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Abstract. In this work we provide a basis for studying the cosmologies derived
from superstring theory. Distinct features of these cosmologies are the presence
of an axion field, and the interaction of the dilaton field with all the other matter
fields. We make a first study of the equations of motion and write them as
an autonomous dynamical system. The fixed points of the equations and their
corresponding stability are determined in turn. We then discuss the viability of
the string fields as dark energy and dark matter.

1. Introduction

Doubtless one of the main problems in physics now is the nature of dark matter
and the understanding of the accelerated expansion of the universe. There are a
number of observations supporting the existence of dark matter [1] and the accelerated
expansion of the universe as well [2]. On the other hand, one of the main problems
of superstring theory is that there is no real phenomenology that can support the
theory. Usually, superstring theory is supported only by its mathematical and internal
consistency, but not by real experiments or observations. One way in which superstring
theory can make contact with phenomenology is through cosmology [3]. In the last
years, a number of new observations have given rise to a new cosmology and to a
new perception of the universe (see for example [4]). The discovery of two kind of
substances in the universe, one of them attractive, called dark matter and the other
one repulsive, called dark energy, have changed our paradigm on the cosmos. On the
other hand, the superstring theory contains a set of fields and particles that have not
been seen in nature. In particular, two fields, the dilaton and the axion, are two very
important components of the theory which can not be easily fixed. In fact, one should
find a physical interpretation for these fields or give an explanation of why we are not
able to see them in nature. Some explanations for the present non-existence of the
moduli fields is that there exists a mechanism for eliminating these fields during the
evolution of the universe [5]. One of the most popular interpretations for the dilaton
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field is that it can be the dark energy of the universe, i.e. a Quintessence field [6], thus
after a non trivial compactification, the dilaton field acquires an effective potential [6].

Some attempts have been carried out in the past with other dilaton potentials
[7]. Here, we will be very specific starting with effective potentials inspired in the type
IIB supergravity theory [8].

Moduli stabilization has been used also in string cosmology to fix other moduli
fields than the volume modulus including dilaton+axion and Kahler moduli [9]. For
a description of more realistic scenarios, see [10].

2. Coupled matter fields: Mathematical background

As pointed out before, the main feature of the low energy superstring theory are the
dilaton and the axion fields. Let us start with a generic Lagrangian of the low energy
superstring theory given by

L =
√−g

(

R− Lφ − eαψφLψ − eαγφLγ
)

, (1)

where the α’s are the couplings of the dilaton field φ to the axion ψ and other matter
fields. The individual Lagrangians for the dilaton and axion fields and the perfect
fluid are, respectively,

Lφ =
1

2
∂σφ∂σφ+ Vφ , Lψ =

1

2
∂σψ∂σψ + Vψ , Lγ = ργ . (2)

The perfect fluid pressure is defined through the equation pγ = (γ − 1)ργ , where
0 < γ < 2 is its barotropic equation of state. On the other hand, the equations of
motion for the scalar fields are

�φ− ∂Vφ
∂φ

= αψe
αψφLψ+αγe

αγφLγ , �ψ− ∂Vψ
∂ψ

= −αψ∂µφ∂µψ ,(3)

where � is the d’Alembertian operator. Notice that the corresponding Klein-Gordon
equations are not homogeneous as in the standard case, but the non-zero r.h.s.’s are
proportional to the coupling coefficients.

We also need the Einstein field equations, which now read

Gµν = κ2
[

T (φ)
µν + eαψφT (ψ)

µν + eαγφT (γ)
µν

]

. (4)

Do notice that each of the energy-momentum tensors on the r.h.s. has the standard
form for the corresponding matter field. The Bianchi identities, Gµν ;ν = 0, are still
valid, and then we find in this case the conservation of the total energy-momentum
tensor

T (φ)µν
;ν +

[

eαψφT (ψ)µν + eαγφT (γ)µν
]

;ν
= 0 . (5)

Unlike the standard case, it does not follow from Eq. (3) that each individual energy-
momentum tensor is conserved. One can show, from Eqs. (5), that the conservation
equation for the dilaton and the matter fields are, respectively,

T (φ)µν
;ν =

∑

i

∂µ
(

eαiφ
)

L(i) ,
(

eαiφT (i)µν
)

;ν
= −∂µ

(

eαiφ
)

L(i) ,(6)

where i = ψ and γ, expressions which are then consistent with Eq. (2).
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For a flat Friedmann-Robertson-Walker metric, the equations of motion are the
Einstein equations

H2 =
κ2

3

(

1

2
φ̇2 +

1

2
ψ̇2eαψφ + ργe

αγφ + Vφ + Vψe
αψφ+ρL

)

, (7)

Ḣ = − κ2

2

(

φ̇2 + ψ̇2eαψφ + γργe
αγφ

)

, (8)

together with the equation of the matter fields

φ̈+ 3Hφ̇+
∂Vφ
∂φ

= αψe
αψφ

(

1

2
ψ̇2 − Vψ

)

− αγe
αγφργ ,

ψ̈ + 3Hψ̇ +
∂Vψ
∂ψ

= − αψφ̇ψ̇ ,

ρ̇γ + 3Hγργ = 0 ,

ρ̇L = 0 , (9)

where the dot stands for the derivative with respect to the cosmological time, H is
the Hubble parameter H = ȧ/a, and κ2 = 8πG/c4.

In order to analyze the behavior of this cosmology, we define new variables as
follows

x ≡ κφ̇√
6H

, y ≡ κ
√

Vφ√
3H

, Ωγ ≡ κ2ργ
3H2

eαγφ , (10)

u ≡ κψ̇√
6H

e
1

2
αψφ , v ≡ κ

√

Vψ√
3H

e
1

2
αψφ , z ≡ κ

√
ρL√

3H
(11)

Observe that z can also be taken as an auxiliary variable and not as real one. With
these definitions equations (9) transform into

x′ = − 3x+ λ̃y2 + α̃ψ
(

u2 − v2
)

− α̃γΩγ + Πx , (12)

y′ = − λ̃xy + Πy , (13)

u′ = − 3u− α̃ψxu− zv + Πu , (14)

v′ = α̃ψxv + zu+ Πv , (15)

Ω′

γ = 2

(

α̃γx+ Π − 3

2
γ

)

Ωγ , (16)

z′ = Πz. (17)

where prime stands for the derivative with respect to the number of e-foldings
N ≡ ln(a), Π is the function

Π = − Ḣ

H2
= 3

(

x2 + u2 +
γ

2
y2

)

(18)

and we have also defined the constants

α̃ψ ≡
√

3

2

αψ
κ
, α̃γ ≡

√

3

2

αγ
κ
,

λ̃ ≡ −
√

3

2

1

κVφ
∂φVφ , z ≡

√
2

H
∂ψ

√

Vψ . (19)

Finally, note that the Friedmann equation (7) now reads

x2 + y2 + u2 + v2 + Ωγ+z
2 = 1 , (20)
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3. Exponential dilatonic potential and massive axion field

There is one possibility for which the definitions of λ̃ and z can take their simplest
form. If λ̃ = const., the dilatonic potential is an exponential of the form Vφ = V0e

−λφφ.
As for variable z, we choose ∂ψ

√

Vψ= const. = m/
√

2, where m would be the mass
of the axion field, and the axion potential is then Vψ = (1/2)m2ψ2; in consequence,
z = m/H and it represents the ratio between the Hubble distance H−1 and the axion
Compton lenght λC = m−1.

3.1. Fixed points and stability

The dynamical system (17) is of the form x′ = f(x), where x ≡ {x, y, u, v,Ωγ , z}, and
f ≡ {fx, fy, fu, fv, fΩγ , fz} represent, respectively, the different functions on the r.h.s.
of equations (17), together with constrain (20). Thus, the fixed points xc are solutions
to the equations f(xc) = 0.

The stability of the fixed points is determined by taking small perturbations
x = xc + δx around them, so that the equations of motion become, at leading order,

δx′ = M δx , (21)

where the stability matrix has components given by

Mij ≡
∂fi
∂xj

∣

∣

∣

∣

xc

. (22)

The stability of each fixed point is determined by the eigenvalues ω of the stability
matrix; in general, if Re(ω) < 0 the fixed point is called stable, whereas the fixed
point is called unstable if Re(ω) > 0. Clearly, we are interested in knowing the stable
points, as they are the attractor solutions of the dynamical system, and represent the
asymptotic state of the original cosmological variables.

It is easy to show that z is an ever growing function whenever the Hubble
parameter decreases, which is usually the case in an expanding universe. This also
can be seen from the equation of motion for z,

z′ = − Ḣ
H
z . (23)

We write the fixed points of the dynamical system (17) which fulfil the constraint (20)
in the following list.

• Kinetic dilaton domination {1, 0, 0, 0, 0, 0}, and {−1, 0, 0, 0, 0, 0}.
• Axion and kinetic dilaton domination







− α̃ψ
3
, 0, 0,±

√

1 −
α̃2
ψ

9
, 0, 0







(24)

• Dilatonic domination






λ̃

3
,±

√

1 − λ̃

9
, 0, 0, 0, 0







(25)

• Dilaton and kinetic axion domination






− 3

α̃ψ − λ̃
,±

√

α̃ψ

α̃ψ − λ̃
,±

√

λ̃2 − λ̃α̃ψ − 9

α̃ψ − λ̃
, 0, 0, 0







(26)
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• Kinetic dilaton and axion domination






− 3

2α̃ψ
, 0,±

√

2α̃2
ψ − 9

2α̃ψ
,± 1√

2
, 0, 0







(27)

• Kinetic dilaton and perfect fluid domination
{

2α̃γ
3(γ − 2)

, 0, 0, 0,−
4α̃2

γ − 36 + 36γ − 9γ2

9(γ − 2)2
, 0

}

(28)

• Kinetic dilaton, potential axion and perfect fluid domination






− 3γ

2(α̃ψ − α̃γ)
, 0, 0,±

√

4α̃2
γ − 9γ2 − 4α̃ψα̃γ + 18γ

2(α̃ψ − α̃γ)
,−

2α̃ψα̃γ + 2α̃2
ψ − 9γ

2(α̃ψ − α̃γ)2
, 0







(29)

• Kinetic dilaton, kinetic axion and perfect fluid domination






3(γ − 2)

2(α̃γ + α̃ψ)
, 0,±

√

4α̃2
γ − 36 + 36γ − 9γ2 + 4α̃ψα̃γ

2(α̃γ + α̃ψ)
, 0,

α̃ψ
α̃ψ + α̃γ

, 0







(30)

• Scaling solution for dilaton and perfect fluid






3γ

2(α̃γ + λ̃)
,±

√

4α̃2
γ − 9γ2 + 4λ̃α̃γ + 18γ

2(α̃γ + λ̃)
, 0, 0,

2λ̃α̃γ + 2λ̃2 − 9γ

2(α̃γ + λ̃)2
, 0







(31)

• Kinetic dilation, perfect fluid and cosmological constant domination






3γ

2α̃γ
, 0, 0, 0,

−9γ

2α̃2
γ

,±

√

4α̃2
γ + 18γ − 9γ2

2α̃γ







(32)

All the fixed points above are unstable under small perturbations, but the physical
system can reach them if given the appropriate intitial conditions. In other words,
the universe can go through any of the above solutions, and they may be detected, if
realistic, in cosmological observations.

A stable point is {0, 0, 0, 0, 0,±1}, which corresponds to cosmological constant

domination. This is not surprising, as a cosmological constant corresponds also to the
extreme case of a perfect fluid with an equation of state γ = 0.

What is surprising is the existence of the points
{

0,±
√

α̃ψ

α̃ψ + λ̃
, 0,±

√

λ̃

α̃ψ + λ̃
, 0, 0

}

(33)

which could be dubbed potential dilaton and axion domination. These are stable under
the conditions (λ̃ < 0 and 9

8λ̃
≤ α̃ψ ≤ 0), or (λ̃ > 0 and 0 < α̃ψ ≤ 9

8λ̃
).

Notice that the scalar field potentials dominate the universe, under the condition
that α̃ψ ∼ 1/λ̃, which represents a very special kind of universe, where the axion
coupling constant is of the order of the inverse of the potential coupling constant.
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4. General discussion

We have shown the simplest cases for the selection of the dilaton and axion potentials
in which the equations of motion for a homogeneous and isotropic universe can be
written as an autonomous system. This form of the equations eased the analysis of
the interesting solutions such a universe can go through.

The dilatonic field acts as a kind of quintessence field with an exponential
potential, but its couplings to the different matter fields make its evolution to differ
significantly from the standard case [11]. For instance, we see that the typical scalar
field domination and the scaling solution are part of the fixed points in of the dynamical
system. However, those points are unstable, though it is not clear in our analysis if such
instability is intrinsic or it is imposed by the presence of the cosmological constant.

We have seen that in the generic case, the dilaton field is subdominant in the
presence of a cosmological constant, unless the axion coupling constant is of the order
of less than the inverse of the dilaton potential coupling constant. In that case the
universe reaches a condition where the axion and dilaton potentials dominate the
universe. This behavior seems to be generic in the dilaton-axion theory of relativity.

There is one point that deserves a more careful study we expect to tackle in a
future publication. The dynamical system we studied does not, and cannot, have
a fixed point corresponding to perfect fluid domination. The reason for this is the
non-zero dilatonic coupling to the perfect fluid, αγ , see Eq.(12).

Such non-existence of a perfect fluid domination fixed point, if generic, can be a
serious failure of the model, as the standard Big Bang model requires the existence
of well defined radiation and matter domination eras. As said before, it is to be
investigated whether this is a strong failure or not of any string-inspired dark energy
model.
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