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Abstract. Recent cosmological observations hint at a deviation from the simple power-law
form of the primordial spectrum of curvature perturbations. In this paper we show that in
the presence of a tensor component, a turn-over in the initial spectrum is preferred by current
observations, and hence non-power-law models ought to be considered. For instance, for a
power-law parameterisation with both a tensor component and running parameter, current
data show a preference for a negative running at more than 2.5σ C.L. As a consequence
of this deviation from a power-law, constraints on the tensor-to-scalar ratio r are slightly
broader. We also present constraints on the inflationary parameters for a model-independent
reconstruction and the Lasenby & Doran (LD) model. In particular, the constraints on the
tensor-to-scalar ratio from the LD model are: rLD = 0.11 ± 0.024. In addition to current
data, we show expected constraints from Planck-like and CMB-Pol sensitivity experiments
by using Markov-Chain-Monte-Carlo sampling chains. For all the models, we have included
the Bayesian Evidence to perform a model selection analysis. The Bayes factor, using cur-
rent observations, shows a strong preference for the LD model over the standard power-law
parameterisation, and provides an insight into the accuracy of differentiating models through
future surveys.
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1 Introduction

Inflationary models have the merit that they not only explain the homogeneity of the universe
on large-scales, but also provide a theory to explain the origin of perturbations as observed in
the Cosmic Microwave Background (CMB). During the inflationary period, quantum fluctu-
ations of the field were driven to scales much larger than the Hubble horizon and eventually
turned into density perturbations (scalar) observed in the CMB and the large-scale distri-
bution of galaxies, together with a gravitational wave (tensor) contribution. The vector
contributions, however, are expected to be negligible since these modes decayed very rapidly
once they entered the Hubble horizon. The scalar and tensor contributions are summarised
by the primordial power spectrum PR(k) and PT (k), respectively. The scalar spectrum for
a single-inflaton field φ, in the slow-roll approximation, is given by [22]:

PR(k) =

[(
H

φ̇

)2(H
2π

)2
]
k=aH

, (1.1)

where the expression is evaluated at the horizon exit k = aH. Since the initial spectrum
is an unknown function, one needs to carry out a full numerical calculation from the onset
of the inflationary phase, or to assume a particular functional form of it. The simplest
proposal is to parameterise the shape of PR(k) by a power-law. Although the power-law
assumption has provided reasonable agreement with cosmological observations, some recent
analyses have shown that if a running of the scalar spectral-index is taken into account,
there exists a preference for a negative running-value at 1.8σ C.L. from WMAP7+ACT
(SPT) measurements [11, 16] and at 2.2σ C.L. with WMAP7+QUaD [4]. It has also been
shown that the existence of a turn-over in PR(k), by using model-independent techniques, is
preferred [14, 15, 24, 32]. The presence of this turn-over plays an important role in explaining
current cosmological observations and cannot therefore be ignored when constraining the
inflationary parameters. In the slow-roll approximation, the shape of the spectrum of tensor
perturbations is

PT (k) =

[
16

π
H2

]
k=aH

, (1.2)
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which depends on the form of the scalar spectrum, and vice-versa, via the potential of the sin-
gle scalar-field. To place constraints on the amplitude of tensor contributions, it is customary
to define the tensor-to-scalar ratio as

r(k) ≡ PT (k)

PR(k)
= 64π

(
φ̇2

H2

)
k=aH

. (1.3)

The dependence of the scalar spectrum on the tensor spectrum is evident in the Lasenby
& Doran model [19], where both spectra depend upon the same best-fit parameters. In
a previous paper we found that standard ΛCDM models with a turn-over in the scalar
spectrum are preferred over a simple power-law parameterisation [32]. In this work, by
assuming a power-law parameterisation of the tensor spectrum, we show that the bending
of the scalar spectrum is enhanced due to the presence of a tensor component. To avoid
misleading results due to the particular choice of parameterisation, the shape of the scalar
spectrum is described by employing a model-independent reconstruction. We then show that
current constraints on the tensor-to-scalar ratio (1.3) are broadened for non-power law PR(k)
models. We also discuss the constraints on r for a massive scalar-field in the Lasenby & Doran
model. Finally, by considering future experiments we present their expected constraints on
the inflationary parameters. For all the models, the Bayes factor is computed in order to
perform a model comparison.

The paper is organised as follows: in the next section we list the data sets and the
cosmological parameters considered. In section 3 we study different models suggested to
describe the form of the scalar spectrum. Then, we show the resulting parameter constraints
on the tensor-to-scalar ratio and the preferred form of the power spectrum using current
cosmological observations. In the same section we provide future constraints on r expected
by Planck-like and CMB-Pol experiments. Performance assumptions for Planck and CMB-
Pol are taken from [26] and [2]. We present the model selection analysis in section 4, and our
conclusions in section 5.

2 Theoretical framework

Even though the primary parameters in the standard ΛCDM model have already been tightly
constrained and have little impact on the B-mode spectrum, it is worthwhile to perform a
full parameter-space exploration to determine the tensor-to-scalar ratio constraints in each
model. We assume purely Gaussian adiabatic scalar and tensor contributions in a flat ΛCDM
model1 specified by the standard parameters: the physical baryon Ωbh

2 and cold dark matter
density Ωch

2 relative to the critical density (h is the dimensionless Hubble parameter such
that H0 = 100h kms−1Mpc−1), θ is 100× the ratio of the sound horizon to angular diameter
distance at last scattering surface, τ denotes the optical depth at reionisation. We consider the
tensor-to-scalar ratio for each model i as ri = PT (i)(k)/PR(i)(k); hereafter we set ri = ri(k0)
at a scale of k0 = 0.015Mpc−1. A study of the appropriate scale to use is given by [9].
Aside from the Sunyaev-Zel’dovich (SZ) amplitude ASZ used by WMAP analyses, the ACT
likelihood incorporates two additional nuisance parameters: the total Poisson power Ap and
the amplitude of the clustered power Ac. The parameters describing the primordial spectra
for each model are listed in the next section, together with the flat priors imposed in our
Bayesian analysis.

1Except for the LD model, which is based on a marginally closed universe Ωk < 0.
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Figure 1. Comparison of theoretical prediction of r = 0.1 inflation model, and the WMAP, BICEP
and QUaD data for the B-mode power spectrum.

Throughout the analysis, the theoretical temperature and polarisation C`’s spectra are
generated with a modified version of the CAMB code [21], and the parameter estimation is
performed using the CosmoMC program [20]. The calculation of the Bayesian evidence Z, to
perform the model selection, requires a multidimensional integration over the likelihood and
prior. To do this, we make use of the MultiNest algorithm [12, 13]. The Bayes factor Bij ,
or equivalently the difference in log evidences lnZi − lnZj , provides a measure of how well
model i fits the data compared to model j. In order to make a qualitative model comparison,
we consider the Jeffreys guideline: if Bij < 1 model i should not be favoured over model j,
1 < Bij < 2.5 constitutes significant evidence, 2.5 < Bij < 5 is strong evidence, while Bij > 5
would be considered decisive [31, 33].

Current observations. To compute posterior probabilities for each model we use tem-
perature and polarisation measurements from the Wilkinson Microwave Anisotropy Probe
7-year (WMAP7; [17]) and the Atacama Cosmology Telescope (ACT; [11]) data. To improve
polarisation constraints, we include observations from QuaD [4], whose primary aim is high
resolution measurements (154 ≤ ` ≤ 2026) of the E-mode signal, and BICEP data [7] which
probes intermediate scales (21 ≤ ` ≤ 335). Figure 1 shows the B-mode spectrum predicted
from a power-law parameterisation, with r = 0.1, along with 1σ constraints obtained by
using current observations. In addition to CMB data, and to strengthen the constraining
power, we incorporate distance measurements from the Supernova Cosmology Project Union
2 compilation (SCP; [1]) and Large Scale Structure data from the Sloan Digital Sky Survey
(SDSS) Data Release 7 (DR7) Luminous Red Galaxy (LRG) power spectrum [29]. We also
also consider baryon density information from Big Bang Nucleosyntesis (BBN, [6]) and im-
pose a Gaussian prior on the Hubble parameter today H0 from measurements of the Hubble
Space Telescope (HST; [30]) key project.

Future surveys. In order to forecast expected constraints of future CMB observations, one
can make use of the Fisher information matrix under the assumption that each parameter is
Gaussian-distributed. However to obtain constraints more closely related to what is expected
by future experiments, we perform a Monte Carlo analysis sampling over all variables involved
in the description of the CMB spectrum. We simulate future experiments by generating mock
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Figure 2. Polarization noise power spectra for forthcoming experiments. Note that these curves
include uncertainties associated with the instrumental beam. The red line shows the B-mode power
spectrum for the standard inflationary model with r = 0.1.

data of the Ĉ`
XY

’s from a χ2
2`+1 distribution with variances [27]:

(∆ĈXX
` )2 =

2

(2`+ 1)fsky

(
CXX
` +NXX

`

)2
, (2.1)

(∆ĈTE
` )2 =

2

(2`+ 1)fsky

[(
CTE
`

)2
+
(
CTT
` +NTT

`

) (
CEE
` +NEE

`

)]
, (2.2)

where X = T,E and B label the temperature and polarisations; fsky is the fraction of the
observed sky. The CXY

` ’s represent the theoretical spectra and NXY
` the instrumental noise

spectra for each experiment. In experiments with multiple frequency channels c, the noise
spectrum is approximated [3] by

NX
` =

(∑
c

1

NX
`,c

)−1
, (2.3)

where the noise spectrum of an individual frequency channel, assuming a Gaussian beam, is

NX
`,c = (σpix θfwhm)2 exp

[
`(`+ 1)

θ2fwhm

8 ln 2

]
δXY . (2.4)

The pixel noise from temperature and polarisation maps are considered as uncorrelated. The
noise per pixel σXpix (and σPpix =

√
2σTpix) depends on the instrumental parameters; θfwhm is

the full width at half maximum (FHWM) of the Gaussian beam.
For the Planck experiment, we include three channels with frequencies (100 GHz, 143

GHz, 217 GHz) and noise levels per beam (σTpix)2= (46.25 µK2, 36 µK2, 171 µK2). The
FHWM of the three channels are θfwhm =(9.5, 7.1, 5.0) arc-minute. These figures are taken
from the values given in [26]. We combine three channels for the CMBPol experiment [2] with
frequencies (100 GHz, 150 GHz, 220 GHz), noise levels (σTpix)2 = (729 nK2, 676 nK2, 1600

nK2) and θfwhm = (8, 5, 3.5) arc-minute. Sky coverages of fsky = 0.65, 0.8 are respectively
assumed and integration time of 14 months. In figure 2 we show the noise levels for these
experiments as a function of multipole number `. The blue line corresponds to the B-mode
power spectrum using the standard power-law parameterisation with r = 0.1. The lensed
CB
` is also shown in the same figure, which can be treated as a part of the total noise power

spectrum NB
` as well as the instrumental noise power spectra [25]. For more information of

the noise and beam profile of each frequency channel please refer to [23].
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3 Primordial power spectra constraints

3.1 Power-law parameterisation

Because slow-roll inflation predicts the spectrum of curvature perturbations to be close to
scale-invariant, the simplest proposal is to assume that the initial spectrum has a power-law
form, parameterised by

PR(k) = As

(
k

k0

)ns−1
, (3.1)

where the spectral index ns is expected to be close to unity. A spectrum where the typical
amplitude of perturbations is identical on all length scales is known as Harrison-Zel’dovich
spectrum (ns = 1), and it has been ruled out by several studies (see for instance [32]). Here,
we assume, for simplicity, that the tensor spectrum is also described by a power-law function:

PT (k) = At

(
k

k0

)nt

, (3.2)

where the tensor amplitude At is related to tensor-to-scalar ratio rs = At/As. For this
parameterisation we assume that r(k0) and the tensor spectral index nt ≡ d lnPT (k)/d ln k
satisfy the consistency relation for a single field slow-roll inflation nt = −rs/8 [10]. The
power-law parameterisation thus contains only three free parameters: As, ns, and rs. For
these parameters, we assume a prior As = [1, 50] × 10−10 for the amplitude, a conservative
prior for the spectral index ns = [0.7, 1.2] and a tensor-to-scalar ratio prior of rs = [0, 1].

Figure 3 shows 1D and 2D marginalised posterior distributions of the scalar spectrum
index ns and the tensor-to-scalar ratio rs, using both current cosmological observations (black
line) and future experiments (red for Planck and green for CMBPol).

The bottom panel shows the limits imposed by current and future experiments. For
present observations: ns = 0.964 ± 0.011 and rs < 0.171 (mean values of 68% C.L. are
quoted for two-tailed distributions, whilst one-tailed distribution only the upper 95% C.L.).
These results are in agreement with previous studies, i.e. [11, 16, 17]. With regards to
future constraints, we have used mean values obtained from current observations as the
fiducial model (with fixed rs = 0.1). We notice that 1σ error bars of the spectral index ns,
shown in the bottom panel of the same figure, reduce by about four times using a Planck-
like experiment and five times for a CMBPol experiment. Whereas Planck will be able
to distinguish tensor components with an accuracy of σr = 0.013, this is highly improved
by CMBPol data σr = 0.0009. If we consider only one channel for comparison, e.g. 100
GHz, the constraints on the tensor-to-scalar ratio are given by σr = 0.02, in agreement with
previous results [5]. The top-right panel of figure 3 illustrates the resulting shape of PR(k)
corresponding to the posterior distributions using present data.

3.2 Running scalar spectral-index

A further extension is possible by allowing the scalar spectral index to vary as a function
of scale, such that ns(k). This can be achieved by including a second order term in the
expansion of the power spectrum

PR(k) = As

(
k

k0

)ns−1+(1/2) ln(k/k0)(dn/d ln k)

, (3.3)
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Figure 3. Left panel: 1D and 2D probability posterior distributions for the power spectrum param-
eters, assuming a simple tilt parameterisation (ns); using both current observations (black line) and
future experiments (red for Planck and green for CMBPol). 2D constraints are plotted with 1σ and
2σ confidence contours. Right panel: reconstruction of the scalar spectrum using present data; lighter
regions represent an improved fit.

where nrun ≡ dns/d ln k is termed the running of the tilt and we would expect nrun ≈ 0 for
standard inflationary models. We have kept the same tensor spectrum as in the simple power-
law parameterisation, with a tensor-to-scalar ratio rrun at a scale of k0 = 0.015 Mpc−1 to
avoid correlations amongst parameters [9]. We maintained the same priors for the inflationary
parameters As, ns, and rrun and select a prior of the running parameter of nrun = [−0.1, 0.1]
as used by [24].

Figure 4 shows the 1D and 2D marginalised posterior distributions for the inflationary
parameters, using current experiments (black line): ns = 0.985±0.017, nrun = −0.043±0.018
and rrun < 0.324; and Planck (red line) and CMBPol (green line) realisations. The top label
of the figure indicates the Bayes factor using present observations, which in this case and
throughout the paper is compared with respect to the power-law parameterisation. We
first note that in the presence of a tensor component the bending of the scalar spectrum
is enhanced through a larger running parameter. That is because, at the largest scales, the
contribution of the CMB-tensor spectrum compensates the power of the CMB-scalar, leaving
hence the total CMB spectrum unaffected; for instance nrun = −0.043 ± 0.018 compared to
nrun = −0.028 ± 0.014 without tensors. We also observe that using current experiments a
negative nrun parameter in preferred by more than 2.5σ C.L. Hence the necessity to include
a turn-over in the power spectrum. This result is confirmed by noticing the Bayes factor
is significantly favoured compared to the simple power-law model, Bnrun,ns = +2.0 ± 0.3.
Considerations of the running of running of the spectral index are also being explored [28].
We notice that correlations created by the inclusion of the running parameter broaden the
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Figure 4. Left panel: 1D and 2D probability posterior distributions for the inflationary parameters,
assuming a power-law with a running parameter (nrun); using both current data (black line) and
future experiments (red for Planck and green for CMBPol). 2D constraints are plotted with 1σ and
2σ confidence contours. Right panel: Reconstruction of the scalar spectrum using present data; lighter
regions represent an improved fit. The top label denotes the Bayes factor of the nrun-model compared
to the power-law ns-model, using current observations.

constraints on the tensor-to-scalar ratio by about 1.5 times. Future constraints are also
broadened compared to the power-law parameterisation. The summary of the constraints on
the inflationary parameters is shown in the bottom panel of figure 4, and the reconstruction
of PR(k), using present data, in the top-right panel.

3.3 Model independent reconstruction

We have seen that deviations from the simple power-law, by the introduction of the running
parameter, are relevant in explaining present data. In order to corroborate this result and
look for deviations from the power-law parameterisation, we consider a model-independent
reconstruction. The reconstruction process we follow is based on the approach used previously
by [32]. We place two fixed k-nodes at sufficiently separated positions [kmin, kmax], with
varying amplitudes [As,kmin

, As,kmax ], and place inside additional ‘nodes’ with the freedom
to move around in both position ki and amplitude As,ki . We assume that most of the
astrophysical information is encompassed within the scales kmin = 0.0001 Mpc−1 and kmax =
0.3 Mpc−1. Outside of these limits we consider the spectrum to be constant with values
equal to those at kmin and kmax respectively. We allow variations in the amplitudes with a
conservative prior As,ki ∈ [1, 50] × 10−10. To maintain continuity between k-nodes, a linear
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interpolation is performed such that the form of the power spectrum is described by

PR(k) =


As,kmin

k ≤ kmin,
As,ki kmin < ki < ki+1 < kmax,
As,kmax k ≥ kmax,

(3.4)

and with linear interpolation for kmin ≤ ki ≤ kmax.

We have restricted the model-independent reconstruction to two internal-nodes which we
consider are sufficient to provide an accurate description of the shape of the power spectrum.
The tensor spectrum is parameterised by a power-law form, similarly to the one in section 3.1.
Here the tensor-to-scalar ratio, given by r2ki = At/PR(k0), is computed at the scale k0 =
0.015 Mpc−1 and also satisfies the consistency relation r2ki = −nt/8; with prior r2ki = [0, 1].

The top-left panel of figure 5 displays the 1D and 2D marginalised posterior distributions
for the parameters used in the model-independent reconstruction. At the largest scales, we
observe the lack of tight constraints on the amplitude A1, mainly due to the cosmic variance
and correlations with other parameters. At smaller scales, the constraints on the amplitues
(i.e. A2, A3 and A4) get tighter. We notice the presence of a bi-modal distribution in the
medium/small scales, represented by k2, where the highest peak (k ∼ 0.01Mpc−1) matches
the position of the turn-over in the primordial spectrum, as seen in the top-right panel
of figure 5. The other peak is located where the constraints seem to improve by updated
data sets: at the overlapping of WMAP/ACT observations (0.1 < k < 0.14) with LRG7
measurements. The reconstructed spectrum clearly presents a turn-over, however with the
bending at small scales less pronounced that in the running model. Notice that the Bayes
factor, shown in the top label of the same figure, is significantly preferred over the simple tilt
model, even though the two-internal-node reconstruction contains four additional parameters;
it is also marginally preferred over the running model. Future experiments will be able to
pin-down accurately the shape of the primordial spectrum at medium and small scales (k2),
however at the largest scales (k1) the cosmic variance still dominates, as seen in the 1D
posterior distribution of A1. Current and future constraints of the inflationary parameters
are summarised in the bottom panel of figure 5.

3.4 Lasenby & Doran model

The Lasenby & Doran model is based on the restriction of the total conformal time available
in a closed universe [19]. At the largest scales, the predicted scalar and tensor spectra
naturally incorporate a drop-off without the need to parameterise them, whilst, at small
scales they mimic a slight running behaviour. An important point to bear in mind, is that
in the LD model the functional forms of H and φ̇ during inflation are expressed using just
two parameters b0 and b4 [32, 33]. These parameters describe the initial conditions, along
with the standard cosmological parameters, and therefore the primordial spectra generated
by the LD model are given in terms of

PR(k) = PR(k; b0, b4,Ωi, H0), PT (k) = PT (k; b0, b4,Ωi, H0). (3.5)

Notice that the tensor-to-scalar ratio rLD is a derived quantity in terms of the cosmological
parameters, H0, Ωi, and the initial-conditions parameters b0 and b4:

rLD(k) = rLD(k; b0, b4,Ωi, H0). (3.6)
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r2ki < 0.34 0.014 0.00096

Figure 5. Left panel: 1D and 2D probability posterior distributions for the power spectrum parame-
ters, assuming a two internal-node reconstruction (2ki); using both current cosmological observations
(black line) and future experiments (red for Planck and green for CMBPol). 2D constraints are plot-
ted with 1σ and 2σ confidence contours. Right panel: Reconstruction of the scalar spectrum using
present data; lighter regions represents an improved fit. Top label denotes the Bayes factor of the
2ki-model compared to the power-law ns-model, using current observations.

That is, if we use values of b0 and b4 along with the cosmological parameters there is
no need to introduce additional variables to describe the tensor-to-scalar ratio rLD. Figure 6
shows the primordial spectra, both scalar and tensor, for a given combination of b0 and b4
parameters. In the right panel of this figure, we illustrate the tensor-to-scalar ratio and its
degeneracy with a selection of the parameters, for instance, the combination of {b0 = 3.2, b4 =
−10× 10−10} or {b0 = 3.0, b4 = −12× 10−10} provides the same tensor-to-scalar ratio, even
though their scalar and tensor spectra differ considerably. For further details about the
LD model see, for instance [18, 19, 33]. To compute the LD spectra we refer to [32, 33].
We have also chosen the priors based on the same paper: Ωk = [−0.05, 10−4], b0 = [1, 4],
b4 = [−30,−1]× 10−9. Figure 7 shows 1D and 2D marginalised posterior distributions of the
parameters involved in the description of the LD model. A novel result from the LD model is
that its constraints on the tensor-to-scalar ratio are different from zero: rLD = 0.11± 0.024,
contrary to the standard power-law parameterisation. This happens mainly due to the φ2-
type potential assumed in the model.

The Bayes factor of this model compared to the simple-tilt model is shown in the top
label of the same figure. The low number of parameters and the reduced power at both
large and small scales make the LD model strongly favoured compared to the simple tilt and
significantly so compared to the running and the two-internal-node reconstruction. Future
experiments will provide an insight on discriminating amongst models, as we will see in the
next section.
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Figure 7. 1D and 2D probability posterior distributions for the power spectrum parameters, assuming
a Lasenby & Doran model (LD); using both current cosmological observations (black line) and future
experiments (red for Planck and green for CMBPol). 2D constraints are plotted with 1σ and 2σ
confidence contours. The top label denotes the associated Bayes factor with respect to the power-law
ns model using present data. ∗In this model, rLD is a derived parameter.

4 Model selection

Throughout the analysis, we have included the Bayes factor for each model and found that the
Lasenby & Doran model is the most preferred by current observations. Future experiments
will be able to distinguish between models more effectively. Let us assume for a moment that
the LD spectra represent the true model. We then use the LD spectra, with best-fit values
obtained by using present data (shown in the bottom panel of figure 7), as the fiducial model
to simulate future CMB observations. We analyse this mock data to reconstruct the input
spectrum using the set of models aforementioned. Table 1 shows the Bayes factor for the
different parameterisations compared to the LD model, along with the recovered tensor-to-
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Planck CMBPol

Bi,LD ri Bi,LD ri

LD 0.0± 0.3 0.102± 0.017 0.0± 0.3 0.100± 0.002

ns −6.3± 0.3 0.082± 0.014 −13.0± 0.3 0.105± 0.001

nrun −6.5± 0.3 0.086± 0.015 −15.5± 0.3 0.103± 0.001

2ki −3.1± 0.3 0.091± 0.015 −10.2± 0.3 0.101± 0.001

Table 1. Model Selection. The input spectrum, given by the LD model, is reconstructed using
different models. We show the Bayes factor for each model Bi,LD, along with the recovered tensor-
to-scalar ratio ri.

scalar ratio. There is indeed a distinction between models, with the data clearly indicating
a preference for the LD model, used to generate the input-simulated data. Idealised Planck
results might provide decisive conclusions on distinguishing the LD model from the simple-tilt
ns-model, Bns,LD = −6.3± 0.3, and a running nrun-model, Bnrun,LD = −6.5± 0.3, and strong
preference when compared to the two-internal-node reconstruction 2ki-model, B2ki,LD =
−3.1± 0.3. There will also be a strong preference for the model independent reconstruction
over both the ns and nrun models: B2ki,ns = +3.2±0.3 and B2ki,nrun = +3.4±0.3, respectively.
With regards to the CMBPol experiment, this might definitely differentiate the LD spectrum
from the rest of the spectra. In contrast to the Planck experiment, the model-independent
reconstruction for CMBPol is now strongly favoured compared to the nrun model. CMBPol
also provides a strong preference to differentiate the simple-tilt model ns over the running
model nrun: Bns,nrun = +2.5 ± 0.3. Therefore, future experiments certainly will be able to
differentiate between these models and pin down the right form of the primordial spectrum.

5 Discussion and conclusions

In this paper we have performed a MCMC exploration of the full cosmological parameter-
space and showed current and future constraints on the inflationary parameters, with par-
ticular attention to the tensor-to-scalar ratio. We have considered models that deviate from
the standard power-law in the scalar power-spectrum: a power-law parameterisation with
running behaviour and the spectrum predicted from the Lasenby & Doran model. By im-
plementing a model-independent reconstruction for PR(k), we found that a turn-over in the
scalar spectrum is preferred to explaining cosmological observations. A similar form of the
scalar spectrum has been previously obtained assuming different model-independent recon-
structions, some of them with different data sets [14, 15, 32]. Even though we have not
given the results for the standard cosmological parameters Ωbh

2, Ωch
2, θ, τ , their best-fit

values remained essentially unaffected throughout the models. For all the models, we have
computed the Bayes factor and compared each to the simple power-law parameterisation.
We found, using current observations, that the preferred model is given by the LD model.
The summary of the analysis, illustrated in figure 8, displays how the constraints on the
tensor-to-scalar ratio are broadened for non-power law models. We observe that the best-fit
value of rrun is slighly offset from zero and coincides with the peak of rLD. It has to be
born in mind that if future surveys confirm small values of the true tensor-to-scalar ratio
(r . 0.09), the LD model with a φ2-type potential might be in conflict to reproduce this key
feature. Throughout the models, the tensor-to-scalar ratio has been computed at a particular
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models (left panel), along with their Bayesian evidence and number of parameters of each model
(right panel). The Bayes factor is compared to the simple-tilt model (ns.)

scale k0 = 0.015 Mpc−1. However, to illustrate the robustness of the model selection, over a
different choice of scale k0, we compute the Bayesian evidence for all models at k0 = 0.002
Mpc−1. The results are esentially unaffected and still show a preference for the LD model.
The Bayesian evidece, for each model, compared to the power-law parameterisation (ns) are
as follow:

Brun,ns B2ki,ns BLD,ns

+1.8± 0.3 +2.29± 0.3 + 3.0± 0.3

We also notice that the tensor-spectrum in the LD model exhibits a running-like behaviour,
contrary to the rest of the models. Nevertheless, the addition of a running of the tilt in the
tensor modes, ntrun ≡ d lnnt/d ln k, provides no significant changes to the Bayesian evidence.
This can be seen from the fact that ntrun is nearly zero, and also that no extra-parameters need
to be included due to the existence of a second consistency relation: ntrun ' nt[nt−(ns−1)] [8].
For instance, the Bayes factor of the nrun-model with running in the tensor-spectrum is
Bnrun+nt

run, nrun
= +0.4 ± 0.3, with constraints ntrun × 1000 = 0.37 ± 0.82. A power-law

parameterisation of PT (k) is therefore sufficient to describe current data. We will explore
further possibilities in a more detailed future work.

With regards to future surveys, the Planck satellite will be able to differentiate the
running and tilt model from the LD model, but not decisively from the two-internal-node
reconstruction. The improvement using CMBPol selects the right form of the primordial
spectrum, as shown in table 1.
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