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ABSTRACT

We evaluate the horseshoe drag exerted on a low-mass planet embedded in a

gaseous disk, assuming the disk’s flow in the coorbital region to be adiabatic. We

restrict this analysis to the case of a planet on a circular orbit, and we assume a

steady flow in the corotating frame. We also assume that the corotational flow

upstream of the U-turns is unperturbed, so that we discard saturation effects.

In addition to the classical expression for the horseshoe drag in barotropic disks,

which features the vortensity gradient across corotation, we find an additional

term which scales with the entropy gradient, and whose amplitude depends on

the perturbed pressure at the stagnation point of the horseshoe separatrices.

This additional torque is exerted by evanescent waves launched at the horseshoe

separatrices, as a consequence of an asymmetry of the horseshoe region. It has a

steep dependence on the potential’s softening length, suggesting that the effect

can be extremely strong in the three dimensional case. We describe the main

properties of the coorbital region (the production of vortensity during the U-

turns, the appearance of vorticity sheets at the downstream separatrices, and

the pressure response), and we give torque expressions suitable to this regime of

migration. Side results include a weak, negative feed back on migration, due to

the dependence of the location of the stagnation point on the migration rate, and

a mild enhancement of the vortensity related torque at large entropy gradient.

Subject headings: Planetary systems: formation — planetary systems:

protoplanetary disks — Accretion, accretion disks — Methods: numerical —

Hydrodynamics
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1. Introduction

Planetary migration is the process by which forming planets undergo significant

variations of their semi-major axis, as a result of the tidal interaction with the

protoplanetary disk. The migration of low mass planets (Mp . 10 − 15 M⊕), called type I

migration, has long posed a problem for scenarios of planetary formation. Believed to be

systematically inwards and fast (Ward 1986, 1997), the migration of these planets all the

way to the central object should be much shorter than the disk’s lifetime. This raised the

issue of why many planetary systems, including our own, harbor planets that are not very

close to their star, and this triggered a lot of theoretical efforts, during the last decade,

to exhibit mechanisms that would halt, or even reverse type I migration. Long thought

to be isothermal (which noticeably simplified the analytical studies as well as numerical

simulations), the tidal response of the disk was only recently considered in a more realistic

manner, by including an energy equation. Morohoshi & Tanaka (2003) noticed that

the disk’s response was significantly different in an optically thin disk (described in the

approximation of the shearing sheet, in which there is no net torque between the planet

and the disk), while Paardekooper & Mellema (2006) observed in high resolution, three

dimensional calculations that increasing the opacity of the disk could halt or reverse the

migration of low-mass planets. This result was subsequently interpreted, in the adiabatic

limit, as a result of the advection of entropy within the horseshoe region (Baruteau &

Masset 2008; Paardekooper & Papaloizou 2008), giving rise to a new term of the so-called

horseshoe drag. This term is of crucial importance to theories of planetary migration since

it may halt or revert migration (Baruteau & Masset 2008; Kley & Crida 2008; Paardekooper

& Papaloizou 2008). While there is clearly a link between the advection of entropy and the

existence of an additional term to the horseshoe drag, which undoubtedly scales with the

radial gradient of entropy (Baruteau & Masset 2008), there is not yet a fully self-consistent

treatment of the dynamics of the horseshoe region in an adiabatic disk. Even worse, it is
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far from clear where the additional contribution originates. So far, it has been interpreted

as due to overdense and underdense regions which appear at the horseshoe U-turns as

the result of the advection of entropy in a disk that maintains a pressure balance. These

regions are strikingly apparent in numerical simulations. They end abruptly, by a contact

discontinuity, at the downstream separatrices (see e.g. Baruteau & Masset 2008). It is easy

to realize that the contribution arising from the perturbed density in these regions scales

with the entropy gradient, and has the correct sign (as inferred from numerical simulations).

Nevertheless, a simple attempt to perform a full horseshoe drag calculation by integrating

on the horseshoe streamlines reveals a paradox. The standard horseshoe drag calculation

consists in integrating over the upstream flow, on each side of the planet, the mass flow

rate inside of the stream tubes, multiplied by the jump of angular momentum experienced

by the fluid particles that execute a horseshoe U-turn in these tubes (Ward 1991). The net

result corresponds to the rate of exchange of angular momentum between the planet and

the gas of the coorbital region. On the upstream side of the horseshoe U-turns, the mass

flow rate is that of the unperturbed disk, and it cannot depend on the equation of state

of the gas. Therefore, if the torque due to a given stream tube depends on the equation

of state, this should be due to the fact that the jump of angular momentum during the

horseshoe U-turn depends on the equation of state. For the sake of definiteness, consider

the side of the horseshoe region where we expect the material to become underdense, and

assume that the disk has a vanishing vortensity gradient. In order to decrease the density

downstream of the horseshoe U-turns, the flow has essentially two possibilities: streamlines

can move apart (hence horseshoe U-turns are not radially symmetric), or the velocity on

the streamlines can differ from the Keplerian velocity, and in this case be larger than the

Keplerian velocity in the corotating frame, so as to lead to an expansion of the material. In

other words, a fluid particle originally on a streamline at −x = r − rp (r being its orbital

radius and rp that of the planet) is not mapped to x but to x + ξ, and its velocity in the
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corotating frame is not V = 2A(x + ξ) but V = 2A(x + ξ) + v (here A = (1/2)r∂rΩ/∂r

is the first Oort’s constant, that quantifies the Keplerian shear at the planet’s orbit). The

perturbed elongation ξ and perturbed velocity v adjust so as to create an underdense

region downstream of the horseshoe U-turns. A simple relationship between ξ and v can

be found using the conservation of the Bernoulli invariant in the corotating frame. For the

sake of simplicity, we assume that here there is no pressure gradient, hence the variation of

enthalpy during the horseshoe U-turn cancels out for an adiabatic flow. The conservation

of the Bernoulli constant therefore reduces to the conservation of the Jacobi constant J ,

which reads J = V 2/2 + 2ΩAx2. To lowest order in v and ξ, the conservation of the Jacobi

constant yields 2Bξ + v = 0 (where B = Ω + A is the second Oort’s constant). The jump of

angular momentum of fluid elements is, to lowest order, ∆j = 2rpBx + 2rpB(x + ξ) + rpv,

hence it is ∆j = 4rpBx, the very same value of the jump that is used in classical,

barotropic estimates of the horseshoe drag. It seems therefore that there is no room, in a

classical horseshoe drag formulation, for a dependence on the thermodynamics of the gas,

whereas such dependence is evidenced by numerical simulations3. In this work we address

this apparent contradiction. We lay out our assumptions, and define our notation and

conventions in section 2. We introduce a formalism that leads to a rigorous horseshoe drag

expression in section 3. This expression features a dependence on the entropy gradient, as

expected. We call the corresponding term the adiabatic torque excess. We compare this

adiabatic torque excess to results of numerical simulations in section 4. We present the

features of the horseshoe region that most differ from the barotropic case in section 5. These

are essentially the appearance of vorticity sheets at the downstream separatrices and a mild

production of vortensity all over the downstream sides of the horseshoe region. We also

3Although our simple example is limited to a case with no pressure gradient and no

vortensity gradient, we also expect an adiabatic torque excess in this case.
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work out the pressure and density response over the coorbital region, and identify the term

that is related to the adiabatic torque excess. In section 6, we give a simple interpretation

of the origin of the adiabatic excess, and we provide suitable torque expressions in section 7.

We then discuss additional issues in section 8, and draw our conclusions in section 9.

2. Prerequisite

2.1. Notation

We consider a planet of mass Mp orbiting a star of mass M∗, on a fixed circular orbit of

radius a and of angular frequency Ωp. The planet is immersed in a gaseous protoplanetary

disk, such that the planetary orbit is coplanar with the disk and prograde. We use Σ to

denote the disk’s surface density, P to denote the vertically integrated pressure, and T to

denote the vertically averaged temperature. We assume that the disk’s gas follows the ideal

gas law, which reads:

P =
RΣT

µ
, (1)

in which R is the ideal gas constant and µ is the mean molecular weight. The disk

isothermal sound speed is therefore:

ciso
s =

√

RT

µ
, (2)

while adiabatic sound waves propagate at the speed:

cs =

√

γRT

µ
, (3)

where γ is the usual adiabatic index. We shall consider the gas entropy in two flavors.

The first of those, which we denote with a lower s, is oftentimes used in the astrophysical

literature owing to its simplicity, as its reads:

s =
P

Σγ
. (4)
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Nevertheless, we shall also need an expression for the entropy that is compliant with the

original definition of entropy (the entropy exchanged is the heat exchanged divided by the

temperature). We denote the latter with an upper S:

S =
R

(γ − 1)µ
log

(

P

Σγ

)

=
R

(γ − 1)µ
log s. (5)

Another thermodynamics variable that we shall need is the enthalpy η, which reads for an

ideal gas:

η =
R
µ

· γ − 1

γ
T. (6)

In what follows we shall assume, for the sake of simplicity, that R/µ = 1, which amounts

to changing the units of temperature, entropy and enthalpy, without loss of generality.

We note T0 the temperature of the unperturbed disk, which we assume to be uniform.

We identify a location in the disk by its distance r to the star and its azimuth φ with

respect to the planet. The gas has a radial velocity vr and an azimuthal velocity vφ in

the frame corotating with the planet (hence its angular frequency in an inertial frame is

Ω = vφ/r + Ωp). The radius of corotation rc is the location in the unperturbed disk where

the material has same angular frequency as the planet: Ω(rc) = Ωp. We will make use of

the distance x to corotation: x = r − rc. We also consider the disk pressure scaleheight

H = cs/Ω, and the aspect ratio h = H/r.

The gravitational potential exerted on the disk can be decomposed as the sum of the

stellar potential Φ∗ = −GM∗/r, of the planetary potential Φp and of the indirect potential

Φi. The expression of these last two terms are respectively:

Φp = − GMp

(r2 − 2ra cosφ + a2 + ǫ2)1/2
, (7)

where ǫ is the softening length of the planetary potential, and

Φi =
GMp

a2
r cos φ = qaΩ2

pr cos φ, (8)
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where q = Mp/M∗.

Using the notation of Baruteau & Masset (2008), we define the gradient of vortensity

across corotation as:

V =
d log (Σ/ω)

d log r
=

3

2
+

Σc

rc

dΣ

dr

∣

∣

∣

∣

rc

, (9)

where ω = (1/r)∂r(r
2Ω) is the vertical component of the flow vorticity, and where Σc is the

unperturbed surface density at the corotation radius. Note that instead of the vortensity

properly speaking, which is ω/Σ, we shall oftentimes consider its inverse, Σ/ω. One reason

for this choice is that, if we consider that the flow is that of the unperturbed disk, the

perturbations of the inverse of the vortensity can directly be converted into perturbations

of density, whose impact on the torque is straightforward. Finally, we define the gradient of

entropy across corotation as:

S =
1

γ

d log s0

d log r
=

γ − 1

γ
r∂rS0. (10)

2.2. Basic equations

The governing equations of the flow are the equation of continuity, the Euler equation

and the energy equation, together with the closure relationship provided by the equation of

state. The equation of continuity reads, in the frame corotating with the planet:

∂tΣ +
1

r
∂r(Σrvr) +

1

r
∂φ(Σvφ) = 0. (11)

The Euler equations read, respectively in r and φ:

∂tvr + vr∂rvr +
vφ

r
∂φvr − rΩ2

p − 2Ωpvφ −
v2

φ

r
= −∂rP

Σ
− ∂rΦ, (12)

and

Dtj = −∂φp

Σ
− ∂φΦ, (13)
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where Dt ≡ ∂t + vr∂r +
vφ

r
∂φ and j = r2Ω is the specific angular momentum. The equation

of state that we adopt is that of ideal gases, which reads P = ΣT . In that case, the internal

energy density is e = p/(γ − 1), and the energy equation reads:

ΣDt

( e

Σ

)

= −p~∇.~v. (14)

This equation does not include source or sink terms of energy, as we assume the flow to be

adiabatic.

2.3. Conventions

Since different authors represent the horsehoe region in different ways, we find it

useful to refer to properties of this region in a manner independent of the representation.

Orienting the azimuth rotation-wise, and assuming that, in the corotating frame, the planet

is located at azimuth φ = 0, we say that something occurs in front of the planet if it occurs

at φ > 0, and behind or on the rear side of the planet if it occurs at φ < 0. Similarly, we

refer to the upstream part of the horseshoe streamlines as the set of fluid elements that

have not performed yet a horseshoe U-turn, whereas the downstream part correspond to

the set of fluid elements that have already performed their U-turn.

2.4. Assumptions

Our main assumptions are as follows:

• We assume that there is only one stagnation point in the vicinity of the planet.

This is usually not the case in barotropic situations, in which one has generally two

X-stagnation points on the corotation, on each side of the planet (see e.g. Masset

et al. 2006, or paper I). In the adiabatic case, nevertheless, we usually have only one
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stagnation point, unless either the entropy gradient is very small, or the potential’s

softening length is very small. We shall therefore assume in what follows that there is

no ambiguity when we refer to the stagnation point. We will make some additional

remarks on this assumption in section 8.1.

• We assume that the initial temperature field is uniform. This assumption is very

similar to the assumption of global isothermality that is required in the isothermal

case to carry out a rigorous horseshoe drag calculation (see paper I). This assumption

is required in order for the quantity that we shall define in section 2.5 to be conserved

along a fluid element’s path. We will mention in section 8.3 how our results can be

generalized to the case of an arbitrary temperature profile.

• Finally, we assume that the flow is in steady state in the frame corotating with the

planet, and that the flow upstream of the horseshoe U-turns is unperturbed. We note

that these two assumptions are contradictory: reaching a steady state implies that

the flow has executed many horseshoe librations, hence the upstream flow cannot be

that of the unperturbed disk. Nevertheless, we restrict ourselves, in this analysis, to

a study of the unsaturated torque value. This implies that we consider the flow on a

time scale (i) longer than what it takes to execute a horseshoe U-turn, so that the

flow has reached a steady state in some region of interest enclosing the planet, (ii)

shorter than the horseshoe libration time, so that in the region of interest any fluid

element has executed at most one horsehoe U-turn.

2.5. A useful invariant

We consider the Jacobi-like Bernoulli constant whose expression is, in steady state:

BJ =
r2(Ω − Ωp)

2 + v2
r

2
+ Φ∗ + Φp + Φi −

1

2
r2Ω2

p + η. (15)
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Since BJ is conserved along the path of a fluid element, the quantity defined as:

G = BJ − T0S (16)

is also conserved in an isentropic flow. Far from the planet, assuming a purely azimuthal

motion, we can write, from Eqs. (15) and (16):

∂rG = (Ω − Ωp)rω + (T − T0)∂rS, (17)

where we have used the rotational equilibrium, which can be deduced from Eq. (12) by

letting vr ≡ 0, and which reads:

∂rφ∗ + ∂rη = rΩ2 + T∂rS. (18)

As a consequence, in the unperturbed flow (T ≡ T0), G is maximal at corotation, as is BJ

in an isothermal disk, and it admits the following expansion to second order in x:

G = Gc + 2ABx2, (19)

where Gc is the value of G at corotation, A = (1/2)rdΩ/dr is the first Oort’s constant

and B = (1/2r)d(r2Ω)/dr is the second Oort’s constants, which are to be evaluated at

corotation.

3. A horseshoe drag expression

3.1. Initial formulation

We consider a domain D of the disk consisting of an angular sector centered on the star

that encloses the planet, as depicted in Fig. 1. The azimuth of the boundaries (I) and (III)

is chosen sufficiently large so that the material that crosses them can be considered to

have a purely circular motion, while the boundaries (II) and (IV) enclose the horseshoe
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region, and are chosen much further away from corotation than the horseshoe separatrices,

so that they can be considered as circular. We note that in a real situation, this last

requirement is hindered by the wake, which corresponds to epicyclic motion excited at

Lindblad resonances. Nevertheless we discard this behavior in the present work, which

amounts to considering an isolated corotation region. We want to avoid flux of material

into the domain D through the boundaries (II) and (IV), so we adopt streamlines to define

them. These two boundaries are therefore associated to some value of the G invariant. For

convenience, we use the same value for G on both sides, and we note it G∞.

The torque exerted on the planet by the material included in the domain D reads:

Γ =

∫ ∫

D

Σ(∂φΦ) dφ rdr , (20)

We can transform the integrand of Eq. (20) as follows:

Σ(∂φΦ)r = −r∂φP − ∂φ(vφΣj) − ∂r(rΣvrj), (21)

where we have made use of the assumption of a steady state in the corotating frame, and

where we have used Eqs. (11) and (13).

Since the boundaries of the domain D are sufficiently far from the planet that we can

neglect radial motions, Eq. (20) can be recast as:

Γ =

[

∫ r+
∞

r−∞

[rP + r(Ω − Ωp)Σj]dr

]R

F

, (22)

where r+
∞ (r−∞) is the radius of the outer (inner) streamline that has G = G∞. The R and

F notation at the right bracket of Eq. (22) means that the integration over r has to be

performed respectively at the rear or front side of the domain D (boundaries III and I in

Fig. 1). In Eq. (22), the first term of the integrand represents the pressure torque exerted

on the material enclosed within the domain D, while the second term represents the budget
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Fig. 1.— Sketch of the domain of integration (light grey) enclosing the horseshoe region

(dark grey). The dashed line shows the corotation. As can be seen here, there is usually

an offset between the planet, and the stagnation point of the horseshoe region (the point of

intersection of the boundaries of the horseshoe region, i.e. the separatrices). There is also

generally an offset between the corotation radius and the orbital radius of the planet, but it

is much smaller.
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of angular momentum brought to this region by advection. Since the flow is steady in

the corotating frame, the angular momentum of this domain is constant in time and the

torque is therefore integrally transmitted to the planet. We recognize in the second term

of the integrand of Eq. (22) the classical horseshoe drag expression (Ward 1991, 1992;

Masset 2001; Masset & Papaloizou 2003; Masset et al. 2006; Paardekooper & Papaloizou

2009a), but this equation also shows the pressure contribution, which has been overlooked

in previous analysis.

3.2. A simplifying assumption

We assume that in the unperturbed flow, far from the planet, lines of constant entropy

and of constant G coincide. This is not exactly true: in the unperturbed disk the lines

of constant entropy are circles centered on the primary, while, owing to the presence of

the potential’s indirect term given by Eq. (8), the iso-G lines have a variable distance to

corotation in the horseshoe region (an extreme example being provided by the tadpole

separatrix). Our assumption is therefore more appropriate of a situation in which we

discard the indirect term of the potential, or of a shearing sheet situation. Nevertheless,

we shall make hereafter this assumption, anticipating that our torque expression does not

depend sensitively on it.

This assumption allows to define unambiguously the derivative ∂GS, which can be

obtained from the measure of S and G on two neighboring streamlines, since these variables

are intrinsic to the line. The quantity ∂GS is therefore also intrinsic to the streamline, and

hence conserved along it.

In the unperturbed disk, this derivative has the following expression:

∂GS =
∂rS0

4ABx
. (23)
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It therefore diverges at corotation.

Mass conservation yields a relationship which will be useful to evaluate the production

of vortensity during horseshoe U-turns. We consider a horseshoe stream tube, of width δG.

The mass flux across the tube is:

Ṁ =
δG

∂rG
r(Ω − Ωp)Σ. (24)

We can transform Eq. (17) to write:

(1 − δT · ∂GS)∂rG = (Ω − Ωp)rω, (25)

where δT = T − T0. This eventually gives the mass flux:

Ṁ = δG
Σ

ω
(1 − δT∂GS). (26)

We can therefore write the following relationship:

Σ

ω
(1 − δT∂GS)

∣

∣

∣

∣

d

=
Σ

ω

∣

∣

∣

∣

u

, (27)

where the subscript d (u) respectively denote the quantities downstream (upstream) of a

horseshoe U-turn.

3.3. An alternate horseshoe expression

We now perform a change of variable in the integrals of Eq. (22). We choose as the

new variable of integration the value of the G invariant. We have therefore to split the

intervals of integration into intervals over which the dependency of G on r is continuous

and monotonic. Anticipating on the results exposed in the following sections, we note that

the value of the G invariant is not necessarily the same for the front and rear separatrices,

as shown in Fig. 2. We denote their respective values with G+ and G−.
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Fig. 2.— Sketch of the flow topology that shows the value of the G invariant along the

separatrices. The value of the G constant is continuous across the upstream separatrices,

while it displays a jump across the downstream separatrices. The different intervals of

integration mentioned in the text are shown along the y-axis. Intervals (1) and (5) are

meant to extend up to r−∞, and intervals (4) and (8) are meant to extend up to r+
∞.



– 17 –

Using Eq. (25), Eq. (22) is therefore recast as:

Γ =

[

∫ r+
∞

r−∞

rpdr +

∫ Gc

G∞

(1 − δT∂GS)
Σ

ω
jdG (28)

+

∫ G−

Gc

(1 − δT∂GS)
Σ

ω
jdG +

∫ G∞

G+

(1 − δT∂GS)
Σ

ω
jdG

]

R

−
[
∫ G−

G∞

(1 − δT∂GS)
Σ

ω
jdG +

∫ Gc

G+

(1 − δT∂GS)
Σ

ω
jdG

+

∫ G∞

Gc

(1 − δT∂GS)
Σ

ω
jdG +

∫ r+
∞

r−∞

rpdr

]

F

We split the integration on the downstream side of the horseshoe U-turns in order to

account for the possible discontinuity of G at the separatrices. More precisely, the first

integral over G in Eq. (28) corresponds to an integral over intervals (1) and (2) (see Fig. 2),

the two following integrals (from Gc to G− and G+ to G∞) correspond respectively to

intervals (3) and (4). In a similar manner, on the front side, the intervals of integration

over G are, in order of appearance, (5), (6) and eventually (7) and (8) together. We also

note that in Eq. (28) we have substituted the total pressure P by the perturbed pressure p,

since the unperturbed pressure field is axisymmetric and does not contribute to the pressure

torque.

Other comments are in order regarding the transformation of Eq. (22) into Eq. (28).

The integrand in Eq. (22) is regular, and although it may display discontinuities (we shall

see that Ω is discontinuous at the downstream separatrices, as well as Σ) it does not

contain any singularity. In contrast, the integrands of Eq. (28) feature the vorticity, which

is singular wherever Ω is discontinuous. Since the dependency of G upon r on the different

intervals of integration is regular, the integrals on G must exclude any singularity (simply

because the contribution of the integrand of Eq. (22) on any vanishingly small interval in

r is vanishingly small, and the same must be true of the equivalent integral in G). As a
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consequence, any integral of Eq. (28) which has a boundary corresponding to a downstream

separatrix must be understood as excluding the possible singularities at this boundary. For

instance, the second integral over G in Eq. (28) must be understood as:
∫ G−

Gc

(1 − δT∂GS)
Σ

ω
jdG ≡ lim

δG→0+

∫ G−+δG

Gc

(1 − δT∂GS)
Σ

ω
jdG. (29)

We also note that including such singularities would be mathematically ill-defined anyway,

because they lie on the edge of the integration domain.

Eq. (28) can be further simplified as explained below. The specific angular momentum

j of a fluid element that has some value of the G invariant can be written as:

j = j0 + δj, (30)

where j0 is the specific angular momentum of fluid elements in the axisymmetric,

unperturbed flow which have same value of G, and δj is the difference, that we wish to

evaluate. Azimuthally far from the planet, Eq. (16) can be recast as:

G =
r2(Ω − Ωp)

2

2
+ Φ∗ −

1

2
r2Ω2

p + η − T0S, (31)

where we have neglected the indirect term (as discussed in section 3.2). Differentiating

Eq. (31), we can write, to first order in the perturbation:

0 = rδr(Ω2 − 2ΩΩp) + r2δΩ(Ω − Ωp) + ∂rΦ∗δr +
p

Σ0

. (32)

The left hand side of Eq. (32) cancels out because, as stated above, we consider a fluid

element that has same value of G in the unperturbed flow and in the perturbed one. Using

the rotational equilibrium of the unperturbed flow, and writing δP = ∂rP0δr + p, we can

recast Eq. (32) as:

0 = (Ω − Ωp)δj +
p

Σ0
. (33)

We therefore have an expression for δj that involves the perturbation of pressure p.

Since we consider the variation of angular momentum of a fluid element for a constant value
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of G, it is natural to change to G the variable of the integrals of the pressure torque. The

generic integrand of Eq. (28) therefore becomes:

Σ

ω
(1 − δT∂GS)j +

rp

∂rG
=

1

∂rG
[Σr(Ω − Ωp)j0(G) + Σr(Ω − Ωp)δj + rp] (34)

=
Σ

ω
(1 − δT∂GS)j0(G) +

1

∂rG

Σ0 − Σ

Σ0
rp,

where we have used Eqs. (25) and (33).

The last term of the right hand side of Eq. (34) cancels out to first order in the

perturbation. Furthermore, the parity in φ of the perturbed density and of the perturbed

pressure (which will be studied in section 5.3) is such that the rear and front contributions

of this term to Eq. (28) cancel out. Therefore we can discard the pressure torque in Eq. (28),

provided we use the unperturbed value of the specific angular momentum j0. Since G has a

maximum at corotation, the notation j0(G) contains an ambiguity, as one has to specify if

j0 has to be evaluated inside or outside of corotation. In what follows we use the notation

j±0 to remove this ambiguity, and we drop the G dependency for the sake of brevity.

The fact that one can neglect the pressure torque and use the value of the unperturbed

angular momentum has been demonstrated in paper I for isothermal disks. It is linked

(i) to the fact that the evanescent pressure waves excited by the perturbation of the flow on

the downstream side of the horseshoe U-turns do not alter the total horseshoe drag, even

though they redistribute the perturbation of density and therefore change the local torque

density, and (ii) to the fact that the impact on the torque of the rear-front asymmetry due

to the feed back of the evanescent waves cancels out.

Using the simplification described above, we transform Eq. (28) as follows:

Γ =

[
∫ Gc

G∞

Σ

ω

∣

∣

∣

∣

0−
j−0 dG +

∫ G−

Gc

Σ

ω

∣

∣

∣

∣

0−
j+
0 dG +

∫ G∞

G+

Σ

ω

∣

∣

∣

∣

0+

j+
0 dG

]

R

(35)
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−
[
∫ G−

G∞

Σ

ω

∣

∣

∣

∣

0−
j−0 dG +

∫ Gc

G+

Σ

ω

∣

∣

∣

∣

0+

j−0 dG +

∫ G∞

Gc

Σ

ω

∣

∣

∣

∣

0+

j+
0 dG

]

F

.

Apart from discarding the pressure contribution and changing j into j0 in Eq. (35), we

have introduced an additional simplification by making use of Eq. (27), and by referring

to the unperturbed, upstream value of Σ/ω(1 − δT∂GS). We explicitly specify by the use

of the index 0± whether the unperturbed vortensity must be considered outside or inside

corotation.

We note (see Fig. 2) that the integrals over the intervals (1) and (5), on the one hand,

and over the intervals (4) and (8) on the other hand, exactly cancel each other, hence the

torque expression can further be reduced to:

Γ = −
∫ Gc

G−

Σ

ω

∣

∣

∣

∣

0−
∆j0dG +

∫ Gc

G+

Σ

ω

∣

∣

∣

∣

0+

∆j0dG, (36)

where ∆j0 = j+
0 − j−0 . The corotation torque has therefore a very similar expression to the

usual (barotropic) case, when integrated over a Bernoulli-like variable (Masset & Papaloizou

2003), except that the domain of integration does not have the same limits on the front

side and on the rear side. Denoting by Gs the arithmetic mean of the neighboring values

G− and G+, we can transform Eq. (36) into:

Γ ≈
∫ Gc

Gs

(

Σ

ω

∣

∣

∣

∣

0+

− Σ

ω

∣

∣

∣

∣

0−

)

∆j0dG − Σ0

2B
∆js

0∆G, (37)

where ∆js
0 is the value of ∆j0 for G = Gs, and where ∆G = G+ −G−. The left term of the

R.H.S. of Eq. (37) is the standard horseshoe drag, which scales with the vortensity gradient,

and the right term, which we hereafter denote with Γ1, is an additional contribution which

arises from relaxing the barotropic hypothesis. Evaluating this contribution therefore

amounts to evaluating ∆G. This is the purpose of the following section.
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3.4. Discontinuities at the stagnation point

The discontinuity in G that we wish to evaluate arises from the presence, at the

downstream separatrices, of a contact discontinuity (see Fig. 2). Formally, an inspection

of Eq. (15) and (16) reveals that this discontinuity can come, far from the planet, from a

discontinuity in the enthalpy, in the entropy, and in the azimuthal velocity (the other terms

being continuous across the separatrices). The situation becomes simpler at the stagnation

point, where the velocity vanishes and where the discontinuity in G is entirely accounted

for by a discontinuity of entropy and enthalpy. We have therefore:

∆G = η+ − η− − T0(S+ − S−), (38)

where the + (−) sign refers to quantities outside, or in front of (inside, or behind) the

stagnation point. Eq. (38) can be transformed into:

∆G = (s
1/γ
+ − s

1/γ
− )

γ

γ − 1
P (γ−1)/γ

s − T0

γ − 1
(log s+ − log s−), (39)

where Ps is the value of the pressure at the stagnation point (this value is well-defined

at this point, on the contrary to the other thermodynamics variables, since the pressure

field is continuous). Using the first order expansions: s
1/γ
+ − s

1/γ
− ≈ (s+ − s−)s

1/γ−1
0 /γ and

log s+ − log s− ≈ (s+ − s−)/s0, we are led to:

∆G =
1

γ − 1
s
1/γ−1
0 (P (γ−1)/γ

s − P
(γ−1)/γ
0 )(s+ − s−), (40)

where P0 and s0 are the pressure and the entropy at the location of the stagnation point, in

the unperturbed disk.

In the particular case of a small perturbation: |Ps − P0| ≪ P0, the discontinuity in G

takes the form:

∆G =
1

γ

ps

Σ0

s+ − s−
s0

, (41)

where ps = Ps − P0 is the pressure perturbation at the stagnation point.
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In order to proceed in the evaluation of ∆G, we use the conservation of the G invariant

along the upstream separatrices. At this stage of the derivation, we note that numerical

simulations reveal that the horseshoe region in the adiabatic regime is rather asymmetric,

so that the distance of the separatrices depend on the quadrant under consideration (rear

vs. front, and upstream vs. downstream). Denoting with xR
u the distance of the upstream

separatrix from corotation on the rear side, we have, by evaluating G respectively on that

separatrix far from the planet, by means of Eq. (19), and at the stagnation point:

G− = Gc + 2AB(xR
u )2, (42)

and

G− = Gc − ηc + η− + Φs
p + T0(Sc − S−), (43)

where Φs
p is the planetary potential at the stagnation point, ηc and Sc are respectively

the enthalpy and entropy at corotation in the unperturbed disk, and where we have used

the relationship Gc = Φ∗(rc) − (1/2)r2
cΩ

2
p + ηc − T0Sc to derive Eq. (43). From Eqs. (42)

and (43) we deduce:

2AB(xR
u )2 = η− − ηc + Φs

p + T0(Sc − S−). (44)

In a similar manner, denoting with xF
u the distance of the upstream separatrix from

corotation on the front side, we have:

2AB(xF
u )2 = η+ − ηc + Φs

p + T0(Sc − S+). (45)

From Eq. (40), we have:

∆G =
1

γ

[

(

s0

s±

)1/γ

η± − ηc

]

s+ − s−
s0

, (46)

hence we have:

2∆G =
1

γ
(η+ + η− − 2ηc)

s+ − s−
s0

, (47)



– 23 –

where we have discarded the additional term that scales with S2. Similarly, adding Eqs. (44)

and (45) yields:

2AB[(xR
u )2 + (xF

u )2] = η+ + η− − 2ηc + 2Φp, (48)

where we have omitted the term T0(2Sc − S− − S+), which scales as h2Ω2x2, and is hence

negligible compared to the left hand side. Using Eqs. (47) and (48), we obtain:

∆G =
1

γ

{

AB[(xR
u )2 + (xF

u )2] − Φs
p

} s+ − s−
s0

(49)

Since the entropy is conserved during the advection along the upstream separatrices,

we have:

s+ − s−
s0

= γS xF
u + xR

u

a
. (50)

The discontinuity of G reads finally:

∆G =
{

AB[(xR
u )2 + (xF

u )2] − Φs
p

}

S xF
u + xR

u

a
(51)

and the associated torque excess is, using Eq. (37):

Γ1 = −(xF
u + xR

u )2Σ0S
{

AB[(xR
u )2 + (xF

u )2] − Φs
p

}

, (52)

where we have used the equality ∆js
0 = 2Ba(xR

u + xF
u ). Since Ps > P0, ∆G has same sign

as S, and the torque excess scales with the negative of the entropy gradient, as already

observed in previous works (Baruteau & Masset 2008; Paardekooper & Papaloizou 2008).

We can render Eq. (52) a bit more compact by defining the averaged upstream half-width:

xs =

√

(xR
u )2 + (xF

u )2

2
(53)

Considering that the relative asymmetry between the rear and front part of the horseshoe,

albeit larger than typically observed in barotropic situations (see paper I), remains

moderate, we have:
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xs ≈
1

2
(xR

u + xF
u ), (54)

and therefore:

Γ1 ≈ −4x2
sΣ0S

(

2ABx2
s − Φs

p

)

, (55)

This expression displays explicitly the dependency of the torque excess on the entropy

gradient. As we shall see hereafter, it also brings in a dependency on the potential’s

softening length, as both xs and Φs
p depend on this quantity.

4. Comparison to numerical simulations

We have undertaken a number of numerical simulations in order to test the validity

of Eq. (55), which quantifies the adiabatic torque excess. We briefly describe the code

used and the parameters adopted, then we assess the correctness of Eq. (55) from series of

calculations in which we vary the entropy gradient or the softening length.

4.1. Numerical set up

We used the code FARGO4 (Masset 2000a,b; Baruteau & Masset 2008) in its adiabatic

and isothermal versions. Unless otherwise stated, the polar mesh extends from rmin = 0.4 to

rmax = 1.8, and has a resolution of 1200 × 1200, the zone boundaries being evenly spaced.

The planet is located at r = 1, and it is held on a fixed circular orbit. Its mass ratio to the

primary is q = 3 · 10−6 (i.e. the planet has one Earth-mass, if the central object has a solar

mass). The disk aspect ratio at r = 1 is h = 0.05. The adiabatic index of the gas is γ = 1.4.

Damping boundary conditions (as described in de Val-Borro et al. 2006) are used at the

4See: http://fargo.in2p3.fr



– 25 –

inner and outer edges of the mesh. The frame corotates with the planet, and the Coriolis

force is conservatively implemented (Kley 1998). The surface density is a power law of the

radius: Σ(r) ∝ r−σ.

In our first set of calculations, the slope of the surface density is set to σ = +3/2

(hence the vortensity related part of the corotation torque cancels out), and the potential

softening length ranges from ǫ̂ = 0.1 to 10. The logarithm of ǫ̂ is evenly spaced, and 21

calculations are performed, so that ǫ̂ = 10i/10−1, with 0 ≤ i ≤ 20. These calculations were

performed both for an adiabatic flow (for brevity we denote them with EAi,0≤i≤20) and for

an isothermal flow (we denote them with EIi,0≤i≤20). Since the initial temperature field is

flat, the index of the entropy gradient is S = σ(γ − 1)/γ = +3/7. We therefore expect a

negative torque excess in the adiabatic case.

In our second set of calculations, the slope of the surface density ranges from σ = −4

to σ = 4, the softening length being kept fixed at ǫ̂ = 0.3. We have divided the slope

interval into 41 calculations such that σi = −4 + 0.2 × i (0 ≤ i ≤ 40). These calculations

were performed both for an adiabatic flow (we denote them with SAi,0≤i≤40) and for an

isothermal flow (we denote them with SIi,0≤i≤40). Since the initial temperature field is flat,

the index of the entropy gradient is

S =
γ − 1

γ
σ. (56)

It therefore ranges from −8/7 to +8/7.

4.2. A note on the half width of the horseshoe region

As underlined in section 3.4, the horseshoe region in adiabatic calculations is more

asymmetric than in the isothermal case. It also has a different dependence, more complex,

on the disk parameters. This can be seen in Fig. 3, in which we plot the different values of
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xs inferred from a streamline analysis on the runs of the series SAi. In particular, the naive

expectation that

xadi
s = xiso

s /γ1/4 (57)

is true only in the barotropic case (S = 0). For non-vanishing entropy gradients, the

averaged upstream half width exhibits a V-shaped dependence on S, whereas the isothermal

case is insensitive to this parameter. This more complex dependence of the width of the

horseshoe region has a consequence on the evaluation of the torque excess. A simple

estimate of the latter is:

Γr
1 = ΓA − ΓI

γ
, (58)

but this estimate assumes xs,adi = xs,iso/γ
1/4, so that one gets rid of the vortensity related

part of the horseshoe drag, retaining only the excess. This is not exactly true, since the

adiabatic case has a horseshoe region in general larger than expected. In order to fully

eliminate the vortensity part of the estimate, one should therefore use the expression:

Γc
1 = ΓA − ΓI

γ
− 3

4
VΩ2

pΣ0

(

x4
s,adi −

x4
s,iso

γ

)

(59)

We shall hereafter refer to the estimate given by Eq. (58) as the rough or global estimate

(hence the r superscript), and to the estimate of Eq. (59) as the corrected estimate (hence

the c superscript).

4.3. Dependence on the softening length

We compare the torque excess, when ǫ̂ varies, as provided by Eq. (55) and as provided

by a direct comparison of the torque value in adiabatic and isothermal calculations. The

results are presented in Fig. 4. We see that there is a good overall agreement between the

direct measure of Γc
1 and the result of Eq. (55), as the relative difference is at most ∼ 10 %

over the range 0.1 ≤ ǫ̂ ≤ 1. The value of xs, as measured on the output at t = 40 orbits and
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Fig. 3.— Half width xs of the horseshoe region in the adiabatic case (diamonds), as a

function of the entropy gradient S. We use the arithmetic mean of xR
u and xF

u as an estimate

of xs. The dotted line shows xF
u , and the dashed line shows xR

u . The triangles show the half

width of the horseshoe region (divided by γ1/4) obtained from runs with same parameters,

but with an isothermal equation of state. The rear/front averaged upstream half width has

a characteristic V-shape. The data presented here are obtained from the series of runs SA

and SI.
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Fig. 4.— Torque excess as a function of the softening length. The thick dashed line shows

the excess Γc
1 directly measured by comparing the runs EAi and EIi, by means of the Eq. (59)

– or (58), since the vortensity gradient is zero in this series of runs –, while the thick curve

with diamonds shows the prediction of Eq. (55). The dash-dotted and dotted curves show the

result of Eq. (55) in which one respectively adopts a constant value for xs or for Φs
p (namely

the value measured for ǫ̂ = 1). The grey dashed line shows the prediction of Eq. (96), which

will be derived in section 7.
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φ = ±1 rad, is used in the evaluation of Eq. (55). Similarly, the location of the stagnation

point is determined, and used to evaluate the planetary potential that features in the

bracket of Eq. (55). We note that in all the runs of this series, there is a unique stagnation

point in the planet’s vicinity, hence there is no ambiguity in its determination.

There is an approximate ǫ̂−1 scaling of the torque excess in the range 0.1 ≤ ǫ̂ ≤ 1

(Baruteau 2008). Fig. 4 shows that this trend results partly from the increase of xs as ǫ̂

decreases (dotted curve), and partly from the increase (in absolute value) of the planetary

potential as the softening length decreases (dot-dashed line).

4.4. Dependence on the entropy gradient

We now evaluate how well Eq. (55) accounts for the torque excess in the second series

of runs (SA and SI, see section 4.1), in which we vary the entropy gradient.

The results are presented in Fig. 5. They show a satisfactory agreement between the

corrected estimate of the torque excess (given by Eq. [59], and represented by the thick

dashed line), and the theoretical prediction of Eq. (55), represented by the thick solid line.

This figure also shows that the azimuth of the stagnation point oscillates as the entropy

gradient varies. The oscillations are significantly large, and can be unambiguously identified

as a finite resolution issue, for the following reasons:

• when the entropy gradient varies, the corotation radius is slightly shifted. If one

displays the azimuth of the stagnation point as a function of the corotation radius,

the period of the oscillations is equal to the radial resolution.

• We have carried out higher resolution calculations (2000 × 2000, not shown here, as

they were performed over a small number of orbits and a steady state was not reached

in the vicinity of the planet), which were ran for 10 orbits only (the location of the
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Fig. 5.— Torque excess as a function of the entropy gradient. The thick dashed line shows

the corrected direct estimate Γc
1 given by Eq. (59), while the thin dotted line shows the

rough estimate Γr
1 of Eq. (58). The thick solid line shows the result of Eq. (55), in which

we use the planetary potential at the stagnation point and the horseshoe width, given by

a prior streamline analysis performed at t = 40 orbits for each calculation (and corrected

as explained in the text). The inset plot shows the azimuth of the stagnation point, as

a function of the entropy gradient (lower axis) and as a function of the corotation radius

(upper axis). The vertical dotted lines show the zone boundaries. The thick solid lines of

the inset plot shows linear regression fits of the stagnation point location, aimed at getting

rid of the spurious oscillations. These fits were used in Eq. (55) and gave the thick solid

curve of the main plot. The grey dashed line shows the prediction of Eq. (96), which will be

derived in section 7.
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stagnation point hardly varies afterwards). They also yield oscillations of the azimuth

of the stagnation point with a shorter period and smaller amplitude.

Given the large amplitude of the oscillations of the stagnation point for the resolution that

we were able to use for this series of runs, we need to smooth the φs(S) function. This

is done simply by performing a linear regression fit, independently for the rear and front

stagnation points, as shown in the inset plot of Fig. 5. The fitted value are then used in

Eq. (55), which yields the solid thick curve.

The value of S = +3/7 used in the series of runs EA and EI corresponds to a location

where the error due to the oscillations of the azimuth of the stagnation point is small. We

therefore understand from this plot why there is a good agreement between the measured

and predicted adiabatic excess in Fig. 4. The fact that there is a good agreement for all

values of ǫ̂ in Fig. 4 suggests that the error on the location of the stagnation point is

essentially due to the location of the corotation with respect to the mesh (which does not

depend on the softening length). We recover the fact that, for ǫ̂ = 0.3, |Γ1| ∼ 1.5 · 10−11.

It is noteworthy that, on the left part of the plot of Fig. 5, there is a sizable difference

between the rough and corrected estimates of the excess (thick dashed curve and dotted

curve). The reason for this is straightforward, since for these values of the entropy gradient,

the surface density increases steeply outwards, hence the vortensity related corotation

torque is large and positive. For large values of |S|, the adiabatic horseshoe half width is

significantly larger than xiso
s /γ1/4 (see section 4.2), therefore a fair fraction of the adiabatic

excess is actually due to the boost of the vortensity related torque.
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5. Properties of the coorbital region

We describe in this section the properties of the coorbital region that differ from the

barotropic case. The most salient feature is the appearance of vorticity sheets along the

downstream separatrices. We also derive the production of vortensity within the horseshoe

region. The latter is weak, however, and does not have any impact on the horseshoe drag.

We finally discuss the properties of the pressure disturbances arising from the horseshoe

dynamics, and identify which component of these is responsible for the adiabatic torque

excess.

5.1. Vorticity sheets

The discontinuity of the G-invariant that we evaluated in section 3.4 at the stagnation

point also exists along the downstream separatrices, as can be seen in Fig. 2. Far from the

planet, one can write the expression of the G discontinuity across a downstream separatrix

as:

∆G =
1

γ

p′s
Σ0

s+ − s−
s0

+
r2

2
[(Ω+ − Ωp)

2 − (Ω− − Ωp)
2], (60)

where we have performed the same series of transformations as in Eqs. (38) to (41), where

p′s is the perturbed pressure at the separatrix, and where Ω+ (Ω−) is the angular velocity

on the outside (inside) of the separatrix. If we assume in a first approximation that the

perturbation of pressure at the separatrix, far from the planet, is much smaller than at the

stagnation point, most of the G-discontinuity is ensured by the jump of azimuthal velocity,

i.e. by a vorticity sheet. Denoting with ∆v = r(Ω+ − Ω−) the magnitude of the vorticity

sheet (i.e. the singular part of the flow’s vorticity reads: ω = ∆vδ(x−xs), where δ is Dirac’s

delta function), and assuming that the jump is sufficiently small so that we can write:

Ω+ + Ω− − 2Ωp =
4Ax

a
, (61)
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we are led to:

∆v =
∆G

2Ax
=











Γ1

4a|A|x2
sΣ0

at the rear separatrix

− Γ1

4a|A|x2
sΣ0

at the front separatrix
(62)

Therefore, if there is a positive torque excess (hence S < 0), then there is a negative

(positive) vorticity sheet in front of the planet (at the rear of the planet), and vice-versa.

In order to illustrate this, we show in Fig. 6 the vorticity field in a run with S = 1/3

and similar characteristics as those of section 4.1, except that the resolution was set to a

2000 zones in azimuth and 8000 zones in radius. We measure an adiabatic torque excess

Γ1 = −1.14 · 10−11 M∗Ω
2
pr

2
p, by performing a run with similar characteristics and an

isothermal equation of state. This allows us to predict the jump of angular velocity at the

downstream separatrices by the use of Eq. (62). The results are depicted in Fig. 7, which

shows the profile of perturbed azimuthal velocity in the rear and front of the planet, as well

as the prediction of Eq. (62). We note that the jumps are not symmetric, although there is

a good agreement between the theoretical prediction of the velocity jump on the one hand,

and the average value of the rear and front velocity jumps on the other hand. One reason

for that is that the perturbed pressure at the separatrices is not negligible compared to the

perturbed pressure at the stagnation point. Another one is the asymmetry of the horseshoe

region: both separatrices do not have same value of |(Ω+ + Ω−)/2 − Ωp|.

We note that for the run presented here, for which S > 0, we have a negative torque

excess, hence a negative perturbation of surface density in front of the planet, and a

positive one behind the planet (Baruteau & Masset 2008). The fact that we have a

positive perturbation of azimuthal velocity in front of the planet (dashed curve of Fig. 7)

is compatible with an expansion of the material and consequently a decrease of surface

density, because this perturbed velocity acts along with the Keplerian shear. Reciprocally,

we have also a positive perturbation of velocity behind the planet, therefore opposed to the

Keplerian shear, and compatible with a compression of material, hence an increase of the
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Fig. 6.— Vorticity field in the vicinity of an Earth-mass planet at t = 64 orbits. The

characteristics of the run are described in the text. The vorticity sheets are clearly apparent

on the separatrices. Also, we note that the sign of the vorticity does not reverse at the

stagnation point, but somewhere further on the downstream rear separatrix. The reason for

this is that the perturbation of pressure is larger over the portion of the separatrix involved

than at the stagnation point, as it crosses the wake. We also note that the vorticity is not

singular on the upstream separatrices, which results from the fact that G is continuous across

them.
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Fig. 7.— Perturbed azimuthal velocity at t = 64 orbits, as a function of radius, at φ = 1 rad

(dashed line) and at φ = −1 rad (solid line). The vertical bar at the left shows the expected

magnitude of the velocity jump, obtained from a measure of the torque excess using Eq. (59),

and using the result in Eq. (62).
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surface density.

Finally, we mention that the vortensity is ill-defined at the separatrices. Whereas the

vorticity is definable, the integral of its singular part yielding the azimuthal velocity jump,

the vortensity would appear, on the separatrix, as the ratio of a singularity (that of the

vorticity) by a non-continuous function (owing to the contact discontinuity, the surface

density undergoes a jump at the separatrix), which is mathematically undefined. On the

contrary, in the locally isothermal case (see paper I), the surface density field is continuous

and the vortensity is defined everywhere.

5.2. Production of vortensity

On the contrary to a barotropic situation, for which the vortensity is necessarily

conserved along the streamlines (Lovelace et al. 1999), some thermodynamical driving of

the vortensity may occur during the horseshoe U-turns. We also note that far from these

U-turns, the vortensity is conserved again, since all quantities depend only on r, hence the

pressure and density gradients are both radial, hence aligned.

Using Eq. (23) and (27), we are left with:

Σ

ω

∣

∣

∣

∣

d

=
Σ

ω

∣

∣

∣

∣

u

(

1 − δT
∂rS0

4ABx

)

. (63)

We comment that we have used the relationship ∂SG = −∂rS0/(4ABx) to obtain Eq. (63).

The bracket of this equation corresponds indeed to material downstream of a horseshoe

U-turn. During a U-turn, ∂GS is conserved, while x, to lowest order, reverses its sign, and

Eq. (23) has been written for the unperturbed disk, that is to say upstream of horseshoe

U-turns. The perturbation of temperature, within the horseshoe region, can be easily

worked out assuming the conservation of entropy and an unperturbed pressure. This yields
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(Baruteau & Masset 2008):

δT = −2T0S
x

rp
. (64)

Using Eqs. (63) and (64) we get the production of vortensity during a U-turn:

δ

(

Σ

ω

)

=
Σ

ω

∣

∣

∣

∣

d

− Σ

ω

∣

∣

∣

∣

u

≈ γT0S2

2(γ − 1)ABr2
p

· Σ0

2B
. (65)

We illustrate this in Fig. 8, which shows that there is a satisfactory agreement between

the vortensity on the downstream side (here, outside, at the rear of the planet) and the

vortensity predicted by Eq. (65). We also note in this figure how the vortensity near

corotation differs from the expected value, both on the inside and on the outside. On the

outside, this is expected because the material very close to corotation did not have sufficient

time to perform a horseshoe U-turn. On the inside, for 0.996 ≤ r ≤ 0.999, libration on

tadpole streamlines brings vortensity from the outside, thereby yielding a perturbation of

vortensity in the upstream region. More generally, the fact that streamlines are not exactly

circular alters the initial profile of vortensity in this region. We also note the spike at the

outer separatrix, resulting from the vorticity sheet presented in section 5.1, where we also

pointed out that, formally, the vortensity is ill-defined on the downstream separatrices.

We can make the following observations regarding Eq. (65):

• There is always a positive production of vortensity during the U-turns (hence a

decrease of Σ/ω), regardless of the sign of S, and regardless of the location (at the

rear or in front of the planet).

• The production of vortensity is independent of the planet mass, and it occurs

uniformly all over the downstream sides of the horseshoe region. While wider

horseshoe U-turns bring the material closer to the planet, where the driving of

vortensity is more efficient because the gradients of pressure and density are larger,

they are performed faster than the more narrow U-turns, which occur further away
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Fig. 8.— Radial profile of Σ/ω at t = 48 orbits and φ = −1 rad (solid line). The tilted

dotted line shows the initial, unperturbed profile, while the tilted dashed line shows this

profile symmetrized with respect to the corotation radius. It is therefore this profile that

one would except if vortensity were conserved. If one takes into account the production of

vortensity given by Eq. (65), one obtains the dot-dashed line, which is in correct agreement

with the observed profile.
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from the planet. Eq. (65) shows that both effects cancel out, resulting in a flat profile

of vortensity perturbation.

• If we translate the production of vortensity into a perturbation of density, assuming

an unperturbed velocity field, then this perturbation has same sign on both sides

of the planet. This is compatible with the fact that the bulk term of the horseshoe

drag, i.e. the first term of Eq. (37), is the same as in a barotropic situation. The

weak thermodynamical driving of vortensity observed within the horseshoe region has

therefore no impact on the torque.

• The increase of vortensity after the first horseshoe U-turn is followed by a decrease of

same magnitude at the following U-turn (in the idealized, inviscid situation considered

here). This can be seen from Eq. (27), in which we revert the d and u indexes. The

vortensity of a given fluid element therefore oscillates between its initial upstream

value and its subsequent downstream value, and it does not undergo any drift on the

long term.

5.3. Pressure disturbances

In this section we wish to determine the shape and amplitude of the pressure

disturbances which arise in the coorbital region as the result of the horseshoe dynamics.

In paper I, we have seen that the perturbation of vortensity was entirely accounted for

by evanescent waves, so that the density or pressure response in the coorbital region was

smoothed over a length-scale H . Here, we expect that the perturbation will be split into

a localized part, which ends at the contact discontinuity at the separatrix, and a smooth

part, corresponding to the launch of evanescent waves.

Far from the planet, we assume purely circular motion, hence we can describe the
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disk’s perturbed state with the perturbed azimuthal velocity δvφ(x), the perturbed surface

density δΣ(x), and the perturbed pressure δP (x). We search the relationship between this

set of perturbed functions, and the perturbations of vortensity δw(x) and entropy δs(x).

We note that x has an arbitrary sign for the rest of this section. If we consider a radial

profile in front of the planet, where the downstream separatrix lies inside of corotation,

then xs is meant to be a negative quantity.

Using Eq. (12), the disk’s rotational equilibrium yields:

−2Ωδvφ +
∂xδP

Σ0

+
∂xp0

Σ0

δΣ

Σ0

= 0 (66)

Anticipating on what follows, we note that while the radial derivative of an unperturbed

quantity ξ0 is of order ξ0/r, the radial derivative of a perturbed quantity δξ is of order

δξ/H. The second term of Eq. (66) is therefore r/H times larger than the third one. This

equation can therefore be simplified as:

−2Ω0δvφ +
∂xδP

Σ0
= 0 (67)

Denoting l = Σ/ω the inverse of the vortensity, we can write:

δl =
δΣ

ω0

− Σ0

ω2
0

∂xδvφ, (68)

while the perturbation of entropy reads:

δs =
δP

Σγ
0

− γs0

Σ0
δΣ. (69)

Deriving Eq. (67) with respect to x, keeping only the derivatives of rapidly varying terms,

i.e. the perturbations, and using Eqs. (68) and (69) so as to keep only the variable δP , we

obtain the following differential equation:

δP − c2
s

κ2
∂2

x2δP = c2
sΣ0

δu

u0

, (70)
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where κ = (2Ω0ω0)
1/2 is the epicyclic frequency, u = s1/γl, and where we recall that cs

is the adiabatic speed of sound (see section 2.1). The general solution of Eq. (70) is the

convolution product of its right hand side by the Green’s kernel K(x), which is the solution

of:

δP − c2
s

κ2
∂2

x2δP = δ(x), (71)

and whose expression is:

K(x) = (2γ1/2H)−1e−|x|/(γ1/2H), (72)

where we have specialized to the Keplerian case, for which H ≡ ciso
s /Ω = cs/(γ1/2κ). This

kernel represents the pressure response to a singular perturbation of u at x = 0, of weight
∫

u(x)dx = u0/(c2
sΣ0). We note that K(x) has a unitary weight:

∫ +∞

−∞

K(x)dx = 1. (73)

Once the pressure response is known, one can infer the density response from Eq. (69):

δΣ =
Σ0

γ

(

δP

P0
− δs

s0

)

. (74)

Denoting δΣd = δP/c2
s and δΣl = −Σ0δs/(γs0), we have:

δΣ = δΣd + δΣl. (75)

In Eq. (75), the subscript d stands for diffuse, since this component of the surface density

scales with the perturbed pressure, which is smoothed over a length-scale H by the action

of evanescent waves, as it involves the convolution of an arbitrary function by the kernel K

defined at Eq. (72). Similarly, the subscript l stands for localized, since this component of

the surface density scales with the perturbation of entropy, which is advected by the flow,

and remains localized within the horseshoe region.

Since δP is the convolution product of K by c2
sΣ0δu/u, we have:

δΣd = K ∗ Σ0
δu

u0
, (76)
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where ∗ denotes the convolution product. Similarly, we have:

δΣl = −Σ0

γ

δs

s0
. (77)

The expression of the entropy perturbation is straightforward, as the latter is simply

advected by the horseshoe dynamics. Since s ∝ rγS , we have δs/s0 = −2γSx/rp, hence

(Baruteau & Masset 2008):

δΣl = 2Σ0Sx/rp. (78)

The expression of the perturbation of u involves three components: the singular contribution

of the vorticity sheet at the separatrix, the advection of the vortensity and entropy by the

horseshoe dynamics, and the production of vortensity given by Eq. (65). We have mentioned

in section 5.1 that the vortensity is ill-defined on the downstream separatrices, since the

surface density is discontinuous there. Nevertheless, the jumps of surface density are of

order xs/a, hence to lowest order the vortensity can be estimated to be ∆vδ(x − xs)/Σ0 at

the separatrices. We can therefore estimate the perturbation in u:

δu

u0
= −∆vδ(x − xs)

ω0
− 2x

rp
(S + V) +

δlprod

l0
, (79)

where we have used the fact that u ∝ rS+V , and where, using Eq. (65):

δlprod

l0
=

γT0S2

2(γ − 1)ABr2
p

. (80)

For the sake of brevity, in what follows, we will keep the notation δlprod, remembering that

it corresponds to a uniform production of vortensity that scales with S2, and which has

same sign on both sides of the planet. The perturbation of density finally reads:

δΣ = K ∗
[

−l0∆vδ(x − xs) −
2x

rp
Σ0(S + V) +

Σ0δlprod

l0

]

+
2x

rp
Σ0S. (81)

Eq. (81) features two kinds of terms:

• bulk terms (second to fourth term), which are defined for 0 ≤ x ≤ xs, prior to a

possible convolution by K;
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• an edge term (the first one), which is defined at x = xs, prior to the convolution by K.

We better understand why the bulk of the horseshoe drag has the same expression as in

the barotropic case. The convolution by K, which describes the spread of disturbances by

evanescent waves, does not change the linear mass (
∫

x
δΣ(x)dx) of the perturbation, since K

has a unit weight. Therefore, the torque exerted on the planet by the diffuse and localized

stripes of perturbed density is the same as if all the disturbances remained localized, i.e.

as if we omitted the convolution product in Eq. (81). If we discard the singularity, which

corresponds to the edge term (and, as we shall see, to the adiabatic torque excess), and

the production of vortensity, which has same sign on both sides of the planet and does

not affect the torque, we are left with the middle term of the bracket of Eq. (81), and the

trailing, localized term, which simplify as:

δΣ = −2x

rp

Σ0V, (82)

exactly as in the barotropic case, prior to the convolution by the Green’s kernel (see

paper I). These properties are schematically depicted in Fig. 9.

This first term of Eq. (81) corresponds to a single evanescent wave excited at the

separatrix. It is the perturbed density associated with this wave that exerts the adiabatic

torque excess, since it is the only component that scales with the entropy gradient, owing

to the simplification mentioned above. This is in agreement with Eq. (37), which shows

that the torque excess comes from an edge effect rather than a bulk effect, since it relies on

a minute difference between the limit of the integration domain between the rear and front

sides. We can check from Eq. (62) that this edge term has correct sign. Since the perturbed

density associated to this wave has a sign opposite of ∆v, the perturbed density has same

sign as Γ1 in front of the planet, and an opposite sign behind the planet, as expected.

A consequence of these properties is that, contrary to early expectations, it is not the

localized component of the surface density that exerts the torque excess. The latter does
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Fig. 9.— Schematic representation of the different terms of Eq. (81), in their order of ap-

pearance in the right hand side. The vertical arrow on the left plot represents the singularity

at the separatrix. The first three terms represent the pressure supported density response,

which is obtained by a convolution of the response depicted by the evanescent wave kernel

of Eq. (72). The last term remains confined to the horseshoe region and is associated to the

entropy wave. The terms are here depicted for x > 0, i.e. behind the planet. In front of

the planet, they would have an opposite sign, except the third term, corresponding to the

production of vortensity, which would remain negative and has therefore no impact on the

torque.
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exert a torque on the planet, which can be estimated either by means of a partial horseshoe

drag calculations (Baruteau & Masset 2008), or by direct summation (Paardekooper &

Papaloizou 2008). It is found to have same sign as the excess, and same order of magnitude

in usual setups. Nevertheless, this partial torque has to be added to the torque exerted by

the diffuse component which scales as S+V, and the result is a corotation torque that scales

only with the vortensity gradient. This can be expected on general grounds. The splitting

of the perturbation into a localized component (an entropy wave) and pressure supported

waves is very similar to the procedure used by numericists who use characteristic tracing

to predict Riemann states, except that here the pressure supported waves are evanescent

instead of propagative. The entropy perturbation regulates how much of the perturbation

goes into the entropy wave, but it is the vortensity perturbation that dictates the total

amount of mass perturbation, and it is therefore logical that the bulk of the corotation

torque scales with the vortensity gradient.

Owing to the simplicity of the functions involved in the convolution product, it is

possible to write explicitly the expression of the pressure perturbation. This is done

in appendix A. We show in Fig. 10 that the resulting expression, given by Eq. (A5),

satisfactorily reproduces the perturbations of pressure observed in numerical simulations.

Namely, we transform the profile of perturbed pressure from a numerical simulation as

follows, in order to filter out the term arising from the production of vortensity, which is

poorly reproduced by a rectangular function, as it has been shown in Fig. 8:

δPsym(x) =
1

2
[δP (φ = 2π − 1, x) − δP (φ = 1,−x)] (83)

We then evaluate the theoretical expression of the perturbed pressure given by Eq. (A5), in

which we use for Γ1 the estimate provided by Eq. (59) (corresponding to the thick dashed

curve of Fig. 5), and for xs the arithmetic mean of xd
F and xd

R, determined by a streamline

analysis. Owing to the symmetrization performed in Eq. (83), we discard the term in δlprod
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Fig. 10.— Profile of pressure perturbation for the calculations EA0 (a), EA8 (b), EA16 (c),

EA24 (d), EA32 (e) and EA40 (f). The solid line shows the profile observed in numerical

simulations, evaluated using Eq. (83), and the dashed line shows the result of Eq. (A5).

The dotted line shows the partial result of Eq. (A5), in which we omit the first term, which

corresponds to the isolated evanescent wave at the separatrix corresponding to the torque

excess. The results of the plot d have been multiplied by −3, in order to make it more legible.

This case corresponds to an approximate cancellation of the pressure term stemming from

the S + V term and of the single evanescent wave excited at the separatrix. The case of the

plot e is also of interest: for this calculation, V +S ≈ 0, as can be seen from the dotted line,

hence the pressure perturbation almost exclusively consists of the single evanescent wave

excited at the separatrix, which is responsible for the torque excess.
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in Eq. (A5). The correct agreement between the observed and predicted pressure profile

indirectly confirms that it is indeed the single evanescent wave excited at the separatrix

that is responsible for the torque excess. We also recover a feature noticeable in Fig. 5.

While the plots a and f of Fig. 10 correspond to the same absolute value of the entropy

gradient (namely 8/7), the single evanescent wave has a much larger amplitude in the case

S > 0 (i.e. for the plot f), almost of a factor of two, as can be seen from the distance

between the dotted and dashed curves. This is compatible with the fact that, in Fig. 5, we

found that the corrected torque excess, in absolute value, is almost a factor of two larger at

S = 8/7 than at S = −8/7.

6. Interpretation: an intrinsic asymmetry

We have seen in paper I how the excitation of evanescent pressure waves alters the

width of the horseshoe region, in a different manner in front of the planet and behind the

planet, so that it renders the horseshoe region asymmetric. This asymmetry, however,

was found to have virtually no impact on the horseshoe drag, while the separatrices all

shared the same value of the Bernoulli invariant. In the adiabatic case considered here,

the evanescent waves launched downstream of the U-turns (see section 5.3) also alter the

horseshoe width and render the horseshoe region asymmetric, but there is another source

of asymmetry that preexists the launch of evanescent waves. Let us assume for a moment

that the disk is composed of non-interacting test particles, so that there are no evanescent

waves excited by the horseshoe motion, but let us also assume that the separatrices of the

horseshoe region are given by the G+ and G− values, as in an adiabatic disk (the expansion

of G to lowest order in x, given by Eq. (19), is independent of the disk’s thermodynamics.)

A different value for G− and G+ implies a different upstream half width of the horseshoe

region. Such a case is depicted in Fig. 11. The test particle A, which lies outside of the
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separatrix, is circulating, and therefore mapped to A′ by the flow. Similarly, the test

particle B lies inside of the separatrix, and thus is librating. It is therefore mapped to B′

by the horseshoe motion. There is therefore an over-density in the darker stripe in the

bottom right quadrant of Fig. 11, as test particles of different origins merge into this stripe.

Reciprocally, a void region appears at the downstream rear separatrix (the white stripe in

the top left quadrant of Fig. 11). This region can neither be reached by the test particles

executing horseshoe U-turns, as these are too narrow, nor can it be reached by test particles

of the outer disk. The net effect of the asymmetry is that two stripes of perturbed surface

density ±Σ0 appear at the downstream separatrices, with a width

δxs =

∣

∣

∣

∣

∆G

∂rG

∣

∣

∣

∣

=

∣

∣

∣

∣

∆G

4ABxs

∣

∣

∣

∣

(84)

The linear mass of these stripes is therefore, in absolute value:

λ = Σ0

∣

∣

∣

∣

∆G

4ABxs

∣

∣

∣

∣

=
Σ0

2B
|∆v| = l0|∆v|, (85)

where we have used Eq. (62). This linear mass corresponds to the factor of the δ-function

in the bracket of Eq. (81). The torque due to the stripes can be evaluated as follows. The

symmetric, barotropic case would be recovered if one sent the excess of surface density of

the overdense stripe to the empty stripe, spending angular momentum for this purpose at

the rate:

|Γ1| = 4aBxs · |2AxsΣ0δxs|, (86)

where the factor in absolute value represents the mass flow rate in the stripes. Using

Eqs. (84) and (86), one recovers the expression of the torque excess, given by the last term

of the right hand side of Eq. (37). In the case considered in Fig. 11, which has a wider

horseshoe region at the front of the planet, one would have to give angular momentum

to the material in excess in the front stripe, in order to recover a symmetric situation.

Differently said, this implies that in the adiabatic situation the disk’s material receives less
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angular momentum than in the barotropic case, hence that there is a negative torque excess

on the disk, and a positive torque excess on the planet, by virtue of the action and reaction

law. This can also be deduced simply from the distribution of perturbed density, since there

is a positive perturbed density in front of the planet and a negative one behind the planet.

In a disk with pressure, narrow stripes of surface density are spread radially by the

excitation of evanescent waves, which are not easily detectable (see section 5.3). They leave

however an imprint on the flow in the form of vorticity sheets. These are the most tangible

perturbations of the flow associated to the torque excess.

One can also understand that the torque excess due to these stripes can in principle

be extremely high. While the surface density perturbation in the barotropic case typically

amounts to O(Σ0xs/a) (prior to the convolution by the evanescent wave kernel), the stripes

contemplated here correspond to a perturbation of surface density that is ±Σ0. If the

asymmetry becomes large enough to represent a sizable fraction of xs, the linear mass of the

perturbation associated to the excess supersedes the linear mass of the vortensity related

perturbation by a factor O(a/xs), that is to say typically by two orders of magnitude, for

the situations considered here.

Further insight into the origin of the asymmetry can be gained by considering, for the

sake of simplicity, an idealized situation in which the stagnation point lies at φ = 0, i.e. at

the maximum of the perturbed pressure. We can then evaluate, in order of magnitude, how

the torque acting on a fluid element moving along an upstream separatrix differs from the

barotropic case, and infer from this how the separatrix should be shifted. This situation is

depicted in Fig. 12. For the sake of definiteness we assume that there is a negative radial

entropy gradient.

The perturbation of density associated to the advection of entropy in the adiabatic case

(see Baruteau & Masset 2008) enhances or diminishes the specific pressure torque −∇P/Σ.
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Fig. 11.— Schematic representation of an asymmetric horseshoe region. The dotted lines

represent the symmetric separatrices of a barotropic situation. With respect to this case,

the rear separatrix is shifted towards corotation, while the front separatrix is shifted away

from corotation. The width δxs of the stripes has been exaggerated to improve legibility.
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Fig. 12.— Schematic view of the action of the pressure gradient in an idealized case. The

grey contours represent the perturbed pressure. The solid lines depict the separatrices of a

barotropic case. The grey thin arrows represent −∇P/Σ in the barotropic case, and the black

thin arrows the same quantity in the adiabatic case, the difference arising essentially from

the variations of Σ between both cases. The thick arrows represent the excess of −∇P/Σ,

which is negative on both sides of the planet. The fluid particle initially located on the rear

upstream separatrix of the barotropic case therefore becomes circulating, as depicted by

the dashed streamline. Similarly, the fluid parcel of the front separatrix loses more angular

momentum than it would lose on the barotropic separatrix, hence the streamline associated

to it is librating, as indicated by the dotted streamline.
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As can be seen in Fig. 12, a consequence of this change is to render the horseshoe region

asymmetric: the rear part shrinks, whereas the front part expands. A coarse estimate of the

variation of the width of the horseshoe region can be given as follows. A fluid element on

a separatrix, when it reaches the azimuth of the stagnation point, has received exactly the

amount J of angular momentum necessary to bring it to the stagnation point (by definition

of the separatrix):

J =

∫ ts

−∞

(

−∂φΦ − ∂φP

Σ

)

dt = 2Brpxs, (87)

where ts is the date at which the fluid element reaches the stagnation point. Assuming

the fluid element to have at any instant in time the azimuthal velocity of the unperturbed

Keplerian shear, we can write:

J =

∫ φs

−∞

rp

2Ax

(

∂φΦ +
∂φP

Σ

)

dt = 2Brpxs. (88)

A rough estimate of how xs varies when the pressure term is modified can be obtained

by taking x out the integral in Eq. (88), assuming that it is everywhere equal to xs.

At this level of approximation, the perturbation of the pressure term can be written as

∼ (∂φP/Σ0)(2Sxs/a). We are then left with:
(

∫ φs

−∞

∂φP

Σ0
dφ

)

.(2Sxs/a) ∼ 2ABxsδxs, (89)

which can be recast as:

δxs ∼
psS

2ABaΣ0

. (90)

We note that we obtain the same expression for the variation of the horseshoe width using

Eqs. (41), (50), (54) and (84), within a factor of order unity (the value δxs obtained above

just refers to the variation of the width of one side of the horseshoe region, whereas the

expression worked out earlier in this section and depicted by the thin double arrows in

Fig. 11 corresponds to adding the width variation of the front and rear sides.)

This order of magnitude estimate allows to identify the origin of the horseshoe

asymmetry, and allows to understand why the adiabatic torque excess scales with the
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perturbation of pressure at the stagnation point (ps), at least in the regime of small

planetary masses (for which ps ≪ P0.) We finally note that, while this order of magnitude

was obtained in the simplified case of a stagnation point located at the maximum of

perturbed pressure, it still holds when the stagnation point is azimuthally shifted, as in

real situations. A more refined treatment of the dynamics of a fluid element moving along

the separatrices would have exhibited its Bernoulli invariant, and it would have led to an

exact relationship such as Eq. (44), which is equivalent to Eq. (88). This relationship shows

that the width of the horseshoe region depends exclusively of the flow properties of the

stagnation point, independently of the location of the latter and of the path followed by the

fluid elements.

7. A suitable torque expression

The torque expression of Eq. (55) involves the planetary potential at the stagnation

point, as well as the distance of the upstream separatrices to corotation. As such, it is not

well suited for torque estimates, and needs further transformation.

We have seen in section 4.2 that the half width of the horseshoe region has a complex

dependence on the disk’s and planet’s parameters in the adiabatic case. In particular, at

large values of |S|, the horseshoe region is wider than in the barotropic case, which boosts

the vortensity related corotation torque. The global torque excess is therefore the sum of

two non-trivial individual excesses: the one related to the gradient of entropy, which has

been studied in depth in the preceding sections, and the one related to the boost of the

vortensity related corotation torque. We note however in Fig. 5 that the global excess,

which corresponds to the dotted curve, has an almost linear dependence on the entropy

gradient. Our aim is therefore to exhibit a separable form of the torque excess that involves

the product of S by a function of ǫ̂. This expression aims at describing the global torque
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excess, therefore accounting for the whole difference between the adiabatic and barotropic

case. For this purpose we can simply use the data of the series SAi, which has a null

vortensity gradient and for which the adiabatic torque excess accounts for the whole excess.

We then rescale the function obtained to get the excess at any entropy gradient.

7.1. Scaling of the torque excess

We first establish the scaling of the torque excess as a function of the disk’s and planet’s

parameters. Eq. (55) shows that the torque excess involves the half width of the horseshoe

region, and the potential at the stagnation point. In order to remain in the framework of a

separable expression, we neglect the dependence of xs on the entropy gradient, mentioned

in section 4.2, and we use the barotropic approximation (i.e. for S = 0) to infer the half

width. Using Eq. (57), we obtain:

xadi
s =

C(ǫ̂)

γ1/4
a

√

q

h
, (91)

where C(ǫ̂) is a dimensionless constant that depends on the softening length (Paardekooper

& Papaloizou 2009b). Examination of Fig. 3 shows that this approximation leads to errors

of at most ∼ 30 %. We check in what follows that the potential at the stagnation point can

also be considered as essentially independent of the entropy gradient.

7.1.1. Potential at the stagnation point

Evaluating the planetary potential at the stagnation point requires to know the

location of this point. Writing the Euler equations in steady state, in a system of units in

which the unit of length is H = cs/Ω, one can realize that, as long as the planet is deeply

embedded (i.e. aq1/3 ≪ H), the azimuth of the stagnation point (which lies almost on

corotation) has to scale as hf(ǫ̂), where f is a function that we shall determine and ǫ̂ = ǫ/H
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is a dimensionless value of the softening length. We have therefore:

Φs
p = − GMp

H [f(ǫ̂)2 + ǫ̂2]1/2
. (92)

Fig. 13 shows the location of the stagnation point as a function of ǫ̂ in an adiabatic flow

with γ = 1.4, obtained from the series of numerical simulations EA0≤i≤20 (see section 4.1),

and a similar series with a different entropy gradient. Under ǫ̂ ≃ 1.0, the distance of the

stagnation point to the planet is larger than the softening length, and the denominator

of Eq. (92) is dominated by the function f(ǫ̂), which is found to hardly depend on S, as

both series essentially coincide for ǫ̂ < 1.0. Reciprocally, for ǫ̂ > 1.0, the stagnation point

lies within a softening length from the planet, and the potential at the stagnation point

approximately scales as ǫ̂−1, and is therefore also independent of the entropy gradient.

7.1.2. General expression of the torque excess

Using Eqs. (55), (91) and (92), we obtain:

Γ1 = −A(ǫ̂)SΓ0, (93)

where Γ0 = Σ0Ω
2
pq

2a4/h2, and where:

A(ǫ̂) =
4C2(ǫ̂)√

1.4

[

1
√

f(ǫ̂)2 + ǫ̂2
− 3

8

C2(ǫ̂)√
1.4

]

, (94)

where we have specialized to the Keplerian case (A = −3Ω/4, B = Ω/4). Note that we

explicitly restrict ourselves to the case γ = 1.4. Although Eq. (91) applies for arbitrary

values of γ, the azimuth of the stagnation point, considered in section 7.1.1, may depend

on the adiabatic index. Keeping an explicit dependence in γ in Eq. (94) could therefore

be misleading. The adiabatic torque excess, given by Eq. (93), has a scaling similar to the

barotropic corotation torque or the differential Lindblad torque (Tanaka et al. 2002). The
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Fig. 13.— Location of the stagnation point as a function of the softening length, measured

at t = 40 orbits. Diamonds show values obtained in the EA0≤i≤20 series. The two squares

show values obtained for the same parameters as in the EA series, except that the resolution

has been increased to 2000 × 2000. The stars show values obtained from a series similar to

EA, except that it has a different entropy gradient: S = +12/7. The dotted curve, which

shows [f(ǫ̂)2 + ǫ̂2]1/2, has been obtained using the data provided by the EA series.
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only differences with the barotropic corotation torque is that the excess scales with S rather

than V, and that it involves a different dimensionless function of ǫ̂.

In order to determine this function, we use the series SAi, as explained above. We

restrict ourselves to the range 0.1 ≤ ǫ̂ ≤ 1. Values of ǫ̂ larger than one are not relevant,

whereas values smaller than 0.1 are difficult to study owing to the very high resolution

required. As mentioned in section 4.3, the torque excess exhibits a dependence in ǫ̂−1 with a

good approximation over the range of ǫ̂ considered (a dependence partly due to the increase

of xs at small softening length, and partly due to the increase of the planetary potential at

the stagnation point at small softening length). Fitting the torque excess over the range of

ǫ̂ considered, we obtain:

A(ǫ̂) ≈ 1.3

ǫ̂
. (95)

The expression of the torque excess is therefore:

Γ1 = −1.3S
ǫ̂

Σ0Ω
2
pq

2a4h−2. (96)

One can see in Figs. 4 and 5 that this expression (which is represented by the grey dashed

line) is in good agreement with the global adiabatic excess. It is also in good agreement

with the results of Baruteau & Masset (2008).

7.2. Considerations on the three-dimensional case

If one considers that a two-dimensional case with softening length ǫ represents the

layer at altitude z = ±ǫ of a three dimensional case (see e.g. Masset 2002), one can perform

an integration of the torque over ǫ in order to get an approximate value of the three

dimensional torque. A layer comprised between altitude z and z + dz has a surface density

(Σ0/
√

2πH) exp[−z2/(2H2)]dz, hence the three dimensional adiabatic torque excess should
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be approximately given by:

Γ3D ≈ −2

∫ +∞

0

Σ0√
2πH

exp[−z2/(2H2)]A
( z

H

)

SΩ2
p

( q

h

)2

r4
pdz

≈ −
√

2

π
SΓ0

∫ +∞

0

e−ǫ̂2/2A(ǫ̂)dǫ̂ (97)

While this kind of calculation can be performed relatively easily for the vortensity

related torque (for which the dimensionless function of ǫ̂ converges when ǫ̂ → 0) or for the

differential Lindblad torque, it is a risky exercise in the case of the adiabatic torque excess,

since the approximate expression of Eq. (95) diverges for ǫ̂ → 0. For the setup that we

consider, we have tried to perform calculations at higher resolution and smaller smoothing

lengths. The smallest smoothing length for which we have a steady situation is ǫ = 0.07H

(corresponding to the left square in Fig. 13). Under this value, we end up with very messy,

unsteady situations, in which the flow is strongly affected by the presence of numerous

vortices which drift along the separatrices. We can therefore only provide a conservative

estimate of Eq. (97), by truncating the integral at ǫ̂ = 0.07. We obtain:

Γ3D
1 ≈ 2.8SΓ0. (98)

In order to estimate the total torque in the three-dimensional case, we need to know the

differential Lindblad torque, and the vortensity related part of the horseshoe drag. The first

of those is given by Tanaka et al. (2002), and is, with our notation:

ΓLR = −(2.34 − 0.1α)Γ0, (99)

for a disk without a temperature gradient. We note that we do not use the total torque

value given by Tanaka et al. (2002), but only the differential Lindblad torque. The total

torque value contains indeed the linear corotation torque, which is not the corotation

torque exerted in steady state (Paardekooper & Papaloizou 2009a). Instead, we consider

separately the vortensity related horseshoe drag, and apply to it a treatment similar to
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that of Eq. (97), which is straightforward in this case, because of the absence of divergence

when ǫ̂ → 0. The two-dimensional component of the horseshoe drag that scales with the

vortensity gradient reads (Ward 1991; Masset 2001):

ΓV =
3

4
VC4(ǫ̂)Γ0, (100)

hence its three-dimensional estimate is:

Γ3D
V ≈ 3√

8π
VΓ0

∫ +∞

0

e−ǫ̂2/2C4(ǫ̂)dǫ̂ ≈ 0.93VΓ0, (101)

where we have used the series SIi to tabulate C(ǫ̂). The total torque acting on a low-mass

planet in a three-dimensional disk reads therefore:

Γ = [−(2.34 − 0.1α) + 0.93V + 2.8S]Γ0, (102)

where we recall that the last term is a conservative estimate, and is likely to actually have a

numerical coefficient larger than 2.8. We see that for |S| ∼ |V| ∼ 1, the term associated to

the entropy gradient dominates the horseshoe drag, hence the adiabatic torque excess should

efficiently halt or reverse migration in disks with moderate, negative entropy gradients, in

agreement with the result of Paardekooper & Mellema (2006), who found that planetary

migration can indeed be reversed in a three-dimensional disk.

8. Discussion

In this section we describe some side results, and we draw a list of points that deserve

further investigation.

8.1. Topology of the flow and location of the stagnation point

As stated in section 2.4, we have assumed in this work that there is only one X-point

in the vicinity of the planet. We find that this is indeed the case in most situations. We can
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nevertheless get two X-points in the vicinity of the planet, if one of the following conditions

is fulfilled:

• the entropy gradient vanishes, or is very small,

• the softening length of the potential is very small,

• the flow has not reached a steady state and is observed before a U-turn time scale.

While the first and last conditions are not relevant to the present work, which assumes a

steady state and a sizable entropy gradient, the second case has some importance, as it

gives indications of what can happen near the equatorial plane in a three-dimensional case.

In the cases in which we have two X-points that subsist during the whole simulation, we

get very time-dependent torque values. This can be interpreted as entropy trapped in the

small libration island defined by the two X-points. The perturbation of density associated

to the entropy distribution, that librates in this island, gives rise to large torque variation,

as it corresponds to material very close to the planet. We note that this is quite in contrast

with what we have claimed in section 5.3, where we have argued that it is the vortensity

perturbation that yields the bulk torque. Whereas this is true for the downstream horseshoe

stripes which lie at some distance of the planet, here the planet lies within the libration

island, and the fact that the density response is spread radially or not definitely matters.

We also note that the present discussion offers a number of similarities with the discussion

in paper I about the flow topology as a function of the temperature gradient and of the

softening length, except that here it is the entropy gradient that plays a role, rather than

the temperature gradient.

When the flow is observed at an early stage, it may display two X-stagnation points,

which are generally not on the same separatrix. We observe that once the flow has settled

in a steady state, it is the outermost stagnation point (the one that is on the separatrix
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that lies further from corotation) that subsists. It turns out that this point lies behind the

planet for S < 0, and is in front of the planet for S > 0. While this fact is unimportant

for a planet in fixed circular orbit, where only the distance of the stagnation point to the

planet matters to evaluate the torque excess, it is crucial when the planet migrates, as

the stagnation point is shifted from the position that it has on a fixed circular orbit. The

consequences of this are discussed in the next section.

8.2. Feedback on migration

Since the adiabatic torque excess depends on the flow properties at the stagnation

point of the horseshoe region, and since, as we shall see below, the location of the latter

depends on the drift rate, we expect that a feed back loop can be established between the

total torque and the migration rate, much as in type III migration (Masset & Papaloizou

2003). Contrary to type III migration, however, the feed back should generally be negative,

therefore acting to decrease the absolute value of the drift rate. It should also be of

relatively minor importance, except in very massive disks, with Toomre’s Q parameters

close to unity. Consider the following numerical experiment: we repeat the runs SA10 and

SI10, except that we impose an inwards disk drift ṙd = −1.9 · 10−5. We note that, if the

planet was allowed to freely migrate in run SA10, it would do so at the rate ȧ = 1.9 · 10−5.

Rather than releasing the planet, we impose an inwards drift of the disk, of same magnitude.

This technique has already been used for type III migration (see Masset & Papaloizou 2003,

section 5.6). We see in Fig. 14 that the torque in the isothermal case does not depend on the

drift rate, while there is a noticeable difference in the adiabatic case, and that the torque

tends towards a somehow smaller value. The reason for this can be understood from the

profile of radial velocity at corotation, depicted in Fig. 15. If the planet migrates outwards,

the stagnation point (in a frame that moves radially with the planet) is located where the
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horseshoe dynamics endows fluid elements with a radial velocity equal to that of the planet

(similarly, if the planet is kept fixed, the new stagnation point is expected to lie where the

radial velocity in the initial case is −ṙd.) Since fluid elements move outwards behind the

stagnation point, the azimuth of the stagnation point decreases, hence the latter recedes

from the planet, since it is located behind the planet in the case considered. A consequence

of this recession is a lower perturbed pressure at the new position of the stagnation point,

hence a lower value of the adiabatic torque excess. A similar decrease (in absolute value)

is also expected in the case S > 0. The stagnation point is then in the front of the planet

(see section 8.1), and the total torque acting on the latter is negative. The stagnation point

in the migrating case is therefore expected where the horseshoe U-turns are performed

inwards, that is to say at the front of the stagnation point of the fixed case, and therefore

further again from the planet. We have checked this with additional simulations, not

reproduced here.

A number of comments are in order:

• Fig. 15 shows a poor agreement between the radial velocity for the disk’s drift case

and the original radial velocity offset by −ṙd, in the region of the stagnation point

(−0.07 ≤ φ ≤ −0.03). This is presumably due, at least in part, to the resolution of

the grid. The direction of the shift of the stagnation point, and its order of magnitude,

are nevertheless compatible with the new stagnation point being determined by the

location where, in the initial flow, vr = ȧ.

• Since both vr and ȧ scale with the planet mass (for the range of planetary masses

considered here), the shift of the stagnation point should not depend on the planetary

mass.

• Since ȧ scales with the disk mass, the shift of the stagnation point of a freely migrating

planet should increase with the disk mass. The magnitude of this effect, for the disk
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considered in the numerical experiment described above, is at about 1/20th of the

total torque. The disk has a Toomre parameter Q ≈ 8. This shows that the effect we

describe is of marginal importance, except in the most massive disks, for which Q & 1.

• The drift rate in steady state is given by:

2Baȧ = γ +
∂γ

∂ȧ
ȧ, (103)

where we assume that the torque excess, to lowest order, has an affine dependence on

ȧ, and where γ is the specific torque acting on the planet. We therefore obtain:

ȧ =
γ

2Ba − ∂γ/∂ȧ
. (104)

In the particular case described above, we have ∂γ/∂ȧ ≈ −0.05 · 2Ba, hence the

steady state drift is almost equal to that dictated by the torque value measured in the

disk drift case (i.e. further iterations with a drift rate of the disk given by the new

torque value would hardly change the result).

8.3. Extension to arbitrary temperature profiles

The analysis presented in this work suffers from a restriction very similar to the

restriction of the isothermal case, which is that the temperature profile is assumed to be

flat. We have nevertheless performed many additional calculations in which we relaxed

this constraint, and found that our main results essentially hold in disks with arbitrary

temperature profiles:

• The global torque excess, defined by Eq. (57), scales with the entropy gradient.

The isothermal runs which we use to apply Eq. (57) in the general case have same

profiles as their adiabatic counterparts, hence they are locally isothermal runs, which
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Fig. 14.— Specific torque on planet in the runs with an inwards disk drift. The solid line

shows the adiabatic case and the dotted line shows the isothermal case. Grey curves show

the initial runs (without disk drift). The inset plot shows a close up on the curves (the value

of the torque at t = 21 orbits in the case without disk drift has been subtracted to improve

legibility).
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Fig. 15.— Radial velocity as a function of the azimuth, at r = rc, in the static case (dashed

line), and in the case with disk drift (solid line). The grey dashed curve shows the curve of

the static case offset of ṙd. The rightmost vertical dotted line shows the initial location of

the stagnation point, while the leftmost one shows the location of the stagnation point in

the case with a disk drift, which is also the location expected for a planet moving outwards

in the non drifting disk.
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have singular evanescent waves excited at the separatrices, contrary to the globally

isothermal runs (see paper I). These components, which scale with the temperature

gradient, should therefore be also present in the general, adiabatic case.

• The half width of the horseshoe region exhibits the same characteristic V-shaped

dependence on S, as shown in Fig. 3.

The adiabatic torque excess, as a function of the entropy gradient, displays little scatter,

and is therefore essentially a one-to-one correspondence. The results presented here can

therefore be used to predict the torque in a general situation, provided the torque is known

in the corresponding locally isothermal case.

8.4. Adiabatic excess in turbulent disks

The analysis presented above relies upon the existence of a steady state and on that

of a unique stagnation point. It therefore does not apply to the case of a turbulent disk.

The adiabatic excess has been interpreted, however, as due to a constitutive asymmetry

of the horsehoe region, acquired by the upstream flow under the action of the pressure

gradient on overdense or underdense regions. To some extent, this effect should therefore

persist in a turbulent disk, since we expect to find, in a turbulent disk, regions that are, in

average, under- or over-dense with respect to the barotropic case, as a consequence of the

advection of entropy. This issue deserves significant further work, since most of the regions

of the disks where planetary migration is supposed to take place should be turbulent. In

particular, it would be of interest to know whether the time-averaged torque excess is equal

to the steady state estimate.
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8.5. Saturation issues

In the absence of any process that can transfer angular momentum between the

horseshoe region and the rest of the disk, the horseshoe drag is bound to saturate. A

non-vanishing time averaged value of this torque would indeed imply a sustained transfer

of angular momentum from the planet to the horseshoe region, where it would accumulate.

Viscous torques, exerted at the separatrices between the horseshoe region and the outer or

inner disk, can ensure this transfer of angular momentum (Masset 2001). In the case of

an isothermal disk, viscous diffusion tends to restore the large scale gradient of vortensity

across the horseshoe region. If it can do so in less than a libration time, the vortensity

upstream of the horseshoe U-turn is that of the unperturbed disk, and the horseshoe drag is

permanently equal to its initial value. In the case of an adiabatic flow, the vortensity related

part of the horseshoe drag follows the same picture, and a sufficiently large viscosity is

required to avoid the saturation of this component of the drag. The adiabatic torque excess,

however, results from the advection of entropy, and to the existence, at the stagnation point,

of a discontinuity of the entropy brought from the inside and from the outside. Sustaining

the torque excess therefore implies that the discontinuity of entropy at the stagnation

point is maintained. Paardekooper & Papaloizou (2008) consider thermal diffusion as the

dissipative process that fulfills this function, while Kley & Crida (2008) consider realistic

radiative effects. In both cases there can be a sustained, positive torque acting on the

planet. We note however:

• that in any case a finite amount of viscosity is required. Thermal diffusion or radiative

effects, which do not feature in Euler’s equation, cannot ensure the transfer of angular

momentum out of the horsehoe region.

• That there is no theoretical expression of the steady state horseshoe drag that takes

into account the balance between saturation and the dissipative processes that prevent
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it. Such an expression is definitely required for planet population synthesis based on

one-dimensional models of migration.

We also comment that, while saturation can be interpreted as the phase mixing of

the contribution of different horseshoe streamlines in the barotropic case (Balmforth &

Korycansky 2001), the case of the adiabatic torque excess is slightly different because there

is essentially one streamline involved in this excess: the separatrix. It is therefore possible

that the torque excess oscillates over a very long time, or indefinitely. Numerical simulations

show that the oscillations of the torque damp after a few libration times (Baruteau 2008).

It is not clear, however, whether this is a physical effect or the consequence of numerical

diffusivity. This again appeals for the need of simulations at very high resolution.

We finally mention the systematic appearance of a vortex at one of the downstream

separatrices (the one that has a negative singularity of vorticity). It would be of interest to

study the impact of this vortex on the saturation of the adiabatic excess. On the one hand,

it provides a mixing of the entropy in the vicinity of the separatrix, and on the other hand,

it may assist the horseshoe region in exchanging angular momentum with the rest of the

disk.

9. Conclusions

We have shown that the horseshoe drag exerted on a low-mass planet, embedded in a

disk that behaves adiabatically on the time scale of a horseshoe U-turn, can be considered

as the sum of two terms:

• a bulk term, involving all the horseshoe streamlines, which necessarily scales with

the vortensity gradient, exactly as in a barotropic disk. This is in agreement with

the forecast made in the introduction: there is no room, for a generic horseshoe
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streamline, for an exchange of angular momentum with the planet different from that

of a barotropic situation.

• An edge term, which manifests itself as a torque excess with respect to the barotropic

case. This term scales with the radial gradient of entropy, and it corresponds to a

constitutive asymmetry of the horseshoe region. In a pressureless disk, this asymmetry

would trigger the appearance of underdense or overdense thin stripes of gas at the

downstream separatrices. In a gaseous disk, pressure forces spread radially these

stripes by the excitation of evanescent waves, leaving imprints as vorticity sheets at

the separatrices as the most tangible manifestation of this effect.

The origin of the adiabatic torque excess is therefore not the conspicuous under- or

over-dense regions that appear within the horseshoe region and which are bound by a

contact discontinuity at the downstream separatrices, as originally thought. Instead it is

due to rather discreet single evanescent waves launched at the downstream separatrices.

This answers some issues arising from earlier works. In particular, no adiabatic torque

excess is expected in the limit of a cold disk (Baruteau & Masset 2008), whereas the contact

discontinuities still exist in this limit and delineate perturbations of finite mass. The torque

excess that we find scales with the perturbed pressure at the horseshoe’s stagnation point,

hence it vanishes in the limit of a cold disk.

We found a number of side results:

• The horseshoe region in the adiabatic case has a more complex dependence on the

disk’s parameters than in the barotropic case. In particular, the horseshoe region is

wider than expected from barotropic estimates, when there is a non-vanishing entropy

gradient. A consequence of this effect is that the bulk horseshoe term, that scales with

the vortensity gradient, is boosted with respect to its value in a barotropic disk. This
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effect is relatively weak, however, and most of the difference between the adiabatic

and barotropic case comes from the edge term, in disks with realistic profiles.

• The adiabatic torque excess slightly depends on the migration rate. There is therefore

a weak feed back on migration. This feed back is found to be generally negative (i.e.

it tends to lower the drift rate, either inward or outward), and is virtually negligible

except in very massive disks.

We find that even at relatively high resolution, numerical simulations may mistakingly

locate the stagnation point, which has some impact on the torque excess value. We therefore

stress the need for very high resolution calculations, for which nested mesh codes would

be a valuable tool. In a similar vein, the steep dependence of the excess on the potential’s

softening length suggests that the effect can be very strong in the three dimensional case.

This issue requires significant further work.
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A. Expression of the pressure perturbation

The convolution product of the rectangular function

R : x 7→ 1 if 0 < x < x0 (A1)

0 otherwise,

by the kernel K(x) = exp(−|x|/λ)/(2λ) is:

R̃(x, x0, λ) = 1 − exp
(

−x0

2λ

)

cosh

(

x − x0/2

λ

)

if x ∈ [0, x0], (A2)

exp

(

−x − x0/2

λ

)

sinh
(x0

2λ

)

otherwise.

Similarly, the convolution product of the triangular function

T : x 7→ x if 0 < x < x0 (A3)

0 otherwise,

by the kernel K(x) = exp(−|x|/λ)/(2λ) is:

T̃ (x, x0, λ) =
exp(x/λ)

2

[

−(x0 + λ) exp
(

−x0

λ

)

+ λ
]

if x < 0, (A4)

exp(−x/λ)

2

[

(x0 − λ) exp
(x0

λ

)

+ λ
]

if x > x0,

x +
λ

2
exp

(

−x

λ

)

− x0 + λ

2
exp

(

x − x0

λ

)

if x ∈ [0, x0].

Using Eq. (81), we obtain:

δP = − Γ1c
2
s

(8a|A|Bx2
s).(2γ

1/2H)
exp

(

− |x|√
γH

)

− 2Σ0c
2
s

rp

(S + V)T̃ (x, xs,
√

γH) (A5)

+Σ0c
2
s

δlprod

l0
R̃(x, xs,

√
γH),

where we have also made use of Eq. (62) to transform the first term.
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