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In this paper, we present a novel approach to accelerate the Bayesian inference process, focusing
specifically on the nested sampling algorithms. Bayesian inference plays a crucial role in cosmological
parameter estimation, providing a robust framework for extracting theoretical insights from observational
data. However, its computational demands can be substantial, primarily due to the need for numerous
likelihood function evaluations. Our method utilizes the power of deep learning, employing feed forward
neural networks to approximate the likelihood function dynamically during the Bayesian inference process.
Unlike traditional approaches, our method trains neural networks on-the-fly using the current set of live
points as training data, without the need for pretraining. This flexibility enables adaptation to various
theoretical models and datasets. We perform the hyperparameter optimization using genetic algorithms to
suggest initial neural network architectures for learning each likelihood function. Once sufficient accuracy
is achieved, the neural network replaces the original likelihood function. The implementation integrates
with nested sampling algorithms and has been thoroughly evaluated using both simple cosmological dark
energy models and diverse observational datasets. Additionally, we explore the potential of genetic
algorithms for generating initial live points within nested sampling inference, opening up new avenues for
enhancing the efficiency and effectiveness of Bayesian inference methods.
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I. INTRODUCTION

Bayesian inference is a powerful tool in several scientific
fields where it is essential to constrain mathematical models
using experimental data. It allows parameter estimation and
model comparison. In particular, it is the data analysis
technique per excellence in observational cosmology, as it
provides a robust method to obtain valuable statistical
information from a theoretical model given a set of
observational data. However, a significant disadvantage
of Bayesian inference lies in its high computational cost; it
requires a considerable number of likelihood function
evaluations to generate sufficient samples from the pos-
terior distribution. For example, a small Bayesian inference
task could involve thousands of samples and require
thousands, or even millions, of likelihood evaluations.
Given the crucial importance of parameter estimation in

the context of astronomical surveys, within the fields of
cosmology and astrophysics, numerous valuable efforts
have been made to address the computational challenge of
mitigating the complexity of the likelihood function cal-
culation to speed up Bayesian inference. Some strategies

provide an approximation of Bayesian inference by avoid-
ing the computation of the full likelihood function, as
suggested by [1–3]. On the other hand, some efforts try to
speed up the inference with different statistical techniques
[4–8]. Alternatively, other works [9–12] introduced the
concept of generating synthetic likelihood distributions.
Furthermore, there is an emerging trend of exploiting
machine learning tools to accelerate the Bayesian inference
process [10,13–16].
The use of artificial neural networks (ANNs) to approxi-

mate the likelihood function can greatly improve the
efficiency of Bayesian inference [14,16–21]. However, it
is necessary to have a careful consideration of the trade-off
between accuracy and speed, along with quality monitoring
of the resulting posterior samples. In addition, neural
networks present several drawbacks that must be taken
into account to effectively aid in the performance of
Bayesian inference:
(1) ANNs excel at interpolation, but not at extrapola-

tion. Like all machine learning algorithms, ANNs
generate models based on datasets, allowing them to
learn data structures and predict unseen data within
the bounds of the training region. In the Bayesian
inference domain, new samples try to find better
likelihood values, which could correspond to points
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outside the ranges of the random sample used for the
ANN training.

(2) The performance of ANNs depends on their
hyperparameters. This is perhaps one of the most
challenging issues facing neural networks. If the
hyperparameters are not chosen carefully, the neural
network models can be under- or overfitted.

(3) The selection of hyperparameters depends on the
data. There is no unique architecture for an ANN.
Each dataset requires certain hyperparameter con-
figurations to have an efficient training of the neural
network.

(4) Training an ANN requires computational resources.
It is a well-known fact that training a neural network
can be computationally demanding, which seems
contradictory when the goal is to reduce the com-
putational time in a Bayesian inference process.

We will come back to these issues in Sec. IV by
presenting how each of them is addressed by the method
we propose.
Previous works using neural networks in cosmological

parameter estimation save an amazing amount of computa-
tional time training neural networks before the Bayesian
inference process [14,16,22]; however, the pretraining time
in these cases is expensive and the trained neural networks
are only useful for a specific configuration of backgrounds,
models, and datasets. For this reason, ourwork is inspired by
BAMBI [18,19], and pyBambi [23], where their neural net-
works are trained in real-time to learn the likelihood
function, which is subsequently replaced within a nested
sampling process. The strength of this approach lies in its
ability to train the neural network in real-time and accelerate
the Bayesian inference process without restricting a cos-
mological or theoretical model and specific datasets. In our
method, we explore features beyond those of our predeces-
sors, such as parallelism, PyTorch implementation [24], and
hyperparameter tuning. In addition, we exclusively used live
points for training to reduce the dispersion of the training
dataset and to obtain results with higher accuracy. A
criterion was also chosen to initiate our method that serves
as a regulator of the trade-off between accuracy and speed.
We also implemented an on-the-fly performance evaluation
to accept or reject the neural network predictions. In
addition, we have conducted a preliminary investigation
on the use of genetic algorithms to generate the initial sample
of live points on the nested sampling process.
The structure of the paper is as follows: Sec. II offers an

overview of Bayesian inference and nested sampling.
Section III provides a concise exposition of the machine
learning fundamentals employed in this study. The concept
and development of our machine learning strategies are
detailed in Sec. IV. Sections V and VI present our results,
applied respectively to testing toy models and estimating
cosmological parameters. In Sec. VII, we discuss our
research findings and present our final reflections.

Furthermore, the Appendix features preliminary results
about the incorporation of genetic algorithms as initiators
of the live points in a nested sampling execution.

II. STATISTICAL BACKGROUND

In this section, we describe an overview of Bayesian
inference and neural networks. In particular, we focus on
the nested sampling algorithm and feed forward neural
networks.

A. Bayesian inference

Considering the Bayes’ theorem as follows:

PðθjDÞ ¼ PðDjθÞPðθÞ
PðDÞ ; ð1Þ

where PðθÞ denotes the prior distribution over parameters
θ, encapsulating any prior knowledge about them before
observing the data. PðDjθÞ represents the likelihood
function, expressing the conditional probability of observ-
ing the data given the model. Finally, the Bayesian evidence
PðDÞ serves as a normalization constant through likelihood
marginalization

PðDÞ ¼
Z

N

θ
PðDjθÞPðθÞdθ; ð2Þ

where N is the number of dimensions of the parameter
space for θ.
It can be assumed that the measurement error ϵ is

independent of θ and has a probability density function
(PDF) Pϵ. In this case, the predicted value and the
measurement error share the same distribution, therefore
the likelihood function can be expressed as

PðDjθÞ ¼ PϵðD − fðx; θÞÞ; ð3Þ

and if the error ϵ ∼ Nð0; CÞ has a normal distribution
centered in zero and a covariance matrix C, then we have
the following:

PðDjθÞ ¼ 1

ð2πÞN=2jCj1=2 e
−0.5ðD−fðx;θÞÞTC−1ðD−fðx;θÞÞ: ð4Þ

B. Nested sampling

Nested sampling (NS) belongs to a category of inference
methods that estimate the Bayesian evidence along with its
uncertainty by sampling the posterior probability density
function. It was proposed by John Skilling in 2004 [25,26].
The evidence, or marginalization of the likelihood function,
is a key quantity in model comparison, through the Bayes
factor in the Jeffreys’ scale. It is a more rigorous technique
[26,27] than other widely used methods such as the
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information criteria approximations [28,29]. NS works by
computing the Bayesian evidence while assuming that the
parameter space (prior volume or prior mass) shrinks
by a certain factor. There are successful nested sampling
implementations [30–32] and several applications in cos-
mology [33–37], astrophysics [38–40], gravitational waves
analysis [41–43], biology [44,45], and in other scientific
fields [46–48].
To understand the method proposed in this work, we

briefly describe some considerations about the NS algo-
rithm. For more details, we recommend Refs. [26,31,32].
First of all, the Bayesian evidence can be written as follows:

Z ¼
Z

LðθÞπðθÞdθ; ð5Þ

where θ represents the free parameters, πðθÞ is the prior
density, and L is the likelihood function.
The basic idea of NS is to simplify the integration of

Bayesian evidence by mapping the parameter space in a
unit hypercube. The fraction of the prior contained within
an isolikelihood contour Lc in the unit hypercube is called
prior volume (or prior mass)

XðLÞ ¼
Z
LðθÞ>Lc

πðθÞdθ: ð6Þ

The Bayesian evidence can be reduced as a one-
dimensional integral of the likelihood as a function of
the prior volume X

Z ¼
Z

1

0

LðXÞdX: ð7Þ

NS starts with a specific number nlive of random points,
termed live points, distributed within the prior volume
defined by the constrained prior. These samples are ordered
based on their likelihood values. During each iteration the
worst point Lworst, with the lowest likelihood value, is
removed. A new sample is then generated within a contour
bounded by Lworst and with a likelihood, LðθÞ > Lworst.
Equation (7) can be simplified as a Riemann sum

Z ≈
XN
i¼1

Liωi; ð8Þ

where ωi is the difference between the prior volume of two
consecutive points: ωi ¼ Xi−1 − Xi. Throughout the proc-
ess, NS retains the population of nlive live points
and ultimately consolidates the final set of live points
within a region of high probability. Depending on the
sampling approach employed from the constrained prior,
various nested sampling algorithms exist. For instance,
MultiNest [30] utilizes rejection sampling within ellipsoids,

whereas Polychord [31] generates points using slice
sampling.
Several stopping criteria exist for terminating a nested

sampling run; in this study, we adopt the remaining
evidence criterion, which is roughly outlined as follows:

ΔZi ≈ LmaxXi; ð9Þ

hence defining the logarithmic ratio between the current
estimated evidence and the remaining evidence as

Δ lnZi ≡ lnðZi þ ΔZiÞ − lnZi; ð10Þ

referred to as dlogz hereafter in this paper. Stopping at a
value dlogz implies sampling until only a fraction of the
evidence remains unaccounted for.

III. MACHINE LEARNING BACKGROUND

Machine learning is the field of Artificial Intelligence
concerning to the mathematical modeling of datasets. Its
methods identify inherent properties of datasets by mini-
mizing a target function until it reaches a satisfactory value.
Over the past few years, artificial neural networks (ANNs)
have emerged as the most successful type of machine
learning models, giving rise to the field of deep learning.
On the other hand, genetic algorithms are a special class of
evolutionary algorithms, called metaheuristics, facilitating
function optimization without derivatives.
This section offers a succinct overview of artificial neural

networks and genetic algorithms.

A. Artificial neural networks

An artificial neural network (ANN) is a computational
model inspired by biological synapses, aiming to replicate
their behavior. It consists of interconnected layers of nodes,
or neurons, serving as basic processing units. A funda-
mental type of ANN is the feed forward neural network,
comprising input, hidden, and output layers. In such
networks, connections between neurons, known as weights,
are parameters of the model. Deep learning, a subset of
machine learning, focuses exclusively on neural networks.
The intrinsic parameters of a neural network, known as

hyperparameters, are set before training, and include
parameters such as the number of layers and neurons,
epochs, and activation functions. Parameters of gradient
descent and backpropagation algorithms [49], like batch
size and learning rate, may also be hyperparameters. While
some hyperparameters are predetermined, others are
adjusted through tuning strategies.
ANNs are valued for their capacity to model large and

complex datasets. The universal approximation theorem
asserts that an ANN with a single hidden layer and non-
linear activation functions can model any nonlinear func-
tion [50], enhancing its utility for datasets with complex
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relationships. Even though an exhaustive review of ANNs
is beyond the scope of this paper, great references exist in
the literature [51,52]. For a basic introduction to their
algorithms in the cosmological context, we recommend
reading [53].

B. Genetic algorithms

Genetic algorithms are optimization techniques inspired
by genetic population principles, treating each potential
solution to an optimization problem as an individual.
Initially, a genetic algorithm generates a population com-
prising multiple individuals within the search space. Across
iterations or generations, the population evolves through
operations like offspring, crossover, and mutation, pro-
gressively approaching the optimal solution of a target
function. Genetic algorithms excel in addressing large-
scale nonlinear and nonconvex optimization problems in
challenging search scenarios [54,55].
To apply genetic algorithms to a specific problem, one

must select the objective function to optimize, delineate the
search space, and specify the genetic parameters such as
crossover, mutation, and elitism. Probability values for
crossover and mutation operators are assigned, and a
selection operator determines which individuals advance
to the subsequent generation. Elitism, represented by a
positive integer value, dictates the number of individuals
guaranteed passage to the next generation. Overall, genetic
algorithms initialize a population and iteratively modify
individuals through the operators and the objective func-
tion, progressively approaching the optimal solution of the
target function.
While this paper does not delve deeply into the math-

ematical principles underlying genetic algorithms, inter-
ested readers are directed to the following Refs. [56,57],
particularly for parameter estimation in cosmology [58].

IV. MACHINE LEARNING STRATEGIES

In this section, we outline our proposed method, which
integrates machine learning techniques to implement
neural networks and genetic algorithms within a nested
sampling framework. Below we describe some deep
learning techniques utilized in our training:, elucidating
their application:

(i) Data scaling. Since all samples within the parameter
space are already scaled between 0 and 1 during
nested sampling, no additional scaling is required for
training the neural networks.

(ii) Early stopping. It is a regularization technique that
monitors the performance of a model on a validation
set during training and stops the training process
when the performance on the validation set starts to
degrade, indicating overfitting. It helps to prevent
overfitting and choose the best weight configuration
along the epochs of the training. By stopping the

training process early, the generalization perfor-
mance of the model can be improved, particularly
when the training data is limited or noisy. We
implement early stopping with a patience of 100
epochs to guarantee a minimum number of training
epochs, given the smaller size of the dataset. How-
ever, our primary focus is on preserving the best-
performing weights at the end of the training
process.

(iii) Dynamic learning rate. There are popular strategies
for dynamic learning rates. However, our dynamic
learning rate is only adjusted during the nested
sampling run and not during the training of a specific
neural network. For each new training of the neural
network, the learning rate decreases by half. How-
ever, during each individual ANN training session,
the learning rate remains constant within the adap-
tive gradient descent algorithm called Adam [59].

(iv) Hyperparameter tunning. We have implemented
the option of using genetic algorithms to find the
architecture of the first trained neural network. For
this purpose, we use the library nnogada [60]. For
simplicity in this work, we use genetic algorithms
over 3 generations with a population size of 5 to
explore combinations of batch size (4 or 8), number
of layers (2 or 3), learning rate (0.0005 or 0.001),
and number of neurons per layer (50 or 100). In a
nested sampling execution, where we can train the
neural networks multiple times, we use these small
configurations. This approach yields better results
compared to not tuning hyperparameters and is more
effective than using a hyperparameter grid [60].

We implemented our method inside of the code
SimpleMC [61,62],1 which uses the library dynesty [63]
for nested sampling algorithms. In all our neural network
training, we use the mean squared error (MSE) as the loss
function. If early stopping, with a patience of 100 epochs,
does not stop the training, we select the configuration of
weights that achieved the lowest MSE value.

A. neuralike method

Neural networks are widely acclaimed for their formi-
dable capabilities in handling extensive datasets. However,
several studies have shown their effectiveness in modeling
small datasets as well; even demonstrating that neural
models can accommodate a total number of weights
exceeding the number of sample data points [64]. In
addition, recent research has focused on novel approaches
by using neural networks with smaller datasets [65–67].
While it is true that models with a large number of
parameters can be prone to overfitting, this risk can be

1The modified version of SimpleMC that includes our neura-
like method is available at https://github.com/igomezv/
simplemc_tests.
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mitigated through the use of regularization techniques such
as dropout and early stopping. In our approach, these
techniques, combined with genetic algorithms for optimiz-
ing the network’s architecture and hyperparameters, ensure
that our models generalize well even when the number of
parameters exceeds the number of data points.
In nested sampling, as discussed in the previous section,

there is a set of live points that maintain a constant number
of elements. At a certain point in its execution, a new
sample is extracted within a prior isolikelihood or mass
surface. Our goal is for the neural network to predict the
likelihood of points within this prior volume. To do this, we
train the neural network with only the current set of live
points. These points, which typically are around hundreds
or thousands, are sufficient to effectively train a neural
network and have several advantages:

(i) The relatively small dataset size implies that the
neural network training process is not computation-
ally intensive.

(ii) By excluding points outside the current prior vol-
ume, we can potentially avoid inaccurate predictions
in regions where points would be rejected based on
the original likelihood. The points that the neural
network learns efficiently are those within the prior
volume, because they have a higher probability of
acceptance according to the original likelihood.

(iii) The quantity of elements within the training set
remains constant. Whether the neural network starts
its training at the beginning of sampling or at a later
stage, the element count does not vary. As a result,
the majority of neural network hyperparameters
could stay consistent across different datasets.

The likelihood function in cosmological parameter
estimation can be quite complex, often involving various
types of observational data and intricate numerical oper-
ations, such as integrals, derivatives, or approximation
methods for solving differential equations. To address this
complexity, the idea is to replace the analytical likelihood
function with a trained neural network. This substitution
reduces the problem to a simple matrix multiplication,
where the optimal weights, obtained during ANN training,
are stored in a binary file. Consequently, the evaluation of
the likelihood becomes significantly faster. This acceler-
ation is particularly advantageous in a Bayesian inference
process, where the likelihood function may need to be
evaluated thousands or even millions of times, making the
reduction in computational time highly beneficial.
Algorithm 1 provides an overview of our proposed

methodology within a nested sampling execution.
Concerning the neural network implementation, our pri-
mary focus is on the segment within the for loop. Once a
predetermined number of samples have been reached, or

ALGORITHM 1. Nested sampling with neuralike. dlogz_start and nsamples_start are the two ways to start
neuralike, with a dlogz value (recommended) or given a specific number of generated samples. The logl_tolerance
parameter represents the neural network prediction tolerance required to be considered valid. saved_logl denotes the log-likelihoods
of the current live points, and valid_loss determines the criterion for accepting or rejecting a neural network training. Any loss
function values higher than valid_loss will be rejected. The variable logL represents the analytical log-likelihood function, while L
can either be logL or ANNmodel, depending on the successful neural model.

using_neuralike = False
if livegenetic == True (optional) then

Define Pmut and Pcross
Generate a population P with Nind individuals
Evolve population through Ngen generations

else
Generate Nlive live points

for i in range (iteration) do
if(dlogz < dlogz start) OR (nsamples >¼ nsamples start) then

if i % N == 0 AND using_neuralike == False then
Use nlive points as training dataset
Optional: Use genetic algorithms with nnogada to choose the best architecture
Use the best architecture to model the likelihood
if loss function < valid_loss then

using_neuralike = True
L ¼ ANNmodel

else
continue with NS

if min(saved_logl) - logl_tolerance < neuralike < max(saved_logl) + logl_tolerance then
continue else

like=logL;
using_neuralike = False

end

DEEP LEARNING AND GENETIC ALGORITHMS FOR … PHYS. REV. D 110, 083518 (2024)

083518-5



when the flag dlogz_start is activated, the ANN
leverages the current live points for its training. The benefit
of utilizing only the set of live points is twofold: firstly, it
facilitates swift training, and secondly, it ensures that the
ANN learns likelihood values strictly within the prior
volume. This area is precisely where new samples should
be located.
It is important to note that the nested sampling process,

including the selection of priors, typically uniform or
Gaussian distributions, remains consistent with standard
practices. Once the criteria for initiating ANN training are
met, the live points are used to train the ANN. If the ANN’s
performance metrics meet the required threshold, the
analytical likelihood function is replaced by the ANN to
save computational time. While this substitution does not
alter the fundamental nested sampling process, it can
significantly enhance efficiency by reducing computational
overhead.

B. Using genetic algorithms

We proposed genetic algorithms, like in our nnogada
library [60], as an optional method to find the hyper-
parameter of the neural network as part of the workflow of
neuralike, as it can be noticed in the Algorithm 1. In large
parameter estimation processes, it is useful, despite the time
required, to find the best neural network architecture.
On the other hand, we explored the first insight about the

generation of the initial live points of a nested sampling
process with genetic algorithms. It is analyzed in the
Appendix. Although we have incorporated the use of
genetic algorithms in our code, the primary focus of this
paper is on our neuralike method (Sec. IVA). As such,
further analysis of genetic algorithms in this context will be
the subject of future research.

V. TOY MODELS

As a first step in testing our method, we use some toy
models as log-likelihood functions. These toy models only
generate samplers within the Bayesian inference, without
parameter estimation. However, it is useful to check the
ability of the neural networks to learn, given a set of live
points, the shape of these functions in runtime, and their

respective values for the Bayesian evidence. We use
the following toy models, with the mentioned
hyperparameters

(i) A gaussian, fðx; yÞ ¼ − 1
2
ðx2 þ y2

2
− xyÞ. Learning

rate 5 × 10−3, 100 epochs, batch size as 1.
(ii) Eggbox function, fðx;yÞ¼ð2þcosð x

2.0Þcosð y
2.0ÞÞ5.0.

Learning rate 1 × 10−4, 100 epochs, batch size as 1.
(iii) Himmelblau’s function, fðx; yÞ ¼ ðx2 þ y − 11Þ2 þ

ðxþ y2 − 7Þ2. Learning rate 1 × 10−4, 100 epochs,
batch size as 1.

We have used some toy models as log-likelihood
functions: Gaussian, egg-box, and Himmelblau. In
Table I, you can see the results of the Bayesian evidence
calculation with and without our method for the three toy
models, while in Fig. 1, you can see the samples of the three
functions, which at first glance are very similar. Based on
these results, we can notice that for all these models, the
speed of sampling using neural networks is slower than in
the case of nested sampling alone; this is because the
analytical functions are being evaluated directly without
sampling from an unknown posterior distribution; never-
theless, these examples are very useful to verify the
accuracy in calculating Bayesian evidence and sampling
from the distribution. We can observe that both the log-
Bayesian evidence and the graphs of the nested sampling
process without and with neural networks are consistent;
however, as Table I shows, for more complex functions, we
need a lower value of dlogz_start, which means that
we need to start learning the neural network at a later stage
of nested sampling. Therefore, a lower dlogz_start
parameter is needed to be more accurate but slower, and it is
precisely this parameter that regulates the speed-accuracy
trade-off.

VI. COSMOLOGICAL PARAMETER ESTIMATION

Assuming the geometric unit system where ℏ ¼ c ¼
8πG ¼ 1, the Friedmann equation that describes the late-
time dynamical evolution for a flat-ΛCDM model can be
written as

HðzÞ2 ¼ H2
0½Ωm;0ð1þ zÞ3 þ ð1 − Ωm;0Þ�; ð11Þ

TABLE I. Comparing Bayesian evidence for toy models with nested sampling alone and using neuralike. The column
dlogz_start indicates the dlogz value marking the start of neural network training; higher values suggest earlier integration of neural
networks into Bayesian sampling. Valid loss represents the threshold value of the loss function required for accepting a neural network
as valid. The last two columns display the total number of samples generated through the nested sampling process and the subset
produced by the trained neural networks.

Model logZ logZ neuralike dlogz_start Valid loss Samples ANN samples

Gaussian −2.13� 0.05 −2.16� 0.05 50 0.05 6774 6773
Eggbox −235.83� 0.11 −235.82� 0.11 10 0.05 11794 3688
Himmelblau −5.59� 0.09 −5.64� 0.09 5 0.05 10253 4528
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where H is the Hubble parameter and Ωm is the matter
density parameter; subscript 0 attached to any quantity
denotes its present-day (z ¼ 0) value. In this case, the EoS
for the dark energy is wðzÞ ¼ −1.
A step further to the standard model is to consider the dark

energy being dynamic, where the evolution of its EoS is
usually parameterized. A commonly used form of wðzÞ is to
take into account the next contribution of a Taylor expansion
in terms of the scale factorwðaÞ¼w0þð1−aÞwa or in terms
of redshift wðzÞ ¼ w0 þ z

1þz wa (CPL model [68,69]). The

parametersw0 andwa are real numbers such that at the present
epoch wjz¼0 ¼ w0 and dw=dzjz¼0 ¼ −wa; we recover
ΛCDM when w0 ¼ −1 and wa ¼ 0. Hence the Friedmann
equation for the CPL parametrization turns out to be

HðzÞ2 ¼ H2
0

h
Ωm;0ð1þ zÞ3

þ ð1 −Ωm;0Þð1þ zÞ3ð1þw0þwaÞe−
3waz
1þz

i
: ð12Þ

FIG. 1. Comparison of neural likelihoods versus original likelihoods using toy models. Using 1000 live points.

TABLE II. Exploring Bayesian Inference with Nested Sampling and neuralike. The definitions of the columns are consistent with
those in Table I. Additionally, the % saved time quantifies the speed-up achieved using our method.

dlogz_start logZ logZ neuralike Samples ANN samples % saved time

Case 1 10 −536.39� 0.13 −536.62� 0.13 16001 9570 18.8
Case 1 5 −536.39� 0.13 −536.8� 0.13 16297 7873 5.7
Case 2 20 −536.38� 0.07 −536.39� 0.07 65216 46147 28.4
Case 3 5 −550.59� 0.09 −550.82� 0.09 95148 31923 19.6
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In this work, we use cosmological datasets from type-Ia
Supernovae (SN), cosmic chronometers, growth rate mea-
surements, baryon acoustic oscillations (BAO), and a point
with Planck information. Following, we briefly describe
them:

(i) Type-Ia supernovae. We use the Pantheon SNeIa
compilation, a dataset of 1048 type Ia supernovae,
with a covariance matrix of systematic errors
Csys ∈R1048×1048 [70].

TABLE III. Wasserstein distances [86] between nested sampling posterior samples without and with neuralike, for each free
parameter. The closer the value of this distance is to zero, the more similar are the distributions compared. This distance is implemented
in scipy and takes into account the 1D posterior samples and their respective weights. Overall, parameters Ωm, Ωbh2, and h exhibit
relatively small distances across all cases. However, in Case 1a, higher values of w0 and wa distances are observed due to a higher
dlogz_start value and fewer data points used. On the other hand, Case 3 demonstrates smaller (better) distances, attributed to the
utilization of more data and a lower dlogz_start value.

Ωm Ωbh2 h w0 wa Ωk σ8 Σmν

Case 1a (dlogz_start=10) 0.00480 0.00004 0.00428 0.01241 0.11283 � � � � � � � � �
Case 1b (dlogz_start=5) 0.00091 0.00004 0.00518 0.00997 0.05761 � � � � � � � � �
Case 2 (dlogz_start=20) 0.00095 0.00002 0.00111 0.00810 0.06279 � � � � � � � � �
Case 3 (dlogz_start=5) 0.00055 0.00001 0.00054 0.00335 0.01396 0.00018 0.00971 0.01753

FIG. 2. Case 1. Posterior plots for CPL Pantheonþ HDþ BAO with the proposed methods in this work.
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(ii) Cosmic chronometers. Cosmic chronometers, also
known as Hubble distance (HD) measurements, are
galaxies that evolve slowly and allow direct mea-
surements of the Hubble parameter HðzÞ. We use a
compilation with 31 data points collected over
several years within redshifts between 0.09 and
1.965. [71–78].

(iii) BAO. We employ data from baryon acoustic oscil-
lation measurements (BAO) with redshifts z < 2.36.
They are from SDSS Main Galaxy Sample (MGS)
[79], Six-Degree Field Galaxy Survey (6dFGS) [80],
SDSS DR12 Galaxy Consensus [81], BOSS DR14
quasars (eBOSS) [82], Ly-α DR14 cross-correlation
[83] and Ly-α DR14 autocorrelation [84].

(iv) Growth rate measurements. We used an extended
version of the Gold-2017 compilation available in

[85], which includes 22 independent measurements
of fσ8ðzÞ with their statistical errors obtained from
redshift space distortion measurements across vari-
ous surveys.

(v) Planck-15 information. We also consider a com-
pressed version of Planck-15 information, where the
cosmic microwave background (CMB) is treated as
a BAO experiment located at redshift z ¼ 1090,
measuring the angular scale of the sound horizon.
For more details, see the Ref. [62].

We executed three cases of parameter estimation to
verify the performance of our method. We start with one
thousand live points and a model with five free param-
eters; then, we increase the live points and free param-
eters, to test our method with higher dimensionality and
with higher computational power demand (larger number

FIG. 3. Case 2. Posterior plots for CPL using Pantheonþ HDþ BAO with the proposed methods in this work. We use 4000 live
points.
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of live points). The results are compared with a nested
sampling run with the same datasets and the same
configuration (live points, stopping criterion, etc.) but
without ANN; this comparison aims to test the
accuracy and speedup achieved by our neuralike
method. For this comparison, we report the parameter
estimation and Bayesian evidence obtained with and
without our method and, in addition, we calculate the
Wasserstein distances [86] between the samples of the
posterior nested sampling without and with neuralike
for each free parameter considering their respective
sampling weights.

In the results, a baseline neural network architecture
was employed, configured with the following hyper-
parameters: 3 hidden layers, a batch size of 32, a learning
rate of 0.001 (utilizing the Adam gradient descent algo-
rithm for optimization), 500 epochs, and an early stopping
patience of 200 epochs. In scenarios where multiple
neural networks were required, the learning rate was
reduced following the previously mentioned approach.
As for evaluating the accuracy of the neural networks,
we adopted a valid_loss threshold of 0.05 for their
training, and a logl_tolerance of 0.05 for their
predictions.

FIG. 4. Case 3. 2D posterior plots for CPL with curvature using Pantheonþ HDþ BAO þ fσ8 þ Planck with the proposed methods
in this work. Using 4000 points and considering 8 free parameters. In this case, because of the complexity, there were three neural
networks trained before to substitute the likelihood function, however, the Bayesian inference process using our method was 19.6%
faster.
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A. Case 1

First, we perform the Bayesian inference for the CPL
model using SNeIa fromPantheon compilation,with cosmic
chronometers and BAO data. In this case, we consider only
five free parameters:Ωm,Ωbh2, h, wa, and w0. We use 1000
live points. Figure 3 shows our results andwe can notice that
when dlogz_start=10 the saved time is around 19%
and when dlogz_start=5 it is around only 6%.
According to Table II both cases are in agreement with
the logZ value for nested sampling alone. If we check
Table III we can notice that, in general, the samples of the
dlogz_start=5 are more similar to the nested sampling
posterior distributions; it also can be appreciated in the
posterior plots shown in the Fig. 2. Although the case of
dlogz_start=5 saves less time than the case of
dlogz_start=10, it gains in accuracy.

B. Case 2

Secondly, we consider the same model, free parameters,
and datasets as in Case 1. The difference in this second case
is to analyze the behavior of our method with a larger
number of live points. It has three new considerations: (a) the
training set for the neural network would be better because
has a larger size, (b) the number of operations in parallel for
nested sampling is also larger, and (c) we test whether the
hypotheses based on a larger number of live points can
obtain a better accuracy for the neural network earlier within
the nested sampling process (i.e. in a higher value for
dlogz_start). Therefore, we increase the number of live
points to 4000 and dlogz start ¼ 20; the outputs are
included in Fig. 3 showing an excellent concordance for the
Bayesian evidence values with our method, and speed-up
around the 28.4%. Table II contains the results of the
Bayesian evidence, and it can be noticed that the uncertainty
of this case is in better agreement with nested sampling than
the two scenarios of Case 1. In addition, we can analyze
Table III and conclude that, effectively, its performance has a
similar quality toCase 1withdlogz start ¼ 5; however
because it uses a higher dlogz_start value, the per-
centage of saved time is notorious.

C. Case 3

Lastly, we included more data: fσ8 measurements and a
point with Planck-15 information. To have more free param-
eters, eight in total, we consider contributions of the neutrino
massesΣmν, growth rateσ8, and curvatureΩk. In this case,we
also used 4000 live points.With these new considerations, we
aim to test our method in higher dimensions and to involve a
more complex likelihood function that demands more com-
putational powerwith each evaluation.Wemade several tests,
but we include the corresponding to dlogz_start¼ 5, in
whichweobtain excellent results as can be noticed inTable II.
Due to the complexity of the likelihood, the full nested
sampling process had to train three different neural networks,

which allowed the use of erroneous predictions during
sampling to be avoided.
We needed a lower value for the dlogz_start

parameter due to the complexity of the model (given by
the new free parameters); however, the saved time around
of 19% concerning the nested sampling alone is remarkable
and the Wasserstein distance shown in Table III indicates
that the posterior distributions between the nested sampling
with and without our method are similar, it also can be
noticed in the posterior plots of the Fig. 4.

VII. CONCLUSIONS

In this paper, we have introduced a novel method that
incorporates a neural network trained on-the-fly to learn the
likelihood function within a nested sampling process. The
main objective is to avoid the time-consuming analytical
likelihood function, thus increasing computational effi-
ciency. We present the dlogz_start parameter as a
tool to handle the trade-off of accuracy and computational
speed. In addition, we incorporate several deep learning
techniques to minimize the risk of inaccurate neural net-
work predictions.
To verify the effectiveness of our method, we employed

several toy models, demonstrating their ability to replicate a
probability distribution with remarkable accuracy in the
nested sampling framework. Furthermore, in the cosmo-
logical parameter estimation, by performing a comparative
analysis using the CPL cosmological model and various
datasets, we highlighted the potential of our method to
significantly improve the speed of nested sampling proc-
esses, without compromising the statistical reliability of the
results. We found that, as the number of dimensions
increased, our method produced a larger time reduction
with a lower dlogz_start value.
Despite commencing neural network training relatively

late in the nested sampling process, the overall time
reduction was notable, as evidenced in Table II, showcasing
reductions ranging from 6% to 19%. Potential errors in the
neural network predictions were not found to be substantial
because the training dataset comprised the live points. As
such, the likelihood predictions are not expected to deviate
significantly from the actual prior volume, which enhances
the credibility and robustness of our method and instills
confidence in its application in nested sampling. In addi-
tion, our constant monitoring of the ANN prediction
accuracy with the actual likelihood value allows us to be
more confident in the results obtained, because if the
criteria were not met, the analytical function would be
used again and, after certain samples, another neural
network would be retrained.
We also explore the potential utility of genetic

algorithms in finding optimal neural network hyper-
parameters and in generating initial live points for nested
sampling. Concerning the former, in scenarios where
models are complex or high-dimensional, searching for
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an optimal architecture can be beneficial; however, our
neuralike method allows this hyperparameter calibra-
tion to be optional so that hyperparameters can also be set
by hand. Regarding the latter, we provide some insight into
the potential advantages of using genetic algorithms to
generate live points in the Appendix; however, future
studies will address further research on this topic.
In this work, we only used observations from the late

universe, as our neuralikemethod is integrated with the
SimpleMC code that employs mainly background cosmology.
However, our method is easily applicable to the use of other
types of observations, such as CMB data, an aspect we are
currently working on.
We emphasize the importance of high accuracy in neural

network predictions in observational cosmology since
accurate parameter estimation is crucial for a robust
physical interpretation of the results. In light of the machine
learning strategies proposed in this paper, we can have
greater confidence in the use of neural networks to
accelerate nested sampling processes, without compromis-
ing the statistical quality of the results.

The implemented algorithm presented in this work is
available in Ref. [87] and the original SimpleMC code in
Ref. [61], which contains the datasets used in this paper.
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APPENDIX: GENETIC ALGORITHMS AS
INITIAL LIVE POINTS

Previously, we mentioned that neural networks are
good at interpolating, but not at extrapolating. Within

the Bayesian inference process, we sample an indetermi-
nate posterior probability distribution, whose shape
remains unknown. Despite having some idea of the range
of new samples in parameter space, we cannot definitively
state that the highest likelihood point is already among the
live points; this uncertainty may lead to inaccurate
predictions for points close to the maximum likelihood
point. In Ref. [88], the authors propose the use of an
optimizer to identify the optimal posterior probability
sample, albeit at the expense of probabilism. The appli-
cation of genetic algorithms to generate initial live points
could be beneficial in cases where the Bayesian inference
process must stop. In such circumstances, the partially
generated posterior sampling aided by genetic algorithms
will be more aligned with the maximum than a sampling
generated without them. This alignment could facilitate a
partial posterior sampling analysis. Although further
investigation of this foray into genetic algorithms is
needed, we have observed that when a small number of
live points are used, and the initial live points are produced
by a genetic algorithm, the stopping criterion is reached
more quickly.
As the first insight into the genetic algorithms to

generate the initial live points, we show some results
about potential advantages in which genetic algorithms
could help a nested sampling execution. In Table IV, we
can see some examples in which the use of GA to generate
the first live points can reduce computational time without
sacrificing the statistical results. However, it is worth
noticing that we are using a low number of live points
because this is the case in which we observed this
advantage, when a higher number of live points is used,
in general, NS alone is faster because have points in a
sparse region of the search space and the use of GA cluster
the points around the optimums losing exploration capac-
ity. Nonetheless, there are possible scenarios in which
there could be a low number of live points and in these
cases, the incursion of GA to generate the initial sampling
points could apport an advantage. This is part of a further
study of the exploration in detail of this combination
between GA with NS.

TABLE IV. Nested sampling for the eggbox toy model and ΛCDM using 100 live points. In the NSþ GA cases, we generate the first
live points through genetic algorithms with a probability of mutation equal to 0.5 and a probability of crossover of 0.8.

Model Eggbox Eggbox ΛCDM ΛCDM

Sampler NS NSþ GA NS NSþ GA

logZ −236.16� 0.34 −235.07� 0.37 −532.87� 0.34 −532.70� 0.33
Ωm � � � � � � 0.31� 0.011 0.31� 0.011
Ωbh2 � � � � � � 0.02� 0.0005 0.02� 0.0005
h � � � � � � 0.683� 0.009 0.683� 0.009
% saved time � � � 38 � � � 23

ISIDRO GÓMEZ-VARGAS and J. ALBERTO VÁZQUEZ PHYS. REV. D 110, 083518 (2024)

083518-12



[1] Joël Akeret, Alexandre Refregier, Adam Amara, Sebastian
Seehars, and Caspar Hasner, Approximate Bayesian com-
putation for forward modeling in cosmology, J. Cosmol.
Astropart. Phys. 08 (2015) 043.

[2] Elise Jennings and Maeve Madigan, astroABC: An approxi-
mate Bayesian computation sequential Monte Carlo sampler
for cosmological parameter estimation, Astron. Comput. 19,
16 (2017).

[3] E. E. O. Ishida, S. D. P. Vitenti, M. Penna-Lima, J. Cisewski,
R. S. de Souza, A. M.M. Trindade, E. Cameron, and V. C.
Busti, COSMOABC: Likelihood-free inference via population
Monte Carlo approximate Bayesian computation, Astron.
Comput. 13, 1 (2015).

[4] Aleksandr Petrosyan and Will Handley, Supernest: Accel-
erated nested sampling applied to astrophysics and cosmol-
ogy, Phys. Sci. Forum 5, 51 (2023).

[5] Joanna Dunkley, Martin Bucher, Martin Bucher, Martin
Bucher, Pedro G. Ferreira, Pedro G. Ferreira, Kavilan
Moodley, Kavilan Moodley, Kavilan Moodley, and
Constantinos Skordis, Fast and reliable Markov chain
Monte Carlo technique for cosmological parameter estima-
tion, Mon. Not. R. Astron. Soc. 356, 925 (2005).

[6] Thejs Brinckmann and Julien Lesgourgues, MontePython 3:
Boosted MCMC sampler and other features, Phys. Dark
Universe 24, 100260 (2019).

[7] Robert L. Schuhmann, Benjamin Joachimi, and Hiranya V.
Peiris, Gaussianization for fast and accurate inference from
cosmological data, Mon. Not. R. Astron. Soc. 459, 1916
(2016).

[8] Antony Lewis, Efficient sampling of fast and slow cosmo-
logical parameters, Phys. Rev. D 87, 103529 (2013).

[9] Masanori Sato, Kiyotomo Ichiki, and Tsutomu T. Takeuchi,
Copula cosmology: Constructing a likelihood function,
Phys. Rev. D 83, 023501 (2011).

[10] William A. Fendt and Benjamin D. Wandelt, Pico: Param-
eters for the impatient cosmologist, Astrophys. J. 654, 2
(2007).

[11] Marcos Pellejero-Ibanez, Raul E. Angulo, Giovanni Aricó,
Matteo Zennaro, Sergio Contreras, and Jens Stücker, Cos-
mological parameter estimation via iterative emulation of
likelihoods, Mon. Not. R. Astron. Soc. 499, 5257 (2020).

[12] Justin Alsing, Tom Charnock, Stephen Feeney, and
Benjamin Wandelt, Fast likelihood-free cosmology with
neural density estimators and active learning, Mon. Not. R.
Astron. Soc. 488, 4440 (2019).

[13] Adam Moss, Accelerated Bayesian inference using deep
learning, Mon. Not. R. Astron. Soc. 496, 328 (2020).

[14] Hector J. Hortua, Riccardo Volpi, Dimitri Marinelli, and
Luigi Malago, Accelerating MCMC algorithms through
Bayesian deep networks, arXiv:2011.14276.

[15] Isidro Gómez-Vargas, Ricardo Medel Esquivel, Ricardo
García-Salcedo, and J. Alberto Vázquez, Neural network
within a Bayesian inference framework, J. Phys. Conf. Ser.
1723, 012022 (2021).

[16] Alessio Spurio Mancini, Davide Piras, Justin Alsing,
Benjamin Joachimi, and Michael P Hobson, Cosmopower:
Emulating cosmological power spectra for accelerated
Bayesian inference from next-generation surveys, Mon.
Not. R. Astron. Soc. 511, 1771 (2022).

[17] T. Auld, Michael Bridges, M. P. Hobson, and S. F. Gull, Fast
cosmological parameter estimation using neural networks,
Mon. Not. R. Astron. Soc. 376, L11 (2007).

[18] Philip Graff, Farhan Feroz, Michael P. Hobson, and
Anthony Lasenby, BAMBI: Blind accelerated multimodal
Bayesian inference, Mon. Not. R. Astron. Soc. 421, 169
(2012).

[19] Philip Graff, Farhan Feroz, Michael P. Hobson, and
Anthony Lasenby, Skynet: An efficient and robust neural
network training tool for machine learning in astronomy,
Mon. Not. R. Astron. Soc. 441, 1741 (2014).
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