (O2H)+ Interaction Potential, Chem. Phys., 128, 311 (1988)
  4. Quelch G.E., Xie Y.M., Yates B.F., Yamaguchi Y., Schaefer H. F., The HO+2 Ion Comparison of Theoretical Methods for the Prediction of Anharmonic, Mol. Phys., 68, 1095 (1989)
  5. Diaz B.R., Wahnon P., Sidis V., Comparison of Approximate Techniques for the Determination of Potential Energy Surfaces of Ion–molecule Charge Transfer Systems, J. Chem. Phys., 97, 6579 (1992)
  6. Niedner–Schatteburg G., Toennis P., Proton Energy–loss Spectroscopy as a State–to–state Probe of Molecular Dynamics, Ad. Chem. Phys., 82, 553 (1992)
  7. Nizkorodov S.A., Roth D., Olkhov R.V., Maier J.P., Dpofer O., Infrared Predissociation Spectra of He−HO2+ and Ne−HO2+. Prediction of the ν1 Frecuency of HO2+ , Chem. Phys. Letters, 278, 26 (1997)
  8. Litorja M., Ruscic B., A Photoionization Study of the Hydroperoxyl Radical, and HO2, and Hydrogen Peroxide H2O2, J. Electron Spectrosc. Relat. Phenom., 97, 131 (1998)
  9. Robbe J.M., Monnerville M., Chambaud G., et al. Theoretical Spectroscopic Data of the HO+2 Ion, Chem. Phys., 252, 9 (2000)
  10. Saieswari A., Kumar S., Non-adiabatic Collisions in H++O2 System: an Ab Initio Study, J. Chem. Sci., 119, 423 (2007)
  11. Amaran S., Kumar S., Ab Initio Potential Energy Surfaces and Nonadiabatic Collision Dynamics in H++O2 System, J. Chem. Phys., 128, (2008)
  12. F. George D.X., Kumar S. Ab Initio Ground and the First Excited Adiabatic and Quasidiabatic Potential Energy Surfaces of H+ + CO System, Chem. Phys., 373, 211 (2010)
  13. F. George D. Xavier. Nonadiabatic Dynamics on the Two Coupled Electronic PESs: the H+ + O2 System, J. Phys. Chem. A, 38, 114 (2010)
  14. Xavier F.G.D., Kumar S., Ab Initio Adiabatic and Quasidiabatic Potential Energy Surfaces of Lowest Four Electronic States of the H+ + O2 System, J. Chem. Phys., 16, 133 (2010)
  15. Xavier F.G.D., Kumar S., Quantum Dynamics of H+ + CO Collisions, Phys. Rev. A, 83, 042709 (2011)

On Two-electron Phenomena in Molecular Photoexcitation and Photoionization. An Outlook on the HO2, HO+2 and HO2 Species Vázquez G.J., Notas de Fısica, UNAM, 10, 201 (1987).

MRD–CI Study of the Electron Affinity of HO2 and the Photodetachment Energy of
HO2
Vázquez G.J., Buenker R.J., Peyerimhoff S.D., Chem. Phys., 129, 405 (1989).

  1. González R., Merchán M., Fülscher M.P., Roos B.O. An Ab–initio Study of the Electron Affinity of O2, Chem. Phys. Lett., 204, 323 (1993)
  2. Botschwina P., Seeger S., Mladenović M., Schulz B., Horn M., Schmatz S., Flugge J., Oswald R., Quantum Chemical Investigations of Small Molecular Anions, Int. Rev. Phys. Chem., 14, 169 (1995)
  3. Horn M., Seeger S., Oswald R., Botschwina P., Calculated Vibrational Structure of the First Band of the Photoelectron Spectrum of HO-2 and the Electron Affinity of HO2, Zeitschrift F. Phys. D., 36, 293 (1996)
  4. Chan W.T., Hamilton I.P., The Hydroperoxyl Anion HO2. Ab–initio Potential–energy Surface and Vibrational Splittings for Proton–transfer, J. Chem. Phys., 105, 5907 (1996)
  5. Root D.E., Mahroof-Tahir M., Karlin K.D., et al, Effect of Protonation on Peroxo–copper Bonding: Spectroscopic and Electronic Structure Study of Cu–2((UN–O)(OOH)(2+), Inorg. Chem. 37, 4838 (1998)
  6. Wada A., Honda Y., Yamaguchi S., et al., Steric and Hydrogen–bonding Effects on the Stability of Copper Complexes with Small Molecules, Inorg. Chem., 43, 5725 (2004)

MRD–CI Study of the Photoelectron Spectrum of HO2- Vázquez G.J., Buenker R.J., Peyerimhoff S.D., J. Chem. Phys., 90, 7229 (1989).

  1. Bates D.R., Negative Ions: Structure and Spectra. Advances in Atomic, Molecular and Optical Physics, 27, 1–80 (1990)
  2. Metz R.B., Cyr D.R., Neumark D.M., Study of the 2B1 and 2A2 States of CH2NO2 via Ultraviolet Photoelectron Spectroscopy of the CH2NO2 Anion, J. Phys. Chem., 95, 2900 (1991)
  3. Horn M., Seeger S., Oswald R., Botschwina P., Calculated Vibrational Structure of the First Band of The Photoelectron Spectrum of HO2 and the Electron Affinity of HO2, Zeitschrift F. Phys. D., 36, 293 (1996)
  4. Chan W.T., Hamilton I.P., The Hydroperoxyl Anion HO2. Ab–initio Potential–Energy Surface and Vibrational Splittings for Proton–transfer, J. Chem. Phys. 105, 5907 (1996)
  5. Keçeli M., Shiozaki T., Yagi K., Hirata, S., Anharmonic Vibrational Frequencies and Vibrationally-averaged Structures of Key Species in Hydrocarbon Combustion: HCO+, HCO, HNO, HOO, HOO, CH+3 , and CH3, Mol. Phys., 107, 1283 (2009)
  6. Keçeli M., Vibrational Many–body Methods for Molecules and Extended Systems, (PhD. Thesis, University of Illinois, Urbana, Illinois, 2012)

Temperature Dependence of the Quantum Yields for the Photolysis of NO2 Near
the Dissociation Limit
Roehl C.M., Orlando J.J., Tyndall G.S., Shetter R.E., Vázquez G.J., Cantrell C.A., Calvert J.G, J. Phys. Chem., 98, 7837 (1994)

  1. Volz-Thomas A., Lerner A., Pätz H.W., Schultz M., McKenna D.S., Schmitt R., Röth E.P., Airborne Measurements of the Photolysis Frequency of NO2, J. Geophys. Res., 101, 18613 (1996)
  2. Crowley J.N., Carl S.A., OH Formation in the Photoexcitation of NO2 Beyond the Dissociation Threshold in the Presence of Water–vapor, J. Phys. Chem., 101, 4178 (1997)
  3. Kraus A., Hofzumahaus A., Field Measurements of Atmospheric Photolysis Frequencies for O3, NO2, HCHO, CH3CHO, H2O2, and HONO by UV Spectroradiometry, J. Atmos. Chem., 31, 161 (1998)
  4. Kraus A., Burning D., Hofzumahaus A., Rohrer F., NO: $\rightarrow$ NO + O (*P) Photolysis Frequencies Determined from Spectro Radio Metric Measurements of Solar Actinic UV Radiation: Comparison with Chemical Actinometer Measurements, In Proceedings of EUROTRAC Symposium’98: Garmisch–Partenkirchen, Germany, 23rd-27th March 1998: Transport and Chemical Transformation in the Troposphere (p. 74), WIT Press (1998)
  5. Bezel I., Ionov P., Wittig C., Photoinitiated Unimolecular Decomposition of NO2: Rotational Dependence of the Dissociation Rate, J. Chem. Phys. 111, 9267 (1999)
  6. Hahn J., Luther K., Troe J., Experimental and Theoretical Study of the Temperature and Pressure Dependences of the Recombination Reactions O+NO2(+M) $\rightarrow$ NO3(+M) and NO2+NO3(+M) $\rightarrow$ N2O5(+M), Phys. Chem. Chem. Phys. 2, 5098 (2000)
  7. Troe J., Are Primary Quantum Yields of NO2 Photolysis at Lambda $\leq$ nm Smaller than Unity?, Z. Phys. Chem. 214, 573 (2000)
  8. Wiegand A.N., Bofinger N.D., Review of Empirical Methods for the Calculation of the Diurnal NO2 Photolysis Rate Coefficient, Atmos. Environ. 34, 99 (2000)
  9. Makarov V.I., Khmelinskii I.V., Kochubei S.A., Kochubei S.A., Ishchenko V.N., Photolysis of NO2 Excited Below the Dissociative Limit, J. Chem. Phys. 113, 200 (2000)
  10. Zhang H., Spectroscopic Studies of N2O and HNO4: a Window into the Global Biogeochemistry of Nitrogen, (PhD Thesis, California Institute of Technology, Pasadena, 2000)
  11. Abel B., Kirmse B., Troe J., et al., Specific Rate Constants k(E, J) for the Dissociation of NO2. I. Time-resolved Study of Rotational Dependencies, J. Chem. Phys., 115, 6522 (2001)
  12. Plenge J., Flesch R., Schurmann M.C., et al., Photofragmentation of Nitryl Chloride in the Ultraviolet Regime and Vacuum Ultraviolet Regime, J. Phys. Chem. A, 105, 4844 (2001)
  13. Meyer A., Schroeder J., Troe J., et al. Reply to Comment by E. Pollak on ”Photoisomerization of Trans-stilbene in Moderately Compressed Gases: Pressuredependent Effective Barriers” (J. Phys. Chem. A, 1999, 103, 10528-10529), J. Phys. Chem. A, 105, 4381 (2001)
  14. Bosch H., Camy-Peyret C., Chipperfield M., et al., Comparison of Measured and Modeled Stratospheric UV/visible Actinic Fluxes at Large Solar Zenith Angles, Geophys. Res. Lett., 28, 1179 (2001)
  15. Bösch H., Studies of the Stratospheric Nitrogen and Iodine Chemistry by Balloon–borne DOAS Measurements and Model Calculations, (PhD. Thesis, Ruperto Carola University of Heidelberg, Germany, 2002)
  16. Hölscher D., Zellner R., LIF Study of the Reactions of the IO Radical with NO and NO2 Over an Extended Range of Temperature and Pressure, Phys. Chem. Chem. Phys. 4: (10) 1839 (2002)
  17. Roehl C.M., Nizkorodov S.A., Zhang H., et al., Photodissociation of Peroxynitric Acid in the Near-IR, J. Phys. Chem. A, 106, 3766 (2002)
  18. R. E. Shetter, W. Junkermann, W. H. Swartz, G. J. Frost, J. H. Crawford, B. L. Lefer, J. D. Barrick, S. R. Hall, A. Hofzumahaus, A. Bais, J. G. Calvert, C. A. Cantrell, S. Madronich, M. Muller, A. Kraus, P. S. Monks, G. D. Edwards, R. McKenzie, P. Johnston, R. Schmitt, E. Griffioen, M. Krol, A. Kylling, R. R. Dickerson, S. A. Lloyd, T. Martin, B. Gardiner, B. Mayer, G. Pfister, E. P. Röth, P. Koepke, A. Ruggaber, H. Schwander, and M. van Weele, Photolysis Frequency of NO2: Measurement and Modeling during the International Photolysis Frequency Measurement and Modeling Intercomparison (IPMMI), J. of Geophys. Res., 108, (2003)
  19. Palazoglu A., Maksumov A., Beaver S., Identification of Ozone Patterns at CCOS Research Sites, Progress Report Submitted to California Air Resources Board, University of California, Davis, (May 7, 2003)
  20. Cantrell C.A., Calvert J.G., Bais A., Shetter R.E., Lefer B.L., Edwards G.D., Overview and Conclusions of the International Photolysis Frequency Measurement and Modelling Intercomparison (IPMMI) Study, J. Geophys. Res., 108, Art. No. 8542 (2003)
  21. Atkinson R., Baulch D.L., Cox R.A., et al., Evaluated Kinetic and Photochemical Data for Atmospheric Chemistry: Volume I–Gas Phase Reactions of Ox, HOx, NOx and SOx Species, Atmos. Chem. Phys., 4, 1461 (2004)
  22. Nizkorodov S.A., Crounse J.D., Fry J.L., Roehl C.M., Wennberg P.O., Near–IR Photodissociation of Peroxy Acetyl Nitrate, Atmos. Chem. Phys. Disc., 02, 1269 (2004)
  23. Nizkorodov S.A., Crounse J.D., Fry J.L., et al. Near–IR Photodissociation of Peroxy Acetyl Nitrate, Atmos. Chem. Phys., 05, 385 (2005)
  24. Li S., Matthews J., Sinha A., Atmospheric Hydroxyl Radical Production from Electronically Excited NO2 and H2O, Science, 319, 1657 (2008)
  25. Zhang Z., Zaidi S., Brennan C., Dogariu A., Shneider M., Miles R., Radar REMPI Detection of NO2 by NO Photo–Fragments, 47th AIAA Aerospace Sciences Meeting (AMT-3: Spectroscopic and Scattering Techniques I), Orlando, Florida, 2009
  26. Kostadinov I., Ravegnani F., Petritoli A., Bortoli D., Masieri S., Premuda M., Giovanelli G., Airborne UV/Vis Actinic Measurements in the Lower Antarctic Stratosphere, In SPIE Europe Remote Sensing, International Society for Optics and Photonics, 74780P (2009)
  27. Bruns E.A., Perraud V., Zelenyuk A., Ezell M.J., Johnson S.N., Yu Y., Imre D., Finlayson-Pitts B.J., Alexander L., Comparison of FTIR and Particle Mass Spectrometry for the Measurement of Particulate Organic Nitrates, Environ. Sci. Technol., 44, 1056 (2010)
  28. Fang Q., Han J., Jiang J., Chen, X., FangW., The Conical Intersection Dominates the Generation of Tropospheric Hydroxyl Radicals from NO2 and H2O, J. Phys. Chem. A, 13, 4601 (2010)
  29. Saarela J., Sorvajärvi T., Laurila T., Toivonen J., Phase–sensitive Method for Background–compensated Photoacoustic Detection of NO2 Using High–power LEDs, Optics Express (2011)
  30. Behera S.N., Sharma M., Degradation of SO2, NO2, and NH3, leading to Formation of Secondary Inorganic Aerosols: an Environmental Chamber Study, Atmospheric Environment, 45, 4015 (2011)
  31. Renbaum L.H., Kinetics, Products, and Optical Property Changes During the Heterogeneous Oxidation of Organic Aerosols, (PhD Thesis, University of Georgia, Athens, Georgia, 2011)
  32. N. Wu, X. Chen, Two Photon Dissociation Dynamics of NO2 and NO2 + H2O, J. Phys. Chem. A, 25, 116, 6894 (2012)
  33. Tian G., Moosmüller H., Arnott W.P., Influence of Photolysis on Multispectral Photoacoustic Measurement of Nitrogen Dioxide Concentration, Journal of the Air & Waste Management Association, 63, 1091 (2013)
  34. Wagner T., Kohl C.D., Malag C., Donato N., Latino M., Neri G., Tiemann M., UV Light–enhanced NO2 Sensing by Mesoporous In2O3: Interpretation of Results by a New Sensing Model, Sensors and Actuators B: Chemical, 187, 488 (2013)
  35. Wagner T., Donato N., Tiemann M., New Sensing Model of (Mesoporous) In2O3, In Gas Sensing Fundamentals, C.–D. Kohl, T. Wanger (eds.), Springer Series on Chemical Sensors and Biosensors, Springer–Verlag Heidelberg, (2013)
  36. Cline T.S., Investigation of Water-molecule Complexes and their Catalytic Effect on Important Atmospheric Reactions, Doctoral dissertation, Brigham Young University, (2013)
  37. Finlayson–Pitts B.J., Pitts J.N., Atmospheric Chemistry: Fundamentals and Experimental Techniques, John Wiley & Sons (last edition)
  38. Sorvajärvi T., Toivonen J., Principles and Calibration of Collinear Photofragmentation and Atomic Absorption Spectroscopy, Appl. Phys. B, 115, 533 (2014)
  39. Zheng H., Lei D., Xukun Y., Xiaoli L., Hongpeng H., Lei Z., Weiguang M., Wangbao Y., Suotang J., Ppb-level QEPAS NO2 Sensor by Use of Electrical Modulation Cancellation Method with a High Power Blue LED, Sensors and Actuators B, 208, 173 (2015)

FTIR Remote Sensing of Atmospheric Species: Application to Global Change
and Air Pollution
Vázquez G.J., SPIE, 2365, 438–462 (1995)

  1. Briz S., de Castro A.J., Lopez F., Moderate Resolution Study of the Ground-based Passive Emission of Ozone, Appl. Optics, 39, 1980 (2000)
  2. Sinyavskii I.I., Ivanov Y.S., SosonkinM.G., Monsar O.A., Kollyukh A.G., Ezhevskaya T.B., The Use of IR Sources for Remote Sensing of the Surface Layer of the Atmosphere, Instruments and Experimental Techniques, 51, 612 (2008)

Optical Remote Sensing of Atmospheric Compounds Vázquez G.J., SPIE, 2730, 131–149 (1996)

  1. Fox D.L., Air–Pollution, Analytical Chem., 69, R1 (1997)
  2. Clement R.E.,Yang P.W., Koester C.J., Environmental–analysis, Analytical Chem., 69, R251 (1997)
  3. Lopez Avila V., Hill H.H., Field Analytical–chemistry, Analytical Chem., 69, R289 (1997)
  4. Haiduc I., Katona G., Ozone Determination in Gaseous Floros and Aqueous Medium, Revista de Chimie, 49, 796 (1998)
  5. Ibrahim A., Spectroscopic Study of Channel Spectra Phenomena in the Synchrotron–based FTIR Spectrometer at the Canadian Light Source, University of Lethbridge, Dept. of Physics and Astronomy, (Doctoral dissertation), Lethbridge, Alberta, Canada (2010)
  6. Li Y.F. Wei Y.B., Shang Y., Wang C., Liu T.Y., Fiber Laser Methane Sensor with the Function of Self–diagnose, In Asia Pacific Optical Sensors Conference, International Society for Optics and Photonics, 83511X, (2012)
  7. Li Y.F. Wei Y.B., Shang Y., Wang C., Liu T.Y., Laser Methane Sensor with the Function of Self–Diagnose, In Photonics and Optoelectronics (SOPO), 1, IEEE (2012)
  8. Cierpiszewski R., Kozak W., Metody Określania Stęenia Tlenu w Atmosferze Opakowania, Przemys Spoywczy, 66, 20 (2012)

New Bound Electronic States of NH+ Amero J.M., Vázquez G.J., Int. J. Quantum Chem., 99, 353 (2004)

  1. Wan M., Zhang Y., Song C., Gao T., Spin–orbit Coupling Effects in the Low Lying States of NH+ and NH, J. Phys. B., 41, 215102 (2008)
  2. McKenna J., Sayler A.M., Gaire B., Johnson N.G., Parke E., Cames K.D., Esry B.D., Ben–Itzhak I., Intensity Dependence in the Dissociation Branching Ratio of ND+ using Intense Femtosecond Laser Pulses, Phys. Rev. A., 77, 063422 (2008)
  3. Sayler A.M., Measurements of Ultrashort Intense Laser-induced Fragmentation of Simple Molecular Ions, Doctoral dissertation, Kansas State University, (2008)
  4. Shi D., Zhang J., Yu B., Sun J., Liu Y., Zhu Z., Theoretical Investigations on the NH+(X2$\Pi$) Ion using Coupled–cluster Theory in Combination with the Correlation–consistent Quintuple Basis Set augmented with Diffuse Functions, J. Molec. Struct. Theochem., 896, 116 (2009)
  5. Lecointre J., Jureta J.J., Defrance P ., Electron-impact Dissociation and Ionization of NH+: formation of N+ and N2+, J. Phys. B., 43, 105202 (2010)
  6. Lecointre J., Belic D.S., Cherkani–Hassani S., Defrance P ., Electron Impact Dissociation of ND+: Formation of D+, Eur. Phys. J. D, 63, 441 (2011)
  7. Song J.C., Liu H.L., Zhou Z.J., Huang X.R., Theoretical Study on the Ion-molecule Reaction of NH++ with CH2O, Int. J. Quantum Chem., 112, 1654 (2012)
  8. Garcia G.A., Gans B., Tang X., Ward M., Batut S., Nahon L., Fittschen C.,
    Loison J.C., Threshold Photoelectron Spectroscopy of the Imidogen Radical, J. Electr. Spectrosc. Relat. Phenom., 203, 25 (2015)

Electronic Structure of NH+: an Ab Initio Study Amero J.M., Vázquez G.J., Int. J. of Quantum Chem. 101, 396– (2005)

  1. 1. Kamiya M., Hirata S., Higher–order Equation–of–motion Coupled–cluster Methods for Ionization Processes, J. Chem. Phys., 125, 074111 (2006)
  2. Frankcombe T.J., Nyman G., Statistical Modelling of NH+/ND++H2/HD/D2 Branching Ratios, Phys. Chem. Chem. Phys., 10, 3000 (2008)
  3. McKenna J., Sayler A.M., Gaire B., Johnson N.G., Parke E., Carnes K.D., Esry B.D., Ben–Itzhak I., Intensity Dependence in the Dissociation Branching Ratio of ND+ using Intense Femtosecond Laser Pulses, Phys. Rev. A, 77, 063422 (2008)
  4. Wan M.J., Zhang Y.G., Song C.Q., Gao T., Spin–orbit Coupling Effects in the Low–lying States of NH+ and NH, J. Phys. B., 41, 215102 (2008)
  5. Sayler A.M., Measurements of Ultrashort Intense Laser–induced Fragmentation of Simple Molecular Ions, Doctoral dissertation, Kansas State University, (2008)
  6. Shi D., Zhang J., Yu B., Sun J., Liu Y., Zhu Z., Theoretical Investigations on the NH+(X2$\Pi$) Ion using Coupled–cluster Theory in Combination with the Correlation–consistent Quintuple Basis Set augmented with Diffuse Functions, J. Molec. Struct. Theochem., 896, 116 (2009)
  7. Lecointre J., Jureta J.J., Defrance P ., Electron-impact Dissociation and Ionization of NH+: Formation of N+ and N2+, J. Phys. B., 43, 105202 (2010)
  8. Mount B.J., High Precision Atomic Mass Spectrometry with Applications to Neutrino Physics, Fundamental Constants and Physical Chemistry, PhD. Thesis, Florida State University, (2010) (Electronic Theses, Treatises and Dissertations. Paper 2217.)
  9. Lecointre J., Belic D.S., Cherkani–Hassani S., Defrance P., Electron Impact dissociation of ND+: Formation of D+, Eur. Phys. J. D, 63, 441 (2011)
  10. Zymak I., Hejduk M., Mulin D., Plail R., Glosík J., Gerlich D., Low–temperature Ion Trap Studies of N+(3Pja)+ H2(j) $\rightarrow$ NH+ + H, The Astrophys. J., 768, 86 (2013)
  11. Antoniotti P., Benzi P., Operti L., Rabezzana R., Borocci S., Giordani M., Grandinetti F., Ion Chemistry of Sulfuryl Fluoride: an Experimental and Theoretical Study on Gas–phase Reactions Involving Neutral and Ionized SO2F2, Int. J. Mass Spectrom., 354–355, 46 (2013)
  12. Yang B., Novotný O., Krantz C., Buhr H., Mendes M., Nordhorn C., Geppert W.D., Grieser M., Repnow R., Berg M., Domesle C., Grussie F., Savin D.W., Schwalm D., Wolf A., Exploring High–energy Doubly Excited States of NH by Dissociative Recombination of NH+, J. Phys. B., 47, 035201 (2014)
  13. Novotný O., Berg M., Bing D., Buhr H., Geppert W., Grieser M., Grussie F.,
    Krantz C., Mendes M.B., Nordhorn C., Repnow R., Schwalm D., Yang B., Wolf
    A., Savin D.W., Dissociative Recombination Measurements of NH+ using an Ion Storage Ring, The Astrophys. J., 2, 792, 132 (2010)
  14. Garcia G.A., Gans B., Tang X., Ward M., Batut S., Nahon L., Fittschen C.,
    Loison J.C., Threshold Photoelectron Spectroscopy of the Imidogen Radical, J. Electr. Spectrosc. Relat. Phenom., 203, 25 (2015)

Insight into the Rydberg States of CH Vázquez G.J., Amero J.M., Liebermann H.P., Buenker R.J., Lefebvre–Brion H.,J. Chem. Phys. 126, 164302 (2007)

  1. Shi D.H., Zhang J.P., Sun J.F., Liu Y.F., Zhu Z.L., Yu B.H., Accurate Analytic Potential Energy Function and Spectroscopy Study for CH(X2$\Pi$) Radical using Coupled–cluster Theory in Combination with the Correlation–consistent Quintuple Basis Set, J. Molec. Struct. Theochem., 860, 101 (2008)
  2. Song C.Q., Gao T., Han H.L., Wan M.J., Yu Y., Ab initio Study of Spin-orbit Interaction in the Ground Electronic States of XH (X=C, Si, Ge and Sn) Molecules, J. Molec. Struct. Theochem., 870, 65 (2008)
  3. Lavín C., Velasco A.M., Martín I., Oscillator Strength Distribution in the Discrete and Continuum Regions of the Spectrum of CH Molecule (Oscillator Strength Distribution of CH), Astrophys. J., 692, 1354 (2009)
  4. Shi D.H., Zhang J.P., Sun J.F., Liu Y.F., Zhu Z.L., Investigations on Molecular Constants of the CD(X2$\Pi$) Radical and Elastic Collisions between Ground–State C and D Atoms at Low Temperatures, Chinese Phys. B, 18, 3856 (2009)
  5. Lopez R., Ema I., Ramirez G.F., Rico J., Molecular Slater Integrals for Electronic Energy Calculations, Report number: A587135, Form Approved OMB No. 0704-0188, Contract number FA8655-09-1-3069, Universidad Aut´onoma de Madrid, (2010)
  6. Heimel G., Salzmann I., Duhm S., Koch N., Design of Organic Semiconductors from Molecular Electrostatics, Chemistry of Materials, 23, 359 (2010) ?
  7. Zhang L., Liu H.–L., Yang G.–H., Huang X.–R., Li Y., Sun Y.–B., Sun Ch.–Ch., Theoretical Mechanistic Study of the Reaction of the Methylidyne Radical with Methylacetylene, J. Mol. Modeling, 17, 3173 (2011)
  8. Srivastava S., Sathyamurthy N., Radiative Lifetimes of Spin Forbidden a1$\Delta\rightarrow$X3$\Sigma$ and Spin Allowed A3$\Pi\rightarrow$X3$\Sigma$ Transitions and Complete Basis Set Extrapolated Ab initio Potential Energy Curves for the Ground and Excited states of CH, J. Chem. Phys., 137, 214314 (2012)
  9. Federman S.R., Bernath P.F., Müller H.S., Division XII/commission 14/working Group on Molecular Data, Transactions IAU, Volume XXIIA, Reports on Astronomy 2009-2012, 7, 355, arXiv preprint arXiv:1211.1483 (2012)
  10. Zhang C., Yu Y., Grass M.E., Dejoie C., Ding W., Gaskell K., Eichhorn B.W., Mechanistic Studies of Water Electrolysis and Hydrogen Electro–oxidation on High Temperature Ceria–Based Solid Oxide Electrochemical Cells, J. Am. Chem. Soc., 135, 11572 (2013)
  11. Masseron T., Plez B., Van Eck S., Colin R., Daoutidis I., Godefroid M., Coheur P., Bernath A., Jorissen A., Christlieb N., CH in Stellar Atmospheres: an Extensive Linelist, Astron. & Astroph., A47, 571 (2014)

Potential Energy Curves for the 1$\Sigma$+ and 1,3$\Pi$ states of CO Vázquez G.J., Amero J.M., Liebermann H.P., Lefebvre–Brion H., J. Phys. Chem. A 113, 13395 (2009)

  1. Muskatel B.H., Remacle F., Thiemens M.H., Levine R.D., On the Strong and Selective Isotope Effect in the UV Excitation of N2 with Implications toward the Nebula and Martian Atmosphere, Proceedings of the National Academy of Sciences of the USA, PNAS, 108, 6020 (2011)
  2. Motapon O., Backodissa D., Waffeu Tamo F.O., Tudorache D., Chakrabarti K., Mezei J.Z., Lique F., Bultel A., Tchang-Brillet L., Dulieu O., Tennyson J., Wolf A., Urbain X., Schneider I.F., Electron–molecular Cation Reactive Collisions: from Channel Mixing to Competitive Processes, J. Phys.: Conf. Ser., 300, 012018 (2011)
  3. Liu Y.F., Jia Y., Shi D.H., Sun J.F., Accurate Ab initio Potential of CO(X1$\Sigma$+) at Low Cost via Correlation Scaling and Extrapolation Method, J. Quant. Spectrosc. Radiat. Transfer, 112, 2296 (2011)
  4. Federman S.R., Bernath P.F., Müller H.S., Division XII/commission 14/working Group on Molecular Data, Transactions IAU, Volume XXVIIIA, Reports on Astronomy 2009-2012, 7, 355, arXiv preprint arXiv:1211.1483 (2012)
  5. Lefebvre–Brion H., Eidelsberg M., New Experimental Study and Theoretical Model of the Extreme UV Absorption Spectrum of CO Isotopologs, J. Mol. Spectrosc., 271, 59 (2012).
  6. Eidelsberg M., Lemaire J.L., Federman S.R., Stark G., Heays A.N., Sheffer Y., Gavilan, L., Fillion J.–H., Rostas F., Lyons J.R., Smith P.L., de Oliveira N., Joyeux D., Roudjane M., Nahon L., High-resolution Study of Oscillator Strengths and Predissociation Rates for 12C16O.W-X Bands and Rydberg Complexes between 92.9 and 93.4 nm, J. Astron. Astroph., 543, A69 (2012)
  7. Gao H., Song Y., Yang L., Shi X., Yin Q.–Z., Ng C.Y., Jackson W.M., Branching Ratio Measurements of the Predissociation of 12C16O by Time–slice Velocity-map Ion Imaging in the Energy Region from 108000 to 110500 cm−1, J. Chem. Phys., 137, 034305 (2012)
  8. Majumder M., Sathyamurthy N., Lefebvre-Brion H., Vázquez G. J., Photoabsorption of Carbon Monoxide: a Time-dependent Quantum Mechanical Study, J. Phys. B: At. Mol. Opt. Phys., 45, 185101 (2012)
  9. Barker B.J., Antonov I.O., Merritt J.M., Bondybey V.E., M.C. Heaven, R. Dawes, Experimental and Theoretical Studies of the Electronic Transitions of BeC, J. Chem. Phys., 137, 214313 (2012)
  10. Federman S.R., Bernath P.F., Müller H.S., Division XII/commission 14/working Group on Molecular Data, Transactions IAU, Volume XXIIA, Reports on Astronomy 2009-2012, 7, 355, arXiv preprint arXiv:1211.1483 (2012)
  11. Shi D.–H., Li W.-T., Sun J.-F., Zhu Z.-L., Theoretical Study of Spectroscopic and Molecular Properties of Several Low-lying Electronic States of CO Molecule, Int. J. Quantum Chem., 113, 934 (2013)
  12. Wan M.J., Huang D.H., Fan Q.C., Jiang G., A Study of the Low-lying states at Multi-reference Configuration Interaction Level of N2 Molecule, Indian Journal of Physics, 87, 245 (2013)
  13. Lu P.–F., Yan L., Yu Z.–Y.., Gao Y.–F., Gao T., An Accurate Calculation of Potential Energy Curves and Transition Dipole Moment for Low–lying Electronic States of CO, Commun. Theor. Phys., 59, 193 (2013)
  14. Gao H., Song Y., Chang Y.–C., Shi X., Yin Q.–Z.,Wiens R.C., Jackson W.M., Ng C.Y., Branching Ratio Measurements for Vacuum Ultraviolet Photodissociation of 12C16O, J. Phys. Chem. A., 117, 6185 (2013)
  15. Peng-Fei L., Lei Y., Zhong-Yuan Y., Yu-Feng G., Tao G., An Accurate Calculation of Potential Energy Curves and Transition Dipole Moment for Low-lying Electronic States of CO, Communications in Theoretical Physics, 59, 193 (2013)
  16. Guberman S.L., Potential Curves for the Dissociative Recombination of CO+, J. Phys. Chem. A, 117, 39, 9704 (2013)
  17. Stark G., Heays A.N., Lyons J.R., Smith P.L., Eidelsberg M., Federman S.R., Lemaire J.L., Gavilan L., de Oliveira N., Joyeux D., Nahon L., High–Resolution Oscillator Strength Measurements of the v′ = 0, 1 Bands of the B–X, C–X, and E–X Systems in Five Isotopologues of Carbon Monoxide, The Astrophysical Journal, 788, 67 (2014)
  18. Heays A.N., Eidelsberg M., Stark G., Lemaire L., Gavilan L., Federman S.R., Lewis B.R., Lyons J.R., de Oliveira N., Joyeux D., Observation of a New Electronic State of CO perturbing W1$\Pi$(v = 1), J. Phys. Chem., 141, 144311 (2014)
  19. Mezei J.Zs., Backodissa–Kiminou R.D., Tudorache D.E., Morel V., Chakrabarti
    K., Motapon O., Dulieu O., Robert J., Tchang–Brillet W.–¨U., Bultel A., Urbain
    X., Tennyson J., Hassouni K., Schneider I.F., Dissociative Recombination
    and Vibrational Excitation of CO+: Model Calculations and Comparison with
    Experiment, Plasma Sources Sci. Tech., 24, 035005 (2015)
  20. Lefebvre–Brion H., Majumder M., Isotopic Dependence of the Predissociations of the E1$\Pi$ State of CO, J. Chem. Phys., 142, 164306 (2015)
  21. Jha K.A., A Computational Study of Stability and Transition Dipole Moment of Several Low Lying Electronic States of the CO Molecule, Journal of Applied and Fundamental Sciences, 1, 63 (2015)
  22. Hakalla R., Investigation of the Herzberg (C1$\Sigma$+ + A1$\Pi$) Band System in 12C17O, J. Quant. Spectrosc. Radiat. Transfer, 164, 231 (2015)

An Interpretation of the Anomalous 1$\Pi$ Vibronic Structure in the Far–UV Spectrum of CO Lefebvre–Brion H., Liebermann H.P., Vázquez G.J., J. Chem. Phys. 132, 024311 (2010)

  1. Publisher’s note: “An Interpretation of the Anomalous 1$\Pi$ Vibronic Structure in the Far-UV Spectrum of CO”, J. Chem. Phys., 132, 059902 (2010)
  2. Li C., Deng L., Zhang Y., Wu L., Yang X., Chen Y., Perturbation Analysis of the ν = 6 Level in the d3$\Delta$ State of CS based on its Near-infrared Absorption Spectrum, J. Phys. Chem. A, 14, 2978 (2011)
  3. Motapon O., Backodissa D., Waffeu Tamo F.O., Tudorache D., Chakrabarti K., Mezei J.Z., Lique F., Bultel A., Tchang-Brillet L., Dulieu O., Tennyson J., Wolf A., Urbain X., Schneider I.F., Electron–molecular Cation Reactive Collisions: from Channel Mixing to Competitive Processes, J. Phys.: Conf. Ser., 300, 012018 (2011)
  4. B. H. Muskatela, F. Remacle, Mark H. Thiemens and R. D. Levine, Proceedings of the National Academy of Sciences of the United States of America, 108, 6020 (2011)
  5. Lefebvre–Brion H., Eidelsberg M., New Experimental Study and Theoretical Model of the Extreme UV Absorption Spectrum of CO Isotopologues, J. Mol. Spectrosc., 271, 59 (2012)
  6. Gao H., Song Y., Chang Y.–C., Shi X., Yin Q.–Z., Wiens R.C., Jackson W.M., Ng C.Y., Branching Ratio Measurements of the Predissociation of 12C16O by Time–slice Velocity-map Ion imaging in the Energy Region from 108000 to 110500 cm−1, J. Chem. Phys., 137, 034305 (2012).
  7. Eidelsberg M., Lemaire J.L., Federman S.R., Stark G., Heays A.N., Sheffer Y., Gavilan, L., Fillion J.–H., Rostas F., Lyons J.R., Smith P.L., de Oliveira N., Joyeux D., Roudjane M., Nahon L., High-resolution Study of Oscillator Strengths and Predissociation Rates for 12C16O.W-X Bands and Rydberg Complexes between 92.9 and 93.4 nm, J. Astron. Astroph., 543, A69 (2012)
  8. Thiemens M.H., Chakraborty S., Dominguez G., The Physical Chemistry of Mass–independent Isotope Effects and Their Observation in Nature, Annual Review of Physical Chemistry, 63, 155 (2012)
  9. Federman S.R., Bernath P.F., Müller H.S., Division XII/commission 14/working Group on Molecular Data, Transactions IAU, Volume XXIIA, Reports on Astronomy 2009-2012, 7, 355, arXiv preprint arXiv:1211.1483 (2012)
  10. Gao H., Song Y., Chang Y.–C.., Shi X., Yin Q.–Z., Wiens R.C., Jackson W.M., Ng C.Y., Branching Ratio Measurements for Vacuum Ultraviolet Photodissociation of 12C16O, J. Chem. Phys. A, 117, 6185 (2013)
  11. Hakalla R., First Analysis of the Herzberg (C1$\Sigma$+ $\rightarrow$ A1$\Pi$) Band System in the Less-abundant 13C17O Isotopologue, RSC Advances, 4.84, 44394 (2014)
  12. Stark G., Heays A.N., Lyons J.R., Smith P.L., Eidelsberg M., Federman S.R.,
    Lemaire J.L., Gavilan L., de Oliveira N., Joyeux D., Nahon L., High–resolution
    Oscillator Strength Measurements of the v′ = 0, 1 Bands of the BX, CX, and EX Systems in Five Isotopologues of Carbon Monoxide, The Astrophys. J., 788, 67 (2014)
  13. Hakalla R., Investigation of the Herzberg (C1$\Sigma$+ $\rightarrow$ A1$\Pi$) Band System in 12C17O, J. Quant. Spectrosc. Radiat. Transfer, 164, 231 (2015)
  14. Jha K.A., A Computational Study of Stability and Transition Dipole Moment of Several Low Lying Electronic States of the CO Molecule, Journal of Applied and Fundamental Sciences, 1, 63 (2015)
  15. Mezei J.Zs., Backodissa–Kiminou R.D., Tudorache D.E., Morel V., Chakrabarti
    K., Motapon O., Dulieu O., Robert J., Tchang–Brillet W.–Ü., Bultel A., Urbain
    X., Tennyson J., Hassouni K., Schneider I.F., Dissociative Recombination
    and Vibrational Excitation of CO+: Model Calculations and Comparison with
    Experiment, Plasma Sources Sci. Tech., 24, 035005 (2015)
  16. Lefebvre–Brion H., Majumder M., Isotopic Dependence of the Predissociations of the E1$\Pi$ State of CO, J. Chem. Phys., 142, 164306 (2015)

Adiabatic versus Diabatic Descriptions of the Lowest Rydberg and Valence 1$\Sigma$+ States of HCl Lefebvre–Brion H., Liebermann H.P., Vázquez G.J., J. Chem. Phys. 134, 204104 (2011)

  1. Palmer M.H., Camp P.J., Hoffmann S.V., Jones N.C., Head A.R., Lichtenberger D.L., The Electronic States of 1,2,4-triazoles: a Study of 1H- and 1-methyl-1,2,4-triazole by Vacuum Ultraviolet Photoabsorption and Ultraviolet Photoelectron Spectroscopy and a Comparison with Ab initio Configuration Interaction Computations, J. Chem. Phys., 136, 094310 (2012)
  2. J. Long, H. Wang, Á. Kvaran, Rydberg and Ion-pair States of HBr: New REMPI Observations and Analysis, J. Mol. Spectrosc., 282, 20 (2012)
  3. Engin S., Sisourat N., Carniato S., Ab initio Study of Low-lying Excited States of HCl: Accurate Calculations of Optical Valence-shell Excitations, J. Chem. Phys., 137, 154304 (2012)
  4. J. Long, H. R. Hródmarsson, H. Wang, Á. Kvaran, Photofragmentations, State Interactions, and Energetics of Rydberg and Ion-pair States: Two–dimensional Resonance Enhanced Multiphoton Ionization of HBr via singlet–, triplet–, $\Omega$ = 0 and 2 States, J. Chem. Phys. 136, 214315 (2012)
  5. J. Long, H. Wang, Á. Kvaran, Photofragmentations, State Interactions, and Energetics of Rydberg and Ion–pair States: Resonance Enhanced Multiphoton Ionization via E and V (B) States of HCl and HBr, J. Chem. Phys., 138, 044308 (2013).
  6. Palmer M.H., Hoffmann S.V., Jones N.C., The Electronic States of Pyridine–N–oxide Studied by VUV Photoabsorption and Ab Initio Configuration Interaction Computations, J. Chem. Phys., 138, 214317 (2013)
  7. Novotný O., Becker A., Buhr H., Domesle C., Geppert W., Grieser M., Krantz C., Kreckel H., Repnow R. Schwalm D., Spruck K., Stützel J., Yang B., Wolf A., Savin D.W., Dissociative Recombination Measurements of HCl+ using an Ion Storage Ring, The Astrophys. J., 777, 54, (2013)
  8. Long J.–M., Wang H.–S., Kvaran Á., Resonance Enhanced Multiphoton Ionization Spectra of HCl: Analysis of F1$\Delta$2 Spectral Perturbation, Acta Physica Sinica, 16, 107 (2013)
  9. Poretskiy M., Chichinin A., Maul C., Gericke K., Simultaneous Imaging of Both Product Ions: Exploring Gateway States for HCl as Benchmark Molecule, Phys. Chem. Chem. Phys., (published online), (2014)

Photoabsorption of Carbon Monoxide: Timedependent Quantum Mechanical Study
Majumder M., Sathyamurthy N., Lefebvre-Brion H., Vázquez G.J., J. Phys. B., At. Mol. Opt. Phys., 45, 185101 (2012)

  1. Guberman S.L., J. Phys. Chem. A, 117, 9704 (2013)
  2. Hakalla R., First Analysis of the Herzberg (C1$\Sigma^+\rightarrow$ A1$\Pi$) Band System in the Less-abundant 13C17O Isotopologue, RSC Advances, 4.84, 44394 (2014)
  3. Hakalla R., Investigation of the Herzberg (C1$\Sigma^+\rightarrow$ A1$\Pi$) Band System in 12C17O, J. Quant. Spectrosc. Radiat. Transfer, 164, 231 (2015)

Interpretation of the Accidental Predissociation of the E1$\Pi$ state of CO
Majumder M., Sathyamurthy N., Vázquez G.J., Lefebvre-Brion H., J. Chem. Phys., 140, 164303 (2014)

  1. Heays A.N., Eidelsberg M., Stark G., Lemaire L., Gavilan L., Federman S.R., Lewis B.R., Lyons J.R., de Oliveira N., Joyeux D., Observation of a New Electronic State of CO Perturbing W1$\Pi$(v = 1), J. Phys. Chem., (en línea). Vázquez G.J. (Comunicaciones Privadas)
  2. Lefebvre–Brion H., Majumder M., Isotopic Dependence of the Predissociations of the E1$\Pi$ State of CO, J. Chem. Phys., 142, 164306 (2015)

Vázquez G.J. (Comunicaciones Privadas)

  1. Doggett G., et al., Bk N◦ 22690 R 77–3–81
  2. Muller B., Ottinger Ch., Chemiluminiscent Reactions of Second–row Atomic Ions,  J. Chem. Phys., 85, 232 (1986)
  3. Clement S.G., Ashfold M.N.R., Western C.M., Resonance–enhanced Multiphoton Ionization Spectroscopy of the NH (DH) Radical, J. Chem. Soc. Faraday Trans., 88, 3121 (1992)
  4. Harding L.B., Stark H., Troe J., Ushakov V.G., New Studies of the Unimolecular Reaction NO2 $\rightleftharpoons$ O + NO. Part 2. Relation between High Pressure Rate Constants and Potential Parameters, Phys. Chem. Chem. Phys., 1, 63 (1999)
  5. Shao Z., Mo. Y., Jahn–Teller Effect in CH2DO/CHD2O($\tilde{X}$2E): Vibronic Coupling of All Vibrational Modes, J. Chem. Phys., 138, 244309 (2013)(Acknowledgments)
  6. Gao S., Dai Z., Sun W., Li H., Wang J., Mo Y., Tunneling Splittings in Vibronic
    Energy Levels of CH3F+($\tilde{X}$2E) Studied by High Resolution Photoelectron Spectroscopy and Ab initio Calculation, J. Chem. Phys., 139, 064302 (2013) (Acknowledgments)
  7. Zhou Y., Meng Q., Mo Y., Photodissociation Dynamics of Superexcited O2: Dissociation Channels O(5S) vs. O(3S), J. Chem. Phys., 141, 014301 (2014)
    (Acknowledgments)
  8. Dai Z., Sun W., Wang J., Mo Y., The Renner–Teller Effect in HCCCN+($\tilde{X}$2$\Pi$) Studied by Zero-kinetic Energy Photoelectron Spectroscopy and Theoretical Calculations, J. Chem. Phys., 143, 054301 (2015) (Acknowledgments)