
EDUCATION Revista Mexicana de Fı́sica E17 (1) 73–91 JANUARY–JUNE 2020

Inflationary cosmology: from theory to observations

J. Alberto V́azqueza,b, Luis E. Padillab, and Tonatiuh Matosb
aInstituto de Ciencias F́ısicas, Universidad Nacional Autónoma de Mexico,

Apartado Postal 48-3, 62251 Cuernavaca, Morelos, México.
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The main aim of this paper is to provide a qualitative introduction to the cosmological inflation theory and its relationship with current cos-
mological observations. The inflationary model solves many of the fundamental problems that challenge the Standard Big Bang cosmology,
such as the Flatness, Horizon, and the magnetic Monopole problems. Additionally, it provides an explanation for the initial conditions ob-
served throughout the Large-Scale Structure of the Universe, such as galaxies. In this review, we describe general solutions to the problems
in the Big Bang cosmology carry out by a single scalar field. Then, with the use of current surveys, we show the constraints imposed on the
inflationary parameters(ns, r), which allow us to make the connection between theoretical and observational cosmology. In this way, with
the latest results, it is possible to select, or at least to constrain, the right inflationary model, parameterized by a single scalar field potential
V (φ).
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El objetivo principal de este artı́culo es ofrecer una introducción cualitativa a la teorı́a de la inflacíon ćosmica y su relación con observaciones
actuales. El modelo inflacionario resuelve algunos problemas fundamentales que desafı́an al modelo estándar cosmológico, denominado
modelo del Big Bang caliente, como el problema de la Planicidad, el Horizonte y la inexistencia de Monopolos magnéticos. Adicionalmente,
provee una explicación al origen de la estructura a gran escala del Universo, como son las galaxias. En este trabajo se describen soluciones
generales a los problemas de la Cosmologı́a del Big Bang llevadas a cabo por un campo escalar. Además, mediante de observaciones
recientes, se presentan constricciones de los parámetros inflacionariosns y r, que nos permiten realizar la conexión entre la teorı́a y las
observaciones cosmológicas.Ésta manera, y con lośultimos resultados, es posible seleccionar o al menos limitar el modelo inflacionario,
usualmente parametrizado por un potencial de campo escalarV (φ).
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1. Introduction

The Standard Big Bang (SBB) cosmology is currently the
most accepted model describing the central features of the
observed Universe. The Big Bang model, with the addi-
tion of dark matter and dark energy components, has been
successfully proved on cosmological levels. For instance,
theoretical estimations of the abundance of primordial ele-
ments, numerical simulations of structure formation of galax-
ies and galaxy clusters are in good agreement with astro-
nomical observations [3, 27, 58]. Also, the SBB model pre-
dicts the temperature fluctuations observed in the Cosmic Mi-
crowave Background radiation (CMB) with a high degree of
accuracy: inhomogeneities of about one part in one hundred
thousand [3, 29]. These results, amongst many others, are
the great success of the SBB cosmology. Nevertheless, when
we have a closer look at different scales observations seem
to present certain inconsistencies or unexplained features in
contrast with expected by the theory. Some of these un-
satisfactory aspects led to the emergence of the inflationary
model [4,18,37,38].

In this work, we briefly present some of the relevant
shortcomings the standard cosmology is dealing with, and a
short review is carried out about scalar fields (φ) as promising
candidates. Moreover, it is shown that an inflationary single
canonical-field model can be completely described through

its potential energyV (φ). Also based on the slow-roll ap-
proximation, it is found that the set of parameters that allows
making the connection with observations is given by the am-
plitude of density perturbationsδH , the scalar spectral index
ns, and the tensor-to-scalar ratior. Finally, the theoretical
predictions for different scalar field potentials are shown and
compared with current observational data on the phase-space
parameterns− r, therefore pinning down the number of can-
didates and making predictions about the shape ofV (φ).

2. The cosmological model

2.1. Main theory

To avoid long calculations and make this article accessible
to young scientists, many technical details have been omit-
ted or oversimplified. We encourage the reader to go over
the vast amount of literature about the inflationary theory
[12, 23, 27, 34, 41]. Before starting the theoretical descrip-
tion, let us consider some of the assumptions the SBB model
is built [10]:

1) The physical laws at the present time can be extrapo-
lated further back in time and be considered as valid in the
early Universe. In this context, gravity is described by the
theory of General Relativity, up to the Planck era.

2) The cosmological principle holds that “There do not
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exist preferred places in the Universe”; that is, the geomet-
rical properties of the Universe over sufficiently large-scales
are based on the homogeneity and isotropy, both of them en-
coded on the Friedmann-Robertson-Walker (FRW) metric

ds2=− dt2+a2(t)
[

dr2

1−kr2
+r2

(
dθ2+sin2 θ dφ2

)]
, (1)

where(t, r, θ, φ) describe the time-polar coordinates; the spa-
tial curvature is given by the constantk, and the cosmic scale-
factor a(t) parameterizes the relative expansion of the Uni-
verse; commonly normalized to today’s valuea(t0) = 1.
Hereafter we use natural unitsc = ~ = 1, where the Planck
massmPl is related to the gravitational constantG through
G ≡ m−2

Pl .
3) On small scales, the anisotropic Universe is described

by a linear expansion of the metric around the FRW back-
ground:

gµν(x, t) = gFRW
µν (x, t) + hµν(x, t). (2)

To describe the general properties of the Universe, we assume
its dynamics are governed by a source treated as a perfect
fluid with pressurep(t) and energy densityρ(t). Both quan-
tities are often related via an equation-of-state with the form
of p = p(ρ). Some of the well studied cases are

p =
ρ

3
Radiation,

p = 0 Dust,

p = −ρ Cosmological constant Λ. (3)

The Einstein equations for these kind of constituents, with
the FRW metric, are given by: theFriedmann equation

H2 ≡
(

ȧ

a

)2

=
8π

3m2
Pl

ρ− k

a2
, (4)

theacceleration equation

ä

a
= − 4π

3m2
Pl

(ρ + 3p), (5)

and the energy conservation described by thefluid equation

ρ̇ + 3H(ρ + p) = 0, (6)

where overdots indicate time derivative, andH defines the
Hubble parameter. Notice that we could get the accelera-
tion equation by time-deriving (2.1.); and using (6), therefore
only two of them are independent equations. Table I displays
the solutions for the Friedmann and fluid equations when dif-
ferent components of the Universe dominate along with the
scale factor and the evolution of the Hubble parameter in each
epoch.

From Eq. (2.1.) can be seen that for a particular Hubble
parameter, there exists an energy density for which the uni-
verse may be spatially flat(k = 0). This is known as the
critical densityρc and is given by

ρc(t) =
3m2

Pl H
2

8π
, (7)

where ρc is a function of time due to the presence of
H. In particular, its current value is denoted byρc,0 =
1.87840 h2 × 10−26 kg m−3, or in terms of more conve-
nient units, taking into account large scales in the Universe,
ρc,0 = 2.775 h−1 ×1011M¯/(h−1Mpc)3 [3]; with the solar
mass denoted byM¯ = 1.988× 1033g andh parameterizing
the present value of the Hubble parameter today

H0 = 100h km s−1Mpc−1. (8)

The latest value of the Hubble parameter measured by the
Hubble Space Telescopeis quoted to be [54]:

H0 = 70.012,0
−8,0 km s−1Mpc−1. (9)

TABLE I. Evolution ofρ(a), a(t) andH(t) when the Universe is
dominated by radiation, matter or a cosmological constant.

component ρ(a) a(t) H(t)

radiation ∝ a−4 ∝ t1/2 1/(2t)

matter ∝ a−3 ∝ t2/3 2/(3t)

cosmological constant ∝ a0 ∝ exp(
√

(Λ/3)t) const

At the largest scales, a useful quantity to measure is the
ratio of the energy density to the critical density defining the
density parameterΩi ≡ ρi/ρc. The subscripti labels dif-
ferent constituents of the Universe, such as baryonic matter,
radiation, dark matter, and dark energy. The Friedmann equa-
tion (2.1.) can be then written such that it relates the total
density parameter and the curvature of the Universe as

Ω− 1 =
k

a2H2
. (10)

Thus the correspondence between the total density contentΩ
and the space-time curvature for differentk values is:

• Open Universe :0 < Ω < 1 : k < 0 : ρ < ρc.

• Flat Universe :Ω = 1 : k = 0 : ρ = ρc.

• Closed Universe:Ω > 1 : k > 0 : ρ > ρc.

Current cosmological observations, based on the standard
model, find out the present value ofΩ is [3]

Ω0 = 1.0007± 0.0037, (11)

that is, the present Universe is nearly flat.
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2.2. Shortcomings of the model

This section presents some of the shortcomings the standard
old cosmology is facing of, to then introduce the concept
of Inflationary cosmology as a possible explanation to these
issues.

Flatness problem

Notice thatΩ = 1 is a special case of Eq. (10). If the Uni-
verse was perfectly flat at the earliest epochs, then it remained
so for all time. Nevertheless, a flat geometry is an unstable
critical situation; that is, even a tiny deviation from it would
cause thatΩ evolved quite differently, and very quickly, the
Universe would have become more curved. This can be seen
as a consequence due toaH is a decreasing function of time
during radiation or matter domination epoch, as it can be ob-
served in Table 2.1., then

| Ω− 1 | ∝ t during radiation domination,

| Ω− 1 | ∝ t2/3 during dust domination.

Since the present age of the Universe is estimated to be
t0 ' 13.787 Gyrs [3], from the above equation, we can de-
duce the required value of| Ω − 1 | = | Ω0 − 1 | t/t0 at
different times to obtain the correct spatial-geometry at the
present time| Ω0 − 1 | [expression (11)]. For instance, let us
consider some particular epochs in a nearly flat universe:

• At Decoupling time(t ' 1013 sec), we need that
| Ω− 1 | ≤ 10−3.

• At Nucleosynthesis time(t ' 1 sec), we need that
| Ω− 1 | ≤ 10−16.

• At the Planck epoch(t ' 10−43 sec), we need that
| Ω− 1 | ≤ 10−64.

Because there is no reason to prefer a Universe with a critical
density, hence| Ω − 1 | should not necessarily be exactly
zero. Consequently, at early times| Ω− 1 | has be fine-tuned
extremely close to zero to reach its actual observed value.

Horizon problem

The horizon problem is one of the most important problems
in the Big Bang model, as it refers to the communication be-
tween different regions of the Universe. Bearing in mind the
existence of the Big Bang, the age of the Universe is a fi-
nite quantity and hence even light should have only traveled
a finite distance by all this time.

According to the standard cosmology, photons decou-
pled from the rest of the components at temperatures about
Tdec ≈ 0.3 eV at redshiftzdec ≈ 1100 (decoupling time),
from this time on photons free-streamed and traveled basi-
cally uninterrupted until reaching us, giving rise to the re-
gion

FIGURE 1. Temperature fluctuations measured in the CMB radia-
tion using COBE-WMAP-Planck satellites [3,15].

known as theObservable Universe. This spherical surface, at
which the decoupling process occurred, is called thesurface
of the last scattering. The primordial photons are responsi-
ble for the CMB radiation observed today, then looking at its
fluctuations is analogous of taking a picture of the universe at
that time (tdec ≈ 380, 000 years old), see Fig. 1.

Figure 1 shows light seen in all directions of the sky, these
photons randomly distributed have nearly the same tempera-
tureT0 = 2.7255 K plus small fluctuations (about one part in
one hundred thousand) [3]. As we have already pointed out,
being at the same temperature is a property of thermal equi-
librium. Observations are, therefore, easily explained if dif-
ferent regions of the sky have been able to interact and moved
towards thermal equilibrium. In other words, the isotropy
observed in the CMB might imply that the radiation was ho-
mogeneous and isotropic within regions located on the last
scattering surface. Oddly, the comoving horizon right before
photons decoupled was significantly smaller than the corre-
sponding horizon observed today. This means that photons
coming from regions of the sky separated by more than the
horizon scale at last scattering, typically about2◦, would not
have been able to interact and established thermal equilib-
rium before decoupling. A simple calculation displays that at
decoupling time, the comoving horizon was 90 h−1 Mpc and
would be stretched up to 2998 h−1 Mpc at present. Then,
the volume ratio provides that the microwave background
should have consisted of about∼ 105 causally disconnected
regions [46]. Therefore, the Big Bang model by itself does
not explain why temperatures seen in opposite directions of
the sky are so accurately the same; the homogeneity must had
been part of the initial conditions?

On the other hand, the microwave background is not per-
fectly isotropic, but instead exhibits small fluctuations as de-
tected initially by the Cosmic Background Explorer satellite
(COBE) [57] and then, with improved measurements, by the
Wilkinson Microwave Anisotropy Probe (WMAP) [19, 30]
and nowadays with the Planck satellite [3]. These tiny ir-
regularities are thought to be the ‘seeds’ that grew up until
becoming the structure nowadays observed in the Universe.

Rev. Mex. F́ıs. E17 (1) 73–91
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Monopole problem

Following the line to find out the simplest theory to describe
the Universe, several models in particle physics were sug-
gested to unified three out of the four forces presented in the
Standard Model of Particle Physics (SM): strong force, de-
scribed by the groupSU(3), weak force, and electromagnetic
force, with an associated groupSU(2)⊗U(1). These classes
of theories are calledGrand Unified Theories (GUT)[14]. An
important point to mention in favor of GUT is that they are
the only ones that predict the equality electron-proton charge
magnitude. Also, there are good reasons to believe the ori-
gin of baryon asymmetrymight have been generated on the
GUT [26].

These kinds of theories assert that in the early stages of
the Universe (t ∼ 10−43 sec), at highly extreme temper-
atures (TGUT ∼ 1032 K), existed a unified orsymmetric
phasedescribed by a groupG. As the Universe temperature
dropped off, it went through different phase transitions until
reach the symmetries associated with the standard model of
particle physics, generating hence the matter particles such
as electrons, protons and neutrons. When a phase transition
happens its symmetry is broken and thus the symmetry group
changes by itself, for instance:

• GUT transition:

G → SU(3) ⊗ SU(2) ⊗ U(1).

• Electroweak transition:

SU(3) ⊗ SU(2) ⊗ U(1) → SU(3) ⊗ U(1).

The phase transitions have plenty of implications. One of the
most important is thetopological defectsproduction which
depends on the type of symmetry breaking and the spatial
dimension [66], some of them are:

• Monopoles (zero dimensional).

• Strings (one dimensional).

• Domain Walls (two dimensional).

• Textures (three dimensional).

Monopoles are therefore expected to emerge as a con-
sequence of unification models. Moreover, from particle
physics models, there are no theoretical constraints about the
mass a monopole should carry out. However, from LHC
constrictions and grand unification theories, the monopoles
would have a mass of1013 − 1018 GeV [47]. Hence,
based on their non-relativistic character, a crude calcula-
tion predicts an extremely high-density numbernmono of
magnetic monopoles (nmono ∼ 1076 cm−3) at the time of
grand unified symmetry breaking [10, 61]. According to this
prediction, the Universe would be dominated by magnetic
monopoles. In contrast with current observations: no one
has found anyone yet.

3. Cosmological inflation

The inflationary model offers the most elegant way so far pro-
posed to solve the problems of the standard Big Bang and,
therefore, to understand the remarkably agreement with the
standard cosmology. Inflation does not replace the Big Bang
model, but rather it is considered as an ‘auxiliary addition’,
which occurred at the earliest stages of the Universe without
disturbing any of its successes.

Inflation is defined as the epoch in the early Universe
in which the scale factor is exponentially expanded in just
a fraction of a second:

INFLATION ⇐⇒ ä > 0 (12)

⇐⇒ d

dt

(
1

aH

)
< 0. (13)

The last term corresponds to the comoving Hubble length
1/(aH), interpreted as the observable Universe becoming
smaller during inflation. This process allowed our observable
region to lay down within the Hubble radius at the beginning
of inflation. In [32] words: “is something similar to zooming
in on a small region of the initial universe”; see left panel of
Fig. 2.

FIGURE 2. a) Schematic behavior of the comoving Hubble radius during the inflationary period. b) Physical evolution of the observable
universe during the inflationary period.
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From the acceleration Eq. (5) the condition for inflation,
in terms of the material required to drive the expansion, is

ä > 0 ⇐⇒ (ρ + 3p) < 0. (14)

Because in standard physics it is always postulatedρ as a pos-
itive quantity, and hence to satisfy the acceleration condition,
it is necessary for the overall pressure to have

INFLATION ⇐⇒ p < −ρ/3. (15)

Nonetheless, neither radiation nor a matter component satis-
fies such conditions. Let us postpone for a bit the problem
of finding a candidate that may satisfy this inflationary con-
dition.

3.1. Solution for the Big Bang problems

If this brief period of accelerated expansion occurred, then
the mentioned problems may be solved.

Flatness problem

A typical solution is a Universe with a cosmological constant
Λ, which can be interpreted as a perfect fluid with equation
of statep = −ρ. Having this condition, we observe from
Table I that the universe is exponentially expanded:

a(t) ∝ exp

(√
Λ
3

t

)
, (16)

and the Hubble parameterH is constant, then the condition
(13) is naturally fulfilled. This epoch is called thede Sit-
ter stage. However, postulating a cosmological constant as a
candidate to drive inflation might create more problems than
solutions by itself,i.e., reheating process [9].

Let us look at what happens when a general solution is
considered. If somehow there was an accelerated expan-
sion, 1/(aH) tends to be smaller on time, and hence, by
the expression (10),Ω is driven towards the unity rather than
away from it. Then, we may ask ourselves how much should
1/(aH) decrease. If the inflationary period started at time
t = ti and ended up approximately at the beginning of the
radiation dominated era (t = tf ), then

| Ω− 1 |t=tf
∼ 10−60,

and

| Ω− 1 |t=tf

| Ω− 1 |t=ti

=
(

ai

af

)2

≡ e−2N . (17)

So, the required condition to reproduce the value ofΩ0

measured today is that inflation lasted for at leastN ≡ ln a &
60, thenΩ must be extraordinarily close to one that we still
observe such quantity today. In this sense, inflation magnifies
the curvature radius of the universe, so locally the universe
seems to be flat with great precision, Fig. 3.

FIGURE 3. Evolution of the density parameterΩ during the infla-
tionary period.Ω is driven towards unity, rather than away from it.

Horizon problem

As we have already seen, during inflation, the universe ex-
pands drastically, and there is a reduction in the comoving
Hubble length. This process allowed a tiny region located
inside the Hubble radius to evolve and constitute our present
observable Universe. Fluctuations were hence stretched out-
side of the horizon during inflation and re-entered the horizon
in the late Universe, see Fig. 2. Scales outside the horizon at
CMB-decoupling were, in fact, inside the horizon before in-
flation. The region of space corresponding to the observable
universe, therefore, was in thermal equilibrium before infla-
tion, and the uniformity of the CMB is essentially explained.

Monopole problem

The monopole problem was initially the main motivation to
develop the inflationary cosmology [18]. During the infla-
tionary epoch, the Universe led to a dramatic expansion over
which the density of the unwanted particles were diluted
away. Generating enough expansion, the dilution made sure
the particles stayed completely out of the observable Uni-
verse making pretty difficult to localize even a single mag-
netic monopole.

4. Single-field inflation

Throughout the literature, there exists a broad diversity of
models that have been suggested to carry out the inflation-
ary process [34, 43, 49]. In this section, we present the
scalar fields as good candidates to drive inflation and explain
how to relate theoretical predictions to observable quantities.
Here, we limit ourselves to models based on general gravity,
i.e., derived from the Einstein-Hilbert action, and single-field
models described by a homogeneous real slow-rolling scalar
field φ. Nevertheless, in Sec. 5. we provide a very brief intro-
duction to inflation with several scalar fields, as a possibility
to generate the inflationary process.

Inflation relies on the existence of an early epoch in the
Universe dominated by a very different form of energy; re-
member the requirement of the unusual negative pressure.

Rev. Mex. F́ıs. E17 (1) 73–91
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Such a condition can be satisfied by a single scalar field (spin-
0 particles). The scalar field, which drives the Universe to an
inflationary epoch, is often termed as theinflaton field.

Let us consider a real scalar field minimally coupled to
gravity, with an arbitrary potentialV (φ) and Lagrangian den-
sityL specified by the action

S =
∫

d4x
√−gL

=
∫

d4x
√−g

[
1
2
∂µφ∂µφ−V (φ)

]
. (18)

The energy-momentum tensor corresponding to this field is
given by

Tµν = ∂µφ∂νφ− gµν L. (19)

In the same way as the perfect fluid treatment, the energy den-
sity ρφ and pressure densitypφ in the FRW metric are found
to be

T00 = ρφ =
1
2
φ̇2 + V (φ) +

1
2
∇φ2, (20)

Tii = pφ =
1
2
φ̇2 − V (φ)− 1

6
∇φ2. (21)

Considering a homogeneous field (∇φ = 0), its correspond-
ing equation of state is

w =
pφ

ρφ
=

1
2 φ̇2 − V (φ)
1
2 φ̇2 + V (φ)

. (22)

We can now split up the inflaton field as

φ(x, t) = φ0(t) + δφ(x, t), (23)

whereφ0 is considered a classical field, that is, the mean
value of the inflaton on the homogeneous and isotropic state,
whereasδφ(x, t) describes the quantum fluctuations around
φ0.

The evolution equation for the background fieldφ0 is
given by

φ̈0 + 3Hφ̇0 = −V,φ0 , (24)

moreover, the Friedmann Eq. (4) with negligible curvature
becomes

H2 =
8π

3m2
Pl

[
1
2
φ̇2

0 + V (φ0)
]

, (25)

where we have used commas as derivatives with respect to
the scalar fieldφ0.

From the structure of the effective energy density and
pressure, the acceleration Eq. (5) becomes,

ä

a
= − 8π

3m2
Pl

(
φ̇2

0 − V (φ0)
)

. (26)

Therefore, the inflationary condition to be satisfied isφ̇2
0 <

V (φ0), which is easily fulfilled with a suitably flat potential.
Now, we shall omit the subscript ‘0’ by convenience.

4.1. Slow-roll approximation

As we have noted, a period of accelerated expansion can be
created by the cosmological constant(Λ) and hence solve
the mentioned problems. After a brief period, inflation must
end up, and its energy being converted into conventional mat-
ter/radiation; this process is calledreheating. In a universe
dominated by a cosmological constant, the reheating process
is seen asΛ decaying into conventional particles; however,
claiming thatΛ can decay is still a naive way to face the
problem. On the other hand, scalar fields have the property
to behave like adynamical cosmological constant. Based on
this approach, it is useful to suggest a scalar field model start-
ing with a nearly flat potential,i.e., initially satisfies thefirst
slow-roll conditionφ̇2 ¿ V (φ). This condition may not nec-
essarily be fulfilled for a long time, but to avoid this prob-
lem, a secondslow-roll condition is defined as|φ̈| ¿ |V,φ |
or equivalently|φ̈| ¿ 3H|φ̇|. In this case, the scalar field
is slowly rolling down its potential, and by obvious reasons,
such approximation is calledslow-roll [33, 36]. The equa-
tions of motion (24) and (25), for slow-roll inflation, then
become

3Hφ̇ ' −V,φ, (27)

H2 ' 8π

3m2
Pl

V (φ). (28)

It is easily verifiable that the slow-roll approximation re-
quires the slope and curvature of the potential to be small:
V,φ, V,φφ ¿ V .

The inflationary process happens when the kinetic part
of the inflaton field is subdominant over the potential field
V (φ). When both quantities become comparable, the infla-
tionary period ends up giving rise finally to the reheating pro-
cess, see Fig. 4.

FIGURE 4. Schematic inflationary process [7].
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It is now useful to introduce thepotential slow-roll pa-
rametersεv andηv in the following way [33,55]

εv(φ) ≡ m2
Pl

16π

(
V,φ

V

)2

, (29)

ηv (φ) ≡ m2
Pl

8π

V,φφ

V
. (30)

Equations (27) and (28) are in agreement with the slow-roll
approximation when the following conditions hold

εv(φ) ¿ 1, | ηv(φ) |¿ 1. (31)

These conditions are sufficient but not necessary because the
validity of the slow-roll approximations was a requirement
in its derivation. The physical meaning ofεv(φ) can be ex-
plicitly seen by expressing Eq. (12) in terms ofφ, then, the
inflationary condition is equivalent to

ä

a
> 0 =⇒ εv(φ) < 1. (32)

Hence, inflation concludes when the valueεv(φend) = 1 is
reached.

Within these approximations, it is straightforward to find
out the scale factor between the beginning and the end of in-
flation. Because the size of the expansion is an enormous
quantity, it is useful to compute it in terms of thee-fold num-
berN , defined by

N ≡ ln
a(tend)
a(t)

=

te∫

t

H dt ' 8π

m2
Pl

φ∫

φe

V

V,φ
dφ. (33)

To give an estimate of the number ofe-folds, let assume the
evolution of the Universe can be split up into different epochs
and concentrate on a particular scalek (at this point, we only
consider a generic scale. However, in the next section, we
will explain that such scales can be associated to the size of
perturbations in a Fourier space), which was inside the hori-
zon at the beginning of inflation and then at certain time left
the horizon. If we consider particularly the moment when the
size of such scale was equal to the horizon,i.e., k = aH, then
we can assume the following cosmological history:

• Inflationary era: horizon crossing (k = aH) → end of
inflationaend.

• Radiation era: reheatingareh→matter-radiation equal-
ity aeq.

• Matter era:aeq→ presenta0.

Assuming the transition between one era to another is instan-
taneous, thenN(k) = ln(ak/a0) can be easily computed
with:

k

a0H0
=

akHk

a0H0
=

ak

aend

aend

areh

areh

aeq

aeq

a0

Hk

H0
,

whereak (Hk) refers to the scale factor (Hubble parameter)
measured at the moment whenk equals the horizon. Then,
one has [34]

N(k)=62− ln
k

a0H0
− ln

1016 GeV

V
1/4
k

+ ln
V

1/4
k

Vend
−1

3
ln

V
1/4

end

ρ
1/4
reh

.

The last three terms are small quantities related to energy
scales during the inflationary process and usually can be ig-
nored. The precise value for the second quantity depends on
the model as well as the Planck normalization; however, it
does not present any significant change to the total amount
of e-folds. Thus, the value of totale-foldings is ranged from
50-70 [43]. Nevertheless, this value could change if a modi-
fication of the full history of the Universe is considered. For
instance, thermal inflation can alterN up to a minimum value
of N = 25 [44,45].

As we noted, the parameters describing inflation can be
presented as a function of the scalar field potential. That is,
an inflationary model with a single scalar field is specified
by selecting an inflationary potentialV (φ). At this point, it
is necessary to mention that these potentials are not chosen
arbitrarily, but in fact, there is a whole line of research mo-
tivated by fundamental physics. For this paper, we will not
delve into this subject; however, it will be understood that this
potential is motivated by fundamental theory. To exemplify
our initial point, let us consider the following example.

The potential that describes a massive and free scalar field
is given by:

V (φ) =
1
2
m2φ2. (34)

Considering the slow-roll approximation, Eqs. (24) and (25)
become:

3Hφ̇ = −m2φ, (35)

H2 =
4πm2φ2

3m2
Pl

.

Thus, the dynamics of this type of model is described by

φ(t) = φi − mmPl√
12π

t, (36)

a(t) = ai exp

[√
4π

3
m

mPl

(
φit− mmPl√

48π
t2

)]
,

whereφi andai represent the initial conditions at a given ini-
tial time t = ti. The slow-roll parameters for this particular
potential are computed from equations (29) and (30)

εv = ηv =
m2

Pl

4π

1
φ2

, (37)

that is, an inflationary epoch takes place while the condition
|φ| > mPl/

√
4π is satisfied, and the total amount lapsed dur-

ing this accelerated period is encoded on thee-folds number

Ntot =
2π

m2
Pl

[
φ2

i − φ2
e

]
. (38)
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The steps shown before might, in principle, apply to any
inflationary single-field model. That is, the general infor-
mation we need to characterize the cosmological inflation is
specified by the scalar field potential responsible for generat-
ing this mechanism.

4.2. Cosmological Perturbations

Inflationary models have the merit that they do not only ex-
plain the homogeneity of the Universe on large-scales but
also provide a theory for explaining the observed level of
anisotropy. During the inflationary period, quantum fluctu-
ations of the field were driven to scales much larger than the
Hubble horizon. Then, in this process, the fluctuations were
frozen and turned into metric perturbations [48]. Metric per-
turbations created during inflation can be described by two
terms. Thescalar, or curvature,perturbations are coupled
with a matter in the Universe and form the initial “seeds”
of structure observed in galaxies today. Although theten-
sor perturbationsdo not couple to matter, they are associated
to the generation of primordial gravitational waves. As we
shall see, scalar and tensor perturbations are seen as impor-
tant components to the CMB anisotropy [21].

In a similar matter, we introduced the density parameter
for large scales, on small scales we consider thedensity con-
trast defined byδ ≡ δρ/ρ. At this point, it is convenient to
work in a Fourier description and then quantities are replaced
by its corresponding analog in Fourier space, for example,
δ(x, t) → δk(k, t), wherek refers to a given scale, and simi-
larly for several quantities, andk = |k|. We now on assume
adiabatic initial conditions, which require that matter and ra-
diation perturbations are initially in perfect thermal equilib-
rium, and therefore the density contrast for different species
in the Universe satisfy

1
3
δkb =

1
3
δkc =

1
4
δkγ

(
=

1
4
δk

)
, (39)

where subindexkb, kc, kγ refer to the density contrast in
Fourier space for baryons, dark matter, and radiation, respec-
tively, andδk is the total density contrast. We encourage the
reader to look at [34] or [52] for a more accurate description
of the above important relation. The most general density
perturbation is described by a linear combination of adiabatic
perturbations as well asisocurvature perturbations, where
the latter one plays an important role when more than one
scalar field is considered (see next section and [34]).

On the other hand, theprimordial curvature perturbation
Rk(t) has the property to be constant within a few Hubble
times after the horizon exit,i.e., whenk = aH. This value
is called theprimordial valueand is related to the scalar field
perturbationδφk by

Rk = −
[
H

φ̇
δφk

]

k=aH

. (40)

As already mentioned, if inflation provides an exponential ex-
pansion, then the horizon remains practically constant while

all other scales grow up. In this way, we can focus on the
evolution of the quantum perturbations of the inflaton into a
small region compared to the horizon. In this region, it is pos-
sible to assume the space as locally flat and ignore the metric
perturbations. Thus, working in Fourier space the classical
equation of motion for the perturbation part ofφ(x, t) in (23)
is

(δφk )̈ + 3H(δφk)˙ +
(

k

a

)2

δφk = 0, (41)

where we have assumed linear perturbations and neglect
higher orders. This means that perturbations generated by
vacuum fluctuations have uncorrelated Fourier modes, the
signature ofGaussian perturbations.

The above equation can be rewritten as a harmonic oscil-
lator equation with variable frequency. If we now move to the
quantum world and make the corresponding associations of
operators to classical variables, the quantum dynamics will
be determined by [42]

ψ̂k (η) =
ψk (η) â (k) + ψ∗k (η) â† (−k)

(2π)3

with ψk (η) = −e−ikη

√
2k

kη − i

kη
, (42)

whereâ andâ† are the particle creation and annihilation op-
erators,η is the conformal time defined by∂η ≡ a∂t, where
during inflationη ∼ −1/aH andψ ≡ aδφ.

The inflationary process dilutes all possible particles ex-
isting before this period. Taking this into account, the ground
state of the system is given by the vacuum. We notice that
well after horizon exit,η → 0, ψk (η) approaches the value

ψk (η) = − i√
2k

1
kη

, (43)

so that equation (42) is rewritten as

ψ̂k (η) = ψk (η)
â (k)− â† (−k)

(2π)3
. (44)

The temporal dependence of̂ψk is now trivial and implies
that onceψk (η) is measured after horizon exit, it will con-
tinue having a definite value. This quantum fluctuation be-
comes classical once the horizon is crossed and can be taken
as the initial inhomogeneity that will later give rise to the
structure formation. However, these initial conditions will be
slightly modified due to the amount of inflation remaining,
once thek-scale has left the horizon.

Defining the spectrum of perturbations as

〈ψkψ∗k′〉 =
2π2

k3
Pψ(k)δD(~k − ~k′),

=
2π2

k3
a2Pφ(k)δD(~k − ~k′), (45)

Rev. Mex. F́ıs. E17 (1) 73–91



INFLATIONARY COSMOLOGY: FROM THEORY TO OBSERVATIONS 81

where the Dirac’s delta distributionδD guarantees that modes
relative to different wave-numbers are uncorrelated to pre-
serve homogeneity. In the above expression, the quantityPφ

(Pψ) is the spectrum generated by the perturbed part of the
field φ (ψ = aδφ). The left-hand side of the equation (45)
(along with the expression (43)) evaluated at a few Hubble
times after the horizon exit,η ∼ 1/aHk, yields to the spec-
trum

Pφ(k) =
(

H

2π

)2

k=aH

. (46)

From (40) and (46) the primordial curvature power spec-
trumPR(k), computed in terms of the scalar field spectrum
Pφ(k), is given by

PR(k) =

[(
H

φ̇

)2

Pφ(k)

]

k=aH

=
[(

H

φ̇

)(
H

2π

)]2

k=aH

. (47)

On the other hand, the creation of primordial gravitational
waves corresponds to the tensor part of the metric perturba-
tion hµν in (2). In Fourier space, tensor perturbationshij can
be expressed as the superposition of two polarization modes

hij = h+e+
ij + h×e×ij , (48)

where+,× represent the longitudinal and transverse modes.
From Einstein equations, it is found that each amplitudeh+

andh× behaves as a free scalar field in the sense that

ψ+,× ≡ mPl√
8

h+,×. (49)

Therefore, taking the results of the scalar perturbations, each
h+,× has a spectrumPT given by

PT (k) =
8

m2
Pl

(
H

2π

)2

k=aH

. (50)

The canonical normalization of the fieldψ+,× was chosen
such that thetensor-to-scalar ratioof the spectra is

r ≡ PT

PR = 16εv. (51)

During the horizon exit,k = aH, H andφ̇ have tiny vari-
ations during a few Hubble times. In this case, the scalar and
tensor spectra are nearly scale-invariant and therefore well
approximated to a power law

PR(k) = PR(k0)
(

k

k0

)ns−1

,

PT (k) = PT (k0)
(

k

k0

)nT

. (52)

wherek0 = 0.002Mpc−1 and the spectral indices are defined
as

ns − 1 ≡ d lnPR(k)
d ln k

, nT ≡ d lnPT (k)
d ln k

. (53)

A scale-invariant spectrum, called Harrison-Zel’dovich
(HZ), has constant variance on all length scales, and it is char-
acterized byns = 1; small deviations from scale-invariance
are also considered as a typical signature of the inflationary
models. Then the spectral indicesns andnT can be expressed
in terms of the slow-roll parametersεv andηv, to lowest or-
der, as:

ns − 1 ' −6 εv(φ) + 2 ηv(φ),

nT ' −2 εv(φ). (54)

These parameters arenot completely independent, but the
tensor spectral index is proportional to the tensor-to-scalar
ratio r = −8nT . This expression is thefirst consistency re-
lation for slow-roll inflation. Hence, any inflationary model,
to the lowest order in slow-roll, can be described in terms
of three independent parameters: the amplitude of density
perturbationsδ ∼ PR(k0)1/2 (≈ 5 × 10−5 initially mea-
sured by COBE satellite), the scalar spectral indexns, and
the tensor-to-scalar ratior. If we require a more accurate
description, we have to consider higher-order effects, and
then include parameters for describing the running of scalar
(nsrun ≡ dns/d ln k), tensor (nTrun ≡ dnT /d ln k) index,
and higher order corrections.

An important point to emphasize is thatδ, r, andns are
parameters that nowadays are tested from several observa-
tions. This allows comparing theoretical predictions with
observational data, for instance, those provided by the Cos-
mic Microwave Background radiation. In other words, future
measurements of these parameters may probe or at least con-
strain the inflationary models, and therefore the shape of the
inflaton potentialV (φ).

Let us get back to the massive-free scalar field example
in Eq. (34). Inflation ends up when the conditionεv = 1 is
achieved, soφend ' mPl/

√
2π. As we pointed out before,

we are interested in models with ane-fold number of about
Ntot = 60, that is from (38)

φi = φ60 '
√

30
π

mPl. (55)

Finally, the spectral index and the tensor-to-scalar ratio for
this potential are

ns − 1 = − 1
30

, r =
2
15

. (56)

If the massive scalar field potential is the right inflationary
model, current observations should favor the valuesns ≈
0.97 andr ≈ 0.1.

To determine the shape of the primordial power spectrum
[Eq. (47)] from cosmological observations, it is usual to as-
sume a parameterized form for it. Even though the simplest
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assumption for the spectra has a form of a power-law given
by Eq. (52), there have been several studies regarding the
shape of the primordial spectrum. Some of them based on
physical models, some using observational data to constrain
an a priori parameterization, and others attempting a direct
reconstruction from data [17,20,62,63,65]

5. Multi-field inflation

Assuming that a single scalar field is responsible for inflation
may be only an approximation since the presence of multi-
ple fields could drive this process as well. In this section,
we show how the cosmological equations are modified when
two scalar fields are responsible for driving the inflationary
process [8]. The generalization of several fields can be easily
obtained and described by [16].

5.1. Background equation of motion

We consider a two-field inflationary model with canonical ki-
netic terms and dynamics described by an arbitrary interac-
tion potentialV (φ, ψ). As usual, we assume the classical
fields are homogeneous and evolve in an FRW background.
Thus, the background equation of motion for each scalar field
and the Hubble parameter are

φ̈i + 3Hφ̇i +
dVi

d|φi|2 φi = 0, (i = φ, ψ), (57a)

H2 =
8π

3m2
Pl

[
V +

1
2

(
φ̇2 + ψ̇2

)]
, (57b)

whereV,i ≡ ∂V/∂φi. During inflation, we adopt the slow-
roll approximation for each field. This occurs always that the
conditionεi, |ηij | ¿ 1 is fulfilled; εi andηij are now a new
set of slow-roll parameters defined by

εi =
m2

Pl

16π

(
V,i

V

)2

, ηij =
m2

Pl

8π

(
V,ij

V

)
. (58)

The set of Eqs. (57) are rewritten in the slow-roll approxima-
tion as

φ̇i ' − V,i

3H

(
1 +

1
3
δH
i

)
, H2 ' 8π

3m2
Pl

V

(
1 +

1
3
εH

)

(59)

with δH
i andεH the new slow-roll parameters:

δH
i = − φ̈i

Hφ̇i

, εH = εφφ + εψψ. (60)

5.2. Cosmological perturbations: the adiabatic and
isocurvature perturbations

The equation of motion for each perturbed field is described
by

δ̈φi + 3H ˙δφi +
∑

j

[
V,ij

− 8π

a3m2
Pl

d

dt

(
a3

H
φ̇iφ̇j

) ]
δφj = 0. (61)

On the largest scales (k ¿ aH) it is better to work on a ro-
tating basis of the fields defined by the relation:

(
δσ

δs

)
= S†

(
δφ

δψ

)
, (62a)

where

S =
(

cos θ − sin θ
sin θ cos θ

)
, tan θ =

ψ̇

φ̇
' ±

√
εψ

εφ
. (62b)

The fieldσ is parallel to the trajectory in field space, and it
is usually called theadiabatic field, whereas the fields is
perpendicular, named theentropy field. If the background
trajectory is curved, thenδσ andδs are correlated at Hubble
exit, and therefore, at such moment, thepower spectraand
cross-correlationare described by the expressions:

Pσ(k)|k=aH '
(

H

2π

)2

k=aH

× (1 + (−2 + 6C)ε− 2Cησσ), (63a)

Cσs(k)|k=aH ' −2Cησs

(
H

2π

)2

k=aH

, (63b)

Ps(k)|k=aH '
(

H

2π

)2

k=aH

× (1 + (−2 + 2C)ε− 2Cηss), (63c)

whereC ' 0.7296, ε ≡ εσσ + εss andηij (i, j = σ, s) are
slow-roll parameters defined in a similar way than Eq. (58),
but now in terms of the new fieldsσ ands.

5.2.1. Final power spectrum and spectral index

Thecurvatureandisocurvature perturbationsare usually de-
fined as

R ≡ H

σ̇
δσ, S =

H

σ̇
δs. (64)

In the slow-roll limit, on large scales, the evolution of curva-
ture and isocurvature perturbations can be written using the
formalism of transfer matrix:(R

S

)
=

(
1 TRS

0 TSS

)(R
S

)

k=aH

, (65)

Rev. Mex. F́ıs. E17 (1) 73–91



INFLATIONARY COSMOLOGY: FROM THEORY TO OBSERVATIONS 83

where

TSS(tk, t) = exp




t∫

tk

βHdt′


 ,

TRS(tk, t) = exp




t∫

tk

αTSSHdt′


 , (66)

beingtk the time at horizon crossing. A linear order in slow-
roll parameters

α ' −2ησs, β ' −2ε + ησσ − ηss, (67)

where againηij is defined similarly than Eqs. (58) but in
terms of the new fieldsσ ands.

On the other hand, the primordial curvature perturbation
during the radiation-dominated era (some time after inflation
finished) is given, on large scales, by

R = Ψ +
Hδρ

ρ
, (68)

whereΨ is the gravitational potential. The conventional defi-
nition of the isocurvature perturbation for ani-specie is given
relative to the radiation density by

Si = H

(
δρi

ρi
− δργ

ργ

)
. (69)

Then, at the beginning of the radiation-domination era, we
get the final power spectra

PR ' P |k=aH(1 + cot2 ∆), (70a)

PS = T 2
SSP |k=aH , (70b)

CRS = TRSTSSPR|k=aH , (70c)

where at linear order in slow-roll parametersP |k=aH is

P |k=aH =
1
2ε

(
2H

mPl

)2

k=aH

, (71)

with ∆ the observable correlation angle defined at the lowest
order by

cos∆ =
TRS√

1 + T 2
RS

. (72)

The final spectral index for each contribution, defined as
nx − 1 = d ln Px/d ln k, at linear order in slow-roll parame-
ters, are

ns − 1 ' −(6− 4 cos2 ∆)ε + 2 sin2 ∆ησσ,

+ 4 sin ∆ cos∆ησs + 2 cos2 ∆ηss, (73a)

nS − 1 ' −2ε + 2ηss. (73b)

nC − 1 ' −2ε + 2 tan ∆ησs + 2ηss, (73c)

Notice that we have kept the subindexs to be consistent with
the scalar spectral index defined in the single inflationary sce-
nario. It is also common to parameterize the primordial adi-
abatic and entropy perturbations on super-horizon scales as
power laws

PR = A2
r

(
k

k0

)nad1−1

+ A2
s

(
k

k0

)nad2−1

, (74a)

CRS = AsB

(
k

k0

)ncor−1

, (74b)

PS = B2

(
k

k0

)niso−1

, (74c)

where at linear ordernad1 = −6ε+2ησσ, nad2 = 2nC−nS,
ncor = nC , niso = nS. We have thatA2

r, A2
s andB can be

written in terms of the correlation angle as

A2
r = [PR sin2 ∆]k0 , A2

s = [PR cos2 ∆]k0 , (75a)

B2 = [T 2
SSPR|∗]k0 , (75b)

A2
r andA2

s are the contributions of the adiabatic and entropy
fields to the amplitude of the primordial adiabatic spectrum.

5.2.2. Gravitational waves

Given the fact that scalar and tensor perturbations are decou-
pled at linear order, gravitational waves at horizon crossing
are the same as in the single-field case. Also, their ampli-
tude should remain frozen on large scales after Hubble exit.
Therefore the tensor power spectrum and the spectral index
are finally

PT = PT |k=aH ' 8
(

H

2πmPl

)2

k=aH

× (1 + 2(−1 + C)ε), (76)

nT ' −2ε

[
1 +

(
4
3

+ 4C

)
ε +

(
2
3

+ 2C

)
ησσ

]
, (77)

The tensor-to-scalar ratio at Hubble exit is the same as in the
single field case. However, at super-horizon scales, the cur-
vature perturbations continue evolving as (70a). In this way
the value ofr sometime after the end of inflation is

r ' 16ε sin2 ∆
[
1−

(
4
3
+4C

)
ε+

(
2
3
+2C

)
ησσ

]
. (78)

We can observe from (51) that the single scalar field case
works as an upper constraint onr.
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FIGURE 5. Potential classification. From a) to c):large field, small field, and hybrid potential[23].

6. Inflationary models

We have seen that a single-field inflationary model could be
described by the specification of the potential formV (φ). In
this case, the comparison of model predictions to CMB ob-
servations reduces to the following basic steps:

1. Given a scalar field potentialV (φ), compute the slow-
roll parametersεv(φ) andηv(φ).

2. Find outφend given byεv(φend) = 1.

3. From Eq. (33), compute the field at about 60e-folds
φ60.

4. Computens andr as function ofφ60 to test the model
with CMB data.

Different types of models are classified by the relation-
ship amongst their slow-roll parametersεv andηv, which are
reflected in different relations betweenns andr. Hence, an
appropriate parameter space to show the diversity of models
is well described by thens—r plane.

6.1. Models

Even if we restrict the analysis to a single-field, the number
of inflationary models available is enormous [24, 34, 40, 43].
Then, it is convenient to classify different kinds of potentials
following [24]. The classification is based on the behavior
of the potential during inflation. The three basic types are
shown in Fig. 5.Large field: the field is initially displaced
from a stable minimum and evolves towards it.Small field:
the field evolves away from an unstable maximum.Hybrid:
the field evolves towards a minimum with vacuum energy dif-
ferent from zero.

A general single field potential can be written in terms of
aheightΛ and awidthµ, such as

V (φ) = Λ4f

(
φ

µ

)
. (79)

Different models have different forms for the functionf .

6.2. Large-field models:−εv < ηv ≤ εv

Large field models perhaps posses the simplest type of
monomial potentials. These kinds of potentials represent
the chaotic inflationary scenarios [38]. The distinctive of
these models is that the shape of the effective potential is not
very important in detail. That is, a region of the Universe
where the scalar field is usually situated atφ ∼ mPl from
the minimum of its potential will automatically lead to infla-
tion (Fig. 6). Such models are described byV,φφ > 0 and
−εv < ηv ≤ εv.

FIGURE 6. Chaotic inflationary potential.
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A general set of large-field polynomial potentials can be writ-
ten as

V (φ) = Λ4

(
φ

µ

)p

, (80)

where it is enough to choose the exponentp > 1 in order to
specify a particular model. This model gives

ns − 1 = −2 + p

2N
,

r =
4p

N
. (81)

In this case, gravitational waves can be sufficiently big to
eventually be observed(r & 0.1). From the quadratic po-
tential of Eq. (34), we obtain

εv ' 0.008, ηv ' 0.008,

ns ' 0.97, r ' 0.128. (82)

In the high power limit, theV ∝ φp predictions are the same
as the exponential potential [60]. Hence, a variant of this
class of models is

V (φ) = Λ4 exp (φ/µ) . (83)

This type of potential is a rare case presented in inflation be-
cause its dynamics has an exact solution given by a power-
law expansion. For this case the spectral indexns is closely
related to the tensor-to-scalar ratior, as

ns − 1 = − m2
Pl

8πµ2
,

r = 8 (1− ns) , (84)

as we observe, the slow-roll parameters are explicitly inde-
pendent of thee-fold numberN .

6.3. Small field models:ηv < −εv

Small field models are typically described by potentials that
arise naturally from spontaneous symmetry breaking. These
types of models are also known asnew inflation[38, 51]. In
this case, inflation takes place when the field is situated in a
false vacuum state, very close to the top of the hill, and rolls
down to a stable minimum, see Fig. 7. These models are typ-
ically characterized byV,φφ < 0 andηv < −εv, usuallyεv is
closely zero (and hence the tensor amplitude).

Small field potentials can be written in a generic form as

V (φ) = Λ4 [1− (φ/µ)p] , (85)

where the exponentp differs from model to model.V (φ) is
usually considered as the lowest-order term in a Taylor ex-
pansion from a more general potential. In the simplest case
of spontaneous symmetry breaking, with no special symme-
tries, the dominant term is the mass term,p = 2, hence the
model gives

FIGURE 7. New inflationary potential.

ns − 1 ' −
(

mPl

µ

)2

,

N =
4πµ2

m2
Pl

[
ln

(
φend

φi

)
− φend− φi

2µ2

]
,

r = 8(1− ns) exp [−1−N (1− ns)] . (86)

On the other hand,p > 2 has a very different behavior.
The scalar spectral index is

ns − 1 = − 2
N

(
p− 1
p− 2

)
, (87)

independent of(mPl/µ). Besides, the tensor-to-scalar ratio
for this model is given by

r=8

(√
8πµ

mPl

)2p/(p−2) (
p

2N(p−2)

)2(p−1)/(p−2)

. (88)

6.4. Hybrid models: 0 < εv < ηv

The third class, calledhybrid models, frequently includes
those that incorporate supersymmetry into inflation [11, 39].
In these models, the inflaton fieldφ evolves towards a min-
imum of its potential, however, the minimum has a vac-
uum energyV (φmin) = Λ4 different from zero. In such
cases, inflation continues forever unless an auxiliary fieldψ
is added to interact withφ and ends inflation at some point
φ = φc. Such models are well described byV,φφ > 0 and
0 < εv < ηv, whereV is the effective 1-field potential for
the inflaton.

The generic potential for hybrid inflation, in a similar way
to large field and small field models, is considered as

V (φ) = Λ4 [1 + (φ/µ)p] , (89)

where againp is an exponent that differs from model to
model. For(φ/µ) À 1, the behavior of the large-field models
is recovered. Besides that, when(φ/µ) ¿ 1, the dynamics
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are similar to small-field models, but now the field is evolv-
ing towards a dynamical fixed point rather than away from
it. Because the presence of an auxiliary field the number of
e-folds is

N(φ) '
(

p + 1
p + 2

) [
1

η(φc)
− 1

η(φ)

]
. (90)

Forφ À φc, N(φ) approaches the value

Nmax ≡
(

p + 1
p + 2

)
1

η(φc)
. (91)

In general

N=
8πµp

pm2
Pl

[
φ2−p

end −φ2−p
i

2−p
+

φ2
end−φ2

i

2µp

]
, for p 6= 2, (92)

N =
8πµp

pm2
Pl

[
ln

(
φend

φi

)
+

φ2
end− φ2

i

2µp

]
, for p = 2, (93)

and therefore, the spectral index is given by

ns − 1 ' 2
(

p + 1
p + 2

)
1

Nmax −N
.

As we can note, the power spectrum isblue(ns > 1) and the
model presents a running of the spectral index

dns

d ln k
= −1

2

(
p + 2
p + 1

)
(ns − 1)2 . (94)

This parameter will be very useful for higher orders and more
accurate constraints in future observations. For instance, the
particular casep = 2 andns = 1.2, the running obtained is
dns/d ln k = −0.05 [23].

6.5. Linear models:ηv = −εv

Linear models,V (φ) ∝ φ, are located on the limits between
large field and small field models. They are represented by
V,φφ = 0 andηv = −εv. The spectral index and tensor-to-
scalar ratio are given by

ns − 1 = − 6
1− 4N

, r =
16

1− 4N
. (95)

6.6. Logarithmic inflation

There remain several single-field models which cannot fit
into this classification, for instance, the logarithmic poten-
tials [6]

V (φ) = V0

[
1 + (Cg2/8π2) ln (φ/µ)

]
. (96)

Typically they correspond to loop corrections in a supersym-
metric theory, whereC denotes the degrees of freedom cou-
pled to the inflaton andg is a coupling constant. For this
potential, the inflationary parameters are

ns − 1 ' − 1
N

,

r '
√

1
N

Cg2

16π
. (97)

In this model, to end up inflation, an auxiliary field is needed,
which is the main feature of hybrid models. However, when
it is plotted on thens—r plane, it is located in the small-field
region.

6.7. Hybrid natural inflation

Hybrid Natural Inflation is particularly appealing because its
origins lie in well motivated physics. The inflaton potential
relevant to the inflationary era has the general form

V (φ) = ∆4

(
1 + a cos

(
φ

f

))
, (98)

wheref is the symmetry breaking scale anda allows for
more general inflationary phenomena that can readily accom-
modate the Planck results, and even allow for a low-scale of
inflation. Here the inflaton,φ, is a pseudo-Goldstone boson
associated with a spontaneously broken global symmetry and
is thus protected from large radiative corrections to its mass.
Defining cφ andsφ by cos(φ/f) andsin(φ/f) respectively,
we get

εv =
1

16π

(
a

f

)2 s2
φ

(1 + a cφ)2
, (99)

ηv = − 1
8π

(
a

f2

)
cφ

1 + acφ
, (100)

and the inflationary parameters are computed and constrained
by [56,64].

The classification of inflationary models mentioned pre-
viously may be interpreted as an arbitrary one, nevertheless,
it is very useful because different types of models cover dif-
ferent regions of the(ns, r) plane without overlapping, see
Fig. 8.

FIGURE 8. Classification of the potentials in terms ofns and r

parameters.
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6.8. Hybrid waterfall inflation

A two-field inflationary scenario is an alternative case of the
hybrid models. It occurs when the mass of the auxiliar field is
smaller than the Hubble parameter,i.e., V,ψψ . H. Once the
inflaton acquires a critical valueφc, the auxiliary field starts
evolving slowly, and a period of inflation is produced during
its dynamics, usually called thewaterfall scenario. An inter-
esting result is the possibility to obtain ared power spectrum
(ns < 1), according to the amount of inflation produced dur-
ing the waterfall period. As an example, let us consider two
scalar fields with a potentialVt like chaotic-hybrid:

Vt =
λ

4

[(
M2

λ
− ψ2

)2

+
1
2
m2φ2 +

1
2
g2φ2ψ2

]
, (101)

with M, m, λ constant values. In the typical hybrid models,
it is expected that thewaterfall field ψ remains atψ = 0
while the inflaton fieldφ evolves generating inflation. Then,
when φ = φc, the minimumψ = 0 becomes unstable,
and the waterfall field rolls down to its true minimum, fin-
ishing up immediately with the inflationary era. However,
if M2 . H2, we obtain the waterfall period. Taking the
limit g2ψ2/H2 ¿ m2/H2 (i.e., the back-reaction of the
waterfall field on the inflaton is small during inflation) and
ψ2/H2 ¿ M2/λH2 we obtain finally that [1]

ns − 1 '
[
4M2

3H2

(
M2

9H2
− rnk

)]

k=aH

, (102)

wherenk = Nk −Nc is a measurement of the difference be-
tween thee-foldsNk when a given scalek has left the horizon
and thee-foldsNc when the waterfall transition starts. Then,
for modes that left the horizon before the phase transition, we
havenk < 0 andns > 1, whereas, for modes that have left
the horizon after a phase transition, we have thatnk > 0 and
ns can take any value.

7. Observational results

How can observations constrainns and r in inflationary
models? During several years many projects, at different
scales, have been carried out to look for observational data
to constrain cosmological models. That is, different mod-
els may imprint different behaviors over the CMB spectra,
see Fig. 9. Amongst many projects, they are Cosmic Back-
ground Explorer (COBE), Wilkinson Microwave Anisotropy
Probe (WMAP), Cosmic Background Imager observations
(CBI), Ballon Observations of Millimetric Extra-galactic Ra-
diation and Geophysics (BOOMERang), the Luminous Red
Galaxy (LRG) subset DR7 of the Sloan Digital Sky Survey
(SDSS), Baryon Acoustic Oscillations (BAO), Supernovae
(SNe) data, Hubble Space Telescope (HST) and recently the
South Pole Telescope (SPT), the Atacama Cosmology Tele-
scope (ACT) and the Planck Satellite. Below, we show some
of the constraints for different types of inflationary potentials;
by using historical and current observational data. We stress

FIGURE 9. a) Variations of the CMB scalar spectrum for different
values of the spectral indexns, and b) variations of the CMB tensor
spectrum for the tensor-to-scalar ratior.

that the results are shown on the phase spacens − r, and
therefore our interest is mainly focussed on the case with no
runningdns/d ln k = 0 and single fields.

Figure 10 displays 2D marginalized posterior distribu-
tions for ns and r based on two data sets: WMAP3 by it-
self, and WMAP3 plus information from the LRG subset
from SDSS [25]. Considering WMAP3 observations alone
(open contours) the parameters are constrained such that
0.94 < ns < 1.04 andr < 0.60 (95% CL). Those models
that presentns < 0.9 are therefore ruled out at high confi-
dence level. The same is applied for models withns > 1.05.
WMAP data by itself cannot lead to strong constraints, be-
cause of the existence of parameter degeneracies, like the
well known geometrical degeneracy involvingΩm, ΩΛ and
Ωk. However, when it is combined with different types of
datasets, together, they increase the constraining power and
might remove degeneracies. Once the SDSS data is included,
the limit of the gravitational wave amplitude and the spec-
tral index constraints are reduced, that is, for WMAP3+SDSS
(filled contours) the constraints onns andr are0.93 < ns <
1.01 and r < 0.31. Moreover, Fig. 10 shows that the
Harrison-Zel’dovich model:ns = 1, r = 0, dns/d ln k = 0,
is still in good agreement with this type of data. Similarly,
for inflation driven by a massless self-interacting scalar field
V (φ) = λφ4 (see Eq. (81)), the contours indicate that this
potential with 60e-folds is still consistent with WMAP3 data
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FIGURE 10. WMAP3 only (open contours) and WMAP3+SDSS
(filled contours) 2D posterior distributions on the phase spacens-
r, for the potentialsφ2 andφ4 by consideringe-folds of N ∼ 46
and 60. Colored regions correspond to 68% and 95% CL [25].

at 95% CL, nevertheless ruled out by the combined datasets
WMAP3+SDSS. The potentialV (φ) = m2φ2/2 is consis-
tent with both data sets, with a preference to 60e-folds.

On the other hand, left panel of Fig. 11 shows lim-
its imposed by WMAP5 data alone,r < 0.43 (95% CL)
while 0.964 < ns < 1.008. When BAO and SN data
are added, the limits improved significantly tor < 0.22
(95% CL) and0.953 < ns < 0.983 [28]. Right panel
of Fig. 11 displays a summary for different potential con-
straints by WMAP5+BAO+SN. The modelV (φ) = λφ4,
unlike WMAP3 constraints, is found to be located far away
from the 95% CL, and therefore it is excluded by more
than 2σ. For inflation produced by a massive scalar field
V (φ) = (1/2)m2φ2, the model withN = 50 is situated out-
side the 68% CL, whereas withN = 60 is at the boundary
of the 68% CL. Therefore, this model is consistent with data
within the 95% CL. The points represented byN inflation
describe a model with many massive axion fields [35]. For
an exponential potential

(
V (φ) = exp

[
−(φ/mpl)

√
2/p

])
,

it is observed that models withp < 60 are mainly excluded.
Models with60 < p < 70 are roughly in the boundary of the
95% region, andp > 70 are in agreement within the 95% CL.
Some models withp ∼ 120 essentially layouts in the limit of
the 68% CL.

The hybrid potentials, as already noted, can have differ-
ent behaviors depending on the(φ/µ) value. The parame-
ter space can be split up into three different regions based
on (φ/µ). For φ/µ ¿ 1 the dynamics are similar to small
fields and the dominant term lays in the region called “Flat
Potential Regime”. Forφ/µ À 1 the results are similar to
large field models, and this region is called Chaotic Inflation-
like Regime. The boundary,φ/µ ∼ 1, is named Transi-
tion regime. The different(φ/µ) values corresponding to
their regions are shown in the right panel of Fig. 11. Fi-
nally, the combined datasets WMAP5+BAO+SN ruled out
the Harrison-Zel’dovich model by more than 95% CL.

Following the same line for inflationary models, we use
the COSMOMC package [31] which allows to perform the
parameter estimation and provide constraints for thens and
r parameters, given a dataset [we refer to [50] where the au-
thors provided an introduction on Bayesian parameter infer-
ence and its applications to cosmology]. We assume a flat
Λ CDM model specified by the following parameters: the
physical baryonΩbh2 and cold dark matter densityΩDMh2

relative to the critical density,θ is 100× the ratio of the sound
horizon to angular diameter distance at last scattering surface
andτ denotes the optical depth at reionization. To illustrate
our point, we initially consider WMAP seven-year data. We
observe from Fig. 12 that a model to be considered as a
favorable candidate it has to predict a spectral index about
ns = 0.982+0.020

−0.019 and a tensor-to-scalar ratior < 0.37 (95%
CL). When WMAP-7 is combined with different datasets, the
constraints are tightened, as it is shown by [30].

Two recent experiments have placed new constraints on
the cosmological parameters: the Atacama Cosmology Tele-
scope (ACT) [13] and the South Pole Telescope (SPT) [22].
Figure 13 shows the predicted values for a chaotic inflation-
ary model with inflaton potentialV (φ) ∝ φp with 60e-folds.
We observe that models withp ≥ 3 are disfavored at more
than 95% CL.

Figure 14 shows recent constraints given by [53] in the
ns andr plane. Gray regions correspond to the Planck 2013
results, red regions added the contribution of the tempera-
ture power spectrum (TT) and the Planck polarization data
in the low-l likelihood (lowP) while blue regions added the
temperature-polarization cross spectrum (TE), and the polar-

FIGURE 11. Constraints onns andr. Left panel: WMAP5 results are colored blue and WMAP5+BAO+SN red. Right panel: Constraints on
large and hybrid models from the combined datasets WMAP5+BAO+SN. Colored regions correspond to 68% and 95% CL [28].

Rev. Mex. F́ıs. E17 (1) 73–91



INFLATIONARY COSMOLOGY: FROM THEORY TO OBSERVATIONS 89

FIGURE 12. 1D and 2D Marginalized probability constraints onns andr using only WMAP7 data. 2D constraints are plotted with1σ and
2σ confidence contours.

FIGURE 13. Marginalized 2D probability distribution (68% and 95% CL) for the tensor-to-scalar ratior, and the scalar spectral indexns for
ACT+WMAP (left panel) and SPT+WMAP (right panel) [13,22].

FIGURE 14. 2D marginalized probability constraints onns andr
for the most recent results of [53]. 2D constraints are plotted with
1σ and2σ confidence contours. The figure is taken from [53].

ization power spectrum (EE). Notice that the model that fits
the best to the data corresponds toR2 inflation [59], and mod-
elsV (φ) ∝ φp with p ≥ 2 are discarded by data. The addi-
tion of BAO data and lensing is shown in the left panel of
Fig. 15. Finally, to incorporate the most updated version of
the data, on the right panel of Fig. 15, we include the Cos-
moMC code the full-missionPlanck 2018 (TT, TE, EE +
lowE + lensing) [3], the Keck Array, and BICEP2 Collabo-

rations 2016 [2] and the BAO data [5] in order to tighten the
parameter space constraints.

8. Conclusions

Considering the analysis presented here, it is complicated to
prove that a given model is correct, since these models could
be just particular cases of more general scenarios with sev-
eral parameters involved. However, it is possible to elimi-
nate models or at least give some constraints on their behav-
ior, leading to a narrower range of study. Although we have
presented some simple examples of potentials, the classifica-
tion in small-field, large-field, and hybrid models is enough
to cover the entire region of thens–r plane, as illustrated in
Fig. 8. Different versions of the three types of models predict
qualitatively different scalar and tensor spectra, so it should
be particularly easy to work on them apart.

We have seen that the favored models are those with
small r (assumingdns/d ln k ∼ 0) and slightly red spec-
trum, hence models withbluepower spectrumns > 1.0 are
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FIGURE 15. 2D marginalized probability constraints onns andr for the Planck 2015 dataset (left) and Planck 2018 (right). 2D constraints
are plotted with1σ and2σ confidence contours. The figure was done by using the CosmoMC package.

TABLE I. Summary of thens, r constraints from different measure-
ments.

Parameter Limits Data set

ns 0.9661± 0.0037 Planck 2018 TT + low E + BKP

r < 0.065 + BAO + lensing

ns 0.9683± 0.0059 Planck TT + lowP + lowTE + BKP

r < 0.0660 + BAO + lensing

ns 0.9666± 0.0062 Planck TT+lowP

r < 0.103

ns 0.9711± 0.0099 SPT+WMAP7+BAO+H0

r < 0.17

ns 0.970± 0.012 ACT+WMAP7+BAO+H0

r < 0.19

ns 0.973± 0.014 WMAP7 + BAO +H0

r < 0.24

ns 0.982±+0.020
−0.019 WMAP7 ONLY

r < 0.36

ns 0.968± 0.015 WMAP5+BAO+SN

r < 0.22

ns 0.986± 0.022 WMAP5 ONLY

r < 0.43

ns 0.97± 0.04 WMAP3 + SDSS

r < 0.31

ns 0.99± 0.05 WMAP3 ONLY

r < 0.60

inconsistent with the recent data. These simple but important
constraints allow us to rule out the simplest models corre-
sponding to hybrid inflation of formV (φ) = Λ4(1+(µ/φ)p).
There remain models with red spectra in the hybrid classifica-
tion: inverted models and models with logarithmic potentials.

Table II summarizes the constraints on thens andr pa-
rameters and their improvements through the years. The
scale-invariant power spectrumns = 1 is consistent within
95% CL with WMAP3 data, and therefore, not ruled out;
however, with WMAP5 data the HZ spectrum lays outside
the 95% CL region, which indicates exclusion considering
the lowest order on thens, r parameters. When WMAP7 data
is considered, scale-invariant spectrum is totally excluded by
more than3σ; however, the inclusion of extra parameters in
a particular model may weaken the constraints on the spec-
tral index. When chaotic modelsV (φ) ∝ φp are analyzed
with current data, it is found that quartic models (p = 4) are
ruled out, whilst models withp ≥ 3 are disfavored at> 95%
CL. Moreover, the quadratic potentialV (φ) = 1/2m2φ2

is in agreement with all data sets presented here and there-
fore remains a good candidate. Future surveys will provide a
more accurate description of the universe and therefore nar-
row down the number of candidates, which might better ex-
plain the inflationary period.
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