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Abstract. In Bayesian inference, the likelihood functions are evaluated thousands of times.  In 

this paper we explore the use of an Artificial Neural Network to learn how to calculate the 
likelihood function and thus speed up the Bayesian inference process. We test the performance of 

the neural network on a parameter estimation of the standard cosmological model and show that 

this method can reduce the computational time. 

 
 

1. Introduction 

Bayesian inference is a technique for obtaining statistical information on unknown probability density 

functions using Bayes’ theorem, which to test a theoretical model from known data, has the following 

form: 
 

 

  𝑃(𝜃|𝐷,𝐻) =
𝑃(𝜃|𝐷,𝐻)𝑃(𝜃|𝐻)

𝑃(𝜃|𝐷)
                                                           (1) 

 

where  D  represents  the  observational  data set, H  is the hypothesis –or model– under test and  θ   is 
the set of its free parameters. The prior probability P (θ|H) represents our knowledge of the parameters θ 
before considering the observable data. The  likelihood  function  is  the  probability  of the data given 

the model parameters P (D|θ, H). Finally, P (D|H) is a normalization constant, that is the likelihood 
marginalization and is called Bayesian evidence: 

 
 

  𝑃(𝐷|𝐻) = ∫𝑑𝑁 𝑃(𝜃|𝐷,𝐻)𝑃(𝜃|𝐻)                                                (2) 
 

where N is then umber of free parameters of the theoretical model. 

The ultimate goal of Bayesian inference is to obtain the posterior probability 𝑃(𝜃|𝐷,𝐻), which        

represents the state of knowledge of the model parameters once the information provided by the data has 

been taken into account. By calculating the posterior probability, we can obtain predictions based on the 
theoretical model considered and on the intrinsic information of the data [1, 2]. 

Likelihood functions link the data to theory and are constructed by assuming some particular 

statistical distribution for the D data, usually a Gaussian distribution. In the calculation of likelihood 

function, at a given point, it is also necessary to evaluate the theoretical model several 
 

 

 

mailto:igomezv0701@alumno.ipn.mx


X International Congress of Physics Engineering (X CIIF) 2020
Journal of Physics: Conference Series 1723 (2021) 012022

IOP Publishing
doi:10.1088/1742-6596/1723/1/012022

2

times. On the other hand, if several types of observations are involved, the probability density function 

proposed as likelihood function should be a multiplication of several likelihoods (one for each type of 

data). The nature of Bayesian inference requires multiple evaluations of the likelihood function to 

generate a new sample with a higher likelihood value than its predecessor, and if these functions are 

complex, the computational time spent on these evaluations can be considerable.  

In this paper we evaluate the performance of an Artificial Neural Network (ANN) in the calculation of 

likelihood functions within a Bayesian inference process [3, 4]. In the following section we describe, in 

general terms, the procedure of our study and how we use the ANN. In Section 3, we show an application 

on the standard cosmological model and make the comparison of results of Bayesian inference using and 

not using the neural network to calculate the values of the likelihood function. Finally, the Section 4 

contains our conclusions. 

 

2. Methodology 

We based this work in the Ref. [3] that proposes a feed forward ANN to learn the likelihood function 

within a nested sampling algorithm [5]. In this direction, we use a nested sampling algorithm [6] 

available in Dynesty [7] and we adapt it to use with the pyBambi package [8] (a development based on 

[3]). The ANN was implemented with the tensor flow Python library. 

2.1. Nested Sampling 

Nested sampling [5] is an algorithm that allows the calculation of Bayesian evidence through a Riemann 

sum by mapping the parameter space in an interval between 0 and 1 (for more details see Ref. [9]). This 

method generates an initial number of random points (called live points) within the parameter space, sorts 

them by their likelihood value, and in each iteration deletes the worst one, generates a new sample in a 

reduced parameter space and improves the calculation of the Bayesian evidence. Since a point is 

generated with respect to its predecessor, it also allows the sampling of the posterior probability function, 

like any other Markov Chain Monte Carlo algorithm. 

 

2.2. Artificial Neural Network 

The Universal Approximation Theorem [10] allows the use of an ANN to learn how to calculate the 

likelihood function. It states that an Artificial Neural Network with at least one hidden layer with a finite 

number of neurons can approach any continuous function if the activation function is continuous and 

non-linear. 

In our case, we use a feed forward ANN with three hidden layers and the Rectified Linear Unit 

(RELU) as activation function. The loss function is the Mean Square Error (MSE): 

 

    
 

 
          
 

 

                                                                           

 

we apply the Adam gradient descent method to minimize it, initially with learning rate of 0.1 and 

reducing it by a factor of 0.1, until 0.0001, if through 5 epochs the value of the loss function does not 

improve. 

This MSE has a direct relationship with the variance of the training set [11], therefore nested sampling 

allows the neural network loss function achieve lower values for samples near to the end of the inference 

process. 
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2.3. Method 

The likelihood function evaluates points in the parameter space that have as many coordinates as free 

parameters have the theoretical model considered to make the Bayesian inference. As will be described 

later, the model used in this paper has three free parameters. Therefore, the number of nodes in the input 

layer of the neural network must match this value. On the other hand, the output layer have a single node 

that is the prediction of the likelihood function. 

We tune the hyper-parameters of the neural network running 35 combinations of them and choosing 

the one that achieve a lower value for the loss function. For this test we use 50, 100, 150, 200, 250 and 

300 nodes for the three hidden layers and 4, 8, 16, 32 and 64 for the batch size value. The better 

combinations was the shown in figure 1 with 8 for the batch size. 

 

 

Figure 1. Feed forward ANN with three hidden layers used in this work 

 

In the generation of every 500 new samples, within the Bayesian inference framework, the neural 

network was trained. Therefore the 80% of this 500 samples with their respective likelihoods are used as 

training set, the remaining samples conform the test set. 

When the MSE is below a predefined value (in our case, we use 0.1), the trained neural network 

replaces the analytical calculations of the likelihood function, otherwise the ANN is retrained after 

another 500 samples are generated and in the meantime the analytical likelihood continues to be used. 

If, using the neural network, its predictions are outside the range of existing likelihoods (with a small 

deviation as tolerance, 0.1 in our case), the neural network is no longer used and the analytical 

calculation is returned. Subsequently, if the neural network is retrained correctly in the way described 

above, it can come back into action. 

 

3. Example: Bayesian inference on the ΛCDM model 

The standard cosmological model, also known as ΛCDM , represents a flat universe with a cosmological 

constant that provides accelerated expansion. We use the Friedmann’s equation, with a constriction for 

the cosmological constant energy density ΩΛ = 1-Ωm (Ωm is the matter energy density), to reduce the 

number of free parameters: 
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where H is the Hubble factor, H0 the Hubble constant, a is the scale factor (function of time representing 

the relative expansion of the universe), Ω0b is the current energy density of baryons, Ω0c the current energy 

density of cold dark matter, Ω0m = Ω0b + Ω0c and   
 

   
 Therefore, we use three free parameters: h2 , 

Ω0m and Ω0bh
2
. There are wll know in cosmology [12] and allow us to evaluate our results of the 

Bayesian inference with and without neural network. 

If we assume a Gaussian distribution for the data, we can construct the log-likelihood function as a chi-

square test involving the theoretical model of the Equation 4 and the observational data. In our test, the 

likelihood function considers data from Type-Ia Supernovae [13], Cosmic Chronometers [14], Baryon 

Acoustic Oscillations [15] and  a  compressed  information  of  Planck-15 [16]. 

The figure 2 shows the behavior of the loss function (MSE) for the ANN, described in the previous 

section, in the training and validation sets, using 500 samples of the Bayesian inference process. If the value 

for MSE is high, it is very likely that the predictions made by the ANN will be wrong, so it is necessary to 

wait until the final stage of sampling in order to properly use the neural network predictions. Figure 3 

shows the 1D and 2D plots of the resulting posterior distribution for Bayesian inference with and 

without ANN. 

 

Figure 2. Loss function of the neural network in the training and validation set 

 
 

The parameter estimation process for ΛCDM was performed five times, both with and without ANN. 

The averages of these five procedures for each case are reported in table 3. We can note that the parameter 

estimation by nested sampling with and without the neural network are very close to each other and can be 

statistically interpreted in the same way. To get closer to the reference values, it would be necessary to 

add even more data to our Bayesian inference and that is not the purpose of this work. 

We found that, on average, the neural network only calculates about 6% of the total likeli- hood calls 

and generates 4% of the total samples. However, in our example, this reduces the computational time by 

about 9.1 percent. 
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 Figure 3. Posterior samples for the ΛCDM model obtained by nested sampling with and 

without neural network. We implemented this in the SimpleMC repository [17]. 

 
Table 1. Results of the nested sampling algorithm applied to ΛCDM model 

 Reference value [12] without ANN with ANN 

Ωm 0.3166±0.0084 0.2978±0.0680 0.2982±0.0660 

Ωbh
2
 0.02242±0.00014 0.0224±0.0009 0.0224±0.0010 

h 0.6727±0.006 0.6918±0.0734 0.6906±0.0723 

log(Bayesian evidence)  -41.890±0.196 -41.849±0.195 

Samples generated with dynesty  7742 7700 

Samples generated with ANN 

predictions 
  282 

Likelihood predicted with ANN   2202 

Total likelihood calls  33007 33323 

time (minutes)  73.2 66.8 
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4. Conclusions 

According to our results, for the standard cosmological model and the  data  sets mentioned above,  
we have noticed that if the neural network is well calibrated and achieves a low MSE, it can  

substitute the analytical calculation of the likelihood function in the final  part  of a Bayesian  
inference process without significant alterations in the statistical analysis. Although the samples 
generated with the neural network likelihood predictions make up a small percentage, the acceleration 

in the Bayesian inference process is noticeable. 

As future work we want to test this technique with more complex models, both in the field of 

cosmology and in any other branch of science in which a Bayesian inference process can be applied. 

We are also interested in testing with larger data sets and implementing it in parallel. 
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