Translocation Properties of Primitive Molecular Machines and Their Relevance to the Structure of the Genetic Code

M. Aldana-González*†, G. Cocho‡, H. Larralde§ and G. Martínez-Mekler§

†The James Franck Institute, The University of Chicago, 5640 South Ellis Avenue, Chicago, IL 60637-1467, U.S.A., ‡Instituto de Física, UNAM. Apdo. Postal 20-364, 01000 México D.F., Mexico and §Centro de Ciencias Físicas, UNAM. Apdo. Postal 48-3, 62251 Cuernavaca, Morelos, Mexico

(Received on 9 November 2001, Accepted in revised form on 10 June 2002)

We address the question, related with the origin of the genetic code, of why are there three bases per codon in the translation to protein process. As a follow-up to our previous work (Aldana et al., 1998, Martínez-Mekler et al., 1999a,b), we approach this problem by considering the translocation properties of primitive molecular machines, which capture basic features of ribosomal/messenger RNA interactions, while operating under prebiotic conditions. Our model consists of a short one-dimensional chain of charged particles (rRNA antecedent) interacting with a polymer (mRNA antecedent) via electrostatic forces. The chain is subject to external forcing that causes it to move along the polymer which is fixed in a quasi-one-dimensional geometry. Our numerical and analytic studies of statistical properties of random chain/polymer potentials suggest that, under very general conditions, a dynamics is attained in which the chain moves along the polymer in steps of three monomers. By adjusting the model in order to consider present-day genetic sequences, we show that the above property is enhanced for coding regions. Intergenic sequences display a behavior closer to the random situation. We argue that this dynamical property could be one of the underlying causes for the three-base codon structure of the genetic code.

1. Introduction

The origin of the genetic code has been a subject of intense research since its structure was completely elucidated in the early 1970s. In subsequent years, the scientific community has produced several theories in order to explain why the genetic code has this structure. Among these theories, the most prominent ones are the stereochemical theory, the frozen-accident theory and the coevolutionary theory (Alberti, 1997; Amirnovin, 1997; Di Gulio, 1997; Di Gulio & Mendugo, 1998; Freeland & Laurence, 1998). Roughly speaking, these theories try to account for the structure of the genetic code by looking at the interactions between codons and amino acids, the biosynthetic relationships among different amino acids and how the metabolic pathways between them have been selected throughout evolution. Nevertheless, the fact that all the codons are made up of three nucleotides has mostly been taken for granted and barely brought into question.

One of the most widely used arguments found in the literature to explain the trinucleotide codon structure of the genetic code was given
by Sidney Brenner in 1961 (Brenner et al., 1961; Brenner, 1989). According to this argument, codons are made up of three nucleotides (or bases, for short) because there are 20 amino acids to be specified by the genetic information expressed by a four-letter “alphabet” (the four bases A,G,C,U). If codons were composed of only two bases, there would be only 16 different combinations \(4^2\), which are not enough to specify for 20 amino acids. If instead, codons were made up of more than three bases, there would be at least 256 combinations \(4^4\), and these are too many for only 20 amino acids. Hence, less than three bases per codon are not enough, and more than three would imply an excessive degeneration of the code. The result coming out from this argument is that three bases per codon is the optimal “bit of information” that can be used in order to specify for the 20 different amino acids by means of a four-letter “alphabet”.

The above argument, however, does not constitute an explanation by itself, mainly because it only moves the question of “why three?” to the questions of “why 20?” or for that matter “why four?” There is no reason for the genetic information to codify for only 20 amino acids since living organisms use more than those specified by the genetic code (Lehninger et al., 2000). In addition, this argument assumes that all the codons must have the same length (number of bases), even though more efficient codes can be obtained by allowing the length of the codons to vary (Doig, 1997). Finally, given that 20 amino acids have to be specified by using four different bases, Brenner’s argument leads to the simplest code that might be thought of. But even in such a case, simplicity has to be accounted for as a relevant criterion.

In this work, we address the question of the origin of the three-base codon structure of the genetic code from a dynamical point of view. We consider a simple molecular machine model which captures some of the principal features of the interaction between primitive realizations of the ribosome and of the mRNA. Our main objective is to present a dynamical scenario, compatible with prebiotic conditions, of how the triplet structure of the genetic code could have arisen. The model we propose is a follow-up of the one introduced by Aldana, Cocho and Martínez-Mekler (Aldana et al., 1998; Martínez-Mekler et al., 1999a,b) and is consistent with the current evidence suggesting the “RNA world” hypothesis (Gilbert, 1986). In this scheme the crucial molecules involved in the prebiotic and protobiotic processes, that eventually led to codification and translation mechanisms of the genetic information, were RNA related.

In our model, based on the setup depicted in Fig. 1, a short one-dimensional polymer composed of \(M\) monomers interacts with a much longer one, via electrostatic forces. In order to avoid confusion, from now on we will refer to the short polymer as “the chain”, and to the long polymer simply as “the polymer”. The electrostatic interaction between the chain and the polymer is due to the presence of electric charges, or multipolar moments, in the monomers of both the chain and the polymer.

The charges of the monomers of the chain and of the polymer are assigned at random following a uniform distribution. Therefore, the resulting chain–polymer interaction potential has a random profile. The chain is allowed to move along the polymer, but is constrained to remain at a fixed perpendicular distance \(\sigma\) from it.

![Fig. 1. The molecular machine model. A one-dimensional chain composed of \(M\) monomers interacts with a one-dimensional polymer, \(N\) monomers in length. The charges \(\{p_i\}\) along the chain, as well as the charges \(\{q_i\}\) of the polymer are independent random variables. The chain is at a fixed perpendicular distance \(\sigma\) from the polymer, but can move along the polymer. \(x\) is the horizontal position of the chain with respect to the polymer.](image-url)
Consequently, transport is one dimensional. One of our main results is to show that under very general conditions, a dynamics is attained in which the chain moves along the polymer in effective “steps” whose mean length is three monomers. We argue that this dynamical feature may be one of the underlying causes of the three-base codon structure of the genetic code.

This paper is organized as follows: Section 2 describes in detail the model and the assumptions introduced. In Section 3 we recall some statistical aspects of our previous analysis (Aldana et al., 1998; Martínez-Mekler et al., 1999a,b) of the random interaction potentials between the chain and the polymer for the simplest case in which the former is composed of just one particle (M = 1). We exhibit numerically that, even in this simple case, the mean distance \(\bar{d} \) between consecutive minima along the interaction potential is very close to three: \(\bar{d} \approx 3 \) (taking the monomer length as spatial unit). After retrieving the analytical expression for this distance (Aldana et al., 1998) we then look into the probability \(P_m(d) \) of two neighboring potential minima being separated by a distance \(d \). Subindex \(m \) refers to the number of different types of monomers in the polymer and in the chain. This probability function shows that, even though the mean distance \(\bar{d} \) is close to three, the most probable distance between consecutive minima is \(d^* = 2 \) for \(m > 2 \). In Section 4 the monomer charges along the polymer are assigned in correspondence with protein-coding regions of the genome of real organisms (e.g. *Drosophila* or *Escherichia coli*) instead of at random. For this case, the probability function \(P_m(d) \) is modified so that not only the mean distance \(\bar{d} \) is \(\approx 3 \), but also the most probable one happens to be \(d^* = 3 \).

In Section 5 we introduce the more realistic case \(M > 1 \), which takes into account the fact that the ribosome is not a point particle, that it has spatial structure and presents several simultaneous contact points between its own rRNA and the mRNA polymer. For small chain lengths (\(M \approx 10 \)), the probability distribution \(P_m(d) \) is indicative of wide fluctuations and has a form strongly dependent on the particular assignment of charges in the chain. One of our main findings is that for such chains the most likely configurations are those in which both, the mean distance \(\bar{d} \) and the most probable one \(d^* \), are equal to three, even when the monomer charges along the polymer and the chain are assigned at random. In Section 6 we analyse the dynamics resulting from the model when an external force is pulling the chain, forcing it to move as a rigid object along the polymer. The power spectrum of the velocity of the chain reveals that, under some very general circumstances, for small chain lengths (\(M \approx 10 \)), there is a sharp periodicity in the dynamics of the system, with a slowing down of the velocity of the chain every three monomers. Finally, Section 7 is devoted to the discussion of the results and their relevance to the origin of the genetic code.

2. The Model

The model we propose consists of a chain of \(M \) monomers interacting with a very long polymer composed of \(N \) monomers, with \(N \to \infty \) (see Fig. 1). The chain is constrained to remain at a given distance \(\sigma \) perpendicular to the polymer and is allowed to move in along the polymer, we shall define \(x \) as its position in this direction relative to the polymer. We will denote the monomer charges in the chain and in the polymer by \(\{p_i\} \) and \(\{q_j\} \), respectively. We should mention that by “charge” we do not necessarily mean Coulomb charge. Both \(\{p_i\} \) and \(\{q_j\} \) could be dipolar moments, induced polarizabilities, or similar quantities resulting from electrostatic interactions between chain monomers and polymer monomers with potentials of the form \(1/r^2 \), where \(r \) characterizes the “charge” type.

We will assume that all the monomers in the chain, and separately, all the monomers in the polymer, are of the same nature, namely, all of them are either Coulomb charges, dipolar moments, or polarizable molecules, etc. In addition, taking into account that in the origin of life conditions the genetic molecules were not yet likely to convey any structured information, we will consider the charges \(\{p_i\} \) and \(\{q_j\} \) to be discrete independent random variables, acquiring one of the \(m \) different values \(\xi_1, \xi_2, \ldots, \xi_m \) with the same probability. Hence,
the probability function $P(q)$ for both, the $\{p_i\}$ and $\{q_j\}$ variables, will be

$$P(q) = \frac{1}{m} \sum_{j=1}^{m} \delta(q - \xi_j), \quad (1)$$

where $\delta(q)$ is the Dirac delta function. In general, in this work we will take the values $\xi_1, \xi_2, \ldots, \xi_m$ as integers. Parameter m represents the number of different types of monomers from which the polymer and the chain are made of. For the case of real genetic sequences $m = 4$, but we will not restrict the value of m to be 4.

All the monomers will have the same length L, which we take as the spatial unit of measure: $L = 1$. We also assume the charge in each of the monomers to be uniformly distributed along the length L, so that the charge density $\lambda_j(x)$ in the j-th monomer of the polymer, for example, is a constant whose value is $\lambda_j(x) = q_j L$. Nevertheless, it is worth mentioning that the dynamics of the model does not depend strongly on the particular shape of the monomer charge density $\lambda_j(x)$, as long it is a smooth function of x ("smooth" in the sense of differentiability).

With the preceding assumptions, the interaction potential $V_{ij}(x)$ between the i-th monomer in the chain and the j-th monomer in the polymer is given by

$$V_{ij}(x) = K p_i q_j \int_{x+i-1}^{x+i} \int_{j-1}^{j} \frac{d\alpha d\alpha'}{\left[(\alpha' - \alpha)^2 + \sigma^2\right]^{3/2}}, \quad (2)$$

where K is a constant whose value depends on the unit system used to measure the physical quantities. In the above expression, L has already been set equal to 1. Parameter σ characterizes the kind of interaction between the chain and the polymer: $\sigma = 1$ corresponds to an ion–ion interaction, $\sigma = 2$ represents an ion–dipole interaction, and so forth. Note that this parameter does not depend on the indices i and j, since all the monomers in the chain are of the same nature and those in the polymer are themselves of the same nature, differing from each other only in the value of the charge they contain. The overall interaction potential $V_{\sigma}(x)$ between the whole chain and the entire polymer is given by the superposition of the individual potentials $V_{ij}(x)$:

$$V_{\sigma}(x) = \sum_{i=1}^{M} \sum_{j=1}^{N} V_{ij}(x), \quad (3)$$

Equations (2) and (3) establish the type of random potentials we will be considering. Our first aim is to analyse the spatial structure of these potentials, giving their statistical characterization. This will be done in the three following sections. Subsequently, we will consider the dynamics of the chain moving along the polymer interacting with it by means of a random potential, subject to an external driving force and seek under what conditions, if any, transport in "steps" of three monomers can be achieved.

3. Random Potentials: $M = 1$

Let us start with the simplest case $M = 1$, in which the chain consists of just one monomer. We will refer to this case as the "single-monomer-chain" case, and to the chain simply as "the particle". The reason to consider this simple situation is two-fold: on the one hand, it is useful in order to introduce the relevant ideas behind the model. On the other hand, it is simple enough as to obtain exact analytical results in a more or less straightforward way. In previous work we have already analysed some statistical properties of the random potentials given by expressions (1) and (2) for the case $M = 1$ (Aldana et al., 1998; Martínez-Mekler et al., 1999a,b). After a short review of some of those results we center our attention on the probability distribution $P_m(d)$.

The overall particle–polymer interaction potential is given by

$$V_{\sigma}(x) = \sum_{j=1}^{N} q_j \int_{x}^{x+1} \int_{j-1}^{j} \frac{d\alpha d\alpha'}{\left[(\alpha' - \alpha)^2 + \sigma^2\right]^{3/2}}, \quad (4)$$

Note that in the previous expression we have set $K p_1$, the only charge in the chain, equal to one. Figure 2 shows three graphs of the potential $V_{\sigma}(x)$ for $\sigma = 0.5$ and different values of the parameter α. To generate these graphs, the
following probability function for the charges \{q_j\} was used:

\[P(q) = \frac{1}{6} \sum_{\mu=-3}^{3} \delta(q - \mu), \quad (5) \]

i.e., each one of the variables \{q_j\} acquired one of the six different values \{\pm 1, \pm 2, \pm 3\} with probability \(1/6\) \((m = 6)\). In Fig. 2, the random realization of the charges \{q_j\} along the polymer was the same for the three graphs. As can be seen from this figure, the distribution of maxima and minima along the potential does not change by varying the value of the parameter \(\alpha\), in the sense that all the maxima and minima remain essentially at the same positions. What occurs as \(\alpha\) takes larger and larger values is that the potential becomes a step-like function.

Figure 3 presents an analogous situation, but now keeping \(\alpha\) constant \((\alpha = 2)\) and varying \(\sigma\). The behavior of the potential is similar to the previous case: the potential becomes a step-like function as \(\sigma\) decreases and the positions of the maxima and minima are not appreciably modified.

The above considerations exhibit that for small values of \(\sigma\), say \(0 < \sigma \leq 1\), the distribution of maxima and minima along the potential is entirely determined by the distribution of charges along the polymer and is independent of the particular values acquired by the parameters \(\alpha\) and \(\sigma\). Therefore, in order to find out the distribution of maxima and minima along the interaction potential, it is possible to substitute the continuous random potential given by expressions (2) and (3), by the equivalent step-like potential defined by

\[V(x) = \sum_{j=1}^{N} V_j [H(x - (j - 1)) - H(x - j)], \quad (6) \]

where \(H(x)\) is the Heaviside function, and \(V_j\) is a random variable whose value is directly

\[H(x) = \begin{cases} 0 & \text{if } x < 0 \text{ and } H(x) = 1 & \text{if } x \geq 0 \end{cases} \]
proportional to the charge \(q_j \) of the \(j \)-th monomer in the polymer:

\[
V_j = Kp_1q_j, \tag{7}
\]

where \(p_1 \) is the charge of the particle (the only monomer in the chain).

Since the random charges \(\{q_j\} \) are statistically independent, so are the \(\{V_j\} \). Expression (6), which we will refer to as the step-like limit, is suitable for the analytical determination of the probability function of the distances between consecutive potential minima. This probability function gives important information concerning the dynamics of the system. If some external force is acting on the particle (or the chain), forcing it to move in one direction (right or left) along the polymer, the particle will spend more time in the energy minima than in the maxima. This kind of motion can be considered as if the molecule were “jumping” from one minimum to the next.

Such a movement may be interpreted by considering the particle as “jumping” from one minimum to the next (see Fig. 4). It is worth noticing that the mean distance between consecutive minima in the potentials shown in Figs 2 and 3 is nearly three. In Fig. 2 there are 33 minima distributed among 100 monomers, and consequently the mean distance between consecutive minima in this case is \(\bar{d} = 100/33 \approx 3.03 \). Analogously, the mean distance between neighboring minima in Fig. 3 is \(\bar{d} = 100/34 \approx 2.94 \). Therefore, it is expected that in its motion along the polymer, the velocity of the particle will slow down, on average, every three monomers, being momentarily “trapped” in each of the potential minima.

By using the step-like limit, in Aldana et al. (1998) we have shown that the mean distance \(\bar{d} \) between consecutive potential minima for a long polymer (the large \(N \) limit) is given by

\[
\bar{d} = \frac{6m}{2m-1}, \tag{8}
\]

where \(m \) is the number of different monomer types. The above equation shows that the mean distance \(\bar{d} \) is always between 3 and 4, and approaches 3 asymptotically as \(m \to \infty \). In particular, for \(m = 4 \) (the biological value) we have \(\bar{d} \approx 3.43 \).

In order to characterize the fluctuations around the mean distance \(\bar{d} \), it is useful to compute the probability distribution function \(P_m(d) \), which we recall gives the probability of two consecutive minima being separated by a distance \(d \) when there are \(m \) different types of monomers. In the step-like limit, this computation is carried out by counting all the configurations of the step-like variables \(\{V_j\} \) in which there are two minima, one at \(V_j \) and the other at \(V_{j+d} \), with no other minima in between. The situation is illustrated in Fig. 5(a). Since in the step-like limit the interaction potential is constant along every monomer, we will adopt the convention to measure the distance \(d \) between two adjacent minima from the mid-point of the first minimum to the mid-point of the second one, as illustrated in Fig. 5(b). With the above convention, the resulting distances \(d \) can only acquire integer or half-integer values. For a finite number \(m \) of different charges, the explicit calculation of the probability function \(P_m(d) \) consists mainly of counting configurations and although conceptually straightforward, it involves a considerable amount of algebra. Here we present the final expressions:

\[
P_m(d) = \frac{6}{2m-1} \sum_{k=0}^{\frac{d-2}{2}} \frac{2k + 1}{m^{k+d+2}} N_m(d - k) \tag{9}
\]

if \(d \) is integer: \(d = 2, 3, 4, \ldots \), and

\[
P_m(d) = \frac{12}{2m-1} \sum_{k=0}^{\frac{d-2}{2}} \frac{2k + 1}{m^{k+d+3}} N_m(d' - k) \tag{10}
\]
if \(d \) is half-integer: \(d = 5/2, 7/2, 9/2, \ldots \), where \(d' = \text{Int}[d] \). In the above expressions, \(N_m(d) \) is a polynomial whose degree and coefficients depend on \(m \). For \(m = 2, 3 \) and 4 the polynomials are given by

\[
N_2(d) = 1, \\
N_3(d) = 1 + 2d + 2d^2, \\
N_4(d) = -2 + \frac{1}{8}[30d + 73d^2 + 22d^3 + 3d^4].
\]

(11)

For the case of \(m = \infty \) we have also derived a closed expression (Aldana et al., 2001), which has a much simpler form:

\[
P_\infty (d) = 3 \frac{2^d}{(d+3)!} (d^2 + d - 2).
\]

(12)

The preceding distributions are plotted in Fig. 6. It can be seen from this figure that the most probable distance \(d^* \) between consecutive potential minima is \(d^* = 2 \), except for the case \(m = 2 \) in which \(d^* = 3 \). Hence, according to the transport mechanism suggested in Fig. 4, whenever there are more than two different types of monomers, the particle will move along the polymer in “jumps” whose mean length is close to three, but whose most probable length is actually two. The difference between the mean distance \(\bar{d} \) and the most probable distance \(d^* \) is due to the presence of “tails” in the probability function \(P_m(d) \), namely to the fact that \(P_m(d) \) has non-zero values even for large \(d \). Nevertheless, in Section 5 we will show that these “tails” can be shrunk almost to zero when the chain is made up of more than one particle \((M > 1)\). This is one of the main results of this paper.
To end this section it is worth mentioning that half-integer distances between two neighboring minima occur when one or both of these minima extend over several monomers [see Fig. 5(b)]. In these configurations, the charges of the adjacent monomers constituting the extended minimum have the same value. Configurations in which groups of adjacent equally charged monomers occur, are less likely than configurations in which adjacent monomers have different charges, and the former tend to disappear as m increases (see Fig. 6).

4. Real Genetic Sequences: $M = 1$

The charges $\{q_j\}$ along the polymer can be assigned in correspondence with the genetic sequence of an organism, rather than in a random way. The purpose of doing so is to find out how the potential minima and maxima along real genetic sequences are distributed, and to compare the resulting distribution with the one corresponding to the random case. Since genetic sequences are made out of four different bases (A, U, C and G) we consider four different possible values x_1, x_2, x_3 and x_4 for the charges $\{q_j\}$, i.e. $m = 4$. To proceed further, it is necessary to establish a correspondence between the charge values x_1, ..., x_4 and the four bases A, U, C and G. An arbitrary look-up table is the following:

<table>
<thead>
<tr>
<th>Base</th>
<th>Charge value</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-2</td>
</tr>
<tr>
<td>U</td>
<td>-1</td>
</tr>
<tr>
<td>C</td>
<td>$+1$</td>
</tr>
<tr>
<td>G</td>
<td>$+2$</td>
</tr>
</tbody>
</table>

With the above correspondence, if the j-th base in a given genetic sequence happens to be A, for example, then the charge of the corresponding j-th monomer in the polymer will be $q_j = -2$.

Figure 7(a) shows the probability distribution $P_4(d)$ computed numerically by using a *Drosophila melanogaster* protein-coding sequence, 45,500 bases in length (several genes were concatenated to construct this sequence). The mean distance between consecutive potential minima for this sequence is $\bar{d} \approx 3.15$ and, as follows from the figure, the most probable distance is $d^* = 3$. Therefore, in the “real sequence case” not only is the mean distance \bar{d} very close to 3, but also the most probable distance d^* turns out to be 3. A comparison of Fig. 6(c) with Fig. 7(a), shows that for protein-coding genetic sequences, the potential minima along the polymer are more often separated by three monomers than in the random case. When protein-coding sequences are used, the value of $P_4(d)$ increases at $d = 3$ and decreases at $d = 2$.

The above behavior does not occur when non-coding sequences of the genome are used for the monomer charge assignment along the polymer. Fig. 7(b) shows the probability function $P_4(d)$ for the case in which the monomer charges are in correspondence with an intergenic sequence of the *Drosophila’s* genome. The length of the sequence is again 45,500 bases. As can be seen from the figure, in this case the probability function $P_4(d)$ looks much more like the one obtained in the random case.
It is important to remark that the behavior of \(P_4(d) \) exhibited in Fig. 7(a) for real protein-coding sequences does not depend on the particular correspondence (13) between bases and charge values being used, as long as they are of similar order of magnitude and they can allow for an order relation. These conditions hold for the four bases A, T, C and G which have charges of the same order of magnitude (MacKerell et al., 1995) and are fulfilled by our present choice of \(\{ \pm 1, \pm 2 \} \). The order relation is necessary for the interaction potential to have maxima and minima. It is worth asking the effect that changes in the order relation have on the probability function \(P_4(d) \). There are 24 possible order relations among the four bases A, T, C and G (4! permutations). The 24 probability functions \(P_4(d) \) corresponding to these permutations are plotted in Fig. 8(a) for Drosophila’s protein-coding sequence. As can be seen from the figure, the probability functions basically overlap, independent of the particular order relation between the bases, with a peak at \(d^* = 3 \). The invariance of \(P_3(d) \) under base permutations also holds for non-coding sequences as shown in Fig. 8(b), where \(d^* = 2 \) for intergenic sequences of Drosophila. This value of \(d^* \) suggests that non-coding sequences behave as random structures.

The “peaking at \(d^* = 3 \)” of the probability function \(P_4(d) \) seems to be a general characteristic associated with the protein-coding sequences of living organisms, not only with Drosophila. In Fig. 9 we show the probability functions obtained from protein-coding sequences of different organisms, and in all the cases the probability functions present their highest value at \(d^* = 3 \) (the mean distance \(\bar{d} \) is also very close to 3). The fact that the above characteristic is absent in non-coding genetic sequences may be interpreted in evolutionary terms. Genetic sequences directly involved in the protein-translation processes were selected (among other things) as to bring the distance between consecutive potential minima closer to 3, both in mean and frequency of occurrence.

\[p_{3/2} = \frac{P_4(3)}{P_4(2)}, \quad p_{3/4} = \frac{P_4(3)}{P_4(4)}. \] (14)

If the probability function \(P_4(d) \) associated with a given sequence has its highest value at \(d^* = 3 \), then the corresponding parameters \(p_{3/2} \) and \(p_{3/4} \) will both be greater than one. Otherwise, one or both of these parameters will be smaller than one.

Figure 10(a) is a plot of \(p_{3/2} \) vs. \(p_{3/4} \) for 1000 random sequences, each one consisting of 500 bases (which is a typical length of sequences coding functional proteins, Lewin, 1999). It can be seen from the figure that only a small fraction of the points (about 0.224) fall in region I, for which \(p_{3/2} > 1 \) and \(p_{3/4} > 1 \). The rest of the points fall in region II, in which \(p_{3/2} < 1 \) and \(p_{3/4} > 1 \).

\[f(x) = \frac{1}{2\pi} e^{-x^2/4}, \quad \int_{-\infty}^{\infty} f(x) \, dx = 1. \]
Therefore, the probability of having a random sequence, 500 bases long, whose consecutive potential minima are more often separated by a distance $d^* = 3$, is close to 0.224.

On the other hand, Figs 10(b)–(f) shows similar graphs, but using protein-coding sequences of real organisms. These graphs were constructed by analyzing short coding sequences 500 bases in length. The fraction of points falling in region I ($p_{3/2} > 1$ and $p_{3/4} > 1$) for the different organisms of Fig. 10 is summarized in the following table:

<table>
<thead>
<tr>
<th>Organism</th>
<th>Frac. region I</th>
</tr>
</thead>
<tbody>
<tr>
<td>Random sequence</td>
<td>0.224000</td>
</tr>
<tr>
<td>Chlorella vulg.</td>
<td>0.788235</td>
</tr>
<tr>
<td>Drosophila</td>
<td>0.780220</td>
</tr>
<tr>
<td>Deinococcus rad.</td>
<td>0.803525</td>
</tr>
<tr>
<td>Myc. tuberculosis</td>
<td>0.802643</td>
</tr>
<tr>
<td>Aeropyrum pernix</td>
<td>0.719973</td>
</tr>
</tbody>
</table>

These results show that protein-coding sequences are much more likely to have their consecutive potential minima separated by a distance $d^* = 3$.

To end this section we should make a further comment. The fact that the most probable distance d^* between consecutive potential minima is $d^* = 3$ for protein-coding sequences is a consequence of the order in which the bases or codons appear along the sequence and are not related to the relative weight (fraction) of their occurrence. For example, Fig. 11(a) shows the probability function $P(d)$ corresponding to a protein-coding sequence of *E. coli*, 45,000 bases in length. In Fig. 11(b) the codon composition, expressed as fractional occurrence, of this sequence is depicted. To construct this last graph, we labelled each codon in an arbitrary way, by assigning an integer number, from 0 for AAA up to 63 for GGG. On the horizontal axis...
the number of the codon is plotted, and on the vertical axis its fractional occurrence on the *E. coli* sequence. Finally, Fig. 11(c) shows the probability function $P_4(d)$ corresponding to a random sequence, of the same length and codon composition as the one used in Fig. 11(a). As can be seen, for the “randomized” *E. coli* sequence the most probable distance is no longer $d^* = 3$ as in Fig. 11(a), but $d^* = 2$.

5. Extended Chain: $M > 1$

In this section we consider the case in which the chain is composed of more than one single monomer. As mentioned before, this reflects the fact that the ribosome is not a point particle after all. At each given time, the ribosome interacts with the mRNA at several points, giving rise to a collective interaction. Electron microscopy has revealed that the mRNA thread passes across the ribosome throughout a tunnel about 10 nm long and 2 nm in diameter (Lewin, 1999). Since nucleotide length is about 0.5 nm, around 20 nucleotides may be in a position to interact simultaneously with the ribosome. Taking the above into account, we will work with a small chain, assuming $M = 10$ as a reasonable length.

In the step-like limit, the interaction potential equation can now be written, by eqn (3), using the variables $\{V_j\}$:

$$V_j = Kd_j \sum_{i=1}^{M} p_i.$$ \hspace{1cm} (15)

The main modification caused by using eqn (15) instead of eqn (7) for the random variables
is that they are no longer statistically independent. Due to the collective interaction between the chain and the polymer, these variables are strongly correlated. This makes the problem of finding the probability function $P_m(d)$ very difficult for analytical treatment.

Therefore, we will present only numerical results.

In our simulations, $P_m(d)$ presents an erratic behavior. The shape of this function strongly depends on the particular realization of monomer charges in the chain. For example, Fig. 12(a) shows the probability function $P_m(d)$ for a polymer 500 monomers in length and a particular realization of charges in a 10-monomer chain. The charge values we used to generate these graphs were $\{\pm 1, \pm 2\}$. Figure 12(b) shows a similar graph but for a different realization of charges along the chain (the realization of charges in the polymer was the same in both cases). As can be seen, these two graphs differ considerably: the first presents a very sharp maximum at $d^* = 2$, whereas the second does so at $d^* = 3$. Wide fluctuations in the probability function $P_m(d)$ were always present in our numerical simulations.

This fluctuating behavior did not occur in the single-monomer-chain case. It is apparent from Fig. 10(a) that the fluctuations of the probability function $P_m(d)$ in that case are rather small: the probability function has its highest value at $d = 2$ for the majority of the realizations (77.6%) in the case $M = 1$. Also, the fluctuations are concentrated in a small region of the $(p_3/2, p_3/4)$ plane.

In order to have an idea of the magnitude of the fluctuations of the probability function $P_m(d)$ in the extended-chain case, we can make use of the parameters $p_{3/2}$ and $p_{3/4}$ defined in expression (14). The fluctuations of the probability function in the extenden-chain case are shown in Fig. 13. To construct this figure, a polymer 500 monomers in length was used along with a 10-monomer chain. The charge values in the polymer as well as in the chain were again
The parameters $p_{3/2} = 2$ and $p_{3/4} = 4$ were calculated for 4500 charge realizations in the chain (the realization of charges in the polymer was the same in all the cases). Figure 13 is the plot of $p_{3/2}$ vs. $p_{3/4}$ for these 4500 realizations. Two remarks are worth mentioning about this figure:

- The points are spread out over a much wider region than in the single-monomer-chain case [Fig. 10(a)].
- The majority of the points fall in the region in which both $p_{3/2} > 1$ and $p_{3/4} > 1$.

The following table shows the fractions of the points falling in each of the four regions of the graph:

<table>
<thead>
<tr>
<th>Region</th>
<th>Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p_{3/2} > 1, p_{3/4} > 1$</td>
<td>0.52978</td>
</tr>
<tr>
<td>$p_{3/2} < 1, p_{3/4} > 1$</td>
<td>0.33800</td>
</tr>
<tr>
<td>$p_{3/2} > 1, p_{3/4} < 1$</td>
<td>0.07778</td>
</tr>
<tr>
<td>$p_{3/2} < 1, p_{3/4} < 1$</td>
<td>0.05444</td>
</tr>
</tbody>
</table>

Therefore, when a collective interaction between the polymer and the chain prevails, a remarkable property arises: the probability of having a random interaction potential, whose consecutive minima are more often separated by three monomers, is the largest.

6. Dynamics

Recent experimental evidence suggests that the ribosome–mRNA system presents a ratchet-like behavior in the protein synthesis translocation process (Frank & Agrawal, 2000). In this view, the ribosome is tightly attached to the mRNA thread in the absence of GTP. This is so because the channel in the ribosome through which the mRNA passes, is more or less closed. When a GTP molecule is supplied (and transformed into GDP), this channel opens leaving the mRNA thread free to move one codon. Subsequently the mRNA passage in the ribosome closes again, trapping the mRNA molecule.

In this clamping mechanism several physicochemical factors are involved, which if taken into account in detail would lead to complex dynamical equations hard to handle. In this work our approach is to look into the behavior of oversimplified molecular models which might capture some of the essential dynamical features of the system and may shed some light on how this mechanism could have arisen in the origin of life conditions.

In our modelling, the dynamics of the system is governed by the application of an external force F_{ex} to the chain in the horizontal direction, i.e. parallel to the polymer. By this means the chain will be forced to move along the polymer. In principle, the force F_{ex} may be time dependent, but we will restrict ourselves to a constant term. This force might come from a chemical pump (like GDP) or from any other electromagnetic force present in prebiotic conditions. The only purpose of this force in our model is to drive the chain along the polymer (which is assumed to be fixed, $N \rightarrow \infty$ limit), avoiding it from getting trapped in some of the minima of the polymer–chain interaction potential $V(x)$. Therefore, we will also assume that F_{ex} satisfies $|F_{ex}| > \max|\partial V(x)/\partial x|$.

Our analysis relies on Newton’s equation of motion in a high-friction regime, where inertial
effects can be neglected. This regime actually exists in biological molecular ratchets similar to the one we are considering (Bier, 1997; Jülicher et al., 1997). Under such conditions, Newton's equation of motion acquires the form

$$\frac{dx}{dt} = -\frac{\partial V_s(x)}{\partial x} + F_{ex},$$

(16)

where γ is the friction coefficient. In what follows, we will set $\gamma = 1$, which is equivalent to setting the measure of the time unit. The above, though a deterministic equation, gives rise to a random dynamics due to the randomness of the interaction potential $V_s(x)$. In order to start analysing this random dynamics, let us consider first the single-monomer-chain case $M = 1$. In this case, as before, we will refer to the chain simply as “the particle”.

6.1. SINGLE-MONOMER CHAIN: $M = 1$.

RANDOM SEQUENCES

In Fig. 14(a) we show a typical realization of the velocity of the particle $v(x)$ as a function of its position x along the polymer. This graph was constructed by solving numerically the equation of motion (16), using the fourth-order Runge–Kutta method. The parameter values used were $\alpha = 2$ and $\sigma = 0.5$, and the monomer charge values were $\{\pm 1, \pm 2\}$ (case $m = 4$). Figure 14(b) shows the local-transit times of the particle along a short segment of the polymer (40 monomers in length). This transit time is represented in arbitrary units, and was computed by counting how many time steps the particle spent in every spatial interval Δx throughout the polymer. In the graph shown, the value of Δx was 0.25. It is apparent from this figure that, in its way along the polymer, the particle spends more time in certain regions than in others, the former being more or less regularly spaced along the polymer.

In order to find out the spatial regularities in the dynamics of the system, it is convenient to take the Fourier transform of the velocity $v(x)$ of the particle. Let us call $\hat{v}(k)$ the Fourier transform of $v(x)$, k being the Fourier variable conjugate to x.

Figure 15 shows the Fourier power spectrum of the velocity, $|\hat{v}(k)|^2$, for two different realizations of monomer charges in the polymer. The

![Figure 14](image1.png)

Fig. 14. (a) Typical realization of the velocity of the particle along the polymer as a function of the position x. (b) Local transit time t as a function of the position x. Note that the particle effectively spends more time in certain regions of the polymer than in others. Also, note the regularity in the positions of the maxima of the local transit time.

![Figure 15](image2.png)

Fig. 15. Power spectrum of the velocity of the particle along the polymer, for two random realizations of monomer charges in the polymer. Note that there exist dominant frequencies k^* even though the charges of the polymer were assigned at random. These dominant frequencies correspond to spatial regularities $\lambda^* = 2\pi/k^*$ with values (a) $\lambda^* \approx 3.29$ and (b) $\lambda^* \approx 3.30$.

parameter values in Fig. 15(a) and (b) are \(\{ \sigma = 0.5, \alpha = 1 \} \) and \(\{ \sigma = 0.5, \alpha = 4 \} \) respectively. These graphs were computed for the case \(m = 4 \), using the charge values \(\{ \pm 1, \pm 2 \} \). From the figure, it is evident that there exists a dominant frequency \(k^* \) in the power spectrum of the velocity (the highest peak), whose corresponding spatial periodicity \(\lambda^* = 2\pi/k^* \approx 3.3 \). The power spectrum reveals a dynamical regularity in the motion of the particle throughout the polymer. This regularity is inherited from the one present in the random potential, in the sense that the particle spends more time in the minima than in the maxima. The consequence is a slowing down of the velocity nearly every three monomers, which is reflected in the power spectrum. Our interpretation is that the peak occurring in the power spectrum of the velocity conveys the information on the average distance \(\bar{d} \) between consecutive potential minima, which for the case \(m = 4 \) is \(\bar{d} \sim 3.4 \).

6.2. SINGLE-MONOMER CHAIN: \(M = 1 \)
REAL SEQUENCES

As in Section 4, we can assign the charges along the polymer in correspondence with the genetic sequence of real organisms. In order to do that, we will use the same base–charge correspondence as in expression (13). The objective is to find out how the dynamics of the system changes when using real genetic sequences instead of random ones. In what follows, the value of the parameters \(\alpha \) and \(\sigma \) will be 1 and 0.5, respectively.

The power spectrum of the velocity of the particle throughout the polymer, when using protein-coding sequences of different organisms, is shown in Fig. 16. To generate these graphs, short coding sequences of several organisms, each 10,000 monomers in length, were used. Two points are worth noticing in this figure. First, the peak in the power spectrum is much higher than 0. Influenza A virus

![Graphs](image)

Fig. 16. Power spectrum of the velocity of the particle using protein-coding sequences of different organisms to assign the charges on the polymer. Note the very sharp peaks in all the spectra. The above means that the dynamics generated by protein-coding sequences presents very well-defined periodicities. Also, note that these spatial periodicities are almost equal to 3. The peak around \(k = 4 \) is a resonant frequency (second harmonic) of the first peak.
in the random case. This indicates that there is a much more well-defined periodicity in the dynamics generated by interaction potentials when protein-coding sequences are used. Second, the spatial periodicity reflected in the peak of the power spectrum is much closer to 3 than in the random case.

This dynamical behavior is not present when real but non-coding sequences are used. For example, in Fig. 17 we show the power spectrum of the velocity of the particle along the polymer, for two cases in which the monomer charges in the polymer were assigned in correspondence with intergenic regions of two organisms. As can be seen, the structure of such spectra is similar to the one obtained in the random case. In this sense, intergenic regions again seem to have a random structure.

The fact that the power spectrum corresponding to protein-coding sequences exhibits a very sharp periodicity at $\lambda^* \approx 3$, whereas the one corresponding to non-coding sequences does not, has already been reported in the literature (Lobzin & Chechetkin, 2000). Nonetheless, in these previous works the power spectrum of the “bare” genetic sequences is analysed, namely, without considering any kind of interaction potential or dynamical behavior. What we have shown here, though, is that this “structural” periodicity around 3 transforms into a dynamical periodicity in the motion of the particle along the polymer.

6.3. EXTENDED CHAIN: $M = 10$

The most interesting dynamics occurs when an extended chain is interacting with the polymer. In such a situation, a collective interaction prevails. At every moment there are several contact points between the chain and the polymer. As we have already pointed out, collective interaction between the chain and the polymer gives rise to a widely fluctuating probability function $P_m(d)$. The same occurs with the power spectrum of the velocity of the chain along the polymer. However, these fluctuations, far from being annoying, produce a much richer dynamical behavior than in the single-monomer-chain case.

In Fig. 18 we show the power spectra of the velocity of the chain along the polymer for two different random realizations of monomer charges in the chain. The charges in the polymer were the same in both cases. These graphs were constructed with a polymer 500 monomers in length and a 10-monomer chain. The parameter values used were $\sigma = 0.5$ and $\tau = 1$. Also, the charge values were, as above $\{\pm 1, \pm 2\}$. From the figure, it is apparent that the power spectrum of the velocity exhibits a very well-defined dominant frequency, even though the charges in both the polymer and the chain were assigned at random. The power spectrum in Fig. 18(a) presents a dominant frequency corresponding to a spatial periodicity $\lambda^* \approx 2$, whereas the corresponding periodicity in the power spectrum shown in Fig. 18(b) is $\lambda^* \approx 3$. We should explain this difference.

The power spectrum appearing in Fig. 18(a) was constructed by using a polymer and a chain whose associated probability function $P_d(d)$ has the same shape as the one of Fig. 12(a). Namely, for this system the probability function has a very high value at $d^* = 2$. On the other hand, the power spectrum in Fig. 18(b) corresponds to a system whose probability function has a very

![Fig. 17. Power spectrum of the velocity of the particle using non-coding sequences of S. cerevisiae (yeast) and C. elegans (worm). In this case the spatial periodicity is weaker (or absent) than in Fig. 16. It seems that the non-coding sequences of real organisms have a random-like structure.](image-url)
sharp peak at $d^* = 3$, as the one shown in Fig. 12(b). From our numerical simulations, we can conclude that whenever the probability function has a sharp maximum at a distance d^*, the power spectrum of the velocity also presents a sharp peak corresponding to a spatial periodicity $\lambda^* = d^*$.

As we have seen, in the collective-interaction case the most probable configurations are those in which the probability function $P_4(d)$ has its highest value at $d^* = 3$ (see Fig. 13). Therefore, if we assign at random the monomer charges in the polymer and in the chain, with high probability we will come up with a dynamics possessing a very well-defined periodicity: the chain will move along the polymer in “jumps” whose length is nearly three monomers.

7. Summary and Discussion

The results presented throughout this work suggest a possible scenario for the origin of the three-base codon structure of the genetic code. In this scenario, primitive one-dimensional molecular machines, initially with a random structure, exhibited a regular dynamics with a “preference” for a movement in steps of three bases. By “steps” we mean a slowing down of the velocity of the chain along the polymer, nearly every three monomers [see Fig. 14(b)]. Even in the simplest case in which the chain consists of only one monomer, the above dynamical regularity is apparent. We can think of the dynamics of primitive molecular machines as being “biased toward three”.

The preceding property is quite robust inasmuch as it hardly depends on the particular kind of interaction between the polymer and the chain. On the one hand, the kind of electrostatic potentials we have used is representative of the actual interaction potentials between particles occurring in nature. These potentials are characterized in our model by the parameter σ. We have also seen that the distribution distances between neighboring maxima and minima along the interaction potential, characterized by the probability function $P_m(d)$, does not depend on this parameter (for small values of σ), i.e. it will be the same whether the interaction is coulombian or dipolar or of any other (electrostatic) type.

On the other hand, the spatial distribution of interaction potential minima also does not depend on the particular values of the monomer charges $\{q_i\}$ and $\{p_i\}$, as long as these values are of the same order of magnitude. An important feature that the charges must comply with is that they take more than two different values. This allows for an order relation to be established among the different types of monomers, leading to a maxima and minima structure of the interaction potential. The probability function $P_m(d)$, which gives the probability of two consecutive minima being separated by a distance d, only depends on m, namely, on the number of different types of monomers. As m increases, the mean distance \bar{d} between consecutive potential minima approaches three. Nevertheless, in the particle (single-monomer-chain) case, the most probable distance is $d^* = 2$ (for $m>2$).
Still in this particle case, considerable changes take place when the charges along the polymer are assigned in correspondence with protein-coding genetic sequences of real organisms. In this case, not only is the mean distance d between neighboring potential minima nearly three, but also the most probable one, d^*, happens to be three. This is a remarkable property of protein-coding sequences, perhaps acquired throughout evolution. Furthermore, the fact that this “refinement” is absent in non-coding sequences of real organisms, strongly suggests that it is a consequence of the dynamical processes involved in the protein synthesis mechanisms.

This interpretation is supported by the results obtained when the dynamics of the particle moving along the polymer is considered. In the random sequence case, there are dominant frequencies in the power spectrum of the particle velocity related with the spatial regularities of the interaction potential. Moreover in the protein-coding sequence case, the power spectrum of the velocity shows a very well-defined periodicity corresponding almost exactly to a spatial distance $\lambda^* = 3$. Again, this behavior does not occur for non-coding sequences of real organisms, which are not involved in the translation processes.

A richer dynamics emerges when the chain is composed of several monomers. In this, more realistic, collective-interaction case, the probability function $P_m(d)$ presents very wide fluctuations, depending on the particular assignment of monomer charges in the chain. Nevertheless, the most probable configurations are those for which the probability function has its highest value at $d^* = 3$. For these configurations, the power spectrum of the chain velocity along the polymer exhibits a very well-defined spatial periodicity at $\lambda^* \approx 3$.

Our results suggest an origin of life scenario in which primordial molecular machines of chains moving along polymers in quasi-one-dimensional geometries, that eventually led to the protein synthesis processes, were biased toward a dynamics favoring the motion in “steps” or “jumps” of three monomers. The higher likelihood of these primitive “ribosomes” may have led to the present ribosomal dynamics where mRNA moves along rRNA in a channel conformed by the ribosome. Dynamics may have acted in this sense as one of the evolutionary filters favoring the three-base codon composition of the genetic code.

We would like to thank Leo Kadanoff, Sue Coppersmith, Haim Diamant and Cristian Huepe for very useful discussions and corrections. This work was sponsored by the DGAPA-UNAM project IN103300, the MRSEC Program of the National Science Foundation (NSF) under Award Number DMR 9808595 and by the NSF Program DMR 0094569. M. Aldana also acknowledges CONACyT-México for a post-doctoral grant.

REFERENCES

