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ABSTRACT

We investigate the unsaturated horseshoe drag exerted on a low-mass planet

by an isothermal gaseous disk. In the globally isothermal case, we use a formal-

ism, based on the use of a Bernoulli invariant, that takes into account pressure

effects, and that extends the torque estimate to a region wider than the horse-

shoe region. We find a result that is strictly identical to the standard horseshoe

drag. This shows that the horseshoe drag accounts for the torque of the whole

corotation region, and not only of the horseshoe region, thereby deserving to be

called corotation torque.

We find that evanescent waves launched downstream of the horseshoe U-turns

by the perturbations of vortensity exert a feed-back on the upstream region,

that render the horseshoe region asymmetric. This asymmetry scales with the

vortensity gradient and with the disk’s aspect ratio. It does not depend on the

planetary mass, and it does not have any impact on the horseshoe drag. Since

the horseshoe drag has a steep dependence on the width of the horseshoe region,

we provide an adequate definition of the width that needs to be used in horseshoe

drag estimates.

We then consider the case of locally isothermal disks, in which the tempera-

ture is constant in time but depends on the distance to the star. The horseshoe

drag appears to be different from the case of a globally isothermal disk. The

difference, which is due to the driving of vortensity in the vicinity of the planet,

is intimately linked to the topology of the flow. We provide a descriptive inter-

pretation of these effects, as well as a crude estimate of the dependency of the

excess on the temperature gradient.

Subject headings: Planetary systems: formation — planetary systems: protoplanetary



– 3 –

disks — Accretion, accretion disks — Methods: numerical — Hydrodynamics
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1. Introduction

The will to explain the conformation of extrasolar planetary systems has led many

people to consider the possibility of planetary migration. This mechanism was firstly

mentioned by Goldreich & Tremaine (1979, 1980), and analysed in great detail in the

eighties (Ward 1986, 1988). Theory tells that the tidal response of the disk can be split

in two components, the Lindblad torque which corresponds to the one-armed spiral wake

tidally excited at the Lindblad resonances by the planetary potential, and the corotation

torque, which arises from material located in the vicinity of the orbit. Most of the early

works on planetary migration focused on the Lindblad torque, as it was considered that the

latter dominates the corotation torque, and therefore dictates the direction of the migration

and the order of magnitude of the drift rate.

Recent works have nevertheless shown the importance of the corotation region on the

total torque exerted by the disk on the planet. Traditionally, it was estimated, for low mass

planets, by the use of a linear theory. This amounts to evaluating the amplitude of the

resonant waves at different azimuthal wave-numbers excited by the planet in the corotation

region, and their feed back on the planet. Such an approach was adopted by numerous

authors, such as Ward (1989), Korycansky & Pollack (1993), and, more recently, by Tanaka

et al. (2002). Recently, however, Paardekooper & Papaloizou (2009b) have stressed the fact

that the corotation torque acting on a low mass planet is not correctly accounted for by

a linear estimate, except at early stages after a planet is “turned on” in a disk. After a

relatively short time scale, the linear estimates break down, and these authors show that

the total torque seems to be better described by the sum of the differential Lindblad torque

and of the so-called horseshoe drag. This component of the torque arises from particles

that are close to the corotation and undergo a U-turn in front of or behind the planet.

By doing this, they exchange angular momentum with the planet, exerting a torque on it.
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As the region in which these particles librate is called the horseshoe region, the resulting

torque was called the horseshoe drag. It is evaluated by budgeting the jumps of angular

momentum of the particles undergoing a U-turn. This was first studied by Ward (1991),

and more recently by Masset (2001, 2002); Masset & Papaloizou (2003); Paardekooper &

Papaloizou (2009b). This raises the question of the distribution of the torque density in

the coorbital region. While a linear analysis shows that the corotation torque arises from

an annulus of radial width ∼ H around corotation, the horseshoe drag approach considers

only the horseshoe region, which can be arbitrarily thin, and whose width formally tends

to zero as the planetary mass does. One can therefore wonder if there is a torque exerted

by the material close to the orbit, but outside of the horseshoe region, and more generally

how to connect the linear analysis, which considers the launch of evanescent waves in the

coorbital region, and the horseshoe drag, which does not contemplate them. Also, since

the coorbital region and horseshoe region become of increasing importance in studies of

planetary migration, it is useful to derive a number of properties of this region.

With this in mind, we present in this paper I an approach, valid in a globally isothermal

disk, in which we use a Bernoulli invariant to handle the streamlines of the flow both in

the horseshoe region and outside of it, and in which we take into account the evanescent

pressure waves that arise on the downstream sides of the horseshoe region, and which can

act back on the upstream regions. We show that taking these waves into account does not

modify the horseshoe drag estimate, but that they induce a rear-front asymmetry of the

horseshoe region, that scales with the vortensity gradient. We also work out the surface

density response in the corotation region, and we indicate a proper way of estimating the

horseshoe region width. This is critical for horseshoe drag estimates based on streamline

analysis, since this drag scales with the fourth power of the horseshoe width. Note that

in paper II, we present a derivation of the horseshoe drag in an adiabatic disk. We use a

different invariant to derive it, but parts of the derivation are very similar to the derivation
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undertaken in the present paper.

We also propose a basic model of the mechanisms taking place in the locally isothermal

case, when the disk’s temperature depends on the radius. Namely, there is creation of

vortensity which takes place near the planet, and which results in a corotation torque

excess that differs from the globally isothermal case, and which depends on the temperature

gradient. Much like in the adiabatic case considered in paper II, this torque excess comes

from an edge term of the horseshoe drag. Nevertheless, owing to the lack of an invariant

along the streamlines in the locally isothermal case, we only provide a rough estimate of the

excess, and discuss the differences between the predictions of this estimate and the results

of numerical simulations.

2. Basics

2.1. Problem definition and notation

The system we study is composed of a central star, of mass M∗, and, orbiting around it,

a gaseous disk, with an embedded low-mass planet, of mass Mp, which has a fixed circular

orbit of radius a and an angular frequency Ωp. We assume the disk to be thin, and we use

a 2D cylindrical geometry, averaging or integrating all the quantities over z.

We place ourselves in the frame corotating with the planet, in which we assume

the flow to have reached a steady state. Nevertheless, we explicitly discard in this work

possible saturation effects. This amounts to assuming that the material which arrives at the

upstream side of the horseshoe U-turns does so with the vortensity of the unperturbed disk.

In practice, this means that we consider the flow after a time longer than the time required

to complete the horseshoe U-turns, but shorter than half the horseshoe libration time.

The angular frequency of a fluid element in the disk at a distance r of the star is
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Ω(r). The corotation radius, rc, is the radius where the gas is rotating at the same speed

as the planet: Ω(rc) = Ωp. The disk is made of an ideal gas, and is globally isothermal: its

temperature is constant in time and space. Initially, the surface density is a power law of

the radius:

Σ = Σc (r/rc)
−σ , (1)

where Σc is the surface density at corotation.

We denote the height of the disk by H , and we use the aspect ratio h = H/a. As the

disk is globally isothermal, the sound speed cs is constant across it, and the aspect ratio is

only a function of r: h = cs/[aΩ(r)].

We make use of the vortensity w = ω/Σ, where ω is the vertical component of the

flow’s vorticity: ω = ~∇× ~v|z. With our notation, we have, initially: w = wc (r/rc)
−V , with

V = 3/2 − σ.

The particles feel the gravitational potential Φ = Φ∗ + Φp + Φi, where Φ∗ = −GM∗/r

is the star’s potential, Φp the potential of the planet, softened to avoid computational

problems:

Φp = −GMp/
(

r2 − 2ra cosφ + a2 + ǫ2
)1/2

, (2)

(where ǫ is the softening length, typically 1/3 of H), and where Φi is the potential’s indirect

term:

Φi =
GMp

a2
r cos φ = qaΩ2

pr cos φ, (3)

where q = Mp/M∗.

The enthalpy is denoted η. For a globally isothermal disk of temperature Tc, we have

η = Tc ln(Σ/Σc).

We make use of the two Oort’s constants, estimated at the planet’s location, Ap and

Bp. We often use their values for a Keplerian disk, which reads : Ap = −3Ωp/4 and
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Bp = Ωp/4. The p subscript is mandatory to distinguish Bp from the Bernoulli invariant, a

quantity we define in section 3.2.

We label the different quadrants of the horseshoe region as represented in figure 1. We

denote with a subscript F (R) what is in front (at the rear) of the planet, rotation-wise. In

a similar manner, we use a subscript + (−) for the part of the disk that has r > rc (r < rc).

Lastly, the upstream (downstream) part of a horseshoe leg is denoted with a subscript u

(d).

2.2. Basic equations

The governing equations are the one of a non magnetized, non self-gravitating, ideal

isothermal gas, in the corotating frame, so that the radial velocity vr is unchanged with

respect to the inertial frame, while the angular velocity is vφ = rΩ − rΩp. With this

notation the continuity equation reads:

∂tΣ +
1

r
∂r(Σrvr) +

1

r
∂φ(Σvφ) = 0, (4)

while the Euler equations read, respectively in the radial and azimuthal directions:

∂tvr + vr∂rvr +
vφ

r
∂φvr − rΩ2

p − 2Ωpvφ −
v2

φ

r
= −∂rP

Σ
− ∂rΦ, (5)

∂tj + vr∂rj +
vφ

r
∂φj = −∂φP

Σ
− ∂φΦ, (6)

where j = r2Ω is the specific angular momentum.
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Fig. 1.— An overview of the horseshoe region. This is extracted from the standard simulation

(see 4), at T = 25 orbits. The planet is at φ = 0 and r = 1. The corotation radius is

represented by the dotted line. The grey scale represent the total vortensity, and the two

white lines are the separatrices. The asymmetry appears clearly, the front part being wider

than the rear one. We also show here the integration domains 1 to 4 used in the text.
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3. Horseshoe drag

3.1. A first torque expression

To evaluate the torque exerted on the planet by the disk, we simply budget the angular

momentum on a well-chosen domain D, located between two azimuths φD and −φD, chosen

far enough from the planet to assume that we can neglect Φp there. The radial extent of

D is bound by two streamlines, which respectively start at (rc + xD; φD) and (rc − xD; φD).

We assume that xD is much larger than xs, the typical half-width of the horseshoe region.

The torque exerted by the material inside this region onto the planet is then:

Γdisk→planet =

∫ ∫

D

Σ∂φΦ rdrdφ, (7)

which can be recast, using (6), as:

Γdisk→planet =

∫ ∫

D

Σ

(

−
(

∂tj + vr∂rj +
vφ

r
∂φj

)

− ∂φP

Σ

)

rdrdφ, (8)

which we note Γ from now on. In steady state, we have, using (4):

Γ =

∫ ∫

D

1

r
(−∂φ(vφΣj) − ∂r(rΣvrj) − ∂φrP ) rdrdφ (9)

= −
∮

∂D

Σj~v · ~dn −
∮

∂D

rP ~eφ · ~dn, (10)

where ~dn is a vector perpendicular to the edge ∂D of the domain D, oriented outwards, and

with a length equal to the length of the elementary interval of integration on the edge. To

proceed in the treatment of this expression, we must rely on the shape of the streamlines.

Namely, for r − rc = ±xD, the streamlines are nearly circular and there is therefore no

advected flux of angular momentum into the domain D through the circular boundaries.

We also use the fact that ~eφ · ~dn = 0 on these boundaries, so that we can ultimately write:

Γ =

[
∫ rc+xD

rc−xD

[rP + r(Ω − Ωp)Σj]dr

]R

F

, (11)
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where the R superscript indicates that the integral has to be performed on the rear side

of the domain D (radial boundary at φ = −φD < 0), while the F subscript indicates that

the integral has to be performed on the front side of the domain D (radial boundary at

φ = φD > 0). In equation (11), the first term of the integrand represents the pressure torque

exerted on the material enclosed within the domain D, while the second term represents the

budget of angular momentum brought to this region by advection. Since the flow is steady

in the corotating frame, the angular momentum of this domain is constant in time and the

torque is therefore integrally transmitted to the planet. We recognize in the second term of

the integrand of equation (11) the classical horseshoe drag expression (Ward 1991, 1992;

Masset 2001; Masset & Papaloizou 2003; Masset et al. 2006a; Paardekooper & Papaloizou

2009b), but this equation also shows the pressure contribution, which has been overlooked

in previous analysis.

3.2. A Bernoulli invariant

We derive, from equations (5) and (6) in steady state, a Bernoulli invariant, constant

along streamlines in steady state:

B =
v2

2
+ η + Φ −

r2Ω2
p

2
, (12)

where v2 = v2
r + v2

φ.

Far from the planet (i.e. in φD and −φD), the streamlines are purely azimuthal, and

the fluid elements do not feel the planet’s potential, so we get, neglecting the indirect term:

B =
1

2
r2 (Ω − Ωp)

2 + φ∗(r) −
1

2
r2Ω2

p + η (13)

Following Masset & Papaloizou (2003), we derive:

∂rB = rω (Ω − Ωp) , (14)
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where we used the radial equilibrium: ∂rφ∗ = rΩ2 − ∂rη.

Before going further and inject this into equation (11), we evaluate how the Bernoulli

invariant is modified at a given location in the disk with respect to its value in the

unperturbed disk. Considering a small perturbation δr of radius, δη of enthalpy, and δΩ of

angular velocity, the total variation of the Bernoulli invariant is:

δB = rω (Ω − Ωp) δr − ∂rη δr + δη (15)

= (Ω − Ωp) δj + δ′η, (16)

where δ′η = δη − ∂rη δr is the local perturbation of enthalpy, at fixed radius.

3.3. Final torque expression

We now evaluate the total torque, using equations (11) and (14), which allows to

change the variable of integration to B. We use the subscripts (1) to (4) to refer to the

quadrants of figure 1, and we get:

Γ =

[
∫ rc+xD

rc−xD

[rP + r(Ω − Ωp)Σj]dr

]R

F

(17)

=

∫ Bc

B∞ (1)

Σ

ω
jdB +

∫ B∞

Bc (2)

Σ

ω
jdB (18)

−
∫ Bc

B∞ (3)

Σ

ω
jdB −

∫ B∞

Bc (4)

Σ

ω
jdB

+

∫ rc+xD

rc−xD (1)(2)

rP dr −
∫ rc+xD

rc−xD (3)(4)

rP dr,

where we supposed the radial boundaries to be far enough in rc ± xD so we can assume the

streamlines to be purely circular there, corresponding to a Bernoulli invariant B∞.

We note with a subscript 0 the values of the unperturbed flow. The perturbation of

angular momentum and pressure are denoted δj and δP , and we use the conservation of

vortensity along a horseshoe U-turn in order to write Σ/ω|1(4) = Σ/ω|2(3). This leads to:
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Γ =

∫ Bc

B∞ (1)

Σ

ω

∣

∣

∣

∣

1

(j−0 + δjR
1 )dB −

∫ Bc

B∞ (2)

Σ

ω

∣

∣

∣

∣

1

(j+
0 + δjR

2 )dB (19)

−
∫ Bc

B∞ (3)

Σ

ω

∣

∣

∣

∣

4

(j−0 + δjF
3 )dB +

∫ Bc

B∞ (4)

Σ

ω

∣

∣

∣

∣

4

(j+
0 + δjF

4 )dB

+

∫ rc+xD

rc−xD (1)

r(P−
0 + δP R) dr +

∫ rc+xD

rc−xD (2)

r(P+
0 + δP R) dr

−
∫ rc+xD

rc−xD (3)

r(P−
0 + δP F ) dr −

∫ rc+xD

rc−xD (4)

r(P+
0 + δP F ) dr,

The integrals over rP±
0 simplify, between (1) and (3) on the one hand, and (2) and (4)

on the other hand. We denote ∆j0 the total jump of angular momentum of a fluid element

between the inside and outside region: ∆j0(B) = j0
+(B) − j0

−(B), assuming that before and

after the jump, the fluid element has the specific angular momentum of the unperturbed

flow corresponding to its value of the Bernoulli invariant. By construction ∆j0(B) is always

a positive quantity.

Using equation (16), we obtain:

δjR = − δ′ηR

(Ω − Ωp)
. (20)

Since we have δ′η = δP/Σ, and dr = ∂BrdB = dB/(rω(Ω − Ωp)), we also can recast the

integrals over perturbed pressure using B as an integration variable. We are hence left with:

Γ = −
∫ Bc

B∞

Σ

ω

∣

∣

∣

∣

1

∆j0(B)dB −
∫ Bc

B∞(1)

Σ

ω

∣

∣

∣

∣

1

δ′ηR

(Ω − Ωp)
dB +

∫ Bc

B∞(2)

Σ

ω

∣

∣

∣

∣

1

δ′ηR

(Ω − Ωp)
dB

+

∫ Bc

B∞

Σ

ω

∣

∣

∣

∣

4

∆j0(B)dB +

∫ Bc

B∞(3)

Σ

ω

∣

∣

∣

∣

4

δ′ηF

(Ω − Ωp)
dB −

∫ Bc

B∞(4)

Σ

ω

∣

∣

∣

∣

4

δ′ηF

(Ω − Ωp)
dB

+

∫ Bc

B∞ (1)

rδ′ηRΣ
dB

rω(Ω− Ωp)
−

∫ Bc

B∞ (2)

rδ′ηRΣ
dB

rω(Ω− Ωp)

−
∫ Bc

B∞ (3)

rδ′ηFΣ
dB

rω(Ω − Ωp)
+

∫ Bc

B∞ (4)

rδ′ηFΣ
dB

rω(Ω − Ωp)
. (21)

If we denote with Bs the value of the Bernoulli invariant of the separatrices, we immediately

see that ∆j0 is strictly equal to 0 for B∞ < B < Bs (i.e. in the region that is not part of the
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horseshoe region, so that its particles do not undergo any jump), so the integrals over ∆j0

reduces to their values between Bs and Bc. Another simplification arises from the fact that

the integrals which were previously over δP – i.e. the last four terms of equation (21) – and

over δj – the second, third, fifth and sixth terms of equation (21) – cancel each other, and

we are only left with, reverting the integral boundaries:

Γ =

∫ Bs

Bc

Σ

ω

∣

∣

∣

∣

1

∆j0(B)dB −
∫ Bs

Bc

Σ

ω

∣

∣

∣

∣

4

∆j0(B)dB, (22)

which is exactly the original expression derived by Ward (1991). This derivation shows that

the whole contribution of the material in the vicinity of corotation, including the material

that does not belong to the horseshoe region and circulates beyond the separatrices, reduces

to a standard horseshoe drag integral that only involves the vortensity profile inside of the

horseshoe region.

3.4. A model of pressure waves

Although the torque is of primary interest, it is also worthwhile to have a peek at the

anatomy of the horseshoe region, and to stress its major properties. Our first step consists

in evaluating the pressure response to the horseshoe dynamics, azimuthally far from the

planet.

Before going further, we need to know the response of the disk to any small arbitrary

perturbation of vortensity, independent of the azimuth. Indeed, the horseshoe dynamics

creates, in the downstream sides of the horseshoe region, stripes of perturbed vortensity,

which trigger a density (or pressure) and velocity response. We denote these quantities

respectively with δΣ and δvφ. We start with the perturbed rotational equilibrium (equation

5):

−2Ωδvφ + c2
s

(

∂xδΣ

Σc

+
∂xΣc

Σc

δΣ

Σc

)

= 0, (23)
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where the pressure is P = c2
sΣ. Deriving this equation with respect to x leads to:

−2Ωp∂xδvφ + c2
s

∂2
xδΣ

Σc

= 0, (24)

where, for a given quantity ξ we neglected all the terms in ∂xξ comparatively to the ones

in ∂xδξ, since, as we shall see, the latter scale with 1/H , which is much larger than the 1/r

scaling of the former. In order to eliminate the unknown δvφ in this equation, we make use

of the perturbed vortensity:

δw =
∂xδvφ

Σc
− ω0δΣ

Σ 2
c

, (25)

so we can write:

δΣ − c2
s

κ2
∂2

xδΣ = −Σc
δw

w0

, (26)

where κ = (2Ωpωc)
1/2 is the epicyclic frequency.

The general solution of Eq. (26) is the convolution product of its right hand side by

the Green’s kernel K(x), which is the solution of:

δΣ − c2
s

κ2
∂2

xδΣ = δ(x), (27)

and whose expression is:

K(x) =
1

2H
e−|x|/H, (28)

where we have specialized to the Keplerian case, for which H ≡ cs/Ω = cs/κ. This kernel

represents the pressure response to a singular perturbation of w at x = 0, of weight
∫

w(x)dx = w0/Σc. We note that K(x) has a unitary weight:

∫ +∞

−∞

K(x)dx = 1. (29)

Downstream of the flow, we obtain δw straightforwardly by making use of the conservation

of vortensity along a streamline, and assuming radially symmetric U-turns (so that fluid

particle undergoing a jump at r = rc + x is mapped to r = rc − x). For the part behind the
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planet:

δwR(x) = −2
x

rc

w0V for 0 < x < xs (30)

= 0 elsewhere.

Similarly, for the part in front of the planet

δwF (x) = −2
x

rc

w0V for 0 > x > −xs (31)

= 0 elsewhere.

If we assume xs ≪ H , this gives for the perturbed surface density (at the rear of the planet,

for the sake of definiteness):

δΣR(x) = K ∗ Σc
δw

w0
(32)

= K ∗
(

−2x

rc
VΣc

)

(33)

≃
∫ xs

0

1

2H

2xV
rc

Σcdx

δΣR(x) = Σc
x2

s V
2Hrc

(34)

The equation (33) shows that the actual profile is obtained by convolution of the

fictitious surface density profile (−2x/rc)VΣc with the kernel K of unitary weight, which

amounts to spreading radially this fictitious profile without changing the total mass of the

perturbation. One can check that this fictitious profile is the profile that one would obtain

by attributing the vortensity perturbation to the perturbed surface density, without altering

the rotation profile (i.e. keeping the profile of vorticity of a Keplerian disk). This helps

understanding why the horseshoe drag in a pressure supported disk does not differ from the

horseshoe drag estimated by considering test particles (Ward 1991).

We immediately deduce the corresponding perturbation of enthalpy (which is therefore
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flat over the horseshoe region because of our hypothesis that xs ≪ H):

δηR = Tc
x2

s V
2Hrc

(35)

Similarly, we have:

δηF = −Tc
x2

s V
2Hrc

(36)

3.5. Impact on the horseshoe width

The value of the Bernoulli invariant at the separatrices is the same as its value at the

stagnation point. Quite in contrast with the situation of a non-barotropic disk, for which

we shall see in paper II that the value of the invariant is discontinuous at the stagnation

point, here the value of the Bernoulli invariant is necessarily continuous in the vicinity of

the stagnation point, and the separatrices of the horseshoe region all share the same value

Bs of the Bernoulli invariant. As a consequence, in order to ensure that it is associated to a

Bernoulli invariant with value Bs, a given separatrix must shift radially, by a value δxs, in

order to compensate for the variation of the enthalpy due to the evanescent waves. At the

rear of the planet, we have, using equations (35) and (16), evaluated at x = xs:

δB = 0 = 4ApBpxsδx
R
s + Tc

x2
s V

2Hrc
(37)

δxR
s

xs
= − Tc

8ABrc

V
H

(38)

Or, specializing to the case of a Keplerian disk:

δxR
s

xs
= −2

3
Vh. (39)

A similar result holds in front of the planet:

δxF
s

xs
=

2

3
Vh. (40)
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We deduce the estimate of the relative asymmetry of the horseshoe region:

xF
s − xR

s

(xF
s + xR

s )/2
=

4

3
Vh (41)

The horseshoe region therefore becomes asymmetric when there is a vortensity gradient.

The relative asymmetry scales with the vortensity gradient and the disk’s aspect ratio, and

it is independent of the planetary mass.

4. Numerical simulations

We performed simulations of our system using the FARGO code (Masset 2000a,b), in

order to check the properties predicted by the above analysis.

4.1. Numerical Setup

All our runs are performed starting with a reference run, and then changing only one

parameter. The spatial resolutions of these runs is 700 zones in azimuth and 474 in radius,

for a ring spawning radially from 0.8a to 1.2a. We stress that, even if the radial width of our

mesh seems small, we apply damping conditions at the boundaries that ensure no reflection

of the wake. The damping factor was tuned in order to ensure that this assumption is valid.

We use a planet with a mass ratio to the primary of 8 × 10−6 (approximately 2.6 M⊕,

for a central star of mass 1 M⊙). The initial conditions are presented in section 2.1. For the

surface density, we use a typical value of σ = −1 (this value is not realistic as it corresponds

to a surface density increasing outwards, but it corresponds to a large vortensity gradient

which exacerbates the effects that we wish to check). The surface density at corotation is

Σc = 2 × 10−3, and the aspect ratio h is set to 0.05 at r = rc.

The last important parameter is the potential softening length. We take it to be 30%
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of the disk thickness, which is a rather low value. Changing this value can have significant

effects, which are discussed in section 6.3.

We indeed observe that the horseshoe region is asymmetric, by comparing its front and

rear width. We measure it at φ = ±1 rad., far enough not to feel the planet’s potential,

and once the steady state is reached (after about 25 orbits). As it is taken in steady state,

when the separatrix is well defined, we measure the whole full width (hereafter FW) of

the separatrix, rather than twice the upstream half-width (distance between the upstream

separatrix and the corotation, hereafter TUHW). The difference between the two methods

turned out to be about 3-4%, which is small, but about the same order than the effect

we are looking for. In fact, we can see this as an effect of pressure. Here, contrary to our

assumptions of section 3.4, we do not strictly have xs ≪ H (xs ∼ 0.01a), so the shape of

the pressure wave plays a small role, with a larger amplitude on the downstream part of the

U-turn. To get rid of this problem, we chose to use the FW, more appropriate here.

4.2. Dependence on the vortensity gradient

Our first step was to conduct simulations with a varying vortensity gradient, in order

to quantify the front-rear asymmetry of the horseshoe region. We performed 50 runs with a

value of V varying from −4.5 to 4.5. The results are presented in figure 2. As we measure

the relative asymmetry, the discrepancy between the FW an the TUHW is obvious here, the

effect being cumulative (for a positive V, the front FW is greater than the TUHW, while

the rear FW is lower than the TUHW). The fit of the numerical results with our expression

is very good.
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Fig. 2.— Relative asymmetry as a function of the vortensity gradient. The small and

large crosses are extracted from simulations, the large crosses representing the asymmetry

resulting from the measurement of the FHW, while the small ones correspond to the TUHW

(see text). The dashed line represents our analytical expression of equation (41). The fit

is very satisfactory, except at very large gradients. Note the relatively high values of the

asymmetry: for realistic values of V, the difference in size between the front and rear region

can amount to 15 % of the “unperturbed horseshoe width” (which is taken to be the mean

of the front and rear widths; see section 5.1).
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4.3. Dependence on the aspect ratio

The other factor impacting equation (41) is the aspect ratio. We checked this

dependency for some values of h, as shown in figure 3. The agreement with the theory is

good, but not perfect. It is presumably related to modifications in the topology of the flow,

which induce small discrepancies between the runs. This was not a problem for the runs

with a varying V, where the streamline topology remained essentially unchanged between

the different runs.

4.4. Pressure profile

In section 3.4, we considered xs ≪ H , so that the perturbed surface density, spread

over a distance H , is uniform across the horseshoe region. As we have seen, this assumption

is not always true, and we try here to relax this assumption, modeling the perturbed surface

density as a convolution product of the perturbed vortensity by the Green function K(x),

properly normalized. We compare this to the perturbed surface density of our simulations

in figure 4. We stress that we have used, for δw, a truncated triangular profile, in order not

to take into account the material close to corotation that did not have time to perform a

U-turn. Our simulated profile agrees well with the measured profile from the simulations,

both in amplitude and position. The differences on amplitude may be imputed to an

uncertainty in xs, which is not perfectly defined here, as the situation is not stricto sensu in

steady state.

4.5. Time evolution

The asymmetry of the horseshoe zone takes some time to establish. When the planet

is “turned on” in the disk, the upstream region remains unperturbed for a while. A
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Fig. 3.— Relative asymmetry as a function of the aspect ratio. The dashed line represents our

analytical expression. The points are extracted from simulations, which have the standard

parameters, except for the aspect ratio. Again, there is a satisfactory agreement, albeit not

as good as the dependency on V.
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Fig. 4.— Radial pressure profile. This plot is obtained at an azimuth of φ = 1, for a run with

the standard parameters of section 4.1. We compare the theoretical profile obtained by con-

volution of the vortensity perturbation by the evanescent waves kernel, properly weighted,

as indicated by equation (32), and the outputs from the simulations. The shapes are very

similar in the corotation region (our model, which assumes that the response is taken suf-

ficiently far from the planet to be invariant in φ, breaks down in the region of Lindblad

resonances because of the presence of the wake).
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typical time for pressure waves to develop is the time needed for particles to perform a

horseshoe U-turn. Following Baruteau & Masset (2008), this time is approximatively:

τU−turn = Ω2
ph

3/2q−1/2/(A2
pBp). This is in good agreement with our simulations, as shown

in figure 5. Here, a small initial asymmetry (approx. 1/3 of the final asymmetry) already

exists, which we did not investigate, owing to its transient behavior.

4.6. Impact of the mass

Since we considered the low-mass planet limit, we want to know to which extent

our expression is true. To do so, we performed calculations varying the planet mass to

primary mass ratio (see figure 6). We see that our expression stand up to q ≃ 2 × 10−5

(approx. 7 M⊕), significantly over the usual “low-mass” planet limit (Masset et al.

2006a). Presumably this is because the condition xs < H can be marginally verified while

equations (39) and (40) still hold.

5. Discussion

We discuss hereafter a number of points related to our results.

5.1. A definition of the horseshoe width

The torque expression of equation (22) is the one derived by Ward (1991), except that

the integral boundaries are expressed in terms of values of the Bernoulli invariant, rather

than xs. For practical purposes, one would wish to have an expression in terms of the

horseshoe half width. The latter is ill-defined, however, owing to the asymmetry of the

horseshoe zone. In order to provide an adequate definition of the average horseshoe width,



– 25 –

Fig. 5.— Relative asymmetry as a function of time, in orbits. This is a run with standard

parameters, except that the aspect ratio is h = 0.08. The vertical dashed line represent

τU−turn. Here, the asymmetry boost starts around τU−turn, as expected. Note that the initial

asymmetry is not 0, presumably due to the initial pressure gradient in the disk (disks with

vanishing pressure gradients do not exhibit initial asymmetry).
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Fig. 6.— Relative asymmetry as a function of the planet mass to primary mass ratio.

The dashed line represents our analytical expression, given by equation (41)). The other

points are extracted from simulations. Note that each point is measured at a different date,

tmeasure ∝ 1/
√

q, as the locally steady state takes more time to reach for smaller planets.
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we need to derive Bs, getting rid of δη′. To achieve this, althought they share the same

value Bs, we explicitly sum BF
s and BR

s , which yields, to second order in x:

BF
s + BR

s = Bc + 2ApBp(x
F
s )2 + δ′ηF + Bc + 2ApBp(x

R
s )2 + δ′ηR

Bs = Bc + 2ApBp
(xF

s )2 + (xR
s )2

2
(42)

In order to transform equation (22) so as to get rid of the Bernoulli invariant, we write to the

first order in x the factors of the integrand: ∆j0(x) = 4Bprcx and Σ/ω = Σc/ωc(1 +Vx/rc).

This yields:

Γ = 4Bprc
Σc

ωc

[
∫ Bs

Bc

|x|
(

1 − V |x|
rc

)

dB −
∫ Bs

Bc

|x|
(

1 + V |x|
rc

)

dB

]

= −8Bp
Σc

2Bp

V
∫ Bs

Bc

B − Bc

2ApBp

dB

=
3Ω2

4
ΣcV

[

(xF
s )2 + (xR

s )2

2

]2

, (43)

which is the same torque expression as the one of Ward (1991), provided we take:

xmean
s =

[

(xF
s )2 + (xR

s )2

2

]1/2

(44)

This gives an adequate definition of the horseshoe width to be used when one wishes to

estimate the horseshoe drag by means of a streamline analysis.

5.2. A direct estimate of the corotation torque

As we have seen, taking into account the pressure effects does not unveil a different

torque value from the one derived by Ward (1991). The main reason that we have mentioned

in section 3.4 is the fact that the launch of evanescent waves in the coorbital region renders

radially more diffuse the perturbation of surface density (which would otherwise be bound

to the horseshoe region), but leaves its linear density unchanged.
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One can wonder, however, why the horseshoe region asymmetry described in section 3.5

does not have any impact on the torque. In order to gain some insight into the reasons for

that, we examine here how this asymmetry alters the front and rear components of the

torque by a direct, albeit approximate, estimate of the corotation torque.

The horseshoe U-turns, by conserving the vortensity, produce stripes of perturbed

vortensity in front of the planet and behind it, in a disk with a vortensity gradient. These

perturbation of vortensity yield perturbations of surface density. Disregarding the radial

spread of these perturbations of surface density, we can write their linear mass as:

Λ =

∫

δΣ(x)dx =
Vx2

sΣc

a
(45)

in front of the planet, and:

Λ = −Vx2
sΣc

a
(46)

behind the planet. We evaluate the torque arising from a stripe of linear mass Λ onto the

planet, assuming that it starts at a distance d from the latter:

Γstripe ≈ a

∫ ∞

d

rc
GMp

l2
Λdl =

Ω2
pa

4q

d
Λ. (47)

We note that the effects of the stripe in front of the planet, and of the stripe that is located

behind it, are cumulative, since they involve perturbations of surface density of opposite

signs, hence the corotation torque, in total, is:

Γ ≈ Ω2
pa

3qVΣc
(xF

s )2 + (xR
s )2

d
. (48)

This allows to understand why the horseshoe drag remains unchanged when the horseshoe

region becomes asymmetric: xF
s increases (decreases) while xR

s decreases (increases), but

their sum (or the sum of their square) remains constant to lower order in V. Put into

simple words, taking for example a positive torque excess (V > 0), the widening of the

front region produces a supplementary torque excess, since the front region is producing a
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positive torque excess. But the torque excess produced by the rear region is also positive,

so the shrinking of this region induces a smaller torque excess, which balance, to the first

order, the supplementary torque excess of the front region, since |δxF
s | = |δxR

s |.

As a side result, we compare equation (48) to the expression of Ward (1991), which

reads with our notation, in a Keplerian disk:

ΓWard =
3

4
VΣcx

4
sΩ

2
p. (49)

Noting that x2
s ∼ a2q/h (Masset et al. 2006a; Paardekooper & Papaloizou 2009a), and

assuming that the stripes originate at a distance ∼ H from the planet, equation (48) can

be recast as:

Γ ∼ 2VΣcx
4
sΩ

2
p (50)

This is the same expression except for a 3/8 factor, presumably originating from our simple

estimates of d and xs.

6. Relaxation of the globally isothermal disk hypothesis

In a globally isothermal disk, the asymmetry of the horseshoe region does

not involve additional generation of perturbed surface density, because there is no

generation of vortensity, since the gradients of pressure and density are always aligned.

However, in a locally isothermal disk, where the temperature depends on the radius

(T = T (r) = Tc (r/rc)
−τ ), this is not true anymore, and the vortensity created corresponds

to an additional perturbation of surface density that exerts a torque onto the planet. For

the sake of definiteness we call this torque the non-isothermal torque excess. For a proper

formulation of this torque, one could follow the method of paper II, using an adequate

invariant along the streamlines, whenever it exists, in order to derive the downstream

vortensity and perturbed surface density. In the present situation, nevertheless, the
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variation of the state variables of a fluid element that goes from infinity to the stagnation

point depends on its path, so we cannot use the method of paper II for adiabatic flows.

We expect therefore the non-isothermal torque excess to display a strong sensitivity to the

topology of the streamlines. As we shall see hereafter, this is indeed the case.

Prior to a fine tuned description of the excess inferred from numerical simulations, we

give hereafter an oversimple estimate of the magnitude of the offset, which should apply

to situations in which there is only one stagnation point, and which is adapted from a

discussion provided in paper II, in which we interpret the adiabatic torque excess as arising

from a constitutive asymmetry of the horseshoe region.

6.1. An oversimple approach

We know from our simulations that a locally isothermal disk exhibits a non-isothermal

torque excess, even for a vanishing vortensity gradient. In order to estimate this excess, we

provide hereafter an estimate of the intrinsic asymmetry of the horseshoe region of a locally

isothermal disk. All this study is done for V = 0, in order to neglect the asymmetry of the

horseshoe region acquired on the long term under the feed back of the evanescent waves,

which does not plays a role in the torque, as explained before.

To estimate the intrinsic asymmetry, we consider a fluid element belonging to a

separatrix, that starts at (xs, φ∞). By definition the torque applied to it is exactly sufficient

to bring it to the stagnation point. For the globally isothermal case, in front of the planet,

this reads:

∆jGI =

∫ t∞

t0

ΓGI(t) dt (51)
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=

∫ φs

φ∞

ΓGI(φ) (dt/dφ) dφ, (52)

where the GI index stands for “globally isothermal”. We then approximate (dt/dφ) =

1/vφ ≃ a/2Apxs,GI, and since ∆j = 2aBpxs,GI, we have:

4ApBpx
2
s =

∫ φs

φ∞

Γ(φ) dφ (53)

A similar relation holds in locally isothermal case, with a modified xs = xs,GI + δxs and

Γ = ΓGI + δΓ. The only contributions in δΓ is the one of the pressure, assuming that the

fluid element follows a similar path in both cases:

δΓ =
∂φP

Σ

∣

∣

∣

∣

LI

− ∂φP

Σ

∣

∣

∣

∣

GI

= δT
∂φΣ

Σ
, (54)

where the LI index stands for “locally isothermal”, and where δT = TLI − TGI . In

equation (54) we have made use of the fact that ∂φT cancels out. From equation (53), we

have:

8ApBpδx
F
s =

∫ φs

φ∞

δT
∂φΣ

Σ
dφ. (55)

We simplify further by assuming “square”, instantaneous U-turns: the particles go from

(xs, φ∞) to (xs, φs), then to (−xs, φs), and lastly to (−xs, φ∞). This ensures that δT is

constant along it, and we are left with:

8ApBpδx
F
s ∼ δT (xs)

∫ φs

φ∞

dΣ

Σ
(56)

= −τ
xs

a
T0

(Σs − Σ∞)

Σc
, (57)

where we have replaced δT by its first order expression −τT0 xs/a. Denoting with

∆P = Ps − P∞, this reduces to:

δxF
s = − τ

8ApBpa

∆P

Σc
. (58)

On the rear of the planet, the sign of δT changes, and we have δxR
s = −δxF

s . The crude

estimate presented here gives an order of magnitude of the intrinsic asymmetry of the
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horseshoe region, that gives rise to a torque for the reasons presented in detail in paper II.

Since the enthalpy tends to fill the planet’s potential well, we always have ∆P > 0, and

the sign of δxF
s only depends on τ . For example, for a disk with decreasing temperature

(τ > 0), δxF
s is negative, and the planet feels a negative torque excess from the front region.

The rear region being in turn broader, the planet feels a negative torque excess from the

rear region also, hence a globally negative torque excess. To quantify this excess, we use

the same method as in paper II, which yields:

δΓ = 2Σc vφδxs∆j ∼ 2τ∆Px2
s, (59)

where we take vφ = 2Apxs, and ∆j = 4Bpaxs.

We therefore find a non-isothermal torque excess that scales with the temperature

gradient, and which should have a stronger dependency at lower softening lengths, since the

potential well of the planet is then deeper, and ∆P is therefore larger.

6.2. Comparison to numerical simulations

We performed two sets of 30 numerical simulations with a varying temperature slope τ

between −3 and +3 to investigate the behavior of the non-isothermal torque excess. The

first set uses a softening length of ǫ = 0.3, while the second one uses ǫ = 0.5. Due to a strong

generation of vortices when V = 0, we adopted a non-vanishing vortensity gradient, and we

chose V = 1. The results of these simulations are presented in figure 8. We measured the

quantity ∆Γ as explained in figure 7. The value of ∆P was measured by averaging ∆P F

and ∆P R.

There is a poor fit of the numerical data with our crude estimate. While the slope has

the expected value (within an error range of ±25%), there are discontinuities in the case



– 33 –

Fig. 7.— Measurement of ∆Γ. For a given run (here, τ = −1.35, ǫ = 0.3), we monitor the

total torque Γtot as a function of time. The differential Lindblad torque ΓLindblad and the

linear co-rotation torque ΓCR only take a few orbits to establish, then the horseshoe drag

develops, taking place of the linear corotation torque (Paardekooper & Papaloizou 2009b).

We measure ∆Γ = δΓHS − ΓCR, which, as ΓCR does not depends on τ , should trace the

dependency of the horseshoe drag on τ . The values of ΓLindblad + ΓCR and ΓLindblad + δΓHS

are measured by averaging Γtot between 2 and 3 orbits on the one hand, and between 30 and

35 on the other hand. Slight changes of theses values did not bring differences.
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ǫ = 0.3 for |τ | ∼ 1, which seem to disappear for the larger value of ǫ. This is linked to the

appearance of a “trapped region”, which we explain in the next section.

6.3. A note on the softening length

The streamlines in the inner part of the horseshoe region, near the planet, exhibit

different behaviors as a function of the softening length, as shown in figure 9. We can

distinguish two cases:

• a case where there are three stagnation points, as discussed in Masset et al. (2006a),

with almost the same radius rc. The O-point is associated to the planet, being located

almost at the same azimuth. One of the X-points lies on the separatrices. We call

it the outer X-point. Similarly, the other X-point is the one we refer to as the inner

X-point.

• a case where there is only one X-point, at the intersection of the separatrices.

One can continuously go from the first situation to the last one by varying the softening

length. The inner X-point and the O-point merge at some point, yielding a one stagnation

point configuration. A lower softening length favors the existence of an inner X-point, but

it is not the only parameters that determines this property of the flow. The temperature

gradient also plays a role (a smaller gradient favors the existence of a inner X point, while

at large gradient we have a one stagnation point situation). We have seen this for two

values of ǫ, and present this for varying values of τ in figure 10. The existence of three

stagnation points appears to be correlated with the discontinuities at τ = ±1. We comment

on this behavior in the next section.
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Fig. 8.— Non-isothermal torque excess. We plot this quantity as a function of τ , for two

sets of runs: ǫ = 0.3 (X), and ǫ = 0.5 (+). The dashed line represents our crude estimate

of equation (59). A proper linear regression fit of the simulated points would yield a slope

within ±25% of our prediction. The break of continuity that we see for ǫ = 0.3 exists also

for ǫ = 0.5, but is much less apparent, as it takes place at τ ≈ ±0.5, and results in a much

smaller jump of the corrected torque excess.
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6.4. The different regimes in the locally isothermal case

The production of vortensity takes place near the planet, during the horseshoe U-turns,

where the gradients of pressure (dominated by the planet’s potential) and of temperature

are not aligned. For the sake of definiteness, we assume that there is a negative temperature

gradient. Therefore a negative amount of vortensity is produced behind the planet and a

positive amount of vortensity is produced in front of it. In an idealized situation with a

unique X-point centered on the planet, the negative perturbed vortensity is fully advected

to the rear of the planet, while the positive perturbed vortensity perturbation is advected

towards positive azimuth. They respectively yield a positive surface density perturbation

behind the planet (for the reasons exposed in section 3.4, which are valid azimuthally far

from the planet, where the gradients of temperature and density are aligned) and a negative

perturbation of surface density in front of the planet (hence a negative non-isothermal

torque excess).

In a realistic situation, however, the fact that the X-point is not centered on the planet

changes this picture. We take the example of τ ∼ −1 (one can refer to figure 9b to see

a streamline map that looks similar to this situation). The material at the rear of the X

point is advected to the rear of the planet, as expected. But some of the material (and the

resulting underlying created positive vortensity) at the front of the X point, but still at

the rear of the planet, is eventually advected to the front of the planet. This lowers the

torque excess exerted on the planet, as a part of the positive vortensity created at the rear

of the planet and advected to the front cancels out with the negative vortensity created

and advected to the front. This explains why the simulated points in figure 8 are below our

prediction for τ < −1.

As |τ | decreases, a “trapped region” appears, enclosed between the two X-points, and

centered on the O-point. The material in this region orbits around the planet, and does
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not contribute to the torque. In fact, the created vortensity supported by this material is

trapped here, and even eventually flattens out (under the action of phase mixing, which

requires very long times). For τ < 0, the azimuth of the O-point is positive, and the

material trapped in this region essentially has a negative created vortensity. Hence, when

the trapped region appears, a significant part of the advected negative vortensity disappears

from the torque, resulting in a smaller torque excess. This likely explains the discontinuity

in figure 8 at τ ≃ −1.

Similar arguments hold for the case τ > 0 (we then have to change the sign of the

vortensity produced, as well as the sign of the azimuth of the outer and inner X-points, as

can be seen in figure 10).

For |τ | > 1, ∆Γ decreases with τ as announced, with a slope that is roughly the one

predicted in section 6.1. For |τ | < 1, however, this slope is reverted. The reason for this

behavior is unclear, and its study requires an in-depth streamline analysis, as well as a

quantitative estimate of the vortensity produced in the vicinity of the separatrices, which is

beyond the scope of this qualitative description.

7. Conclusion

We have derived an expression for the horseshoe drag that takes into account the effects

of pressure. It yields a result identical to previous estimates of the horseshoe drag, except

that it explicitly takes into account the material beyond the horseshoe separatrices. The

horseshoe drag therefore accounts for the torque arising from the whole corotation region,

and therefore should deserve to be called corotation torque. We find that the horseshoe

region is asymmetric, in a manner that depends on the vortensity gradient. Specifically, the

part in front of the planet is wider for a decreasing vortensity profile in the disk, while the
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part behind the planet is more narrow. This asymmetry can be interpreted as an effect of

evanescent pressure waves, launched from the downstream part of the horseshoe U-turns,

which perturb the upstream region. Using a Bernoulli invariant, we derived this asymmetry

for a globally isothermal disk, and found it to scale with the vortensity gradient and the

disk’s aspect ratio.

The impact of the evanescent waves on the horseshoe width can easily be interpreted as

a consequence of an azimuthal pressure gradient, whose torque counteracts or adds to the

torque required to perform a U-turn, resulting either in a wider or in a narrower horseshoe

region.

This asymmetry does not alter the standard horseshoe drag. Basically, the

supplementary torque excess resulting from the widening of one side of the horseshoe region

is balanced by the torque deficit resulting of the shrinking of the other side of the horseshoe

region.

As the concept of horseshoe drag has proved of increasing importance for planetary

migration in a number of recent works (Masset et al. 2006b,a; Paardekooper & Mellema

2006; Baruteau & Masset 2008; Paardekooper & Papaloizou 2008, 2009a,b; Kley & Crida

2008), it is crucial to adopt a proper estimate of the correct horseshoe width when evaluating

the corresponding horseshoe drag. We find that the correct mean width of the horseshoe

region should be estimated as given by equation (44). As the asymmetry is relatively mild

for typical vortensity gradients and aspect ratios, a simple arithmetic mean of the front and

rear widths also yields estimates that are sufficiently accurate.

Our analysis is based on the use of a Bernoulli invariant, which is made possible by

the hypothesis that the disk is globally isothermal, hence barotropic. Such an approach is

not possible for a locally isothermal disk. In such a situation, vortensity is created near the

planet, which gives rise to a supplementary torque. We have presented a qualitative study
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of this supplementary torque, whose dependence on the temperature gradient appears to be

intimately linked to the topology of the flow in the planet vicinity. We also provide a crude

estimate of this dependence, which is meant to apply to situations with only one stagnation

point (i.e. at large temperature gradient). We stress that this supplementary torque is

not strong enough to reverse planetary migration in a disk with a surface density that

decreases outwards as a power law of radius, even with unrealistic temperature gradients.

Nevertheless, it should be considered whenever accurate estimates of the migration rate

are required, as its amplitude can amount to about one third of the total horseshoe

drag. A systematic study of these non-isothermal effects, and their generalization to the

three-dimensional case, should be undertaken in order to provide reliable estimates of this

supplementary torque, that we have called the non-isothermal torque excess.

An important feature of this excess is that it is linked to an edge effect of the horseshoe

drag. The bulk horseshoe drag, which corresponds to the classical expression, always scales

with the vortensity gradient. Any dependence on another parameter of the disk (such as

the temperature gradient) manifests itself as evanescent waves excited at the downstream

separatrices, where they yield a vortensity sheet as the most tangible imprint on the flow.

In the case of a locally isothermal disk, the lack of an invariant and the strong dependence

on the topology of the flow render the situation very complex and hardly tractable. In the

case of an adiabatic flow, one can exhibit, under certain circumstances, an invariant of the

flow. This allows a rigorous analysis of the horseshoe drag and of the main properties of the

horseshoe region. This analysis is presented in paper II.

The numerical simulations performed in this work have been run on the 92 core cluster

funded by the program Origine des Planètes et de la Vie of the French Institut National

des Sciences de l’Univers. Partial support from the COAST project (COmputational

ASTrophysics) of the CEA is also acknowledged. The authors also wish to thank G.
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Fig. 9.— Appearance of a trapped region. This is a close overview of the horseshoe region,

at T=13 orbits, close to the planet, which is at located at φ = 0 and r = 1. The temperature

gradient is τ = −0.9. The left panel show the ǫ = 0.3 case, while the right panel shows the

ǫ = 0.5 case. The thin dotted line represents the corotation. The underlying field is the

perturbed vortensity. The thin white lines are the streamlines, and the bold ones represents

the separatrices. We clearly see the advection of the vortensity created, and the advection of

negative and positive vortensity to the front region (since, here, the outer stagnation point

is behind the planet). When the inner stagnation point disappears, the material executing a

U-turn in front of the planet passes faster by the planet, hence a smaller creation of negative

vortensity (hardly seen with the grey scale, but there is a difference of about one half), while

the creation of positive vortensity behind the planet remains of the same order.
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Fig. 10.— Azimuth of the stagnation point(s) as a function of the temperature gradient,

at T=5 orbits. The variation of the radial position is much smaller, although it exhibits a

reproducible behavior (the front (rear) X stagnation point being always at r < a (r > a) ).

For |τ | < 1.5, there is one O point, and two X-points, as indicated on the figure. At larger

times, the inner X-point and the O-point tend to merge, reducing the interval upon which

there are three stagnation points. Nevertheless, it remains quite large (|τ | < 1) in steady

state.
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