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2Instituto Tecnológico de Piedras Negras,

Calle Instituto Tecnológico 310, C.P. 26080, Piedras Negras, Mexico
3Departamento Ingeniería Civil, División de Ingeniería, Universidad de Guanajuato,

Guanajuato, C.P. 36000, México
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The main aim of this paper is to present the multiscalar field components as candidates for the dark
energy of the Universe and their observational constraints. We start with the canonical quintessence and
phantom fields with quadratic potentials and show that a more complex model should satisfy current
cosmological observations. Then, we present some implications for a combination of two fields, called
quintom models. We consider two types of models: one as the sum of the quintessence and phantom
potentials, and one including an interacting term between fields. We find that adding one extra degree of
freedom, via the interacting term, enriches the dynamics considerably and could lead to an improvement in
the fit of −2 lnΔLmax ¼ 5.19 compared to ΛCDM. The resultant effective equation of state is now able to
cross the phantom divide line and in several cases presents an oscillatory or discontinuous behavior,
depending on the interaction value. The parameter constraints of the scalar field models (quintessence,
phantom, quintom, and interacting quintom) are performed using cosmic chronometer, type Ia supernovae,
and baryon acoustic oscillation data, and the log-Bayes factors are computed to compare the performance
of the models. We show that single scalar fields may face serious trouble and hence more complex models,
i.e., multiple fields are necessary.
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I. INTRODUCTION

The current accelerated cosmic expansion is supported
by multiple observations such as type Ia supernovae, the
distribution of large-scale structure, the cosmic microwave
background anisotropies (CMB), and the baryon acoustic
oscillation (BAO) peaks; see [1,2] and references therein.
These measurements may be an indication of a negative-
pressure contribution to the total energy density of the
Universe as being responsible for the accelerated expan-
sion, commonly known as dark energy. Among numerous
candidates that play the role of dark energy, the simplest
and most well known is the cosmological constant term (Λ)
introduced into the Einstein field equations, whose main
features are that it has a constant energy density in time and
is uniformly distributed in space. The cosmological

constant, along with cold dark matter, are the key elements
that constitute the standard cosmological model or ΛCDM.
Some of the essential properties to understand the nature of
dark energy are encapsulated in its equation of state (EoS);
for a barotropic perfect fluid, it is defined as the ratio of the
pressure over its energy density, w ¼ p=ρ. In particular, the
ΛCDM model, having a dark energy EoS w ¼ −1,
describes most of the observational data very accurately;
however, in recent studies it has seemed to display a
tendency in favor of a time-evolving dark energy EoS
wðzÞ [3–8]. Therefore, several dark energy models with
departures from the basic standard model have been
introduced to take into account the evolution of wðzÞ, in
addition to other properties [9]; for instance, single scalar
fields have already been considered in cosmology to
explain different phenomena, such as inflation, dark matter,
and modified gravity, and they are also excellent candidates
for modeling the variable dark energy EoS [3,10,11]. Two
well-known single scalar fields (one degree of freedom)
that have been extensively investigated for modeling dark
energy are quintessence [12] and phantom dark energy
[13]. Their Lagrangians have both a kinetic term and an
associated potential, but the key distinction lies in the sign
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of their kinetic terms. The kinetic energy density for
quintessence is positive, while that for phantom dark
energy is negative. This slight difference results in distinct
branches of values for their associated EoS parameter, i.e.,
for phantom dark energy w < −1 and for quintessence
−1 < w < 1. Furthermore, the phantom divide line (PDL),
defined as wðzÞ ¼ −1, separates the phantom-energy-like
behavior with w < −1 from the quintessence-like behavior
with w > −1, and the existence of a no-go theorem shows
that in order to cross the PDL at least two degrees of
freedom are required for models (in four dimensions)
involving ideal gases or scalar fields,1 and this is where
simple scalar fields may fail [15]. It is important to note that
by using model-independent techniques or nonparametric
approaches, i.e., artificial neural networks, Gaussian proc-
esses, or nodal reconstructions, multiple studies have
shown a preference for a crossing of the PDL in the dark
energy EoS parameter [4,6,16–19], which could also
alleviate the Hubble tension and some inconsistencies
among data sets, i.e., Ly-α and galaxy BAO data [20].
Following this line of research, different groups recon-
structed the general form of wðzÞ and converged on similar
shapes [4,19,21]. If this trend continues in forthcoming
experiments, single canonical scalar field models may
face serious trouble and hence more complex theories or
more than a single field would be needed to explain this
important feature.
In order to model the richness of the evolution of wðzÞ,

we need more than the usual quintessence/phantom dark
energy and thus invoke more elaborate models. In [22] the
authors constructed an EoS that crosses the PDL based on a
two-field model. Within the scalar field scenario, a scalar
field dark energy model with an EoS parameter that
traverses the PDL during its evolution was first advocated
and named quintom dark energy in [23]. Quintom dark
energy is the next natural step for quintessence/phantom
dark energy. This is a model that joins the quintessence and
phantom fields (the reason behind its name) by considering
both the positive and negative kinetic terms along with the
potentials. Given that the null energy condition (NEC) is
violated by the phantom degree of freedom [15], a quintom
scenario is primarily designed for models with an NEC
violation. The NEC-violating degree of freedom leads
to a quantum instability and thus the fundamental origin
of the quintom field poses a challenge for theoreticians.
Nevertheless, if viewed just as an effective (classical)
cosmological field, quintom models represent an interesting
setup for PDL-crossing dark energy models. Quintom dark
energy [24] has been studied from various perspectives,
including theoretical aspects [25], observational constraints
[26], dynamical systems approaches [20,27–29], nonmini-
mal coupling [30], and quantum cosmology [31,32].

Quintom models encompass interesting features of both
quintessence and phantom dark energy: phantom dark
energy has to be more fine-tuned than quintessence in
the early Universe to serve as dark energy today, since its
energy density increases with the expansion of the
Universe; meanwhile, the quintom model mitigates the
need for excessive fine-tuning by preserving—before
the phantom domination—the tracking behavior of
quintessence. Other research areas have also included
similar ideas where two or more fields are present, such
as two scalar fields or one field and its excited states as dark
matter [33–36], a combination of the inflaton and scalar
field dark matter [37], the presence of the inflaton and the
curvaton field [38], two scalar fields to account for inflation
[39,40], interactions between dark energy and dark matter
[41], and the axiverse model [42–44] (see also [45]).
On the other hand, many investigations of model-

independent techniques, along with current cosmological
observations, have obtained a dynamical dark energy EoS
and some of these results present wavering behaviors for
the EoS, starting at z ¼ 0 with w < −1, crossing the PDL,
and then presenting a maximum and crossing back over the
PDL, even multiple times. This type of model-independent
behavior suggests the necessity to include two or more
fields or to consider more complex potentials or even the
coupling between these fields. A quintom model with an
oscillating EoS was considered first in [46], starting from
the idea of a wavering behavior. In this paper, we extend the
work of single fields in [33] to multiple fields and revisit the
quintom model with the addition of an interacting term,
which may produce the oscillatory behavior and for some
particular types of potentials can be justified by a sym-
metry group.
The paper is organized as follows. In Sec. II we

summarize the main characteristics of the multiscalar field
dark energy models. In Sec. III a novel quintom model with
an interacting term is presented and we describe its main
characteristics. In Sec. IV we present the data sets and
statistical techniques used to constrain the cosmological
parameters associated with the model. In Sec. V we present
the main results. Finally, in Sec. VI we summarize our
results and provide some comments and conclusions.

II. MULTISCALAR FIELD
DARK ENERGY MODEL

In the context of four-dimensional spacetime, it is not
feasible for a single scalar field to serve as a viable dark
energy candidate for modeling the crossing of the phantom
barrier. Therefore, it is necessary to introduce extra degrees
of freedom, introduce nonminimal couplings, or modify
Einstein’s gravity. Adding extra degrees of freedom to the
single scalar field dark energy requires the simultaneous
consideration of more fields, as in the constructed quintom
model which contains one canonical quintessence ϕ1 and

1Bear in mind that for extra-dimensional models of dark
energy, a single scalar field is able to cross the PDL [14].
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one phantom ϕ2, and therefore the dark energy is attributed
to their combination. The action of a cosmological model
that incorporates multiple real scalar fields ϕi is given by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R
2κ2

þ 1

2

X
i

ϵi∂
νϕi∂νϕi − Vðϕ⃗Þ þ LM

�
;

ð1Þ

where κ2 ¼ 8πG is the gravitational coupling and the term
LM accounts for the remaining cosmological components
of the Universe (dark matter, baryons, radiation, etc.). The
index i represents the number of fields with a total
associated potential Vðϕ⃗Þ ¼ Vðϕ1;…;ϕiÞ, and the ϵi
parameter is restricted to take either one of the two values
ϵi ¼ fþ1;−1g in order to account for the distinction
between quintessence (þ1) and phantom (−1) fields,
respectively.
Considering a flat Friedman-Robertson-Walker space-

time, the Friedmann equations are thus

H2 ¼ κ2

3
ðρQ þ ρMÞ; ð2Þ

Ḣ ¼ −
κ2

2
ðρQ þ pQ þ ρM þ pMÞ; ð3Þ

whereH represents the Hubble parameter and a dot denotes
differentiation with respect to cosmic time. The standard
energy density components ρM ¼ P

ρj, are assumed to be
perfect fluids and have a barotropic EoS of the form
wj ¼ pj=ρj. Hence, the standard energy conservation
equation for each one reads

ρ̇j þ 3Hð1þ ωjÞρj ¼ 0: ð4Þ

In the case of pressureless matter we have wj ¼ 0, whereas
for the relativistic particles wj ¼ 1=3. For the multifields,
the associated total energy density and pressure are
given by

ρQ ¼ 1

2

X
i

ϵiϕ̇i
2þVðϕ⃗Þ; pQ ¼ 1

2

X
i

ϵiϕ̇i
2−Vðϕ⃗Þ; ð5Þ

and the EoS of the combined fields, i.e., the total effective
EoS is then

wQ ¼
P

iϵiϕ̇i
2 − 2Vðϕ⃗ÞP

iϵiϕ̇i
2 þ 2Vðϕ⃗Þ

; ð6Þ

whose value can only be determined from the evolution of
the fields themselves. The dynamics of the scalar fields is
determined by solving the following coupled Klein-Gordon
equation:

X
i

�
ϕ̇i

�
ϵiϕ̈i þ 3Hϵiϕ̇i þ

∂Vðϕ⃗Þ
∂ϕi

��
¼ 0: ð7Þ

For the particular case of ϕ1 ¼ ϕ and ϕ2 ¼ ψ , ϵ1 ¼ 1 and
ϵ2 ¼ −1, and then V ¼ Vðϕ;ψÞ and thus the last expres-
sion becomes

ϕ̇

�
ϕ̈þ3Hϕ̇þ∂Vðϕ;ψÞ

∂ϕ

�
− ψ̇

�
ψ̈þ3Hψ̇ −

∂Vðϕ;ψÞ
∂ψ

�
¼ 0:

ð8Þ
In general, this equation does not enforce a split into two
coupled Klein-Gordon equations; however, this specific
splitting represents a special case where the overall equa-
tion is satisfied,

ϕ̈þ3Hϕ̇þ∂Vðϕ;ψÞ
∂ϕ

¼ 0; ð9Þ

ψ̈ þ 3Hψ̇ −
∂Vðϕ;ψÞ

∂ψ
¼ 0: ð10Þ

Clearly, the quintom model ϕ1¼ϕ;ϕ2¼ψðϵ1¼1;ϵ2¼−1Þ
boils down to quintessence when the phantom field is null,
ψ ¼ 0, and conversely into phantom dark energy when
ϕ ¼ 0. In general, ϕ will evolve towards the local minima
of the potential, whereas ψ evolves towards the local
maxima; such different behaviors arise because of the
signs in the Klein-Gordon equations, inherited from the
signs of the kinetic energy terms in the action.
Finally, in order to determine the dynamics of the

system, it is necessary to solve the conservation equations
for the matter components and scalar fields. Following [33],
the Klein-Gordon equations can be rewritten as a dynami-
cal system that can be solved straightforwardly, where the
initial conditions for each field are set up right into the
matter domination epoch and we assume a thawing
behavior for the multifields. This implies that at early
times the kinetic terms of the quintom model vanish, and its
equation of state wQ begins at −1. Also, the initial scalar
field density parameter ΩQ;ini is selected, through a shoot-
ing mechanism, such that its present value satisfies the
Friedmann constraint, ΩQ;0 þ ΩM;0 ¼ 1. To illustrate the
general behavior of the quintessence, phantom, and quin-
tom models, in Fig. 1 we plot the following cosmological
quantities: the EoS wðzÞ, Hubble function HðzÞ, Hubble
distance DH, and comoving angular distance DM, along
with several measurements (see the figure caption). In all
panels, the ΛCDM model is represented by a black dashed
line. As a proof of the concept, the potentials used in our
analysis are as follows: for quintessence and phantom dark
energy we use the quadratic potential, and for quintom we
use the sum of the two aforementioned potentials,2

2For an ample variety of potentials, refer to [33].

COUPLED MULTISCALAR FIELD DARK ENERGY PHYS. REV. D 109, 023511 (2024)

023511-3



quintessence∶ Vϕ ¼ 1

2
m2

ϕϕ
2; ð11Þ

phantom∶ Vψ ¼ 1

2
m2

ψψ
2; ð12Þ

quintom∶ VQ ¼ 1

2
m2

ϕϕ
2 þ 1

2
m2

ψψ
2: ð13Þ

Heremϕ,mψ are the masses of the fields, both of which are
plotted in units of [3H0]. To show the main behavior of the
inclusion of the fields, we vary only the masses and keep
the rest of the cosmological parameters fixed. Notice that,
in general, for masses tending to null values we recover the
ΛCDM pattern. In Figs. 1(a) and 1(b), the quintessence
model shows an EoS w > −1, while for the phantom model
w < −1. Notice that, in both cases, as the masses of the
fields increase, the EoS deviates farther from the cosmo-
logical constant line (w ¼ −1) in the late-time regime, but
in opposite directions. In general, all of the quintessence
HðzÞ lines remain above the Hubble function of the ΛCDM
model; this increment also allows DH and DM to lie below
the ΛCDM model, but for the phantom model we see
qualitatively opposite behavior. Both behaviors were
already studied in [33]. On the other hand, for the quintom
model and without losing generality, we consider two
cases, shown in Figs. 1(c) and 1(d). In the first case, we
fix the phantom mass at mψ ¼ 1.2 and let the quintessence
mass mϕ vary; in the second case, we reverse the scenario.
For a fixed mψ [Fig. 1(c)], the PDL crossing occurs when
mϕ ≳mψ , and depending on the ratio mϕ=mψ the dark
energy EoS has a maximum that becomes more pro-
nounced as mϕ=mψ increases; on the other hand, for a
fixed mϕ the PDL crossing is less pronounced and the EoS
may exhibit a minimum depending on the combination of

mψ=mϕ.
3 Finally, in these last two cases, there is mixed

behavior for HðzÞ, DH, and DM with regards to staying
above or below the ΛCDM observables, depending on the
mass-parameter combination. In all cases, the EoS con-
verges to w ¼ −1 at high redshift, by construction.

III. QUINTOM MODEL WITH
INTERACTING TERM

The previous section presented a quintom model with a
nondirect interacting term in the scalar field potential, i.e., it
can be split into two independent functions of the fields
Vðϕ;ψÞ ¼ VðϕÞ þ VðψÞ; therefore, the Klein-Gordon
equations (7) are coupled only through the Friedmann
equation. Now, a next step is to consider a scalar potential
with an interaction term. For a renormalizable model, a
general form of the potential must include operators with
dimension four or less, consisting of various powers of
the scalar fields. A reasonable choice is to consider a
potential that respects Z2 symmetry, i.e., it is invariant
under the following simultaneous transformations:
ϕ → −ϕ, ψ → −ψ [59]. A potential containing an inter-
action term between the fields ϕ and ψ and with the above
properties has the following form4:

FIG. 1. From left to right: quintessence, phantom, and quintom cosmologies with potentials VðϕÞ ¼ 1
2
m2

ϕϕ
2, VðψÞ ¼ 1

2
m2

ψψ
2, and

Vðϕ;ψÞ ¼ 1
2
m2

ϕϕ
2 þ 1

2
m2

ψψ
2, respectively. The first row shows the EoS wðzÞ, the second row shows the Hubble functionHðzÞ, the third

row shows the Hubble distance DH , and the fourth row shows the comoving angular distance DM. The color bar represents different
values for the masses of the fields. The data plotted forHðzÞ correspond to the cosmic chronometers [48–55]; for theDH andDM panels
we use the BAO galaxy consensus (z ∼ 0.5) [56], Ly-α DR14 autocorrelation (z ¼ 2.34), [57] and cross correlation (z ¼ 2.35) [58]. In
all panels, the black dashed line describes the ΛCDM model.

3In this work we focus on these type of models, named
quintom-A fields, whose main feature is that at late times the
phantom dominates (w < −1) where at early times the quintes-
sence dominates (w > −1). However, it would be interesting to
perform a similar analysis of its dual, a quintom-B field, that
mirrors the EoS behavior along the PDL axis [47].

4This potential can also be derived from an inflaton-phantom
unification protected by an internal SOð1; 1Þ symmetry, with the
two cosmological scalars appearing as the degrees of freedom of a
sole fundamental representation [60,61].
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Vðϕ;ψÞ ¼ 1

2
m2

ϕϕ
2 þ 1

2
m2

ψψ
2 þ βϕ2ψ2: ð14Þ

This is a particular case of the potential considered in Eq. (8)
of Ref. [59] [see also Eq. (4) of Ref. [62]], where the authors
set the mass-squared dimension’s constant Λ0 ¼ 0 and
make the identification λ2 ¼ β. Although phantom and
quintom models, such as the one we are considering here
[Eq. (14)], suffer from a severe problem of quantum
instability [63,64], it has been argued that, since we are
considering a classical theory of gravity (general relativity),
these fields should only be considered as an appropriate
effective description.
Due to the interaction term, βϕ2ψ2, the equations of

motion of the scalar fields are coupled, and hence the term
related to the potential in the Klein-Gordon equation of the
field ϕ becomes ∂Vðϕ;ψÞ

∂ϕ ¼ m2
ϕϕþ 2βϕψ2 ¼ fðϕ;ψÞ, which

depends on both fields; the same happens for the ψ field.
We refer to the quintom model with the potential (14) as the
interacting quintom, or just “quintomþ β.”5 Although
the above potential was previously considered to describe
the qualitative behavior of a cyclic universe [59,62], as far
as we know, its observational consequences have not been
previously investigated in detail. This is one of the reasons
why we chose this specific quintom model for our study.
The other reason, which has been already mentioned in the
text, is that quintom models provide a feasible crossing of
the phantom divide, a feature that seems to be favored by
the observations.
Figure 2 displays the quintomþ β potential for fixed

values of the masses mϕ ¼ 1.5 and mψ ¼ 1.0 and three
values of the interaction constant β ¼ 0.0; 6.0;−2.0. For
the case β ¼ 0, we recover the results of the previous
section. For positive β there is a wide paraboloid with
V ≥ 0 whose minimum is in the region ϕ ¼ � mψ

mϕ
ψ , while

in the negative β case the potential may get to negative
values (seen in the color bar of the figure), which can be

problematic as they may produce a negative energy density.
However, such behavior has been studied throughout
negative dark energy models [65–67] and a sign-switching
cosmological constant Λ [68–71].
Let us explore some cosmological implications of the

quintomþ β model by numerically solving the full dynami-
cal system. Similar to the previous cases, we compute the
evolution ofwðzÞ,HðzÞ,DHðzÞ, andDMðzÞ; their associated
plots are shown in Fig. 3. In Fig. 3(a) (fixed mψ ¼ 1.2,
β ¼ 4.0 and varying mϕ), the EoS at wðz ¼ 0Þ is in the
phantom region, increases, and reaches a local/global maxi-
mum value. If the mass-ratio condition mϕ=mψ < 1 is
satisfied (red lines), then the effective field evolves only in
the phantom region; however, for valuesmϕ ∼mψ it crosses
to the quintessence regime, and in some combinations of the
masses it is able to cross back into the phantom zone,
therefore crossing the PDL twice. As the ratio mϕ=mψ

increases (green lines), the maximum is shifted to larger
redshifts and produces larger values ofwðzÞ, and then remain
in the quintessence region (the behavior of a quintom-A field,
as mentioned previously). An interesting point to note is that
the quintomþ βmodel is able to traverse the HubbleΛCDM
line HΛCDMðzÞ (black dashed line). That is, if HΛCDM;0 is
larger than the Hubble parameter given by the HQ;0 of the
quintomþ β model,HΛCDM;0 > HQ;0, then at some redshift
it will occur thatHΛCDMðzÞ < HQðzÞ. This type of behavior
provides flexibility to transverse the ΛCDM observables
DHðzÞ andDMðzÞ, contrary to the decoupled quintommodel
[see Figs. 1(c) and 1(d)].
As the β parameter increases (and depending on the

combination of the masses), the oscillation is more pro-
nounced and the crossing of theΛCDM observables is more
notorious; see, for instance, Fig. 3(b) (mϕ ¼ 1.2, β ¼ 6.0,
and varying mψ ). For mψ=mϕ < 1 (red lines), the EoS
presents a wavering behavior and crosses the PDL multiple
times. As the ratio mψ=mϕ increases, there are fewer
oscillations with smaller amplitudes, until the evolution
becomes a fully phantom behavior (green lines). A similar
oscillatory function of wðzÞ has been found by using non-
parametric reconstructions directly from observables [4]
and in phenomenological models that encompass these

FIG. 2. Quintom potential (14) for fixed values of the masses and positive, null, and negative values of the coupling parameter β. The
color bar indicates the values of the potential Vðϕ;ψÞ (z axis).

5We base our analysis on this potential; however, in the
Appendix there are some other interesting alternatives to explore
in future works.
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features [72]. Figure 3(c) displays the outcomes for fixed
mass values mϕ ¼ 1.5, mψ ¼ 1 and taking only positive
values of β. As the β parameter increases the wavering
behavior is enhanced, and both the crossing of the PDL and
the maximum value of the EoS shift to higher redshifts.
Finally, in Fig. 3(d) we show some peculiar behaviors

when the negative case of β is taken into account; here we
use mϕ ¼ 2.0 and mψ ¼ 1. At the present time, wðzÞ
resides in the quintessence region, opposite to the β ≥ 0

case, but in the past, it crosses the PDL and for high
negative values of β the EoS diverges, to then come back to
the quintessence region wðzÞ > −1 at early times. The
presence of a pole in the EoS has been studied under several
different physical circumstances in [65,68,73–79]. It is
important to recall that wðzÞ is not a physical observable,
and thus its divergence does not imply a physical pathology
or an obvious constraint or failure of the model. The origin
of the pole is clear from the definition of the barotropic
EoS, w ¼ p=ρ, which occurs when the energy density of
the quintom dark energy density turns out to be zero, i.e.,
when the negative terms of ρQ ¼ 1

2
ðϕ̇2 − ψ̇2 þm2

ϕϕ
2 þ

m2
ψψ

2 − 2jβjψ2ϕ2Þ are relevant for certain values of β, such
that ρQ ¼ 0, and hence ρQ is able to change sign to become
negative. A negative energy density can be associated with
the sign of the cosmological constant, the hypothesis of a
negative mass, or just an effective energy density similar to
the curvature case; see, for instance, [66,69,80,81].
Regarding the Hubble function, we see opposite situation
as in the previous cases. If HΛCDM;0 is smaller than the
Hubble parameter given by the quintomþ β model HQ;0,
that is,HΛCDM;0 < HQ;0, then at some redshift it occurs that
HΛCDMðzÞ > HQðzÞ, and consequently the DH and DM

cross from the bottom part to top part of the ΛCDM line, as
seen in the lower panels of the same figure.

IV. CODE AND OBSERVATIONS

In this section, we perform the parameter estimation and
provide observational constraints from the latest data on the
free parameters of the quintessence, phantom, quintom, and
quintomþ β dark energy models considering the potentials
(11)–(14), and discuss the model even further. In order
to explore the parameter space, we use a modified version
of DYNESTY, a library with several versions of the nested
sampling algorithm. In conjunction, we utilize the SimpleMC
cosmological parameter estimation code [82,83], which
computes expansion rates and distances using the
Friedmann equation to calculate the posterior distributions.
Equipped with these tools, we can easily calculate the
Bayesian evidence lnZ, an informative measure of the
compatibility of the statistical model with the observed data,
thereby allowing direct comparison of two cosmological
models, a and b, using the Bayes factor Bab ≡ Za=Zb or,
equivalently, the relative log-Bayes evidence lnBab≡
Δ lnZ. The model with the smaller j lnZj is the preferred
model, and to interpret the results we refer to the Jeffreys
scale: a weak evidence is indicated by 0 ≤ jΔ lnZj < 1, a
moderate evidence by 1 ≤ jΔ lnZj < 3, a strong evidence by
3 ≤ jΔ lnZj < 5, and a decisive evidence by jΔ lnZj ≥ 5, in
favor of the model. For an extended review of cosmological
parameter inference, see [84].
To perform the parameter estimation, we consider data

from cosmic chronometers (HD), SNIa, and BAO mea-
surements, which are detailed in the following list:
(1) HD: Hubble distance measurements or cosmic

chronometers are galaxies that evolve slowly and
allow direct measurements of the Hubble parameter
HðzÞ. We use the most recent compilation that
contains a covariance matrix from Ref. [85].

(2) SN: The SNIa data set used in this paper is Pantheon+,
a compilation of 1550 SNIa within redshifts between
z ¼ 0.001 and z ¼ 2.26 [86].

FIG. 3. Quintom model. Two of the three parameters (mϕ, mψ , and β) are fixed while the remaining varies in a range of values. From
left to right, in the first panel we varymϕ, in the secondmψ , in the third β ≥ 0, and in the fourth β < 0. The first row is the EoS wðzÞ, the
second is the Hubble function HðzÞ, the third is the Hubble distance DH, and the fourth is the angular distance DM. The plotted data
points are the same as in Fig. 1. The color bar represents different values for the masses of the fields or the β parameter.
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(3) BAO: High-precision BAO measurements at differ-
ent redshifts up to z < 2.36. We make use of the
BAO data from the SDSS DR12 Galaxy Consensus,
BOSS DR14 quasars (eBOSS), Ly-α DR16 cross
correlation, Ly-α DR16 autocorrelation, Six-Degree
Field Galaxy Survey, and SDSS Main Galaxy
Sample [87].

Throughout the analysis, we assume a flat Friedmann-
Lemaître-Robertson-Walker universe, and flat priors over
our sampling parameters: Ωm0 ¼ ½0.05; 1.0� for the pres-
sureless matter density parameter today, Ωb0h2 ¼ ½0.02;
0.025� for the physical baryon density parameter, and h ¼
½0.4; 1.0� for the reduced Hubble constant; in addition to
these parameters, for the quintom model we have the
quintessence field mass mϕ ¼ ½0.0; 4.0�, the phantom
field mass mψ ¼ ½0.0; 3.0�, and the coupling parameter
β ¼ ½−10.0; 10.0�, but when using the combination of all
data sets (BAOþ HDþ SN) we use β ¼ ½−2.0; 4�.

V. RESULTS

The main results of our analysis are shown in Table I
where we report the constraints of the model parameters
Ωm, h, mϕ, mψ , β along with the 68% CL, for all different
combinations of the data sets: HD, SN, BAO, HDþ SN,
BAOþ HD, BAOþ SN, and BAOþ HDþ SN. We also
include the results of ΛCDM as the reference model.
Additionally, the same table displays the best fit,
−2 lnLmax, along with the log-Bayesian evidence, lnZ,
from the nested sampling algorithm, with the number of
live points selected using the general rule 50 × ndim [88],
where ndim is the number of parameters to be sampled
from. Complementary to the table, in Figs. 4 and 5 we
display the two-dimensional marginalized distributions
(the inner and external contours are for the 68% and
95% CL, respectively) and the constraints in the form of
one-dimensional marginalized posterior distributions: Fig. 4
corresponds to quintessence and phantom dark energy, and
Fig. 5 corresponds to the quintom and quintomþ β models;
in both cases, we include the combination of data sets that
provided the most constraining power.
In general, and among data sets, the quintessence and

phantom models are statistically consistent with ΛCDM;
however, there are some important points to mention. The
quintessence model presents a nearly negligible improve-
ment to describe data sets, that is, the comparison relative to
the reference model6 is small, −2 lnΔLmax ≲ 1, except
when both BAO and SN appear in the combined data set;
for these combinations, the improvement of the fit yield
−2 lnΔLmax ≤ 2.85. This can be understood by the lower
mϕ values, which are accompanied by distinguishable

values of h compared to their counterpart in the ΛCDM
model. Additionally, from the left panel of Fig. 4 it is
evident that these data sets impose the tightest parameter
constraints. Notice that the HDþ SN combination gives
the lowestmϕ value; nevertheless, for this reason, it is more
capable of mimicking ΛCDM, having a slighly different
change in h and a very similar fit. Consequently, the
advantage of the additional parameter is lost. From the
calculation of the Bayesian evidence, we can interpret that
while ΛCDM is preferred over the quintessence model, this
preference is generally weak for most of the data sets.
However, for SN and HDþ SN, the evidence in favor of
ΛCDM is definite but not strong.
In contrast to the quintessence model, the phantom

model exhibits a positive correlation between h and mψ

when considering the BAO and extra data; see the left panel
of Fig. 4. However, in this model the value of −2 lnΔLmax
does not show improvement compared to ΛCDM, even
when for BAOþ SN and BAOþ HDþ SN the constraints
on the scalar field mass are more restrictive than that found
for quintessence. Analyzing the Bayesian evidence sug-
gests that while the phantom model can be weakly or
definitely less favored than ΛCDM, there is an exception
for the HD sample, where it is indeed weakly favored.
Notably, in this instance the parameter adjustment for mψ

exhibits the biggest value for this model.
On the other hand, when the two fields are incorporated

into the quintommodel, notice that with the inclusion of the
BAO data there is a positive correlation among the masses
of the fields, but the correlation of the individual masses
with the Hubble parameter is essentially lost (see the left
panel of Fig. 5). For all data combinations, the parameter
adjustments favor mϕ > mψ , indicating that the quintom
model prefers to be dominated by the quintessence branch.
Similar to the quintessence model, the fit is improved when
the BAO and SN data appear in the data set; in these cases,
−2 lnΔLmax ≤ 3.58, and their corresponding h value is
lower than that obtained for ΛCDM. However, the penalty
carried by the extra parameters is more evident when
analyzing the Bayes factors. According to this criterion,
it is notable that when only HD data is employed, both
models have the same Bayes factor and then both are
equally favored. For the BAO and BAOþ HD combina-
tion, the quintom model is weakly disfavored compared to
the standard model. Furthermore, for the remaining data
combinations, the preference over ΛCDM is enhanced and
now definitive. It is worth nothing that under the Bayesian
evidence, even the BAOþ SN and BAOþ HDþ SN
combinations, which previously seemed to provide better
fits, are now disfavored.
Now let us focus on the novel model, quintomþ β. The

first point to highlight is that the β parameter is bounded by
the different data sets, and even though the BAO and its
combinations indeed provide tight constraints, with a slight
preference for positive values of β, except for the SN data,

6Throughout the results we use ΛCDM as the reference model
to compare with model i; thus, −2 lnΔLmax ≡ −2 lnðLΛCDM;max=
Li;max).
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TABLE I. Constraints at 68% CL on the parameters, −2 lnLmax, and log-Bayesian evidence lnZ for the quintessence, phantom,
quintom, and quintomþ β models, using different data sets.

Parameter Data sets Quintessence Phantom Quintom Quintomþ β ΛCDM

Ωm HD 0.362� 0.120 0.346� 0.100 0.332� 0.103 0.346� 0.117 0.368� 0.108
SN 0.306� 0.032 0.347� 0.026 0.309� 0.044 0.354� 0.083 0.332� 0.018
BAO 0.300� 0.021 0.285� 0.020 0.276� 0.030 0.256� 0.033 0.292� 0.019

HDþ SN 0.311� 0.029 0.346� 0.024 0.311� 0.045 0.314� 0.084 0.332� 0.018
BAOþ HD 0.300� 0.019 0.287� 0.018 0.276� 0.030 0.252� 0.029 0.292� 0.018
BAOþ SN 0.300� 0.016 0.315� 0.014 0.296� 0.018 0.295� 0.018 0.313� 0.014

BAO þ HDþ SN 0.301� 0.015 0.314� 0.014 0.298� 0.016 0.297� 0.016 0.312� 0.013

h HD 0.630� 0.062 0.723� 0.083 0.722� 0.089 0.723� 0.088 0.661� 0.057
SN 0.755� 0.162 0.737� 0.166 0.800� 0.141 0.671� 0.173 0.699� 0.174
BAO 0.652� 0.048 0.739� 0.050 0.707� 0.074 0.747� 0.073 0.699� 0.022

HDþ SN 0.677� 0.040 0.674� 0.038 0.677� 0.038 0.673� 0.038 0.674� 0.040
BAOþ HD 0.667� 0.036 0.721� 0.033 0.707� 0.055 0.736� 0.048 0.696� 0.019
BAOþ SN 0.681� 0.027 0.709� 0.024 0.674� 0.031 0.674� 0.031 0.703� 0.023

BAO þ HDþ SN 0.680� 0.023 0.702� 0.020 0.676� 0.025 0.675� 0.023 0.697� 0.019

mϕ HD 0.841� 0.524 � � � 1.780� 1.152 2.063� 1.062
SN 0.493� 0.311 � � � 1.000� 0.660 1.383� 0.675
BAO 0.664� 0.346 � � � 1.386� 0.867 1.636� 0.880

HDþ SN 0.409� 0.241 � � � 0.852� 0.534 1.461� 0.814
BAOþ HD 0.573� 0.326 � � � 1.514� 0.926 1.579� 0.864
BAOþ SN 0.492� 0.195 � � � 0.971� 0.466 1.313� 0.553

BAO þ HDþ SN 0.473� 0.194 � � � 0.933� 0.443 1.305� 0.533

mψ HD � � � 1.496� 0.846 1.662� 0.786 1.788� 0.751
SN � � � 0.407� 0.307 0.713� 0.448 1.004� 0.515
BAO � � � 0.635� 0.466 0.989� 0.534 1.354� 0.370

HDþ SN � � � 0.360� 0.243 0.628� 0.355 0.971� 0.360
BAOþ HD � � � 0.502� 0.364 1.014� 0.506 1.297� 0.260
BAOþ SN � � � 0.189� 0.140 0.601� 0.354 1.068� 0.247

BAO þ HDþ SN � � � 0.191� 0.137 0.586� 0.350 1.067� 0.214

β HD � � � � � � � � � 1.244� 5.413
SN � � � � � � � � � −3.120� 5.525
BAO � � � � � � � � � 3.590� 3.504

HDþ SN � � � � � � � � � 1.041� 4.771
BAOþ HD � � � � � � � � � 4.344� 3.395
BAOþ SN � � � � � � � � � 0.382� 1.548

BAO þ HDþ SN � � � � � � � � � 0.375� 1.476

−2 lnLmax HD 6.11 5.40 4.87 4.39 6.11
SN 1402.88 1403.12 1402.57 1397.92 1403.11
BAO 9.06 9.45 7.80 7.34 9.46

HDþ SN 1409.13 1409.25 1409.13 1407.95 1409.23
BAOþ HD 15.63 15.87 14.15 13.41 15.87
BAOþ SN 1412.14 1414.97 1411.41 1411.43 1414.99

BAO þ HDþ SN 1418.59 1421.4 1418.09 1418.11 1421.39

lnZ HD −8.75� 0.18 −7.67� 0.16 −7.76� 0.16 −8.31� 0.18 −7.76� 0.16
SN −707.47� 0.20 −707.57� 0.19 −708.01� 0.21 −708.82� 0.23 −706.05� 0.17
BAO −12.61� 0.23 −12.57� 0.22 −12.62� 0.23 −13.40� 0.24 −11.69� 0.21

HDþ SN −712.61� 0.23 −712.61� 0.22 −713.22� 0.23 −714.57� 0.25 −711.10� 0.20
BAOþ HD −16.01� 0.23 −16.29� 0.23 −16.21� 0.23 −16.98� 0.25 −15.25� 0.22
BAOþ SN −715.48� 0.25 −717.12� 0.25 −716.18� 0.26 −717.95� 0.28 −714.81� 0.22

BAO þ HDþ SN −718.81� 0.25 −720.40� 0.25 −719.77� 0.26 −721.90� 0.29 −718.06� 0.22

(Table continued)
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all data sets and their combinations show that β ¼ 0 is
statistically admissible (the two-dimensional marginalized
distributions of β and h are shown in the right panel of
Fig. 6 for different combinations of data sets). Despite this
fact, some important features come up with the introduction
of this parameter. Some points to note concerning the
quintomþ β model are that, once again, the mass of the
quintessence field is larger than the mass of the phantom
field. This implies that, in this model as well, a preference
exists for quintessence domination. It is also important to
note that the masses of the fields are generally larger than
those in the quintom model. In fact, for quintessence, all of
them are greater than 1. In the right panel of Fig. 5 we show
the constraints of the quintomþ β model using BAO and
additional data sets. A similar correlation occurs with the
mass of the phantom and quintessence field (compared to
the standard quintom model without coupling). This is an
important point to stress because now the data sets are in
favor of a mψ that is different from zero with more than 2σ
CL; in fact, the tightest constraint yields mψ ¼ 1.067�
0.214 (BAOþ HDþ SN), which also yields higher values
of the quintessence massmϕ¼1.305�0.533 (BAOþHDþ
SN). To have a closer look at the correlations among the

quintomþ β parameters, the middle panel of Fig. 6 shows
the two-dimensional marginalized posterior distributions of
mϕ and mψ , color coded with β values. In this case, the
most significant improvement to the fit occurs again when
we consider the BAOþ SN data set (with −2 lnΔLmax ¼
3.56). However, the results for the BAOþ SNþ HD
combination are very close (−2 lnΔLmax ¼ 3.28). The
inclusion of this coupling produces a difference in favor
of the model that contributes to diminishing the BAO
tension created between low-redshift (galaxies) and high-
redshift (Ly-α) data, as explored in [68,83]. Even though
this model contains three extra parameters, the Bayes
factor, with respect to ΛCDM, highlights this aspect by
imposing a more significant penalty compared to all of the
other models under consideration. However, this penalty is
not high enough to discard the quintomþ β model, as
jΔ lnZj ≤ 3.84. Specifically, the values of jΔ lnZj indicate
that when considering only HD data it is weakly disfa-
vored; it is definitively disfavored for SN, BAO, and
BAOþ SN combinations, and strongly disfavored by
HDþ SN, BAOþ SN, and BAOþ HDþ SN data set
combinations. In a work in progress, for the quintom
model with coupling, we are testing different potentials

FIG. 4. One- and two-dimensional (68% and 95% CL) marginalized posterior distributions for the free parameters of quintessence
(left) and phantom (right) dark energy models using BAO (blue), BAOþ HD (red), BAOþ SN (green), and BAO þ HDþ SN (gray).

TABLE I. (Continued)

Parameter Data sets Quintessence Phantom Quintom Quintomþ β ΛCDM

lnBm;Λ HD −0.99 0.09 0 −0.55 0
SN −1.42 −1.52 −1.96 −2.77 0
BAO −0.92 −0.88 −0.93 −1.71 0

HDþ SN −1.51 −1.51 −2.12 −3.47 0
BAOþ HD −0.76 −1.04 −0.96 −1.73 0
BAOþ SN −0.67 −2.31 −1.37 −3.14 0

BAO þ HDþ SN −0.75 −2.34 −1.71 −3.84 0
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along with the Planck data set (including linear perturba-
tions); however, for now, we are interested in the back-
ground cosmology.
Having performed the parameter estimation, we are able

to plot some derived probability distribution functions in
order to look at the locations of the main deviations from
the ΛCDM model. For instance, the left panel of Fig. 7
displays the Hubble function HðzÞ=ð1þ zÞ and the right
panel shows the dark energy equation of state [Eq. (6)]. In
this figure we present the results using BAO (top) and the

combined BAOþ HDþ SN data set (bottom), and also
include the tip of the red-giant branch (TRGB) H0 and
BAO data points for comparison (red error bars). The solid
lines represent the 1σ and 2σ CL and darker tones mean a
better likelihood as shown in the color bar; for comparison,
the dashed blue line corresponds to the ΛCDM prediction.
We observe that there is a shift in the amplitude to lower
values of HðzÞ, as is clear for the case of BAO where
almost the entire 1σ region is lower than ΛCDM, and for
the case of combined data this shift becomes small, as the

FIG. 6. Quintom þ β model. Left: two-dimensional marginalized posterior distributions (68% and 95% CL) in the β-h plane for
different combinations of data sets; the dashed lines correspond to the ΛCDM model: H0 ¼ 73.24 km s−1 Mpc−1 coming from the
Cepheid variables [89], andH0 ¼ 67.40 km s−1 Mpc−1 measured by the Planckmission [90]. Right: scatter plot in themϕ-mψ plane for
different values of β (color bar), for BAOþ HDþ SN.

FIG. 5. One- and two-dimensional (68% and 95% CL) marginalized posterior distributions for the free parameters of quintom (left)
and quintomþ β (right) dark energy models using BAO (blue), BAOþ HD (red), BAOþ SN (green), and BAOþ HDþ SN (gray).
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constraints increase. Regarding the effective dark energy
EoS, its best-fit value at z ¼ 0 is located below w ¼ −1
(allowing small deviations in favor to the phantom region),
and then it increases to cross the PDL and reaches a
maximum value at about z ¼ 0.5, where the BAO galaxy
points are located [also observed as an inverted bump in
HðzÞ figure]. Notice that at this redshift the quintomþ β
model deviates by more than 2σ from the cosmological
constant. After wðzÞ has achieved the maximum value, it
decreases to slightly cross back over the PDL again; this
behaviour may be in favor to fit the BAO-Lyα as well. For
the case of the joint data analysis we have a similar behavior
but it is more constrained, with wðz ¼ 0Þ ≈ −1.1 with a
more restricted range but also favoring the phantom region;
the maximum is smaller too and throughout the redshift
range w ¼ −1 is acceptable. We must emphasize that the
behavior presented by the EoS of the quintomþ β model
with the values obtained from observational constraints
(right panel of Fig. 7) is qualitatively similar to that obtained
from model-independent reconstructions [4,17–19], show-
ing that the quintom model with coupling is a plausible
option to model the most recent observational results of
dark energy.

VI. CONCLUSIONS AND DISCUSSION

In this work, we have analyzed models of dark energy as
minimally coupled scalar fields, specifically, a quintessence
model and a phantom model with the quadratic potentials
(11) and (12), a quintom model as the sum of the quadratic
potentials of the previous two fields [Eq. (13)], and a novel
proposal, dubbed quintomþ β, with the sum of the
quadratic potentials and the interaction term (14), inspired
by [61]. Although the quintessence and phantom models
with quadratic potentials, as well as the quintom model as
the sum of these, have been well-known for some time, in
order to make an update, in this work we constrained the
parameters using late-time data. Our main focus was to
study the new proposal quintomþ β, which enriches the
quintom model in a simple way by adding only one extra
degree of freedom to the usual nonminimal quintom model
(the simplest coupling between the quintessence and
phantom fields). We showed that one of the main features
of quintomþ β is that it produces a wavelike EoS
(see Fig. 3) similar to the one reported in other works in
other contexts [72]. When constraining the parameters,
quintomþ β fits very well to the background cosmological
data, especially for the SN data, which exhibits a preferred

FIG. 7. Cosmological functions derived from the posterior distributions using the quintomþ β model, showing HðzÞ=ð1þ zÞ (left)
and the EoS parameter wðzÞ (right), using BAO (top) and BAOþ HDþ SN (bottom) data sets. The blue dashed lines represent the value
of ΛCDM with the same parameter estimation as shown in Table I. The red error bars correspond to H0 ¼ 69.8� 0.8 km s−1 Mpc−1

from the TRGB [91], BAO galaxy consensus (z ∼ 0.5) [56], BOSS DR14 quasars (eBOSS, z ¼ 1.52) [92], and Ly-α DR16 and cross
correlation (z ¼ 2.35) and autocorrelation (z ¼ 2.37) [87].
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negative β value and results in an improvement of
−2 lnΔLmax ¼ 5.19 compared to ΛCDM. This result leads
to an EoS that starts, at early times, slightly below −1, then
increases smoothly, peaking at z ≈ 0.5, and then decreases
to end up with a phantom value at the present time,
wðz ¼ 0Þ ≈ −1.2. Using the best-fit values, the CL for
HðzÞ and the EoS were calculated; the best fit of the
parameters provides an EoS that is qualitatively similar to
that reported by nonparametric reconstructions of dark
energy [4] (see the top tight panel Fig. 7). As has already
been said, this is precisely the behavior obtained from
reconstructions, which allows us to say that quintomþ β
with only one additional parameter to the two necessarily
associated with the quintessence field and phantom may
reproduce the possible nature of the EoS obtained from
observations. This makes the proposal of this work inter-
esting, which motivates a more careful exploration of
quintom models with potentials that couple the quintes-
sence and phantom fields. It seems that interactions
between fields through the product of powers of the fields,
V int ∝ ϕnψm, may play an important role in describing the
dynamics of dark energy and may be a more economical
way to add dynamics (several crossings of the PDL) instead
of potentials with elaborate functions with a vaguely clear
justification.
For four scalar field dark energy models (quintessence,

phantom, quintom, quintomþ β) and for ΛCDM (for
comparison), the cosmological and model parameters were
constrained using HD, SN, and BAO data and their
combinations, in addition to calculating the Bayesian
evidence. The observational constraints of the quintessence
and phantom potential parameters associated with the mass
of the fields, mϕ and mψ , give values for both around
mϕ;ψ ≈ 0.2–1.5 and with a slight correlation with h (mϕ

directly proportional and mψ inversely proportional). For
the quintom model, the parameters are also of the same
order and slightly bigger than for the quintessence and
phantom models,mϕ;ψ ≈ 0.6–1.8, but in this case without a
correlation with h. For the proposed model quintomþ β,
the mass parameters are both mϕ;ψ ≈ 1.0–2.06 and the
coupling parameter β ≈ −3.1–3.6; it is noteworthy that in
all cases the error bars of the constraints all cases the error
bars of the constraints are of the order of the mass
parameter values and even larger when included the β
parameter. A natural improvement is to consider the CMB
data and perform a more detailed study considering linear
perturbations.
The proposal to model the dark energy with quintessence

and phantom scalar fields (to allow PDL crossing) with a
potential with an interacting term (to allow several cross-
ings) seems to be reasonable since it is a flexible model that
allows a dynamical EoS requiring three parameters (one for
each field and one for the interaction) and with a simple
functional form for the potential (polynomials). The quin-
tom models are still valid as a candidate for dark energy; a

deeper and more careful study of the origin of scalar fields
is needed as well as better observational constraints.
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APPENDIX

The dynamics of quintom models with various potentials
have also been explored using dynamical system tech-
niques. One of the studied potentials consists of a sum of
individual exponentials, without a direct coupling [93], and
with a particular interaction potential between the phantom
and quintessence fields [94]:

V ¼ Vϕ0e−λϕκϕ þ Vψ0e−λψ κψ þ V intðϕ;ψÞ: ðA1Þ
For this potential, the authors found that there is a future
attractor dominated by the phantom field, indicating an EoS
below −1 at late times. Their analysis also showed that the
Universe went through distinct stages that allowed the
quintessence field to dominate ðw > −1Þ in the past. This
implies that the model enables a transition across the PDL
irrespective of whether or not there is a direct coupling
between the fields. In Ref. [93], it was shown that a similar
EoS behavior to the one associated with Eq. (A1) can be
achieved by Eq. (13). However, they showed that the sum
of potentials with a quadratic scalar field in the exponents,
given by

V ¼ Vϕ0e−λϕκ
2ϕ2 þ Vψ0e−λψ κ

2ψ2

; ðA2Þ
leads to an opposite behavior where the EoS transitions
from being below −1 (at early times) to above −1 and tends
to approach −1 at late times; this is similar to our findings
for the quintomþ β with β < 0 [see Fig. 3(d)]. The EoS
can also exhibit an oscillatory behavior. For instance, Fig. 8
shows some cases when varying the mass of the field for the
oscillatory potential

V ¼ m2
ϕð1 − cosðaϕÞÞ þm2

ψ ð1 − cosðaψÞÞ: ðA3Þ
Similar to the behavior of Eq. (A3), in Ref. [94], the authors
argued that the following potentials can yield an oscillatory
EoS where the oscillations across −1 can occur in the
recent past and have the potential to produce observable
effects:
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V ¼ V1 cos

�
ξ

ϕ

MP

�
þ V2 cos

�
β

ϕ

MP

�
þ βϕ2ψ2; ðA4Þ

V ¼ 1

2
m2

ϕϕ
2 þ 1

2
m2

ψψ
2 þ βψ2ϕ2: ðA5Þ

Another combination of potentials that has been explored
in the quintom scenario is the linear potential [95,96]:

V ¼ aðϕþ ψÞ þ βϕψ : ðA6Þ

By changing the sign of the coupling constant β, the model
is capable of emulating the distinct characteristics exhibited
by both quintessence and phantom models, similar to our
findings.
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[61] Abdel Pérez-Lorenzana, Merced Montesinos, and Tonatiuh
Matos, Unification of cosmological scalar fields, Phys. Rev.
D 77, 063507 (2008).

[62] Yi-Fu Cai and Emmanuel N. Saridakis, Non-singular cyclic
cosmology without phantom menace, J. Cosmol. 17, 7238
(2011).

[63] Sean M. Carroll, Mark Hoffman, and Mark Trodden, Can
the dark energy equation-of-state parameter w be less than
−1?, Phys. Rev. D 68, 023509 (2003).

[64] James M. Cline, Sangyong Jeon, and Guy D. Moore, The
Phantom menaced: Constraints on low-energy effective
ghosts, Phys. Rev. D 70, 043543 (2004).

[65] Özgür Akarsu, John D. Barrow, Charles V. R. Board, N.
Merve Uzun, and J. Alberto Vazquez, Screening Λ in a
new modified gravity model, Eur. Phys. J. C 79, 846
(2019).

[66] Rodrigo Calderón, RadouaneGannouji, BenjaminL’Huillier,
and David Polarski, Negative cosmological constant in the
dark sector?, Phys. Rev. D 103, 023526 (2021).

[67] Giovanni Acquaviva, Özgür Akarsu, Nihan Katirci, and J.
Alberto Vazquez, Simple-graduated dark energy and spatial
curvature, Phys. Rev. D 104, 023505 (2021).

[68] Özgür Akarsu, John D. Barrow, Luis A. Escamilla, and J.
Alberto Vazquez, Graduated dark energy: Observational
hints of a spontaneous sign switch in the cosmological
constant, Phys. Rev. D 101, 063528 (2020).

[69] Özgür Akarsu, Suresh Kumar, Emre Özülker, and J. Alberto
Vazquez, Relaxing cosmological tensions with a sign
switching cosmological constant, Phys. Rev. D 104, 123512
(2021).

[70] Anjan A. Sen, Shahnawaz A. Adil, and Somasri Sen, Do
cosmological observations allow a negative Λ?, Mon. Not.
R. Astron. Soc. 518, 1098 (2022).

[71] Mohammad Malekjani, Ruairí Mc. Conville, Eoin Ó.
Colgáin, Saeed Pourojaghi, and M.M. Sheikh-Jabbari,
Negative dark energy density from high redshift
Pantheonþ Supernovae, arXiv:2301.12725.

[72] David Tamayo and J. Alberto Vazquez, Fourier-series
expansion of the dark-energy equation of state, Mon.
Not. R. Astron. Soc. 487, 729 (2019).

[73] Varun Sahni and Yuri Shtanov, Did the universe loiter at
high redshifts?, Phys. Rev. D 71, 084018 (2005).

[74] Shinji Tsujikawa, Kotub Uddin, Shuntaro Mizuno, Reza
Tavakol, and Jun’ichi Yokoyama, Constraints on scalar-
tensor models of dark energy from observational and local
gravity tests, Phys. Rev. D 77, 103009 (2008).

[75] Florian Bauer, Joan Sola, and Hrvoje Stefancic, Dynamically
avoiding fine-tuning the cosmological constant: The ‘Relaxed
Universe’, J. Cosmol. Astropart. Phys. 12 (2010) 029.

[76] Varun Sahni, Arman Shafieloo, and Alexei A. Starobinsky,
Model independent evidence for dark energy evolution from
baryon acoustic oscillations, Astrophys. J. Lett. 793, L40
(2014).

COUPLED MULTISCALAR FIELD DARK ENERGY PHYS. REV. D 109, 023511 (2024)

023511-15

https://doi.org/10.1016/j.physletb.2007.01.027
https://doi.org/10.1016/j.physletb.2007.01.027
https://doi.org/10.1086/376595
https://doi.org/10.1103/PhysRevD.71.123001
https://doi.org/10.1103/PhysRevD.71.123001
https://doi.org/10.1088/1475-7516/2010/02/008
https://doi.org/10.1088/1475-7516/2010/02/008
https://doi.org/10.1088/1475-7516/2012/07/053
https://doi.org/10.1088/1475-7516/2012/07/053
https://doi.org/10.1088/1674-4527/14/10/002
https://doi.org/10.1088/1674-4527/14/10/002
https://doi.org/10.1093/mnrasl/slv037
https://doi.org/10.1093/mnrasl/slv037
https://doi.org/10.1088/1475-7516/2016/05/014
https://doi.org/10.1088/1475-7516/2016/05/014
https://doi.org/10.1093/mnras/stx301
https://doi.org/10.1093/mnras/stx301
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1093/mnras/stx721
https://doi.org/10.1051/0004-6361/201935638
https://doi.org/10.1051/0004-6361/201935638
https://doi.org/10.1051/0004-6361/201935641
https://doi.org/10.1016/j.physletb.2008.07.053
https://doi.org/10.1016/j.physletb.2008.07.053
https://repositorio.cinvestav.mx/bitstream/handle/cinvestav/3598/SSIT0016691.pdf?sequence=1
https://repositorio.cinvestav.mx/bitstream/handle/cinvestav/3598/SSIT0016691.pdf?sequence=1
https://repositorio.cinvestav.mx/bitstream/handle/cinvestav/3598/SSIT0016691.pdf?sequence=1
https://repositorio.cinvestav.mx/bitstream/handle/cinvestav/3598/SSIT0016691.pdf?sequence=1
https://repositorio.cinvestav.mx/bitstream/handle/cinvestav/3598/SSIT0016691.pdf?sequence=1
https://doi.org/10.1103/PhysRevD.77.063507
https://doi.org/10.1103/PhysRevD.77.063507
https://doi.org/10.1103/PhysRevD.68.023509
https://doi.org/10.1103/PhysRevD.70.043543
https://doi.org/10.1140/epjc/s10052-019-7333-z
https://doi.org/10.1140/epjc/s10052-019-7333-z
https://doi.org/10.1103/PhysRevD.103.023526
https://doi.org/10.1103/PhysRevD.104.023505
https://doi.org/10.1103/PhysRevD.101.063528
https://doi.org/10.1103/PhysRevD.104.123512
https://doi.org/10.1103/PhysRevD.104.123512
https://doi.org/10.1093/mnras/stac2796
https://doi.org/10.1093/mnras/stac2796
https://arXiv.org/abs/2301.12725
https://doi.org/10.1093/mnras/stz1229
https://doi.org/10.1093/mnras/stz1229
https://doi.org/10.1103/PhysRevD.71.084018
https://doi.org/10.1103/PhysRevD.77.103009
https://doi.org/10.1088/1475-7516/2010/12/029
https://doi.org/10.1088/2041-8205/793/2/L40
https://doi.org/10.1088/2041-8205/793/2/L40


[77] Adria Gomez-Valent, Elahe Karimkhani, and Joan Sola,
Background history and cosmic perturbations for a general
system of self-conserved dynamical dark energy and matter,
J. Cosmol. Astropart. Phys. 12 (2015) 048.

[78] Emre Ozulker, Is the dark energy equation of state parameter
singular?, Phys. Rev. D 106, 063509 (2022).

[79] Shahnawaz A. Adil, Özgür Akarsu, Eleonora Di Valentino,
Rafael C. Nunes, Emre Özülker, Anjan A. Sen, and Enrico
Specogna, Omnipotent dark energy: A phenomenological
answer to the Hubble tension, arXiv:2306.08046.

[80] J. P. Petit and G. d’Agostini, Negative mass hypothesis in
cosmology and the nature of dark energy, Astrophys. Space
Sci. 354, 2106 (2014).

[81] Luca Visinelli, Sunny Vagnozzi, and Ulf Danielsson, Re-
visiting a negative cosmological constant from low-redshift
data, Symmetry 11, 1035 (2019).

[82] J. A. Vazquez, I. Gomez-Vargas, and A. Slosar, Updated
version of a simple MCMC code for cosmological param-
eter estimation where only expansion history matters,
https://github.com/ja-vazquez/SimpleMC (2021).

[83] Éric Aubourg, Stephen Bailey, Julian E. Bautista, Florian
Beutler, Vaishali Bhardwaj, Dmitry Bizyaev, Michael
Blanton, Michael Blomqvist, Adam S. Bolton, Jo Bovy
et al., Cosmological implications of baryon acoustic oscil-
lation measurements, Phys. Rev. D 92, 123516 (2015).

[84] Luis E. Padilla, Luis O. Tellez, Luis A. Escamilla, and Jose
Alberto Vazquez, Cosmological parameter inference with
Bayesian statistics, Universe 7, 213 (2021).

[85] Michele Moresco, Raul Jimenez, Licia Verde, Andrea
Cimatti, and Lucia Pozzetti, Setting the stage for cosmic
chronometers. II. Impact of stellar population synthesis
models systematics and full covariance matrix, Astrophys.
J. 898, 82 (2020).

[86] Dillon Brout, Dan Scolnic, Brodie Popovic, Adam G. Riess,
Anthony Carr, Joe Zuntz, Rick Kessler, Tamara M. Davis,
Samuel Hinton, David Jones et al., The pantheonþ analysis:
Cosmological constraints, Astrophys. J. 938, 110 (2022).

[87] Shadab Alam et al., Completed SDSS-IV extended Baryon
Oscillation Spectroscopic Survey: Cosmological implications
from two decades of spectroscopic surveys at the Apache
Point Observatory, Phys. Rev. D 103, 083533 (2021).

[88] Joshua S. Speagle, DYNESTY: A dynamic nested sampling
package for estimating Bayesian posteriors and evidences,
Mon. Not. R. Astron. Soc. 493, 3132 (2020).

[89] Adam G. Riess, Lucas M. Macri, Samantha L. Hoffmann,
Dan Scolnic, Stefano Casertano, Alexei V. Filippenko,
Brad E. Tucker, Mark J. Reid, David O. Jones, Jeffrey
M. Silverman et al., A 2.4% determination of the local
value of the Hubble constant, Astrophys. J. 826, 56
(2016).

[90] Nabila Aghanim, Yashar Akrami, M. Ashdown, J. Aumont,
C. Baccigalupi, M. Ballardini, A. J. Banday, R. B. Barreiro,
N. Bartolo, S. Basak et al., Planck 2018 results-VI.
Cosmological parameters, Astron. Astrophys. 641, A6
(2020).

[91] Wendy L. Freedman, Barry F. Madore, Dylan Hatt, Taylor J.
Hoyt, In Sung Jang, Rachael L. Beaton, Christopher R.
Burns, Myung Gyoon Lee, Andrew J. Monson, Jillian R.
Neeley et al., The Carnegie-Chicago Hubble program. VIII.
An independent determination of the Hubble constant based
on the tip of the red giant branch, Astrophys. J. 882, 34
(2019).

[92] Metin Ata, Falk Baumgarten, Julian Bautista, Florian
Beutler, Dmitry Bizyaev, Michael R. Blanton, Jonathan
A. Blazek, Adam S. Bolton, Jonathan Brinkmann, Joel R.
Brownstein et al., The clustering of the SDSS-IV extended
baryon oscillation spectroscopic survey DR14 quasar sam-
ple: First measurement of baryon acoustic oscillations
between redshift 0.8 and 2.2, Mon. Not. R. Astron. Soc.
473, 4773 (2018).

[93] Zong-Kuan Guo, Yun-Song Piao, Xinmin Zhang, and Yuan-
Zhong Zhang, Cosmological evolution of a quintom model
of dark energy, Phys. Lett. B 608, 177 (2005).

[94] Xiao-Fei Zhang, Hong Li, Yun-Song Piao, and Xinmin
Zhang, Two-field models of dark energy with equation of
state across-1, Mod. Phys. Lett. A 21, 231 (2006).

[95] Leandros Perivolaropoulos, Constraints on linear negative
potentials in quintessence and phantom models from recent
supernova data, Phys. Rev. D 71, 063503 (2005).

[96] Puxun Wu and Hongwei Yu, Statefinder parameters for
quintom dark energy model, Int. J. Mod. Phys. D 14, 1873
(2005).

J. ALBERTO VÁZQUEZ et al. PHYS. REV. D 109, 023511 (2024)

023511-16

https://doi.org/10.1088/1475-7516/2015/12/048
https://doi.org/10.1103/PhysRevD.106.063509
https://arXiv.org/abs/2306.08046
https://doi.org/10.1007/s10509-014-2106-5
https://doi.org/10.1007/s10509-014-2106-5
https://doi.org/10.3390/sym11081035
https://github.com/ja-vazquez/SimpleMC
https://github.com/ja-vazquez/SimpleMC
https://doi.org/10.1103/PhysRevD.92.123516
https://doi.org/10.3390/universe7070213
https://doi.org/10.3847/1538-4357/ab9eb0
https://doi.org/10.3847/1538-4357/ab9eb0
https://doi.org/10.3847/1538-4357/ac8e04
https://doi.org/10.1103/PhysRevD.103.083533
https://doi.org/10.1093/mnras/staa278
https://doi.org/10.3847/0004-637X/826/1/56
https://doi.org/10.3847/0004-637X/826/1/56
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.3847/1538-4357/ab2f73
https://doi.org/10.3847/1538-4357/ab2f73
https://doi.org/10.1093/mnras/stx2630
https://doi.org/10.1093/mnras/stx2630
https://doi.org/10.1016/j.physletb.2005.01.017
https://doi.org/10.1142/S0217732306018469
https://doi.org/10.1103/PhysRevD.71.063503
https://doi.org/10.1142/S0218271805007486
https://doi.org/10.1142/S0218271805007486

