EDUCATION Revista Mexicana deisica E17 (1) 73-91 JANUARY-JUNE 2020

Inflationary cosmology: from theory to observations

J. Alberto Vazque#'®, Luis E. Padill4, and Tonatiuh Matds
?Instituto de Ciencias Bicas, Universidad Nacional Adhoma de Mexico,
Apartado Postal 48-3, 62251 Cuernavaca, Morelogxido.
®Departamento de Bica, Centro de Investigamn y de Estudios Avanzados del IPNeito.

Received 3 October 2018; accepted 29 November 2019

The main aim of this paper is to provide a qualitative introduction to the cosmological inflation theory and its relationship with current cos-
mological observations. The inflationary model solves many of the fundamental problems that challenge the Standard Big Bang cosmology,
such as the Flatness, Horizon, and the magnetic Monopole problems. Additionally, it provides an explanation for the initial conditions ob-
served throughout the Large-Scale Structure of the Universe, such as galaxies. In this review, we describe general solutions to the problem
in the Big Bang cosmology carry out by a single scalar field. Then, with the use of current surveys, we show the constraints imposed on the
inflationary parameter&s, r), which allow us to make the connection between theoretical and observational cosmology. In this way, with
the latest results, it is possible to select, or at least to constrain, the right inflationary model, parameterized by a single scalar field potential

V().
Keywords: Inflation; observations; cosmological parameters.

El objetivo principal de este aculo es ofrecer una introdudrei cualitativa a la teda de la inflagdbn ddsmica y su reladin con observaciones
actuales. El modelo inflacionario resuelve algunos problemas fundamentales gliandakafodelo edindar cosmdlgico, denominado

modelo del Big Bang caliente, como el problema de la Planicidad, el Horizonte y la inexistencia de Monopolesansghdicionalmente,

provee una explicadn al origen de la estructura a gran escala del Universo, como son las galaxias. En este trabajo se describen solucione:
generales a los problemas de la Cosmizadel Big Bang llevadas a cabo por un campo escalar. Ademediante de observaciones
recientes, se presentan constricciones de losnpetros inflacionariogs y r, que nos permiten realizar la conemientre la teda y las
observaciones cosnfmjicas. Esta manera, y con lddtimos resultados, es posible seleccionar o al menos limitar el modelo inflacionario,
usualmente parametrizado por un potencial de campo e3céajgr

Descriptores: Inflacion; observaciones; pametros cosmoébgicos.
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1. Introduction its potential energy/(¢). Also based on the slow-roll ap-
proximation, it is found that the set of parameters that allows
The Standard Big Bang (SBB) cosmology is currently themaking the connection with observations is given by the am-
most accepted model describing the central features of thelitude of density perturbation®;, the scalar spectral index
observed Universe. The Big Bang model, with the addi-ns, and the tensor-to-scalar ratio Finally, the theoretical
tion of dark matter and dark energy components, has beepredictions for different scalar field potentials are shown and
successfully proved on cosmological levels. For instancegompared with current observational data on the phase-space
theoretical estimations of the abundance of primordial eleParametern —r, therefore pinning down the number of can-
ments, numerical simulations of structure formation of galax-didates and making predictions about the shapé (o).
ies and galaxy clusters are in good agreement with astro-
nomical observations [3, 27, 58]. Also, the SBB model pre- :
dicts the temperature fluctuations observed in the Cosmic Mi—2' The cosmological model
crowave Background radiation (CMB) with a high degree of5 1
accuracy: inhomogeneities of about one part in one hundred
thousand [3, 29]. These results, amongst many others, am avoid long calculations and make this article accessible
the great success of the SBB cosmology. Nevertheless, wheg young scientists, many technical details have been omit-
we have a closer look at different scales observations seefad or oversimplified. We encourage the reader to go over
to present certain inconsistencies or unexplained features e vast amount of literature about the inflationary theory
contrast with expected by the theory. Some of these unp12, 23,27, 34, 41]. Before starting the theoretical descrip-
satisfactory aspects led to the emergence of the inflationaryon, let us consider some of the assumptions the SBB model
model [4,18, 37, 38]. is built [10]:

In this work, we briefly present some of the relevant 1) The physical laws at the present time can be extrapo-
shortcomings the standard cosmology is dealing with, and kated further back in time and be considered as valid in the
short review is carried out about scalar fieldsds promising  early Universe. In this context, gravity is described by the
candidates. Moreover, it is shown that an inflationary singleheory of General Relativity, up to the Planck era.
canonical-field model can be completely described through 2) The cosmological principle holds that “There do not
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exist preferred places in the Universe”; that is, the geometwhere p. is a function of time due to the presence of
rical properties of the Universe over sufficiently large-scalesd. In particular, its current value is denoted by, =
are based on the homogeneity and isotropy, both of them er-87840 h2 x 1026 kg m~3, or in terms of more conve-
coded on the Friedmann-Robertson-Walker (FRW) metric nient units, taking into account large scales in the Universe,

2 peo = 2.775h~1 x 10" Mg, /(h~*Mpc)? [3]; with the solar

s+r? (d6*+sin®6d¢?) |, (1)  mass denoted by, = 1.988 x 103 g andh parameterizing
1—kr
the present value of the Hubble parameter today

where(t, r, 0, ¢) describe the time-polar coordinates; the spa-
tial curvature is given _by the Constdgtand the c_osmic scale- _ Hy = 100h kms~"Mpc . ®)
factor a(t) parameterizes the relative expansion of the Uni-
verse; commonly normalized to today’s valu€,) = 1.
Hereafter we use natural units= i = 1, where the Planck The latest value of the Hubble parameter measured by the
massmeyp is related to the gravitational consta@tthrough ~ Hubble Space Telescopequoted to be [54]:
G= m;?.

ds*= — dt*+a*(t)

3) On small scales, the anisotropic Universe is described Hy = 70.0"%% kms ™ Mpc 1. 9)
by a linear expansion of the metric around the FRW back- '
ground:
_ FRW
Gunwr (% 8) = 9y (6 8) & Py (X, ). ) Tasie I. Evolution of p(a), a(t) and H(t) when the Universe is

To describe the general properties of the Universe, we assun#@minated by radiation, matter or a cosmological constant.
its dynamics are governed by a source treated as a perfect

fluid with pressures(t) and energy density(¢). Both quan- component pla) a(t) H(t)

tities are often related via an equation-of-state with the form radiation oxa™? o t1/2 1/(2t)

of p = p(p). Some of the well studied cases are matter a3 o $2/3 2/(3t)
p= g Radiation, cosmological constant o a® o exp(y/(A/3)t)  const
p=0 Dust,

At the largest scales, a useful quantity to measure is the

p=—p  Cosmological constant A. () ratio of the energy density to the critical density defining the
The Einstein equations for these kind of constituents, witrdensity parametef); = p;/p.. The subscript labels dif-
the FRW metric, are given by: ti&iedmann equation ferent constituents of the Universe, such as baryonic matter,
o radiation, dark matter, and dark energy. The Friedmann equa-
H? = <a) — 87772,0 _ 57 (4) tion (2.1.) can be then written such that it relates the total
a 3mp, a? density parameter and the curvature of the Universe as
theacceleration equation
. k
a 47 0—-—1=——. 10
—=——(p+3p), (5) a?H? (10)
a 3mg,

and the energy conservation described byfline equation  Thus the correspondence between the total density coitent
. and the space-time curvature for differéntalues is:
p+3H(p+p) =0, (6) P

where overdots indicate time derivative, aflddefines the
Hubble parameter Notice that we could get the accelera-
tion equation by time-deriving (2.1.); and using (6), therefore
only two of them are independent equations. Table | displays e Flat Universe :Q=1: k=0: p = p..
the solutions for the Friedmann and fluid equations when dif-
ferent components of the Universe dominate along with the
scale factor and the evolution of the Hubble parameter in each
epoch.

From Eq. (2.1.) can be seen that for a particular HubbleCurrent cosmological observations, based on the standard
parameter, there exists an energy density for which the unimodel, find out the present value @fis [3]
verse may be spatially flatt = 0). This is known as the

e OpenUniverse 0 <2 <1:k<0: p<pe.

e Closed Universef2 >1: k> 0: p> pe.

critical densityp. and is given by 0o = 1.0007 + 0.0037, (11)
3m3, H?
pc(t) = Pl , (7) . . .
8w that is, the present Universe is nearly flat.
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2.2.  Shortcomings of the model

This section presents some of the shortcomings the standar
old cosmology is facing of, to then introduce the concept
of Inflationary cosmology as a possible explanation to these
issues.

y

Flatness problem

Notice thatQ2? = 1 is a special case of Eq. (10). If the Uni-
verse was perfectly flat at the earliest epochs, then it remained
so for all time. Nevertheless, a flat geometry is an unstable
critical situation; that is, even a tiny deviation from it would g,gyre 1. Temperature fluctuations measured in the CMB radia-
cause thaf evolved quite differently, and very quickly, the tjon using COBE-WMAP-Planck satellites [3, 15].

Universe would have become more curved. This can be seen

as a consequence dued# is a decreasing function of time

during radiation or matter domination epoch, as it can be obknown as thébservable UniverseThis spherical surface, at

LE FIGARO-fr

served in Table 2.1., then which the decoupling process occurred, is calledsiivdace
of the last scattering The primordial photons are responsi-
|Q—1] ot during radiation domination, ble for the CMB radiation observed today, then looking at its
Q-1 o 12/3 during dust domination. fluctuations is analogous of taking a picture of the universe at

that time (4. =~ 380,000 years old), see Fig. 1.

Since the present age of the Universe is estimated t0 be Fjgyre 1 shows light seen in all directions of the sky, these
to =~ 13.787 Gyrs [3], from the above equation, we can de- hotons randomly distributed have nearly the same tempera-
duce the required value of2 — 1 | = [ Qo =1 | #/to & yyre7y — 2.7255 K plus small fluctuations (about one part in
different _t|mes to obtain the cprrect spatlal—.geometry at the)ne hundred thousand) [3]. As we have already pointed out,
present timg € — 1 | [expression (11)]. For instance, let s peing at the same temperature is a property of thermal equi-
consider some particular epochs in a nearly flat universe: |ipriym. Observations are, therefore, easily explained if dif-
ferent regions of the sky have been able to interact and moved
towards thermal equilibrium. In other words, the isotropy
observed in the CMB might imply that the radiation was ho-
e At Nucleosynthesis timgt ~ 1sec), we need that Mogeneous and isotropic within regions located on the last
|Q—1|<1071S, scattering surface. Oddly, the comoving horizon right before
photons decoupled was significantly smaller than the corre-
e At the Planck epoctit ~ 10~*3sec), we need that sponding horizon observed today. This means that photons
[ Q—1]<107% coming from regions of the sky separated by more than the
orizon scale at last scattering, typically ab®utwould not
ave been able to interact and established thermal equilib-
um before decoupling. A simple calculation displays that at
decoupling time, the comoving horizon was 90'iMpc and
would be stretched up to 2998 h Mpc at present. Then,
the volume ratio provides that the microwave background
should have consisted of about10® causally disconnected
) i i regions [46]. Therefore, the Big Bang model by itself does
The horizon problem is one of the most important problems, ;o njain why temperatures seen in opposite directions of

in the B|g Bang quel, asit refer; to the com'rnur.1|cat.|on be'the sky are so accurately the same; the homogeneity must had
tween different regions of the Universe. Bearing in mind thebeen part of the initial conditions?

existence of the Big Bang, the age of the Universe is a fi-

nite quantity and hence even light should have only traveled On the other hand, the microwave background is not per-
a finite distance by all this time. fectly isotropic, but instead exhibits small fluctuations as de-

According to the standard cosmology, photons decoutected initially by the Cosmic Background Explorer satellite

pled from the rest of the components at temperatures abo€OBE) [57] and then, with improved measurements, by the
Tygee =~ 0.3 eV at redshiftzg.. =~ 1100 (decoupling timg Wilkinson Microwave Anisotropy Probe (WMAP) [19, 30]
from this time on photons free-streamed and traveled basiand nowadays with the Planck satellite [3]. These tiny ir-
cally uninterrupted until reaching us, giving rise to the re-regularities are thought to be the ‘seeds’ that grew up until
gion becoming the structure nowadays observed in the Universe.

e At Decoupling time(t ~ 10'3sec), we need that
1Q—1]<1073.

Because there is no reason to prefer a Universe with a criticaﬂ
density, hence Q — 1 | should not necessarily be exactly fi
zero. Consequently, at early time& — 1 | has be fine-tuned
extremely close to zero to reach its actual observed value.

Horizon problem
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Monopole problem e Textures (three dimensional).

Following the line to find out the simplest theory to describe ~ Monopoles are therefore expected to emerge as a con-
sequence of unification models. Moreover, from particle

the Universe, several models in particle physics were sug®

gested to unified three out of the four forces presented in thBhysics models, there are no theoretical constraints about the

Standard Model of Particle Physics (SM): strong force, de/Nass & monopole should carry out. However, from LHC

scribed by the grougU (3), weak force, and electromagnetic constrictions and grand unification theories, the monopoles
force, with an associated grosi/ (2) @ U(1). These classes Would have a mass of0'® — 10'® GeV [47]. Hence,
of theories are calleGrand Unified Theories (GUTL4]. An pased on their non—relatmst!c chara(_:ter, a crude calcula-
important point to mention in favor of GUT is that they are tion predicts an extremely high-density number,,., of
the only ones that predict the equality electron-proton charg§'@gnetic monopolesifuon, ~ 107 cm~?) at the time of
magnitude. Also, there are good reasons to believe the orgran_d l_JnlfIEd symmetry breaking [10,61_]. According to th|_s
gin of baryon asymmetrynight have been generated on the prediction, the Universe W_ould be dominated _by magnetic
GUT [26]. monopoles. In contrast with current observations: no one

These kinds of theories assert that in the early stages ¢taS found anyone yet.
the Universe { ~ 10~%3 sec), at highly extreme temper-
atures {gur ~ 10* K), existed a unified osymmetric 3, Cosmological inflation
phasedescribed by a grou@. As the Universe temperature
dropped off, it went through different phase transitions untilThe inflationary model offers the most elegant way so far pro-
reach the symmetries associated with the standard model pbsed to solve the problems of the standard Big Bang and,
particle physics, generating hence the matter particles sudherefore, to understand the remarkably agreement with the
as electrons, protons and neutrons. When a phase transitistendard cosmology. Inflation does not replace the Big Bang
happens its symmetry is broken and thus the symmetry groumodel, but rather it is considered as an ‘auxiliary addition’,
changes by itself, for instance: which occurred at the earliest stages of the Universe without
disturbing any of its successes.

Inflation is defined as the epoch in the early Universe
G — SU(3) ® SU(2) ® U(1). in which the scale factor is exponentially expanded in just

a fraction of a second:

e GUT transition:

e Electroweak transition:

SU@3) ® SU©2) ® U(1) — SU®3) ® U(L). INFLATION <=4 >0 12)

d (1
The phase transitions have plenty of implications. One of the A dat (aH) <0. (13)
most important is théopological defectproduction which _
depends on the type of symmetry breaking and the spatidihe last term corresponds to the comoving Hubble length

dimension [66], some of them are: 1/(aH), interpreted as the observable Universe becoming
] . smaller during inflation. This process allowed our observable
e Monopoles (zero dimensional). region to lay down within the Hubble radius at the beginning

of inflation. In [32] words: “is something similar to zooming

e Strings (one dimensional). ) _ S :
os ( ) in on a small region of the initial universe”; see left panel of

e Domain Walls (two dimensional). Fig. 2.
s N 7 R
Hub_ble _.Th_ermal _ Thermal
radius equilibrium region i
> Equilibrium

region

Inflation
o J

a) Comoving b)

Physical

FIGURE 2. a) Schematic behavior of the comoving Hubble radius during the inflationary period. b) Physical evolution of the observable
universe during the inflationary period.

Rev. Mex. k5. E17 (1) 73-91



INFLATIONARY COSMOLOGY: FROM THEORY TO OBSERVATIONS 77

From the acceleration Eq. (5) the condition for inflation,
in terms of the material required to drive the expansion, is

ia>0<= (p+3p) <O0. (14)

Because in standard physics it is always postulai@sia pos-
itive quantity, and hence to satisfy the acceleration condition,
it is necessary for the overall pressure to have

Inflation

Ll . .
INFLATION <= p< —p/3. (15) Time

Nonetheless, neither radiation nor a matter component satig! ¢URE 3- Evolution of the density parametér during the infla-

fies such conditions. Let us postpone for a bit the problemtlonary period.2 is driven towards unity, rather than away from it.
of finding a candidate that may satisfy this inflationary con-
dition. Horizon problem

3.1. Solution for the Big Bang problems As we have already seen, during inflation, the universe ex-

If this brief period of accelerated expansion occurred, thefpands drastically, and there is a reduction in the comoving

inside the Hubble radius to evolve and constitute our present
Flatness problem observable Universe. Fluctuations were hence stretched out-

side of the horizon during inflation and re-entered the horizon

A typical solution is a Universe with a cosmological constantin the late Universe, see Fig. 2. Scales outside the horizon at
A, which can be interpreted as a perfect fluid with equatiofcMB-decoupling were, in fact, inside the horizon before in-

of statep = —p. Having this condition, we observe from flation. The region of space corresponding to the observable
Table | that the universe is exponentially expanded: universe, therefore, was in thermal equilibrium before infla-
tion, and the uniformity of the CMB is essentially explained.
A
a(t) oc exp (\/ 3t> ’ (16) Monopole problem

and the Hubble parametéf is constant, then the condition The monopole problem was initially the main motivation to

(13) is naturally fulfilled. This epoch is called thlie Sit-  develop the inflationary cosmology [18]. During the infla-

ter stage However, postulating a cosmological constant as d@ionary epoch, the Universe led to a dramatic expansion over

candidate to drive inflation might create more problems thawhich the density of the unwanted particles were diluted

solutions by itselfj.e., reheating process [9]. away. Generating enough expansion, the dilution made sure
Let us look at what happens when a general solution ishe particles stayed completely out of the observable Uni-

considered. If somehow there was an accelerated expamerse making pretty difficult to localize even a single mag-

sion, 1/(aH) tends to be smaller on time, and hence, bynetic monopole.

the expression (10§} is driven towards the unity rather than

away from it. Then, we may ask ourselves how much should

1/(aH) decrease. If the inflationary period started at time4, Single-field inflation

t = t; and ended up approximately at the beginning of the

radiation dominated era & ¢y), then Throughout the literature, there exists a broad diversity of
0 models that have been suggested to carry out the inflation-
| =1 |4, ~ 10777, ary process [34, 43, 49]. In this section, we present the

scalar fields as good candidates to drive inflation and explain

and how to relate theoretical predictions to observable quantities.
Q=1 | a2 N Here, we limit ourselves to models based on general gravity,
W = (af> =e V. (17)  i.e, derived from the Einstein-Hilbert action, and single-field
- t=t;

models described by a homogeneous real slow-rolling scalar
So, the required condition to reproduce the valuélgf field ¢. Nevertheless, in Sec. 5. we provide a very brief intro-

measured today is that inflation lasted for at l€dst Ina > duction to inflation with several scalar fields, as a possibility

60, thenQ2 must be extraordinarily close to one that we still to generate the inflationary process.

observe such quantity today. In this sense, inflation magnifies Inflation relies on the existence of an early epoch in the

the curvature radius of the universe, so locally the univers&niverse dominated by a very different form of energy; re-

seems to be flat with great precision, Fig. 3. member the requirement of the unusual negative pressure.
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Such a condition can be satisfied by a single scalar field (spir4.1.
0 particles). The scalar field, which drives the Universe to an

Slow-roll approximation

inflationary epoch, is often termed as thélaton field

Let us consider a real scalar field minimally coupled to
gravity, with an arbitrary potentidl' (¢) and Lagrangian den-
sity £ specified by the action

S = /d4m\/—g£

= [ aev=g [zo000-via| . a9

As we have noted, a period of accelerated expansion can be
created by the cosmological constdrt) and hence solve
the mentioned problems. After a brief period, inflation must
end up, and its energy being converted into conventional mat-
ter/radiation; this process is callegheating In a universe
dominated by a cosmological constant, the reheating process
is seen as\ decaying into conventional particles; however,
claiming thatA can decay is still a naive way to face the
problem. On the other hand, scalar fields have the property

The energy-momentum tensor corresponding to this field iso behave like alynamical cosmological constarBased on

given by

Tuu = ud)al/(b — 9uv L

Inthe same way as the perfect fluid treatment, the energy de
sity p4 and pressure densipy, in the FRW metric are found
to be

(19)

To=py = 502+ V(9) 4 5V6%  (20)
Ti=py=3# - Vi)~ V. @)

Considering a homogeneous field¢ = 0), its correspond-
ing equation of state is

142 _
woPo _ 39 V() 22)
P 242+ V(9)
We can now split up the inflaton field as
¢(X7 t) = ¢0 (t) + 5¢(Xa t)v (23)

where ¢ is considered a classical field, that is, the mean

this approach, it is useful to suggest a scalar field model start-
ing with a nearly flat potential,e., initially satisfies thefirst
slow-roll conditiong? < V(¢). This condition may not nec-

r(?ssanly be fulfilled for a long time, but to avoid this prob-

lem, a secondlow-roll condition is defined ag| < |V, |

or equivalently|¢| < 3H|®|. In this case, the scalar field
is slowly rolling down its potential, and by obvious reasons,
such approximation is calleslow-roll [33, 36]. The equa-
tions of motion (24) and (25), for slow-roll inflation, then
become

3Hp ~ Vg, (27)
2, 81
H? ~ 3m%1V(¢). (28)

It is easily verifiable that the slow-roll approximation re-
quires the slope and curvature of the potential to be small:
Vi Voo < V.

The inflationary process happens when the kinetic part

value of the inflaton on the homogeneous and isotropic stat&f the inflaton field is subdominant over the potential field
whereasig(x, t) describes the quantum fluctuations aroundV (¢). When both quantities become comparable, the infla-

Po-
The evolution equation for the background field is
given by

tionary period ends up giving rise finally to the reheating pro-
cess, see Fig. 4.

do +3Hdo = Vg, @4 v(¢)
moreover, the Friedmann Eq. (4) with negligible curvature A 5¢
becomes <—.>\‘ 5
o 8w \
H =25 |3 SR+ V(o) (25)

where we have used commas as derivatives with respect tc

the scalar fieldb.

From the structure of the effective energy density and

pressure, the acceleration Eq. (5) becomes,
8w ‘9

=gz (%= V().

Therefore, the inflationary condition to be satisfiedz'%s<

V(¢0), which is easily fulfilled with a suitably flat potential.
Now, we shall omit the subscript ‘0’ by convenience.

i

a

(26)

\

reheating

-

¢Cnd

¢CMB

A¢

FIGURE 4. Schematic inflationary process [7].
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It is now useful to introduce thpotential slow-roll pa- wherea; (Hy) refers to the scale factor (Hubble parameter)

rameterse, and, in the following way [33, 55] measured at the moment whgrequals the horizon. Then,
one has [34]

mpy (Vg ’ (29) 1/4 1/4
ev(f) = —— (> ; k 10 Gev V" 1.V,

16 \ V N(k)=62—In —In———+In £ ———In—S02.

) aoHo v Vena 3 i
_ Mmpy V¢¢ 30

v (¢) = S vV (30)  The last three terms are small quantities related to energy

) ) , scales during the inflationary process and usually can be ig-
Equations (27) and (28) are in agreement with the slow-roll, e The precise value for the second quantity depends on
approximation when the following conditions hold the model as well as the Planck normalization; however, it

does not present any significant change to the total amount
«(9) <1, (e <. (31) of e-folds. Thus, the value of tot&foldings is ranged from

These conditions are sufficient but not necessary because tﬁ8'70 [43]. Nevertheless, this value could change if a modi-

validity of the slow-roll approximations was a requirementf'cat'on of the full history of the Universe is considered. For

in its derivation. The physical meaning af(¢) can be ex- instance, thermal inflation can alt&rup to a minimum value

- : . f N = 25 [44,45].
licitly seen by expressing Eq. (12) in termsd@fthen, the 0 L .
ﬁ]ﬂ ati)(/)n ary co}r/1diti|[c):n is et?uivglefnt tz: 2 As we noted, the parameters describing inflation can be

presented as a function of the scalar field potential. That is,
an inflationary model with a single scalar field is specified
by selecting an inflationary potenti&l(¢). At this point, it
) i , is necessary to mention that these potentials are not chosen
Hence, inflation concludes when the valugdena) = 1iS  appitrarily, but in fact, there is a whole line of research mo-
reach.ed.. . . ) _tivated by fundamental physics. For this paper, we will not
Within these approximations, itis straightforward to find yeye into this subject; however, it will be understood that this
out_the scale factor betyveen the beglnmn_g ar_ld the end of "sotential is motivated by fundamental theory. To exemplify
flation. Because the size of the expansion is an enormouys,; initial point, let us consider the following example.

quantity, itis useful to compute it in terms of tbéold num- The potential that describes a massive and free scalar field
ber N, defined by

Z > 0 = e(¢) < 1. (32)

is given by:
te ¢ L 5.9
N=In a(tend) _ /Hdtz %/Ld(ﬁ (33) V(¢) = 2m @ (34)
a(?) } Pl e Vio Considering the slow-roll approximation, Egs. (24) and (25)
become:
To give an estimate of the number &folds, let assume the .
evolution of the Universe can be split up into different epochs 3H¢ = —m’¢, (35)
and concentrate on a particular scal@t this point, we only Arm? ¢
consider a generic scale. However, in the next section, we H? = 3z
Pl

will explain that such scales can be associated to the size of
perturbations in a Fourier space), which was inside the horiThus, the dynamics of this type of model is described by
zon at the beginning of inflation and then at certain time left mmp)
the horizon. If we consider particularly the moment when the o(t) = i — Nivr (36)
size of such scale was equal to the horizan, &k = aH, then

we can assume the following cosmological history: a(t) = a; exp [ T m_ <¢-t _ mmpL
- 3mp 7 V48 ’

e Inflationary era: horizon crossing & aH) — end of
inflation aeng. whereg; anda; represent the initial conditions at a given ini-
tial time ¢t = ¢;. The slow-roll parameters for this particular
e Radiation era: reheatinge, — matter-radiation equal- potential are computed from equations (29) and (30)

ity aeq-
o Matter eraiaeq — present. SEWNT Y g2 (37)

Assuming the transition between one era to another is instalat is, an inflationary epoch takes place while the condition
taneous, therV(k) = In(ay/ao) can be easily computed |¢| > mp1/+/4r is satisfied, and the total amount lapsed dur-

with: ing this accelerated period is encoded ondifelds number
2
k__ aeHy _ i aengareneq Hy Niot = 5 [} = 62]. (38)
agHy agHg Gend Greh Aeq A0 Hy Pl
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The steps shown before might, in principle, apply to anyall other scales grow up. In this way, we can focus on the
inflationary single-field model. That is, the general infor- evolution of the quantum perturbations of the inflaton into a
mation we need to characterize the cosmological inflation ismall region compared to the horizon. In this region, it is pos-
specified by the scalar field potential responsible for generassible to assume the space as locally flat and ignore the metric

ing this mechanism. perturbations. Thus, working in Fourier space the classical
equation of motion for the perturbation partgfx, ¢) in (23)
4.2. Cosmological Perturbations is

Inflationary models have the merit that they do not only ex- . ) E\?

plain the homogeneity of the Universe on large-scales but (0k)" + 3H (001)" + (a> 0¢r =0, (41)

also provide a theory for explaining the observed level of

anisotropy During the inflationary period, quantum fluctu- where we have assumed linear perturbations and neglect
ations of the field were driven to scales much larger than théigher orders. This means that perturbations generated by
Hubble horizon. Then, in this process, the fluctuations wereracuum fluctuations have uncorrelated Fourier modes, the
frozen and turned into metric perturbations [48]. Metric per-signature ofGaussian perturbations

turbations created during inflation can be described by two The above equation can be rewritten as a harmonic oscil-
terms. Thescalar, or curvature perturbations are coupled lator equation with variable frequency. If we now move to the
with a matter in the Universe and form the initial “seeds” quantum world and make the corresponding associations of
of structure observed in galaxies today. Although the-  operators to classical variables, the quantum dynamics will
sor perturbationglo not couple to matter, they are associatedbe determined by [42]

to the generation of primordial gravitational waves. As we

shall see, scalar and tensor perturbations are seen as impor- Dn (n) = Ur (n) a (k) + ¢5 (n) a' (=k)
tant components to the CMB anisotropy [21]. (27r)3
In a similar matter, we introduced the density parameter ik g
for large scales, on small scales we considerdgesity con- with vy () = _& N ’7 (42)
trast defined byd = dp/p. At this point, it is convenient to V2k  kn

work in a Fourier description and then quantities are replacegvhereA andat are the particle creation and annihilation oo-
by its corresponding analog in Fourier space, for exampl a a P P

e . . i i
5(x, t) — dx(K, ¢), wherek refers to a given scale, and simi- ératorsy) is the conformal time defined by, = ad;, where

larly for several quantities, arid = |k|. We now on assume during infiationy ~ —1/alf andy = ad¢.

adiabatic initial conditionswhich require that matter and ra- . i Thg |fnflat|tcr>]_nary Prgc?rssl‘(q'luttﬁ_s gIItpOSS|bIetp3r]tlcles exc;
diation perturbations are initially in perfect thermal equilib- ISting betore this period. 1axing this into account, the groun

rium, and therefore the density contrast for different specie§tate of the s_ystem IS given by the vacuum. We notice that
in the Universe satisfy well after horizon exityy — 0, ¥ (n) approaches the value

i1

%(skb = %6kc = ifﬁw (: le5k> ; (39) i () = — 2k kn’ (43)

where subindexb, ke, kv refer to the density contrast in so that equation (42) is rewritten as

Fourier space for baryons, dark matter, and radiation, respec- . ot

tively, anddy, is the total density contrast. We encourage the D () = vx (1) a(k)—a (*k). (44)

reader to look at [34] or [52] for a more accurate description (27r)3

of the above important relation. The most general density A

perturbation is described by a linear combination of adiabatid he temporal dependence ¢f, is now trivial and implies

perturbations as well aisocurvature perturbationswhere that onceyy, () is measured after horizon exit, it will con-

the latter one plays an important role when more than on&nue having a definite value. This quantum fluctuation be-

scalar field is considered (see next section and [34]). comes classical once the horizon is crossed and can be taken
On the other hand, tharimordial curvature perturbation as the initial inhomogeneity that will later give rise to the

R4 (t) has the property to be constant within a few Hubblestructure formation. However, these initial conditions will be

times after the horizon exit,e., whenk = aH. This value slightly modified due to the amount of inflation remaining,

is called theprimordial valueand is related to the scalar field once thek-scale has left the horizon.

perturbationd¢,, by Defining the spectrum of perturbations as
H 27‘(2 - =
Ri=— [(;5 &bk]k o (40) (Ve = Fﬂ,(k)éD(k: — k),
As already mentioned, if inflation provides an exponential ex- _ ﬁ 2 o
pansion, then the horizon remains practically constant while T Po(k)op(k = k), (45)
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where the Dirac’s delta distributiafp guarantees that modes wherek, = 0.002Mpc—! and the spectral indices are defined
relative to different wave-numbers are uncorrelated to preas
serve homogeneity. In the above expression, the quaRity d1n Pr (k) dIn Pr(k)
(Py) is the spectrum generated by the perturbed part of the ns—1= amE L
field ¢ (v = ad¢). The left-hand side of the equation (45) _ _ n n _ _
(along with the expression (43)) evaluated at a few Hubble A scale-invariant spectrum, called Harrison-Zel'dovich
times after the horizon exity ~ 1/aH,, yields to the spec- (HZ), has constant variance on all length scales, and it is char-
trum acterized byhs = 1; small deviations from scale-invariance

) are also considered as a typical signature of the inflationary

_(H models. Then the spectral indicesandn can be expressed
Py(k) = o= (46) .
2w in terms of the slow-roll parametees andr,, to lowest or-

der, as:
From (40) and (46) the primordial curvature power spec-

trum P (k), computed in terms of the scalar field spectrum ng— 1~ —6¢,(0) +2n,(0),
Py(k), is given b
o(k).is g y nr ~ —2 e, (). (54)

2
Pr(k) = <H> Py(k) These parametgrs an;)t comple_tely independent, but the
0] tensor spectral index is proportional to the tensor-to-scalar

(53)

k=aH

k=aH
9 ratior = —8np. This expression is thirst consistency re-
_ [(H) (Hﬂ . (47) lation for slow-roll inflation. Hence, any inflationary model,
0] 2 ) | to the lowest order in slow-roll, can be described in terms

_ _ ) o of three independent parameters: the amplitude of density
On the other hand, the creation ofpr|mord|algrawtauonalperturbations; ~ Pr(ko)/? (= 5 x 1075 initially mea-

waves corresponds to the tensor part of the metric perturbag,req by COBE satellite), the scalar spectral indexand
tion hy,,, in (2). In Fourier space, tensor perturbatiénscan  he tensor-to-scalar ratie. If we require a more accurate
be expressed as the superposition of two polarization modegescription, we have to consider higher-order effects, and
" B et o then include parameters for describing the running of scalar
i = hiegj + hxeyj, (48) (ns,,, = dns/dInk), tensor gr,,, = dny/dInk) index,
N and higher order corrections.
wheref, X r(_apreseny the Ipqgltudlnal and transversg modes. An important point to emphasize is thatr, andn, are
o i S, L o1 5 ATEIE  parametrs et novadeys re tested o severcoser
x tions. This allows comparing theoretical predictions with
_mp) observational data, for instance, those provided by the Cos-
Vo = N 49 mic Microwave Background radiation. In other words, future
measurements of these parameters may probe or at least con-
Therefore, taking the results of the scalar perturbations, eacdtrain the inflationary models, and therefore the shape of the

hy, x has a spectrurr given by inflaton potentialV’ (¢).
) Let us get back to the massive-free scalar field example
_ 8 (H in Eq. (34). Inflation ends up when the conditien= 1 is
PT(k) - 2 . (50) . .
mp; \27 ) p_op achieved, s@.,q ~ mp)/v/27. As we pointed out before,

) o ) we are interested in models with affold number of about
The canonical normalization of the fietd, , was chosen N, = 60, that is from (38)

such that theensor-to-scalar ratiof the spectra is

/130
r= Zj—T = 16¢,. (51) %i = deo x F (55)

R
Finally, the spectral index and the tensor-to-scalar ratio for

During the horizon exitk = aH, H andé have tiny vari-  this potential are
ations during a few Hubble times. In this case, the scalar and
tensor spectra are nearly scale-invariant and therefore well ng—1=—
approximated to a power law

1 2
300 T 15
If the massive scalar field potential is the right inflationary

(56)

EN™! model, current observations should favor the valugs~
Palk) = Prtho) (1) 007 andr m 0.1
o To determine the shape of the primordial power spectrum
Pr(k) = Pr(ko) <k> ) (52) [Eq. (47)] from cosmological observations, it is usual to as-
ko sume a parameterized form for it. Even though the simplest
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assumption for the spectra has a form of a power-law gives.2. Cosmological perturbations: the adiabatic and
by Eq. (52), there have been several studies regarding the  isocurvature perturbations
shape of the primordial spectrum. Some of them based on ) . o )
physical models, some using observational data to constraihne equation of motion for each perturbed field is described
an a priori parameterization, and others attempting a dired®y
reconstruction from data [17, 20,62, 63, 65] . .

8¢, +3Hop, + > {V,ij

J

5. Multi-field inflation 8t d (a® . . 5
- | =09 i =0. 61
admp, dt H¢ Z ¢ =0 (61)
Assuming that a single scalar field is responsible for inflationgp, the largest scale (< o H) it is better to work on a ro-

may be only an approximation since the presence of mU'“tating basis of the fields defined by the relation:
ple fields could drive this process as well. In this section,

we show how the cosmological equations are modified when (5‘7) — gt (5‘75) (62a)
two scalar fields are responsible for driving the inflationary ds o)’
process [8]. The generalization of several fields can be easilynere

obtained and described by [16]. ) .
g (o8O —sinO) - Yy [ (62m)
sinf  cosf b €6

The fieldo is parallel to the trajectory in field space, and it

] o ) ) ] _is usually called theadiabatic field whereas the field is
We consider a two-field inflationary model with canonical ki- perpendicular, named thentropy field If the background

netic terms and dynamics described by an arbitrary interaGggiectory is curved, thesio andds are correlated at Hubble

t@on potential V' (¢,). As usual, we assume the classical exit, and therefore, at such moment, fh@ver spectraand
fields are homogeneous and evolve in an FRW backgroung,,ss_correlatiorare described by the expressions:
Thus, the background equation of motion for each scalar field
H 2
PaW)cars = (5 )

5.1. Background equation of motion

and the Hubble parameter are

dvi

Gi+3Hi + 7—56i=0, (i=¢,v),  (572) h=all
|6l % (14 (=24 6C)e — 2Cn,0),  (63a)
H 2
87 1/, ; Cos(k)|_, i = —2Cn () (63b)
2 - 2 2 os k=aH os )
= 3mg, {V+ 2 (¢ T )] ’ (57b) 27 ) k=ab
whereV,; = 0V/d¢;. During inflation, we adopt the slow- P, (k)| ~ (H>2
roll approximation for each field. This occurs always that the SNVlk=al T\ o )

conditione;, |n;;| < 1 is fulfilled; ¢; andn;; are now a new B 7
set of slow-roll parameters defined by X (14 (=2 +20)e = 20755), (63c)
whereC' ~ 0.7296, € = €,, + €5, andmn;; (1,5 = o,s) are

- mil%l (V,i>2 o ﬁ (‘/U> (58) slow-roll parameters defined in a similar way than Eq. (58),
) (%] .

“T Tor \V T 8r \V but now in terms of the new fieldsands.

The set of Egs. (57) are rewritten in the slow-roll approxima-2-2-1.  Final power spectrum and spectral index

tion as . .
Thecurvatureandisocurvature perturbationare usually de-

) fined as
by Vi (1+15H>,H2~ Sl V<1+;6H>

©3m3,
(59)

R= 550, S = 555. (64)
o G

In the slow-roll limit, on large scales, the evolution of curva-
with 57 ande’! the new slow-roll parameters: ture and isocurvature perturbations can be written using the
formalism of transfer matrix:

H % o R\ _ (1 Trs) (R
" _Hd.%" © T e ©0 (S) - <O TSS) <S>k_aH’ ©
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where Notice that we have kept the subindeto be consistent with
t the scalar spectral index defined in the single inflationary sce-
Tss(t,t) = exp /ﬁHdt’ nario. It is also common to parameterize the primordial adi-
’ . ’ abatic and entropy perturbations on super-horizon scales as
b power laws
t
— / k Ngd1—1 k Ngd2—1
TRs(tk,t) exp /Oszstt y (66) PR _ AE <> + A? () 7 (74&)
tr kO kO
beingt;, the time at horizon crossing. A linear order in slow- kO Peor 1
roll parameters Crs = AsB (ko) , (74b)
>~ —2gs, 0~ —2¢+ Noo — Nss»y (67) k Niso—1
T omee(n) (740)
where again;; is defined similarly than Egs. (58) but in ko
terms of the new fields ands. )
where at linear ordet,y; = —6¢+ 2154, Naa2 = 2nc —ng,

On the other hand, the primordial curvature perturbation

_ . _ 2 2
during the radiation-dominated era (some time after inflatior{*cor = C’ Niso = Ns. We ha\_/e thatt;, A and B can be
finished) is given, on large scales, by written in terms of the correlation angle as

R— U HTM’ (68) A2 = [Prsin®Aly,, A2 =[Prcos’Aly,,  (75a)

whereV is the gravitational potential. The conventional defi-
nition of the isocurvature perturbation for &specie is given B? = [T25Pr|<]ko, (75b)
relative to the radiation density by

Si:H(M_%
Pi P~

Then, at the beginning of the radiation-domination era, W& 5 5 Gravitational waves
get the final power spectra T

A? and A2 are the contributions of the adiabatic and entropy
) (69) fields to the amplitude of the primordial adiabatic spectrum.

Pr =~ Plr—an (1 + cot? A), (70a)  Given the fact that scalar and tensor perturbations are decou-
) pled at linear order, gravitational waves at horizon crossing
s = 155 |k=aH, are the same as in the single-field case. Also, their ampli-
Ps =TssP| (70b) h in the single-field Also, their ampli
Crs = TrsTssPrli—arr, (70¢) tude should remain frozen on large scales after Hubble_exn.
Therefore the tensor power spectrum and the spectral index
where at linear order in slow-roll parametdt§,—, g is are finally
1 (2H\? 2
Phoon =5 (o) D p_py (M
Pl /) k=aH k=aH 27Tmp1 o]
with A the observable correlation angle defined at the lowest
order by x (1+2(=1+C)e), (76)
4 2
cos A — Trs (72) ny ~ —2¢ [1 + (3 + 40) €+ (3 + 2C> ngg} , (717)

VI+TEg
The final spectral index for each contribution, defined asThe tensor-to-scalar ratio at Hubble exit is the same as in the
n, — 1 =dln P, /dInk, at linear order in slow-roll parame- single field case. However, at super-horizon scales, the cur-
ters, are vature perturbations continue evolving as (70a). In this way
5 . 9 the value ofr sometime after the end of inflation is
ng — 1~ —(6 — 4cos” Ae + 2sin” Any,,

+ 4sin A cos A1)y + 2 cos® A, (73a) r ~ 16esin® A {1— <4+4C’> e+ <§—|—2C) 7700] . (78)

3
ng — 1 ~ —2¢e + 2n;;. (73b)
We can observe from (51) that the single scalar field case
no — 1= —2¢+2tan Anjgs + 21)ss, (73¢)  works as an upper constraint en
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Zoology
a) © b) o ‘ c) ) P
At '
Large field X 7l ' De
V(o) = A* (¢/n)° Small field Hybrid

V (@) — Aled/H V((xﬁ):1\4[1—((zl)/;L)p] V(Q‘)):A4 [1_{_(05/“)1"]

FIGURE 5. Potential classification. From a) to darge field, small field, and hybrid potentigd3].

6. Inflationary models A general single field potential can be written in terms of
aheightA and awidth y, such as
We have seen that a single-field inflationary model could be
described by the specification of the potential fdrify). In V(6) = Af <¢> (79)
this case, the comparison of model predictions to CMB ob- ‘
servations reduces to the following basic steps:
Different models have different forms for the functign
1. Given a scalar field potentidf(¢), compute the slow-
roll parameters, (¢) andn (¢). 6.2. Large-field models:—¢, <1, < e,
2. Find outgena given byey (¢end) = 1. Large field models perhaps posses the simplest type of
. monomial potentials. These kinds of potentials represent
3. From Eq. (33), compute the field at about 60olds the chaotic inflationary scenarios [38]. The distinctive of
Ps0- these models is that the shape of the effective potential is not
very important in detail. That is, a region of the Universe
where the scalar field is usually situated¢at~ mp; from
the minimum of its potential will automatically lead to infla-
tion (Fig. 6). Such models are described By, > 0 and

4. Computeng andr as function ofpgq to test the model
with CMB data.

Different types of models are classified by the relation-

ship amongst their slow-roll parametetsandr,, which are TEv < S 6
reflected in different relations between andr. Hence, an

appropriate parameter space to show the diversity of models A

is well described by tha,—r plane. V(¢)

6.1. Models

Even if we restrict the analysis to a single-field, the number
of inflationary models available is enormous [24, 34, 40, 43]. y'd
Then, it is convenient to classify different kinds of potentials
following [24]. The classification is based on the behavior
of the potential during inflation. The three basic types are
shown in Fig. 5.Large field the field is initially displaced
from a stable minimum and evolves towards $mall field

the field evolves away from an unstable maximurybrid:

the field evolves towards a minimum with vacuum energy dif-
ferent from zero. FIGURE 6. Chaotic inflationary potential.

-e.\l
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A general set of large-field polynomial potentials can be writ- A
ten as V(¢)
¢ P
V(g) = A" (u) , (80) s

where it is enough to choose the expongnt 1 in order to
specify a particular model. This model gives

no_1__2tp
S - 2N k)
4p
=—. 81

In this case, gravitational waves can be sufficiently big to L]
eventually be observe@ > 0.1). From the quadratic po- o _
tential of Eq. (34), we obtain FIGURE 7. New inflationary potential.

ey ~ 0.008, 7, ~ 0.008,

ng ~ 0.97, r~>~0.128. (82) e 1~ <mPl>2
In the high power limit, thd” « ¢? predictions are the same )
as the exponential potential [60]. Hence, a variant of this N = Ay [ln <¢e”d) _ Pend— ¢’i] ’
class of models is mg, bi 2u?

V(¢) =A4exp (¢/M) (83) 7‘18(17715)6)(}) [717N(177LS)] (86)

This type of potential is a rare case presented in inflation be- ©On the other hand, > 2 has a very different behavior.
cause its dynamics has an exact solution given by a power.n€ scalar spectral index is

law expansion. For this case the spectral indgis closely 2 /p—1
related to the tensor-to-scalar ratioas ng— 1= N (H) , (87)
m2
ns—1= —SWP‘Q, independent ofmp; /). Besides, the tensor-to-scalar ratio
H# for this model is given by
r=8(1—ns), (84)

o, \ 2(p=1)/(p—2)
as we observe, the slow-roll parameters are explicitly inde- r=8 ( 8”“) (p ) . (88)
pendent of the-fold number. mpi 2N (p—2)

6.3. Small field modelsz, < —e, 6.4. Hybrid models: 0 < e, <7y

Small field models are typically described by potentials that The third class, callettybrid models, frequently includes
arise naturally from spontaneous symmetry breaking. Thes&ose that incorporate supersymmetry into inflation [11, 39].
types of models are also known mew inflation[38,51]. In  In these models, the inflaton fieltlevolves towards a min-
this case, inflation takes place when the field is situated in §num of its potential, however, the minimum has a vac-
false vacuum state, very close to the top of the hill, and roll¢/um energyV (¢min) = A* different from zero. In such
down to a stable minimum, see F|g 7. These models are tyFS:aseS, inflation continues forever unless an auxiliary %ld
ically characterized by, < 0 andr, < —e,, usuallye, is is added to interact witkh and ends inflation at some point

closely zero (and hence the tensor amplitude). ¢ = ¢c. Such models are well described by,, > 0 and
Small field potentials can be written in a generic form as0 < €v < 7y, whereV is the effective 1-field potential for
the inflaton.
V(g) = A1 - (¢/n)], (85) The generic potential for hybrid inflation, in a similar way

) . to large field and small field models, is considered as
where the exponent differs from model to modelV (¢) is

usually considered as the lowest-order term in a Taylor ex- V(¢) = A4 1+ (p/p)"], (89)
pansion from a more general potential. In the simplest case

of spontaneous symmetry breaking, with no special symmewhere againp is an exponent that differs from model to
tries, the dominant term is the mass tepm+= 2, hence the model. For(¢/u) > 1, the behavior of the large-field models
model gives is recovered. Besides that, whép/;.) < 1, the dynamics
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are similar to small-field models, but now the field is evolv- In this model, to end up inflation, an auxiliary field is needed,
ing towards a dynamical fixed point rather than away fromwhich is the main feature of hybrid models. However, when
it. Because the presence of an auxiliary field the number oit is plotted on thexs—r plane, itis located in the small-field
e-folds is region.

Vo = (05) e ) @

For¢ > ¢., N(¢) approaches the value

6.7. Hybrid natural inflation

Hybrid Natural Inflation is particularly appealing because its

Nypox = <p+1> 1 ) (91)  origins lie in well motivated physics. The inflaton potential
p+2) n(ee) relevant to the inflationary era has the general form
In general 5
b [o2r_gtr g2 g v =at(1racs(5)). ®)
N= 87”; ¢end ¢z + end ¢z , for p 7& 27 (92) f
pPMp, 2—p 2pP

) ) where f is the symmetry breaking scale andallows for
N — 8 [ln <¢>end> I Pend — ¢i:| ., forp=2, (93) Mmore general inflationary phenomena that can readily accom-

pmg, Pi 2pP modate the Planck results, and even allow for a low-scale of
and therefore, the spectral index is given by inflation. Here the inflatong, is a pseudo-Goldstone boson
associated with a spontaneously broken global symmetry and
ne — 122 <p + 1) 1 ) is thus protected from large radiative corrections to its mass.
P+2) Nmax — N Definingcs ands, by cos(¢/f) andsin(¢/f) respectively,

As we can note, the power spectrunblae (n, > 1) and the ~ We get
model presents a running of the spectral index

d 1 /p+2 1 <a)2 i (99)
s p 2 &=—"—\7) /=
=—|— s—1)7. 94 2’
dln k 2(p+1)(n ) (94) 16w \f/) (1+acy)
This parameter will be very useful for higher orders and more Ny = _1 <a> Co ’ (100)
accurate constraints in future observations. For instance, the 87 \f?/) 1+acy
particular case = 2 andng = 1.2, the running obtained is ) . ]
dng/dInk = —0.05 [23]. and the inflationary parameters are computed and constrained
by [56, 64].
6.5. Linear models:7n, = —¢, The classification of inflationary models mentioned pre-

_ o viously may be interpreted as an arbitrary one, nevertheless,
Linear models}” (¢) x ¢, are located on the limits between it js very useful because different types of models cover dif-

Iarge field and small field models. They are represented bférent regions of théns/I’) p|ane without over]apping’ see
Ve = 0 andn, = —e,. The spectral index and tensor-to- Fig. 8.

scalar ratio are given by
6 16

R e A e S

6.6. Logarithmic inflation

There remain several single-field models which cannot fit r
into this classification, for instance, the logarithmic poten-
tials [6]

V() =Vo [1+ (Cg*/87%) In(¢/1)] - (96)

Typically they correspond to loop corrections in a supersym-
metric theory, wher€' denotes the degrees of freedom cou-
pled to the inflaton and is a coupling constant. For this
potential, the inflationary parameters are

05}

1 0.0 N
ms—lx—%, 0.8 n, L0 11
roe \/17092 (97) FIGURE 8. Classification of the potentials in terms of and r
N 167 parameters.
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6.8. Hybrid waterfall inflation 6000

A two-field inflationary scenario is an alternative case of the sono. [ @pestl Index I

hybrid models. It occurs when the mass of the auxiliar field is
smaller than the Hubble parametes,, V., < H. Once the
inflaton acquires a critical valug,, the auxiliary field starts
evolving slowly, and a period of inflation is produced during
its dynamics, usually called thveaterfall scenario An inter-
esting result is the possibility to obtairred power spectrum

10+1)C, T2 (i)
o (%) B
=] - (=]
=] (=] =
(=] o = |

(ns < 1), according to the amount of inflation produced dur- 1000
ing the waterfall period. As an example, let us consider two 0
scalar fields with a potentid; like chaotic-hybrid: o 10°
1
| [ M? S 1 0.1 : : :
Vi= 4 [(A B 1Z)2> + §m2¢2 + 592(;521/)2 » (101) Tensor-to-Scalar ratio I:rl-
001 | 0.2
with M, m, A constant values. In the typical hybrid models, E
it is expected that thevaterfall field ¢y remains aty = 0 = 0001}
while the inflaton fieldp evolves generating inflation. Then, gﬁ
when ¢ = ¢., the minimum«y = 0 becomes unstable, 9 0.0001 F
and the waterfall field rolls down to its true minimum, fin- 5
ishing up immediately with the inflationary era. However, T 1e05 |
if M? < H?, we obtain the waterfall period. Taking the
limit g2%/H? < m?/H? (i.e, the back-reaction of the 1606 ‘ ‘ -
waterfall field on the inflaton is small during inflation) and 10” 10' 10? 10° 10*
W2/H? < M?/\H? we obtain finally that [1] b) !
AM? [ M? FIGURE 9. a) Variations of the CMB scalar spectrum for different
ns — 1~ |:3I{2 <9H2 - mkﬂ ot ) (102) values of the spectral index, and b) variations of the CMB tensor

spectrum for the tensor-to-scalar ratio

wheren, = N, — N, is a measurement of the difference be-

tween the=-folds IV, when a given scalk has left the horizon  that the results are shown on the phase space r, and

and thee-folds N, when the waterfall transition starts. Then, therefore our interest is mainly focussed on the case with no
for modes that left the horizon before the phase transition, weunningdns/dIn k = 0 and single fields.

haven; < 0 andns > 1, whereas, for modes that have left  Figure 10 displays 2D marginalized posterior distribu-
the horizon after a phase transition, we have that- 0 and  tions for n, andr based on two data sets: WMAP3 by it-

ns can take any value. self, and WMAP3 plus information from the LRG subset
from SDSS [25]. Considering WMAP3 observations alone
7. Observational results (open contours) the parameters are constrained such that

0.94 < ng < 1.04 andr < 0.60 (95% CL). Those models
How can observations constrai, and r in inflationary  that present, < 0.9 are therefore ruled out at high confi-
models? During several years many projects, at differentience level. The same is applied for models with> 1.05.
scales, have been carried out to look for observational datd&/ MAP data by itself cannot lead to strong constraints, be-
to constrain cosmological models. That is, different mod-cause of the existence of parameter degeneracies, like the
els may imprint different behaviors over the CMB spectra,well known geometrical degeneracy involvifiy,,, 2, and
see Fig. 9. Amongst many projects, they are Cosmic Backf2;,. However, when it is combined with different types of
ground Explorer (COBE), Wilkinson Microwave Anisotropy datasets, together, they increase the constraining power and
Probe (WMAP), Cosmic Background Imager observationanight remove degeneracies. Once the SDSS data is included,
(CBI), Ballon Observations of Millimetric Extra-galactic Ra- the limit of the gravitational wave amplitude and the spec-
diation and Geophysics (BOOMERang), the Luminous Redral index constraints are reduced, that is, for WMAP3+SDSS
Galaxy (LRG) subset DR7 of the Sloan Digital Sky Survey (filled contours) the constraints ony andr are0.93 < ng <
(SDSS), Baryon Acoustic Oscillations (BAO), Supernovael.01 andr < 0.31. Moreover, Fig. 10 shows that the
(SNe) data, Hubble Space Telescope (HST) and recently théarrison-Zel'dovich modelng = 1,7 = 0, dns/dInk = 0,
South Pole Telescope (SPT), the Atacama Cosmology Telgs still in good agreement with this type of data. Similarly,
scope (ACT) and the Planck Satellite. Below, we show somdor inflation driven by a massless self-interacting scalar field
of the constraints for different types of inflationary potentials; V' (¢) = A¢* (see Eq. (81)), the contours indicate that this
by using historical and current observational data. We stresgotential with 60e-folds is still consistent with WMAP3 data
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L LR UL T The hybrid potentials, as already noted, can have differ-
ent behaviors depending on te/u) value. The parame-
ter space can be split up into three different regions based
on (¢/u). For¢/p < 1 the dynamics are similar to small
fields and the dominant term lays in the region called “Flat
Potential Regime”. Fow/u > 1 the results are similar to
large field models, and this region is called Chaotic Inflation-
like Regime. The boundaryp/n ~ 1, is named Transi-
tion regime. The different¢/u) values corresponding to
their regions are shown in the right panel of Fig. 11. Fi-
nally, the combined datasets WMAP5+BAO+SN ruled out
the Harrison-Zel'dovich model by more than 95% CL.

Following the same line for inflationary models, we use
FIGURE 10. WMAP3 only (open contours) and WMAP3+SDSS  the cosmMoMC package [31] which allows to perform the
(filled contours) 2D EOSte”T distributions on the phase space parameter estimation and provide constraints forrthand
r, for the pOtem'alaﬁ. and¢” by considering--folds of V ~ 46 r parameters, given a dataset [we refer to [50] where the au-
and 60. Colored regions correspond to 68% and 95% CL [25]. . . - . .

thors provided an introduction on Bayesian parameter infer-

{ance and its applications to cosmology]. We assume a flat
X CDM model specified by the following parameters: the
physical baryor),h? and cold dark matter densifpy;h>
relative to the critical density, is 100 x the ratio of the sound

On the other hand, left panel of Fig. 11 shows lim- horizon to angular diameter distance at last scattering surface
its imposed by WMAPS5 data alone, < 0.43 (95% CL)  andr denotes the optical depth at reionization. To illustrate
while 0.964 < ns < 1.008. When BAO and SN data oyr point, we initially consider WMAP seven-year data. We
are added, the limits improved significantly to < 0.22  opserve from Fig. 12 that a model to be considered as a
(95% CL) and0.953 < ns < 0.983 [28]. Right panel fayorable candidate it has to predict a spectral index about
of Fig. 11 displays a summary for different potential con-,, _ 0.98279:02% and a tensor-to-scalar ratio< 0.37 (95%
straints by WMAP5+BAO+SN. The modél (¢) = A¢*,  CL). When WMAP-7 is combined with different datasets, the
unlike WMAP3 constraints, is found to be located far awayconstraints are tightened, as it is shown by [30].
from the 95% CL, and therefore it is excluded by more  Tyg recent experiments have placed new constraints on
than 2. For inflation produced by a massive scalar fieldthe cosmological parameters: the Atacama Cosmology Tele-
V($) = (1/2)m*¢?, the model with\V = 50 is situated out-  scope (ACT) [13] and the South Pole Telescope (SPT) [22].
side the 68% CL, whereas witN = 60 is at the boundary Figyre 13 shows the predicted values for a chaotic inflation-
of the 68% CL. Therefore, this model is consistent with dataary model with inflaton potentidl (¢) o« ¢? with 60 e-folds.

within the 95% CL. The points represented Bbyinflation  \\e opserve that models with > 3 are disfavored at more
describe a model with many massive axion fields [35]. Foknhan 959% CL.

an exponential POte”tiﬁéV(@ = exp |:_(¢/mpl) 2/p} , Figure 14 shows recent constraints given by [53] in the
it is observed that models with < 60 are mainly excluded. ngs andr plane. Gray regions correspond to the Planck 2013
Models with60 < p < 70 are roughly in the boundary of the results, red regions added the contribution of the tempera-
95% region, angh > 70 are in agreement within the 95% CL. ture power spectrum (TT) and the Planck polarization data
Some models witlp ~ 120 essentially layouts in the limit of in the low{ likelihood (lowP) while blue regions added the
the 68% CL. temperature-polarization cross spectrum (TE), and the polar-

0.8

0.6 -

0.4 -

0.2 r

at 95% CL, nevertheless ruled out by the combined datase
WMAP3+SDSS. The potentidl (¢) = m?¢?/2 is consis-
tent with both data sets, with a preference ta60Ids.

.............................

Chaotic Inflation Power-law Inflation Hybrid Inflation

N= 50 60

At e |@
m??> o|O F
N-flation m2¢? © | ©

HZ m

p= 60 70 120
exp[-(0/M;)\2/p] @ | @ |@

Transition
2/y<d<1

0.6 [ Chaotic Inflation-like

Flat 3
Potential

[ 8<?ls
02 X3

FIGURE 11. Constraints oms andr. Left panel: WMAPS results are colored blue and WMAP5+BAO+SN red. Right panel: Constraints on
large and hybrid models from the combined datasets WMAP5+BAO+SN. Colored regions correspond to 68% and 95% CL [28].
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for the most recent results of [53]. 2D constraints are plotted with
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FIGURE 14. 2D marginalized probability constraints e andr

0.98

1.00

1o and2¢ confidence contours. The figure is taken from [53].

rations 2016 [2] and the BAO data [5] in order to tighten the
parameter space constraints.

8. Conclusions

Considering the analysis presented here, it is complicated to
prove that a given model is correct, since these models could
be just particular cases of more general scenarios with sev-
eral parameters involved. However, it is possible to elimi-
nate models or at least give some constraints on their behav-
ior, leading to a narrower range of study. Although we have
presented some simple examples of potentials, the classifica-
tion in small-field, large-field, and hybrid models is enough

ization power spectrum (EE). Notice that the model that fits{C cover the entire region of the—r plane, as illustrated in
the best to the data correspondsbinflation [59], and mod- ok ' >
elsV(¢) oc ¢” with p > 2 are discarded by data. The addi- qualitatively different scalar and tensor spectra, so it should

tion of BAO data and lensing is shown in the left panel of P& particularly easy to work on them apart.

Fig. 15. Finally, to incorporate the most updated version of

Fig. 8. Different versions of the three types of models predict

We have seen that the favored models are those with

the data, on the right panel of Fig. 15, we include the Cossmall 7 (assumingdns/dInk ~ 0) and slightlyred spec-
moMC code the full-missiorPlanck 2018 (TT, TE, EE +

lowE + lensing) [3], the Keck Array, and BICEP2 Collabo-

trum, hence models withlue power spectrummg > 1.0 are
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0.105 Planck TT + lowP + lowTE + BKP Planck 2018 TT + low E + BKP + BAO - lensing
Planck TT + lowP + lowTE + BKP + BAO + lensing 0.090
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FIGURE 15. 2D marginalized probability constraints ag andr for the Planck 2015 dataset (left) and Planck 2018 (right). 2D constraints
are plotted withlo and20 confidence contours. The figure was done by using the CosmoMC package.

inconsistent with the recent data. These simple but important

TABLE |. Summary of thew, r constraints from different measure- constraints allow us to rule out the simplest models corre-
ments. sponding to hybrid inflation of forny (¢) = A*(1+4(u/$)P).
There remain models with red spectra in the hybrid classifica-
tion: inverted models and models with logarithmic potentials.
Table Il summarizes the constraints on theandr pa-

Parameter Limits Data set
Ng 0.9661 4+ 0.0037 Planck 2018 TT + low E + BKP

r < 0.065 + BAO + lensing rameters and their improvements through the years. The
ns 0.9683 £ 0.0059 Planck TT + lowP + lowTE + BKP  scale-invariant power spectrum = 1 is consistent within

T < 0.0660 + BAO + lensing 95% CL with WMAP3 data, and therefore, not ruled out;
ne  0.9666 %+ 0.0062 Planck TT+lowP however, with WMAPS data the HZ spectrum lays outside

the 95% CL region, which indicates exclusion considering
the lowest order on the,, r parameters. When WMAP7 data
is considered, scale-invariant spectrum is totally excluded by

T < 0.103
N 0.9711 £ 0.0099 SPT+WMAP7+BAO+H,

T <0.17 more than3o; however, the inclusion of extra parameters in
N 0.970 £ 0.012 ACT+WMAP7+BAO+H, a particular model may weaken the constraints on the spec-
T <0.19 tral index. When chaotic modelg(¢) o« ¢” are analyzed

with current data, it is found that quartic modeis=€ 4) are

s 0.973 4 0.014 WMAP7 + BAO +H, . , :
" 0 ruled out, whilst models witlp > 3 are disfavored at- 95%
T <0.24 CL. Moreover, the quadratic potenti&#l(¢) = 1/2m?¢?
ns 0.982+079 WMAP7 ONLY is in agreement with all data sets presented here and there-
r < 0.36 fore remains a good candidate. Future surveys will provide a
- 0.968 + 0.015 WMAP5+BAO+SN more accurate description of the universe and therefore nar-
. <0.22 row down the number of candidates, which might better ex-
' plain the inflationary period.
s 0.986 + 0.022 WMAPS ONLY
T < 0.43
ns 0.97 + 0.04 WMAP3 + SDSS Acknowledgments
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