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Abstract. Using Low Brightness Surface Galaxies (LBSG) rotational curves we inferred
the free parameters of `-boson stars as a dark matter component. The `-boson stars are
numerical solutions to the non-relativistic limit of the Einstein-Klein-Gordon system, the
Schrödinger-Poisson (SP) system. These solutions are parametrized by an angular momentum
number ` = (N − 1)/2 and an excitation number n. We perform a bayesian analysis by
modifying the SimpleMC code to perform the parameter inference, for the cases with ` = 0,
` = 1 and multi-states of `-boson stars. We used the Akaike information criterion (AIC),
Bayesian information criterion and the Bayes factor to compare the excited state (`=1) and
the multi-state case with the ground state (`=0) as the base model due to its simplicity. We
found that the data in most galaxies in the sample favours the multi-states case and that the
scalar field mass tends to be slightly bigger than the ground state case.
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1 Introduction

Since the first high resolution observations of M31 by Vera Rubin and Kent Ford in 1970 [1],
the galaxy rotation curves have become an important observable for testing dark matter
models. Most recently the authors in [2], and references therein, have shown that Low Surface
Brightness galaxies (LSBG) are suited candidates to test dark matter models due to their low
visibility in the optical and HI photometry, therefore it is reliable to assume that rotational
curve dynamics in those galaxies depends mainly on the dark matter component.

Throughout the years there has been a plethora of proposals about the nature of this
mysterious component, being the scalar field dark matter (SFDM) a candidate that have
been proved to be viable and that display several advantages over the standard candidate Λ
Cold Dark Matter (ΛCDM). For instance, one point in favor of the SFDM is that it does
not suffer of the so-called “cusp/core” problem, — which states that the predicted density
profiles, from simulations with ΛCDM, increase steeply and hence producing a “cuspy” dark
matter distribution in small radii, while observations of dark matter density profiles for most
of the dwarf galaxies indicate otherwise: they display flat central “cores” [3, 4]. Another
possible discrepancy between observations and simulations with ΛCDM is the missing satellite
problem (MSP). Simulations indicate the presence of more dwarf galaxies orbiting around a
galaxy with the characteristics of the Milky Way, than those we are able to observe around
us. In the past years some discussions have taken place about the MSP and how the high
resolution observations and ΛCDM simulations could give evidence of a plausible solution,
for more details consult [5]. One of the small scale discrepancies coming from the ΛCDM
simulations is the “too big to fail” problem. This states that the galaxy satellites predicted by
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the model are too massive that it is impossible that they doesn’t have visible stars, meaning
that, the observed satellites of the Milky Way are not massive enough to be consistent with
predictions from ΛCDM [6].

On the other hand, the SFDM model, — which in the simplest case, considers that
dark matter can be modeled by a classical, spin-zero, massive, minimally coupled to gravity,
complex scalar field — reproduces, at cosmological scales, the ΛCDM, background and linear
density perturbations dynamics. An important difference is that the bosonic mass, which is
the only free parameter of the model, fix a natural cut-off in the mass power spectrum at small
scales [7], preventing the overproduction of small structures. The mass of the scalar field needs
to be larger than 10−23 eV in order to be compatible with power spectrum measurements [8, 9].

At galactic scales, such a small mass implies cored galactic halos instead cuspy as ΛCDM
produces. Structure formation simulations of SFDM [10] provide density profiles for dark
matter halos with a soliton core and an outer Navarro-Frenk-White profile [11]. This density
profile has been used to constrain dark matter features by using different systems such as
the dwarf spheroidal galaxies (dSphs) [12, 13]. The analysis has shown that a single state of
the SFDM tightly constrained the scalar field mass, m, with Lyman-α observations of about
(log10(m/eV) ∼ [−23,−24]) [14, 15]. Also, an analysis of different density profiles, by using
non-parametric reconstruction of rotational curves, showed that 44% of the sample galaxies
preferred the SFDM model [16].

As an effort to extend this scalar field dark matter approach, it has been suggested
fields with self-interactions [17, 18], axionic-like potential has been widely studied from a pure
gravitational approach in [19, 20], see also references therein. Similarly, in [21] they used the
self-interacting term in the lagrangian and LBSG to constrain the Bose-Einstein condensate
(BEC) dark matter within the range (10−6, 10−4) eV, while in [22] dark matter is composed
of ordinary QCD axions,and the fact that QCD axions form a BEC is a consequence of their
properties studied.

Phenomenologically, dark matter described by a classical ultralight scalar field has shown
to be a good candidate of dark matter, however the approach of this matter within the quantum
field theory considering the quantum nature of the possible fundamental boson associated with
it, has been less explored. A hint could come from Boson Stars (BS). BS where introduced
by Kaup [23] as regular localized solutions of the Einstein Klein-Gordon equations for a
massive minimally coupled classical complex scalar field. Soon after, Ruffini and Bonazzola
presented them as static spherically symmetric self-gravitating configurations of quantum
spin-zero particles in quantum field theory using the semiclassical gravity approximation [24].
For a general overview about boson stars we recommend [25, 26]. Ruffini and Bonazzola’s
solutions coincide with the classical configurations if all particles populate a specific energy
state however, the semiclassical approximation unveil more sophisticated stars. In particular,
even within the spherical symmetry and staticity, configurations in which different energy
states are populated simultaneously, naturally emerge. Such kind of configurations, in Kaup’s
approach, require introducing multiple independent classical fields, one for each occupied
state, while in the semiclassical approximation different states are excitations of a single
quantum field [27].

BS with all the particles in the ground state are viable as astrophysical objects, they
are stable solutions [28], and furthermore, they have been shown to be atractor solutions
under fairly general initial conditions [29, 30]. In the SFDM scenario they would be the kind
of structures formed in isolation boundary conditions [30, 31] and have been used to model
SFDM galactic halos to put constrains on the bosonic mass using different observables such
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as galactic rotation curves (RC) [32] and stellar cluster dynamics [33]. For halos modeled by
BS in the ground state, it is known that RC of different galaxies require different masses of
the boson to be fitted, see for instance results for LSBG [32]. It is possible to reproduce RC
of different galaxies with the same bosonic mass using configurations in excited states (all the
bosons not in the ground state), however those configurations are unstable [34].

Configurations with bosons populating different states provide a diversity of mass
density profiles that could account for the dark matter distribution in galaxies with diverse
characteristics. In such configurations each occupied state is labeled by quantum numbers
n, ` and m, ground states mentioned in the above paragraph have n = 0, ` = m = 0.
In [35], configurations with n 6= 0, ` = m = 0, for which n takes different values, the so
called “multi-state” configurations, were proposed to obtain flat rotation curves within the
SFDM. An important condition for the physical viability of those configurations is its stability,
in [36, 37] it was proven that there exist stable and virialized multi-state configurations.

In this work, we explore rotation curves obtained from spherically symmetric self
gravitating configurations with particles in states for which the angular momentum is non-
zero. The simplest case of those configurations are the so called `-boson stars, in them,
all particles have fixed radial and total angular momentum numbers n and `, with ` 6= 0,
but are homogeneously distributed with respect to their magnetic number m. In [38] they
were introduced in the classical regime as configurations composed by N = 2`+ 1 classical
independent complex scalar fields with the same mass. Each of these fields have a non trivial
harmonic with an angular momentum number m = −`, −`+ 1, . . . , `, but all of them have
the same temporal and radial dependence. It is interesting that this special combination
gives a static configuration with zero total angular momentum even when independently
the fields have angular momentum and are time dependent. At this point, in the classical
approximation, the existence of different fields combined with such special characteristics
could be seen as somehow artificial. This is different within the semiclassical approximation,
where the same `-boson star is an allowed state of a single, massive, real, free quantum scalar
field. The state describes the excitation of N excitation modes of the quantum field. The
corresponding Einstein-Klein-Gordon system of equations, considering the expectation value
of the stress energy-momentum tensor operator takes the same form as its counterpart in
a classical theory with N independent complex fields [27], (see also reference [39] in which
the Newtonian limit of those configurations is studied). In the same sense the “multi-`-boson
stars”, used to model dark matter halos in this work are allowed states of the quantum field.
We consider configurations with n = `+ 1, m = −`, −`+ 1, . . . , `, for which ` takes different
values and we take a phenomenological point of view, observations will telling us which
configurations are preferred. To find a more fundamental explanation about which modes
of the quantum field should be excited is an open, interesting and necessary research field.

The stability of self-gravitating scalar field configurations have been widely studied as it
is an important characteristic to determine their viability as astrophysical objects. In [40, 41]
and [42, 43] it was shown that there exist stable `-boson stars with n = `+ 1, under radial
perturbations, in the relativistic and Newtonian limit respectively. On the other hand, `-boson
stars are unstable under 3D perturbations, however it is possible to stabilize them by adding
a sufficiently large fundamental, n = 1, ` = 0 boson star [44].

Multi-`-boson stars are allowed states of the quantum field that contain information
of the angular momentum preserving the spherical symmetry, its 3D stability is expected
if n = ` + 1 and if the contribution of the ` = 0 state is large enough, furthermore their
density profile differ significantly from their relatives with ` = 0, in particular for ` > 1 the
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central density of `-boson stars is zero while for stars with ` = 0 the central density is a
global maximum. These characteristics make multi-`-boson stars suitable to be tested as part
of the galactic halo, in this work we only considered configurations with n = `+ 1 and we
found that best fits of RC are possible with multi-`-boson stars in which the ` = 0 component
is important, then those multi-`-boson stars modeling dark matter galactic halos should be
stable although a definite proof could be done in a future work.

This paper is organized as follows, in section 2 we present the bases of the SFDM model
in the non-relativistic limit, their characteristics and the three specific cases that we analyzed:
the ground state or boson star (` = 0), a boson star with an excited state and multi-states.
In 3 we describe the galaxy data set used with the methods described in section 4. Our
results, presented in section 5, showed that most of the galaxies have a better fit to the data
by using multi-states. Finally, in section 6 we discuss our results and perspectives.

2 Model

We take an spin 0 scalar field without self-interaction and use the non-relativistic limit of
the Einstein-Klein Gordon system of equations as mentioned in [39]. For the non-relativistic
`-boson stars configurations the Schödinger-Poisson (SP) system is

∇2
r`V00 = 4πGm2

a

∑
n,`

(2`+ 1) r2`ψ2
n`0, (2.1a)

and
~2

2ma
∇2
r`ψn`0 = (maV00 − γn`0)ψn`0. (2.1b)

Where G is the gravitational constant, ma is the mass of the scalar field, ~ is the reduced
Planck constant, γn`0 is the frequency that will be determined by solving the eigenvalue
problem, described in subsection 2.3, V00 is the gravitational potential with spherical symmetry,
the subscript indicates that the only term different to zero in the multipolar expansion is the
monopolar one, which can be consulted in [39]; and

∇2
r` = ∂2

r + [2(`+ 1)/r]∂r. (2.2)

By using the following expressions

ψn`0 = ψ̄n`0
ε2c2

~
√

4πG
, r = r̄

ε

~
mac

, V00 = V̄00ε
2c2, (2.3)

we obtain a set of dimensionless equations, where the bar indicates the numerical solution, c
is the speed of light and ε is a dimensionless quantity related with the speed of light and the
rescaling amplitude for our rotational curve, being one of the free parameters of our model
along with the mass of the scalar field. For simplicity, we omit the bar notation, giving us the
following system of equations

d2ψn`0
dr2 = −2(`+ 1)

r

dψn`0
dr

+ 2(V00 − γn`0)ψn`0, (2.4a)

and
d2V00
dr2 = −2

r

dV00
dr

+
∑
n,`

(2`+ 1)r2`ψ2
n`0. (2.4b)
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To obtain the numerical solutions to the equation system, we add the following expression for
the number of particles in each state [36]

dN`

dr
= ψ2

n`0r
2+2`, (2.5)

and implemented the shooting method with a fourth order Runge Kutta.
Because the system of equations only depends of the radial coordinate, we can use the

expression for the circular speed (Vc) with spherical symmetry to obtain the rotational curve
for the non-relativistic `-boson stars

V 2
c (r) = GM(r)

r
, (2.6)

where we used the change of variables for the dimensionless solutions (2.3) and performed the
numerical integral from 0 to R to obtain the mass M(r) function

M(r) = 4π
∫ R

0
ρ(r)r2dr. (2.7)

In the above expression the density profile is given by

ρ(r) = m2
aε

4

4π(1.95× 10−69)
∑
n,`

(2`+ 1)r2`ψ2
n`0

M�

kpc3 , (2.8)

where M� means solar masses. Therefore the circular speed (Vc) in terms of the new
variables (2.3) is

V 2
c = 8.95× 1010 ε

2

R

∫ R

0
r2∑

n,`

(2`+ 1)r2`ψ2
n`0dr

(km
s

)2
. (2.9)

Notice that the above equation only depends on ε and the radial distance has a dependency
on ε and ma (see (2.3)).

In particular, we choose three cases of states with zero nodes to assure stability, following
the selection rule n − 1 − ` = 0 [39]: the ground state with ` = 0 (2.1), an excited state
with ` = 1 (2.2) and the multi-state with ` = 0, 1, 2 (2.3). In the next subsections we
present the boundary conditions to solve the system of equations of each case and their
characteristics (2.4).

2.1 Ground state: ψ100

We solved the dimensionless equation system given by (2.4a) and (2.4b), with ` = 0 and
n = 1, better known as a simple boson star, this solutions can be seen in the figure 1; this
case has been well studied in [34, 45]. The boundary conditions to be determined by the
shooting method are: γ100(r = 0) and V00(r = 0). It is important to mention that for the
independent cases, i.e. the ground state 2.1 and the excited state 2.2, ψ100(r = 0) is fixed to
one, this is due to the rescaling properties discussed in subsection 2.4 and the fact that the
solutions form a family allowed us to use the parameter ε as the rescaling factor in the initial
amplitude (ψ100(r = 0)). Therefore, the free parameters to be estimated for these cases are ε
and ma.
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2.2 Excited state: ψ210

Considering the case where the dark matter halo is only form by an excited state, which is
related to the quadrupole symmetry, we solved the equation system given by (2.4a) and (2.4b),
with ` = 1 and n = 2 different to zero. The boundary conditions are the same as the ones
for the ground state 2.1, where γ210(r = 0) and V00(r = 0) will be determined by solving the
eigenvalue problem.

2.3 Multi-states: ψ100, ψ210, ψ320

As it was mentioned before, we choose the states with zero nodes to assure stability and
followed the selection rule n − 1 − ` = 0 [39]. For the multi-state case we took ` = 0, 1, 2.
Therefore, the system of equations to be solved numerically is

d2ψ100
dr2 = 2 (V00 − γ100)ψ100 −

2
r

dψ100
dr

, (2.10a)

d2ψ210
dr2 = 2 (V00 − γ210)ψ210 −

4
r

dψ210
dr

, (2.10b)

d2ψ320
dr2 = 2 (V00 − γ320)ψ320 −

6
r

dψ320
dr

, (2.10c)

d2V00
dr2 = −2

r

dV00
dr

+ ψ2
100 + 3r2ψ2

210 + 5r4ψ2
320. (2.10d)

Boundary conditions must guarantee that the solutions are regular and asymptotically flat.
This implies that (2.10d) becomes an eigenvalue problem for γ100, γ210 and γ320. Regularity at
the origin implies ψ100(r = 0) = C1, ψ210(r = 0) = C2, ψ320(r = 0) = C3 and ψ′i00(r = 0) = 0,
for the potential V ′00(r = 0) = 0. Asymptotically flatness implies ψi00(r →∞)→ 0 and we
impose in this boundary V00/r + V ′00 = 0.

To find the solutions we solved the eigenvalue problem to determine the frequencies γ100,
γ210 and γ320 by using a shooting method. We took the Taylor expansions around zero to
obtain the boundary conditions, finding that ψ′′n`0(0) = 2V00(0)ψn`0(0)

3+2` and to avoid divergences
we cancel out the terms 1/r for the integration in r = 0. The first integration starts from
r = 0 to a close boundary and after finding a good frequency guess, the new frequency value is
taken to the next step in the integration, until the frequencies converge to a desired precision.
Therefore, ψ100(0), ψ210(0) and ψ320(0) became free parameters along with ε and ma. It is
important to mention that adding the states central amplitudes to the free parameters implies
the resolution of the eigenvalue problem for every step in the sampling algorithm, this makes
the algorithm more computationally expensive. The expression for the number of particles in
each state (2.5) is part of the system of equations, meaning that the solutions for N`=0, N`=1
and N`=2 are being found.

2.4 The characteristics of the solutions
Solving numerically the SP equations we could observe interesting characteristics. Taking the
independent cases (ψ100 and ψ210) we observe that they form a family, meaning that, using
the solution for a given central amplitude ψn`0(0) we can use the expression

λ =
( 1
ψn`0(0)

)(1/(`+2))
, (2.11)

to obtain the solution with a different central amplitude ψn`0(0) without solving the system
of equations once again, see figure 1. This is due to rescaling properties in the equations
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Figure 1. Numerical solutions for the system of equations described in section 2.1 for the ground
state. Each solution was obtained using the expression (2.11) with ψ100 = 1 as a source.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
r
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0.2

0.4

0.6

0.8

1.0

(r
)2

100
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320

Figure 2. Numerical density profiles of each state, solving the system of equations described in
section 2.1 for the ground state (ψ100), described in section 2.2 for the excited state (ψ210) and its
analogous for ψ320. The blue line corresponds to the state ψ100, the green line to the state ψ210 and
the orange line to the ψ320 state.

system that can be found using (r, ψn`0,V00) → (rλ, ψn`0/λ`+2, V00/λ
2). Therefore, for the

independent solutions the parameter λ is analogous to the parameter ε, this equivalence
is broken for the multi-state solutions, this can be seen in the equation (2.8), where the
parameter ε is multiplying the sum over n and `, therefore, if the parameter ε changes it will
change all the states over the sum equally.

In figure 2 and figure 3, we show the numeric density profiles for the system of equations
described in sections 2.1, 2.2 and 2.3, respectively. Comparing these figures we can observe
that in the figure 2 each numerical density has a bigger amplitude and radial extension than the
numerical densities from figure 3, therefore we can ascribe the differences to the gravitational
interaction between the states and the coupled system of equations that equations (2.10a)–
(2.10d) represent. Also, we can notice the differences between an independent contribution,
i.e. solving independently each state and taking the superposition of them; and a coupled
contribution of each state to the total rotational curve. As these solutions are related with
the spherical harmonics, therefore we can see that for the multi-states solutions, each one of
them has a multipole contribution. For further details about the `-boson star characteristics
and within other context consult [38, 40, 41].
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Figure 3. Numerical density profiles of each state, solving the system of equations (2.10a)–(2.10d).
The blue line corresponds to the state ψ100, the green line to the state ψ210 and the orange line
corresponds to the state ψ320.

3 Data

We use a set of Low Surface Brightness Galaxies (LSBG), these type of galaxies are disk
galaxies characterized by their Tully-Fisher relationship, it is similar to the high brightness
surface galaxies but with low content of stars [46], therefore it is assumed that most of their
dynamics is due to the dark matter and make them good candidates to test the models.

We selected a set of 17 LSBG based on the good quality of the data classified by [47] and
their mass model [48–50] for future comparisons. In the table 1 we showed the morphology of
each galaxy in the chosen sample, for more details see [47]. Although their morphology could
give us information about their formation history, we choose to present the results based on
the radial extension and their linear behavior of the data.

4 Analysis

The Bayes theorem tell us that the probability of a model M with a parameter set θ, given
an observed data set D is the posterior P

P(θ|D,M) = L(D|θ,M)P (θ|M)
E(D|M) , (4.1)

where L is the likelihood, P (θ|M) is the prior density of the parameter vector θ for a model
M , containing the apriori information about the parameters of the model, and E is the
evidence that will be explained in section 4.3 due to its importance to obtain the Bayes Factor
and therefore to perform the model comparison.

As a first step in our analysis, we calculate the maximum likelihood for the independent
solutions of the SP system of equations for each state (showed in figure 2), first independently
and then the superposition of each one (ψ100, ψ210 and ψ320), as an approximation, being the
free parameters ma and ε for each state. This analysis gave us an insight of how each state
contributes to the total rotational curve, concluding that most of the galaxies in the sample
must include at least three states (the ground state and two excited).

Because the results mentioned previously, we decided to center our work in the model
described in section 2.3 and used as priors in the Nested Sampler algorithm (NS) the results
of the maximum likelihood for that case. As it is a coupled system of equations we cannot
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Galaxy Morphology
ESO3020120 Spiral, hint of bar?
ESO3050090 Barred spiral
ESO4880490 Inclined Magellanic bar
UGC11557 Fuzzy spiral, small core
UGC11616 Fuzzy, irregular
UGC4115 knotty and diffuse

ESO0140040 Bulge, tight spiral arms
ESO0840411 Edge-on
ESO1200211 Fuzzy Magellanic bar
ESO1870510 Irregular spiral, flocculent
ESO2060140 Spiral
ESO4250180 Barred open spiral
F730-V1 Spiral

UGC11454 Fuzzy spiral, small core
UGC11583 Faint Magellanic bar
UGC11648 Irregular
UGC11748 Irregular, bright core/bar?

Table 1. Characteristics of each galaxy, for more details consult [47].

used the parameter ε of each state as a free parameter, in equation (2.9) we can see that
ε became a global parameter for this case. Consequently we choose the central amplitude
of each state (ψn`(0)) as a free parameter, being part of the initial conditions needed to
solved numerically the system of equations. This change made the parameter estimation more
expensive computationally, since at each step in the NS the integration with the shooting
method had to be made. The free parameters for the multi-state case are: ma, ε, ψ100(0),
ψ210(0) and ψ320(0).

We chose the following flat priors −26 ≤ log (ma[eV/c2]) ≤ −20, −6 ≤ log (ε) ≤ −2,
−5 ≤ log (ψ100(0)) ≤ 0, −6 ≤ log (ψ210(0)) ≤ 0 and −6 ≤ log (ψ320(0)) ≤ 0. For the
independent cases, ground and excited states, we chose the same priors for the free parameters,
ma and ε, respectively. For the number of live points necessary for the NS we followed the 50×k
rule, where k corresponds to the dimensionality of the free parameter vector, as a minimum.

For the NS we modified the SimpleMC code that uses dynesty as an engine [51], this
sampler allowed us to obtain the Bayesian evidence which was used to obtain the Bayes factor,
for more details of how the NS works consult [52]. We used the library fgivenx [53] with the
output to obtain the 2σ contours in the rotational curves of figure 9.

In order to know which one of the three cases the data favours as a dark matter component,
we computed the Akaike and Bayesian information criteria and the Bayes factor. The last one
was compared with the ground state (ψ100, section 2.1) as the based model due to its simplicity
and correspondence to the soliton profile obtained from the SFDM simulations [10], usually
used in the literature with an outer NFW profile [12, 13]. In addition, we take the bounds for
the scalar field mass found in [50] for this case, 0.212× 10−23 < ma[eV/c2] < 27.0× 10−23.
These criteria and the Bayes factor are defined in the following sections.
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4.1 Akaike Information Criterion (AIC)

The AIC is based on information theory and it is a way to compare models for a given
data [54]

AIC = −2 lnL+ 2k + 2k(k + 1)
n− k − 1 , (4.2)

where k is the number of fitted parameters, n the number of data points and L is the
maximum likelihood, calculated before for each model. The first term rewards the goodness
of fit, while the second term penalizes the model by including extra free parameters, making
it an increasing function. Therefore, the AIC discourages overfitting. By adding the last term
it penalizes the fact of working with small data sets [55], which is our case.

4.2 Bayesian Information Criterion (BIC)

Similar to the AIC, the BIC is a model selection criterion [56]

BIC = −2 lnL+ k lnn, (4.3)

where the first term rewards the goodness of fit, and the second term penalizes the model by
including the free parameters (k) and the number of data points used in the fit (n).

4.3 Bayes factor

Equivalent to the information criterion, the Bayes factor allows us to compare the fitness
of two models, based on the Bayes theorem. The Bayes factor, B12, is the ratio between
the posterior of a model (M1) compared to another model (M2), given certain data (D), in
logarithmic scale

logB12 ≡ log
(
E1(D|M1)
E2(D|M2)

)
(4.4)

= log [E1(D|M1)]− log [E2(D|M2)], (4.5)

where E(D|M) is the Bayesian evidence, defined by

E(D|M) =
∫
P (θ|M)L(D|θ,M)dθ. (4.6)

For a review about bayesian statistics and model selection see [57, 58]. If log(B12) is larger
than the unity, the data slightly favours model M1, if the contrary occurs (log(B12) is smaller
than the unity), the data favours model M2. The table 2 contains the strength of evidence as
the Jeffreys scale indicates [59].

5 Results

Table 3 displays the parameter estimation obtained from the NS, the log (E) and the −2 lnL,
for the cases 2.1 and 2.2; the mean values are reported with 1σ confidence level. The −2 lnL
and the log (E), in table 3, show that the cases where the contribution of only the ground
state (ψ100) is present have a better fit than the cases with only the excited state (ψ210) for
the galaxy sample. Also, it is noticeable that for all galaxies, the mass of the scalar field (ma)
is bigger for the excited state than for the ground state.
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logB12 Strength
<1.0 Inconclusive (support M2)
1.0 Weak
2.5 Moderate
5.0 Strong
>5 Very strong

Table 2. Jeffrey’s scale to quantify the Bayes factor strength.

As mentioned in section 3, we present our results based on the radial extension of the
galaxies, they are divided in two sections: r < 10 kpc and r > 10 kpc; adding an additional
restriction for the data with a linear behavior, meaning that the data points look similar
to a straight line. The shaded regions correspond to the bounds for the scalar field mass
found in [50], as mentioned previously. This classification is shown in figure 4 and 5, for
the independent cases, ψ100 and ψ210, respectively. Here we notice that most of the galaxies
with r < 10 kpc tend to have bigger masses while the galaxies with r > 10 kpc tend to prefer
lighter masses. An important case raises in these contour plots, the galaxy UGC11616 has a
radial extension of r = 9.6 kpc, due to the proximity to the r = 10 kpc value, it follows the
r > 10 kpc behavior. On the other hand, the galaxy data with linear behavior and r < 10 kpc
are highly correlated on the free parameters in the ground state case (ψ100), this correlation
seems to be broken on the excited state case (ψ210).

The table 4 contains the parameter constraints, the log (E) and the −2 lnL for the
multi-state case (2.3). The mean values are reported along with the 1σ confidence level. The
contour plots related with these results are shown in figure 6, where we have followed the
classification mentioned before. The galaxies followed the same trend as the independent
cases, those with r < 10 kpc tended to have bigger masses while the galaxies with r > 10 kpc
tended to prefer lighter masses. For the galaxies with linear behavior the correlation seemed
to be diminished between ma and ε. Although, for all galaxies, the correlation still remains
between ma and the central amplitude of the first state (ψ100(0)), as we can see in figure 7. To
see the seventeen triangle plots for this case and the independent cases, see the repository.1

The plots in figure 9 show the parameter estimation results reported in table 4 at 1σ and
2σ as the gray color bar shows. We can observe that most galaxies have an interesting behavior
regarding the contributions from each state to the total rotational curve (dark blue line), where
the blue line corresponds to the ground state (ψ100) shows a predominant contribution, ψ210
(green line) contributes less than ψ320 (orange line). Both of them contribute to the larger ra-
dius while the ground state (ψ100) remains in the center, suggesting that the ψ210 contribution
is closer to zero. One can notice that galaxy UGC11583, one of the smallest with a r = 1.5 kpc
radial extension has a different contribution from each state, where ψ210 is the predominant
one as ψ320 has a smaller amplitude. Although we obtain an acceptable parameter inference
for all the data sample according to the gray contours, we can observe that rotational curves
for galaxies UGC11648 and UGC11748 the multi-state case does not fit the data too well. It
is important to mention that unlike the NS results for the independent cases where the conver-
gence is clear, in the multi-state case, specifically for the central amplitudes of each state the
convergence is not so clear and particularly the ground state central amplitude (ψ100(0)) seems

1https://github.com/atalianb/Triangle_plots_ell_boson_stars.
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Figure 4. 2D marginalized posteriors distributions of the free parameters for the ground state case
(ψ100). The dashed vertical line represents ma = 1.11× 10−23 eV/c2 needed to have a cut-off in the
power spectrum [7]. The gray band represents the bounds for the mass found in [50]. Left plot contains
all the galaxies with r < 10 kpc. Middle plot: all the galaxies with r > 10 kpc. Right plot: linear
behavior, the three galaxies have r < 10 kpc and they are not included in the left plot.
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Figure 5. 2D marginalized posteriors distributions of the free parameters for the excited state case
(ψ210). The vertical dashed line represents the ma = 1.11× 10−23 eV/c2 needed to have a cut-off in
the power spectrum [7]. The gray band represents the bounds for the mass found in [50]. Left plot
contains all the galaxies with r < 10 kpc. Middle plot: all the galaxies with r > 10 kpc. Right plot:
linear behavior, the three galaxies have r < 10 kpc and they are not included in the left plot.

to have a boundary that corresponds to the prior upper limit, logψ100(0) = 0. The results for
the NS used to obtain the plots and the plots themselves can be consulted in the repository.2

In table 5, the AIC, BIC, log(B12) and −2 lnL are reported for each case. The AIC and
BIC values for the three cases are similar with a noticeable decrease for the ground state. As
for the −2 lnL value, it is noticed that for all galaxies is bigger for the excited state (ψ210)
and the multi-state case smaller than the ground state, except for galaxy UGC11648 with
a small increase. Particularly, the Bayes factor for each galaxy is represented in figure 8,
where the shaded regions correspond to the strength in Jeffrey’s scale mentioned in table 2.
Galaxies with an asterisk (∗) have smaller log (B12) for the ψ210 case and those (UGC11748)
with a plus marker (+) have bigger log (B12) for the multi-state case, that doesn’t appear in
the figure and can be consulted in table 5. The position of the blue dots indicate that most
galaxies prefer the ground state rather than the excited state ψ210, except for UGC11583 and
ESO1200211 that seem to slightly prefer the excited state. On the other hand, the green
stars position suggest that the data moderately favours the multi-state case even though the
number of free parameters is bigger compare to the ground state. Some galaxies stand out,
UGC11616 with a log (B12) = −12.40 that supports the ground state and, galaxies UGC11648
and UGC11454 strongly supporting the multi-state case.

2https://github.com/atalianb/fgivenx_plots.
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6 Conclusions and discussion

This work analyzed the viability of `-boson stars as a dark matter component in the rotational
curves, using bayesian statistics tools such as the NS along with the Bayes factor, together
with the information criteria to know which case the data favours, being the multi-state case.
Seventeen LBSG were analyzed taking into account three `-boson stars cases, ground state,
which was taken as the base model to calculate the Bayes factor, a single excited state and
multi-states. In summary all galaxies prefer to be made up of multi-states as figure 8 suggests.
The plot’s contours in figure 9 confirmed what the Bayes factor told us about the data, by
obtaining a good parameter inference with the multi-state case. Although, there are some
galaxies like UGC11648 and UGC11748, that are barely fitted but clearly they don’t follow
the model behavior. Additionally, it is noticed that for most galaxies the main contribution
to the total rotational curve (dark blue line) is by the ground state (ψ100, blue line) and the
second excited state (ψ210, orange line), this could be due to the spherical system assumption,
meaning that more studies in this direction need to be done by solving the multi-state axial
system of equations presented in [39]. Furthermore, it is important to mention that by adding
more states and therefore, increasing the free parameters, the scalar field mass tends to
become slightly bigger than the ground state, this could be seen in the first columns of the
tables 3 and 4. Although it doesn’t satisfy the constrains by Lyman-α [14, 15].
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Figure 9. Rotational curve for each galaxy with the parameter estimation obtained from the NS.
The contour lines indicate the accuracy of the parameter estimation at 1σ and 2σ as the gray color
bar shows. The blue dark line indicates the resulting rotational curve, the blue light line indicates
the contribution of the state ψ100, the green the contribution of the state ψ210 and the orange the
contribution of ψ320.
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Although, the NS convergence for the multi-state case is not clear compared to the
independent results, specially for the ground state central amplitude (ψ100(0)) presenting an
upper limit boundary at log (ψ100(0)) = 0, that could be interpreted as a necessity to extend
the prior for this parameter. It can always be found a way to reparameterized it.

One of the main results that we can observe in figure 4, figure 5 and figure 6, is that the
correlation between the parameters ma and ε seemed to be broken for the excited state (ψ210)
and the multi-state case. However, by looking at the posteriors in the triangle plots (figure 7
and those in the repository3), we can see that this correlation between parameters remains,
with ε and the ground state central amplitude, ψ100(0).

Those correlations between parameters for dark matter density profiles for rotational
curves have been studied by [60], where based on the mass discrepancy acceleration relation
(MDAR) and that any DM halo will have a maximum acceleration they could break the
correlation by a reparametrization, having just one free parameter. Another approach that
could take place in the study to break the correlation between parameters is a reparametrization
with the number of particles in each state by fixing the total number of particles and adding
the ratios of the number of particles in different states with respect to the ground state [36]
to the boundary conditions of the shooting method. However, by trying this approach we
observed that the posterior distribution functions for the ratios of the number of particles
where almost flat. Therefore, it is necessary to perform more studies in this regard, taking
into account the approach in [60].

Perhaps, the two approaches mentioned above and adding the self interaction term in
the potential could lead to a complete new analysis and to obtain a way that constrains the
number of states.

It has been mentioned in the literature by [61] and references therein, that adding
more states could lead to a better parameter estimation but also, it is more expensive
computationally. Because of this last reason we truncate the expansion to the third term,
however we do a less expensive analysis, a χ2 fit (see A), adding a fourth term in the expansion,
for ESO3050090 and UGC11616 rotational curves. We find a better fitting and an important
contribution to larger radius in the rotational curve extension by the latest state. We obtained
χ2 = 0.31 and χ2 = 10.79 for ESO3050090 and UGC11616 respectively. Which compared to
the maximum likelihood obtained in the multistate case (i.e. where the expansion is truncated
to the third term) is smaller. Additionally, the value of the scalar field mass is slightly bigger
(see table 6). One can notice that in this case, the states that contribute the most to the
rotational curve are the ground state (ψ100, light blue line) and the last excited state (ψ430,
pink line), as we can observe in the figure 10. While a physical explanation for this is still to
be found, an statistical one could be obtain by comparing the AIC and BIC.

By comparing the AIC and BIC, respectively, it is observed a small increment in their
values when including the ψ430 terms (see table 7), this could indicate that for the galaxy’s
sub-sample the multistate case is favored. Although, a more detailed analysis is needed in
that direction and will be addressed in an upcoming work altogether with an improvement in
the code optimization.

3https://github.com/atalianb/Triangle_plots_ell_boson_stars.
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Figure 10. Rotational curves for ESO3050090 and UGC11616 with the parameter estimation obtained
from the χ2. The blue dark line indicates the resulting rotaitonal curve, the blue light line indicates
the contribution of the state ψ100, the green the contribution of the ψ210, the orange the contribution
of ψ320 and the pink the contribution of ψ430.
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A χ2 results with ψ100,ψ210,ψ320 and ψ430

In this section we show the results obtained with the χ2 truncating the expansion in the
fourth term in the system of equation SP (2.4a)–(2.4b), meaning that we are adding the terms
and equations corresponding to ψ430, the free parameters are ma, ε, ψ100(0), ψ210(0), ψ320(0)
and ψ430(0). Where we have chosen the galaxy ESO3050090 and UGC11616 due to the value
obtained for the maximum likelihood in the multistate case, described previously and their
radial extension. The table 6 displays the parameter estimation obtained from the χ2 for the
galaxies ESO3050090 and UGC11616, and the table 7 contains the values for the AIC, BIC
and χ2.
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Galaxy log(ma) log(ε) log(ψ100(0)) log(ψ210(0)) log(ψ320(0)) log(ψ430(0))
ESO3050090 −22.66 −3.71 −6.30×10−3 −1.46 −1.40 −0.60
UGC11616 −23.24 −3.40 0.27 −2.74 −1.30 −0.59

Table 6. Parameter estimation for ESO3050090 and UGC11616 with the χ2 for the multistate case
with three excited states. The free parameters log (ma) [eV/c2], log(ε), log (ψ100(0)), log (ψ210(0)),
log (ψ320(0)) and log (ψ430(0)).

Galaxy AIC BIC χ2

ESO3050090 21.64 16.95 0.31
UGC11616 36.79 26.18 10.79

Table 7. Results for ESO3050090 and UGC11616 for the multistate case with three excited states.AIC,
BIC and χ2.

References

[1] V.C. Rubin and W.K. Ford Jr., Rotation of the Andromeda Nebula from a Spectroscopic Survey
of Emission Regions, Astrophys. J. 159 (1970) 379 [INSPIRE].

[2] I. Pahwa and K. Saha, Structural properties of faint low-surface-brightness galaxies, Mon. Not.
Roy. Astron. Soc. 478 (2018) 4657 [arXiv:1805.00499].

[3] W.J.G. de Blok, The Core-Cusp Problem, Adv. Astron. 2010 (2010) 789293 [arXiv:0910.3538]
[INSPIRE].

[4] F.C. van den Bosch and R.A. Swaters, Dwarf galaxy rotation curves and the core problem of dark
matter halos, Mon. Not. Roy. Astron. Soc. 325 (2001) 1017 [astro-ph/0006048] [INSPIRE].

[5] S.Y. Kim, A.H.G. Peter and J.R. Hargis, Missing Satellites Problem: Completeness Corrections
to the Number of Satellite Galaxies in the Milky Way are Consistent with Cold Dark Matter
Predictions, Phys. Rev. Lett. 121 (2018) 211302 [arXiv:1711.06267] [INSPIRE].

[6] J.S. Bullock and M. Boylan-Kolchin, Small-Scale Challenges to the ΛCDM Paradigm, Ann. Rev.
Astron. Astrophys. 55 (2017) 343 [arXiv:1707.04256] [INSPIRE].

[7] T. Matos and L.A. Ureña-López, A Further analysis of a cosmological model of quintessence and
scalar dark matter, Phys. Rev. D 63 (2001) 063506 [astro-ph/0006024] [INSPIRE].

[8] R. Hlozek, D. Grin, D.J.E. Marsh and P.G. Ferreira, A search for ultralight axions using
precision cosmological data, Phys. Rev. D 91 (2015) 103512 [arXiv:1410.2896] [INSPIRE].

[9] L.A. Ureña-López and A.X. González-Morales, Towards accurate cosmological predictions for
rapidly oscillating scalar fields as dark matter, JCAP 07 (2016) 048 [arXiv:1511.08195]
[INSPIRE].

[10] H.-Y. Schive, T. Chiueh and T. Broadhurst, Cosmic Structure as the Quantum Interference of a
Coherent Dark Wave, Nature Phys. 10 (2014) 496 [arXiv:1406.6586] [INSPIRE].

[11] J.F. Navarro, C.S. Frenk and S.D.M. White, The Structure of cold dark matter halos, Astrophys.
J. 462 (1996) 563 [astro-ph/9508025] [INSPIRE].

[12] A.X. González-Morales, D.J.E. Marsh, J. Peñarrubia and L.A. Ureña-López, Unbiased
constraints on ultralight axion mass from dwarf spheroidal galaxies, Mon. Not. Roy. Astron. Soc.
472 (2017) 1346 [arXiv:1609.05856] [INSPIRE].

[13] A. Pozo et al., Detection of a universal core-halo transition in dwarf galaxies as predicted by
Bose-Einstein dark matter, arXiv:2010.10337 [INSPIRE].

– 21 –

https://doi.org/10.1086/150317
https://inspirehep.net/literature/67059
https://doi.org/10.1093/mnras/sty1139
https://doi.org/10.1093/mnras/sty1139
https://arxiv.org/abs/1805.00499
https://doi.org/10.1155/2010/789293
https://arxiv.org/abs/0910.3538
https://inspirehep.net/literature/834404
https://doi.org/10.1046/j.1365-8711.2001.04456.x
https://arxiv.org/abs/astro-ph/0006048
https://inspirehep.net/literature/546151
https://doi.org/10.1103/PhysRevLett.121.211302
https://arxiv.org/abs/1711.06267
https://inspirehep.net/literature/1636933
https://doi.org/10.1146/annurev-astro-091916-055313
https://doi.org/10.1146/annurev-astro-091916-055313
https://arxiv.org/abs/1707.04256
https://inspirehep.net/literature/1609986
https://doi.org/10.1103/PhysRevD.63.063506
https://arxiv.org/abs/astro-ph/0006024
https://inspirehep.net/literature/528167
https://doi.org/10.1103/PhysRevD.91.103512
https://arxiv.org/abs/1410.2896
https://inspirehep.net/literature/1321643
https://doi.org/10.1088/1475-7516/2016/07/048
https://arxiv.org/abs/1511.08195
https://inspirehep.net/literature/1406543
https://doi.org/10.1038/nphys2996
https://arxiv.org/abs/1406.6586
https://inspirehep.net/literature/1303097
https://doi.org/10.1086/177173
https://doi.org/10.1086/177173
https://arxiv.org/abs/astro-ph/9508025
https://inspirehep.net/literature/406997
https://doi.org/10.1093/mnras/stx1941
https://doi.org/10.1093/mnras/stx1941
https://arxiv.org/abs/1609.05856
https://inspirehep.net/literature/1487261
https://arxiv.org/abs/2010.10337
https://inspirehep.net/literature/1824141


J
C
A
P
0
9
(
2
0
2
3
)
0
3
1

[14] V. Iršič et al., First constraints on fuzzy dark matter from Lyman-α forest data and
hydrodynamical simulations, Phys. Rev. Lett. 119 (2017) 031302 [arXiv:1703.04683] [INSPIRE].

[15] M. Nori et al., Lyman α forest and non-linear structure characterization in Fuzzy Dark Matter
cosmologies, Mon. Not. Roy. Astron. Soc. 482 (2019) 3227 [arXiv:1809.09619] [INSPIRE].

[16] L.M. Fernández-Hernández, A. Montiel and M.A. Rodríguez-Meza, Galaxy rotation curves using
a non-parametric regression method: core, cuspy and fuzzy scalar field dark matter models, Mon.
Not. Roy. Astron. Soc. 488 (2019) 5127 [arXiv:1809.06875] [INSPIRE].

[17] M. Colpi, S.L. Shapiro and I. Wasserman, Boson Stars: Gravitational Equilibria of
Selfinteracting Scalar Fields, Phys. Rev. Lett. 57 (1986) 2485 [INSPIRE].

[18] J. Balakrishna, E. Seidel and W.-M. Suen, Dynamical evolution of boson stars. 2. Excited states
and selfinteracting fields, Phys. Rev. D 58 (1998) 104004 [gr-qc/9712064] [INSPIRE].

[19] F.X.L. Cedeño, A.X. González-Morales and L.A. Ureña-López, Cosmological signatures of
ultralight dark matter with an axionlike potential, Phys. Rev. D 96 (2017) 061301
[arXiv:1703.10180] [INSPIRE].

[20] F.X. Linares Cedeño, A.X. González-Morales and L.A. Ureña-López, Ultralight DM bosons with
an axion-like potential: scale-dependent constraints revisited, JCAP 01 (2021) 051
[arXiv:2006.05037] [INSPIRE].

[21] M.O.C. Pires and J.C.C. de Souza, Galactic cold dark matter as a Bose-Einstein condensate of
WISPs, JCAP 11 (2012) 024 [Erratum ibid. 11 (2013) E01] [arXiv:1208.0301] [INSPIRE].

[22] N. Banik and P. Sikivie, Axions and the Galactic Angular Momentum Distribution, Phys. Rev. D
88 (2013) 123517 [arXiv:1307.3547] [INSPIRE].

[23] D.J. Kaup, Klein-Gordon Geon, Phys. Rev. 172 (1968) 1331 [INSPIRE].

[24] R. Ruffini and S. Bonazzola, Systems of selfgravitating particles in general relativity and the
concept of an equation of state, Phys. Rev. 187 (1969) 1767 [INSPIRE].

[25] S.L. Liebling and C. Palenzuela, Dynamical boson stars, Living Rev. Rel. 26 (2023) 1
[arXiv:1202.5809] [INSPIRE].

[26] L. Visinelli, Boson stars and oscillatons: A review, Int. J. Mod. Phys. D 30 (2021) 2130006
[arXiv:2109.05481] [INSPIRE].

[27] M. Alcubierre et al., Boson stars and their relatives in semiclassical gravity, Phys. Rev. D 107
(2023) 045017 [arXiv:2212.02530] [INSPIRE].

[28] E. Seidel and W.-M. Suen, Dynamical Evolution of Boson Stars. 1. Perturbing the Ground State,
Phys. Rev. D 42 (1990) 384 [INSPIRE].

[29] A. Bernal and F.S. Guzmán, Scalar Field Dark Matter: non-spherical collapse and late time
behavior, Phys. Rev. D 74 (2006) 063504 [astro-ph/0608523] [INSPIRE].

[30] I. Alvarez-Ríos, F.S. Guzmán and P.R. Shapiro, Effect of boundary conditions on structure
formation in fuzzy dark matter, Phys. Rev. D 107 (2023) 123524 [arXiv:2304.03419] [INSPIRE].

[31] F.S. Guzmán, The three dynamical fates of Boson Stars, Rev. Mex. Fis. 55 (2009) 321
[arXiv:1907.08193] [INSPIRE].

[32] A. Bernal and C. Soto-Campos, Modeling Galactic Rotation Curves with ultra-light scalar field
dark matter, J. Phys. Conf. Ser. 640 (2015) 012056 [INSPIRE].

[33] V. Lora et al., On the mass of ultra-light bosonic dark matter from galactic dynamics, JCAP 02
(2012) 011 [arXiv:1110.2684] [INSPIRE].

[34] F.S. Guzmán and L.A. Ureña-López, Newtonian collapse of scalar field dark matter, Phys. Rev.
D 68 (2003) 024023 [astro-ph/0303440] [INSPIRE].

– 22 –

https://doi.org/10.1103/PhysRevLett.119.031302
https://arxiv.org/abs/1703.04683
https://inspirehep.net/literature/1517430
https://doi.org/10.1093/mnras/sty2888
https://arxiv.org/abs/1809.09619
https://inspirehep.net/literature/1695679
https://doi.org/10.1093/mnras/stz1969
https://doi.org/10.1093/mnras/stz1969
https://arxiv.org/abs/1809.06875
https://inspirehep.net/literature/1694743
https://doi.org/10.1103/PhysRevLett.57.2485
https://inspirehep.net/literature/238291
https://doi.org/10.1103/PhysRevD.58.104004
https://arxiv.org/abs/gr-qc/9712064
https://inspirehep.net/literature/452357
https://doi.org/10.1103/PhysRevD.96.061301
https://arxiv.org/abs/1703.10180
https://inspirehep.net/literature/1520706
https://doi.org/10.1088/1475-7516/2021/01/051
https://arxiv.org/abs/2006.05037
https://inspirehep.net/literature/1800493
https://doi.org/10.1088/1475-7516/2012/11/024
https://arxiv.org/abs/1208.0301
https://inspirehep.net/literature/1124564
https://doi.org/10.1103/PhysRevD.88.123517
https://doi.org/10.1103/PhysRevD.88.123517
https://arxiv.org/abs/1307.3547
https://inspirehep.net/literature/1242427
https://doi.org/10.1103/PhysRev.172.1331
https://inspirehep.net/literature/54295
https://doi.org/10.1103/PhysRev.187.1767
https://inspirehep.net/literature/54980
https://doi.org/10.1007/s41114-023-00043-4
https://arxiv.org/abs/1202.5809
https://inspirehep.net/literature/1090710
https://doi.org/10.1142/S0218271821300068
https://arxiv.org/abs/2109.05481
https://inspirehep.net/literature/1921004
https://doi.org/10.1103/PhysRevD.107.045017
https://doi.org/10.1103/PhysRevD.107.045017
https://arxiv.org/abs/2212.02530
https://inspirehep.net/literature/2611098
https://doi.org/10.1103/PhysRevD.42.384
https://inspirehep.net/literature/27230
https://doi.org/10.1103/PhysRevD.74.063504
https://arxiv.org/abs/astro-ph/0608523
https://inspirehep.net/literature/724546
https://doi.org/10.1103/PhysRevD.107.123524
https://arxiv.org/abs/2304.03419
https://inspirehep.net/literature/2650057
https://arxiv.org/abs/1907.08193
https://inspirehep.net/literature/1744619
https://doi.org/10.1088/1742-6596/640/1/012056
https://inspirehep.net/literature/1395564
https://doi.org/10.1088/1475-7516/2012/02/011
https://doi.org/10.1088/1475-7516/2012/02/011
https://arxiv.org/abs/1110.2684
https://inspirehep.net/literature/939547
https://doi.org/10.1103/PhysRevD.68.024023
https://doi.org/10.1103/PhysRevD.68.024023
https://arxiv.org/abs/astro-ph/0303440
https://inspirehep.net/literature/615403


J
C
A
P
0
9
(
2
0
2
3
)
0
3
1

[35] T. Matos and L.A. Ureña-López, Flat rotation curves in scalar field galaxy halos, Gen. Rel. Grav.
39 (2007) 1279 [INSPIRE].

[36] L.A. Ureña-López and A. Bernal, Bosonic gas as a Galactic Dark Matter Halo, Phys. Rev. D 82
(2010) 123535 [arXiv:1008.1231] [INSPIRE].

[37] A. Bernal, J. Barranco, D. Alic and C. Palenzuela, Multi-state Boson Stars, Phys. Rev. D 81
(2010) 044031 [arXiv:0908.2435] [INSPIRE].

[38] M. Alcubierre et al., `-Boson stars, Class. Quant. Grav. 35 (2018) 19LT01 [arXiv:1805.11488]
[INSPIRE].

[39] F.S. Guzmán and L.A. Ureña-López, Gravitational atoms: General framework for the
construction of multistate axially symmetric solutions of the Schrödinger-Poisson system, Phys.
Rev. D 101 (2020) 081302 [arXiv:1912.10585] [INSPIRE].

[40] M. Alcubierre et al., On the linear stability of `-boson stars with respect to radial perturbations,
Class. Quant. Grav. 38 (2021) 174001 [arXiv:2103.15012] [INSPIRE].

[41] M. Alcubierre et al., Dynamical evolutions of `-boson stars in spherical symmetry, Class. Quant.
Grav. 36 (2019) 215013 [arXiv:1906.08959] [INSPIRE].

[42] A.A. Roque, E.C. Nambo and O. Sarbach, Radial linear stability of nonrelativistic `-boson stars,
Phys. Rev. D 107 (2023) 084001 [arXiv:2302.00717] [INSPIRE].

[43] F.S. Guzmán, Stability of multistate configurations of fuzzy dark matter, Astron. Nachr. 342
(2021) 398 [INSPIRE].

[44] N. Sanchis-Gual et al., Multifield, Multifrequency Bosonic Stars and a Stabilization Mechanism,
Phys. Rev. Lett. 126 (2021) 241105 [arXiv:2103.12136] [INSPIRE].

[45] C.G. Boehmer and T. Harko, Can dark matter be a Bose-Einstein condensate?, JCAP 06 (2007)
025 [arXiv:0705.4158] [INSPIRE].

[46] G. Bothun, C. Impey and S. McGaugh, Low-Surface-Brightness Galaxies: Hidden Galaxies
Revealed, Publ. Astron. Soc. Pac. 109 (1997) 745.

[47] S.S. McGaugh, V.C. Rubin and W.J.G. de Blok, High-resolution rotation curves of low surface
brightness galaxies: Data, Astron. J. 122 (2001) 2381 [astro-ph/0107326] [INSPIRE].

[48] W.J.G. de Blok, S.S. McGaugh and V.C. Rubin, High-Resolution Rotation Curves of Low
Surface Brightness Galaxies. II. Mass Models, Astron. J. 122 (2001) 2396 [INSPIRE].

[49] F.S. Guzmán and F.D. Lora-Clavijo, Rotation curves of ultralight BEC dark matter halos with
rotation, Gen. Rel. Grav. 47 (2015) 21 [arXiv:1501.06553] [INSPIRE].

[50] T. Bernal, L.M. Fernández-Hernández, T. Matos and M.A. Rodríguez-Meza, Rotation curves of
high-resolution LSB and SPARC galaxies with fuzzy and multistate (ultralight boson) scalar field
dark matter, Mon. Not. Roy. Astron. Soc. 475 (2018) 1447 [arXiv:1701.00912] [INSPIRE].

[51] S. Koposov et al., joshspeagle/dynesty: v1.2.3, https://zenodo.org/record/6609296
[DOI:10.5281/ZENODO.6609296].

[52] F. Feroz, M.P. Hobson and M. Bridges, MultiNest: an efficient and robust Bayesian inference
tool for cosmology and particle physics, Mon. Not. Roy. Astron. Soc. 398 (2009) 1601
[arXiv:0809.3437] [INSPIRE].

[53] W. Handley, fgivenx: A Python package for functional posterior plotting, J. Open Source Softw. 3
(2018) 849.

[54] H. Akaike, Information Theory and an Extension of the Maximum Likelihood Principle, Springer
Science+Business Media (1998) [DOI:10.1007/978-1-4612-1694-0_15] [INSPIRE].

[55] N. Sugiura, Further analysis of the data by Akaike’s information criterion and the finite
corrections, Comm. Stat. Theor. Meth. 7 (1978) 13.

– 23 –

https://doi.org/10.1007/s10714-007-0470-y
https://doi.org/10.1007/s10714-007-0470-y
https://inspirehep.net/literature/758947
https://doi.org/10.1103/PhysRevD.82.123535
https://doi.org/10.1103/PhysRevD.82.123535
https://arxiv.org/abs/1008.1231
https://inspirehep.net/literature/864656
https://doi.org/10.1103/PhysRevD.81.044031
https://doi.org/10.1103/PhysRevD.81.044031
https://arxiv.org/abs/0908.2435
https://inspirehep.net/literature/828928
https://doi.org/10.1088/1361-6382/aadcb6
https://arxiv.org/abs/1805.11488
https://inspirehep.net/literature/1675292
https://doi.org/10.1103/PhysRevD.101.081302
https://doi.org/10.1103/PhysRevD.101.081302
https://arxiv.org/abs/1912.10585
https://inspirehep.net/literature/1772275
https://doi.org/10.1088/1361-6382/ac0160
https://arxiv.org/abs/2103.15012
https://inspirehep.net/literature/1854205
https://doi.org/10.1088/1361-6382/ab4726
https://doi.org/10.1088/1361-6382/ab4726
https://arxiv.org/abs/1906.08959
https://inspirehep.net/literature/1740875
https://doi.org/10.1103/PhysRevD.107.084001
https://arxiv.org/abs/2302.00717
https://inspirehep.net/literature/2628995
https://doi.org/10.1002/asna.202113941
https://doi.org/10.1002/asna.202113941
https://inspirehep.net/literature/1853909
https://doi.org/10.1103/PhysRevLett.126.241105
https://arxiv.org/abs/2103.12136
https://inspirehep.net/literature/1853032
https://doi.org/10.1088/1475-7516/2007/06/025
https://doi.org/10.1088/1475-7516/2007/06/025
https://arxiv.org/abs/0705.4158
https://inspirehep.net/literature/751655
https://doi.org/10.1086/133941
https://doi.org/10.1086/323448
https://arxiv.org/abs/astro-ph/0107326
https://inspirehep.net/literature/576045
https://doi.org/10.1086/323450
https://inspirehep.net/literature/565454
https://doi.org/10.1007/s10714-015-1865-9
https://arxiv.org/abs/1501.06553
https://inspirehep.net/literature/1341219
https://doi.org/10.1093/mnras/stx3208
https://arxiv.org/abs/1701.00912
https://inspirehep.net/literature/1507824
https://zenodo.org/record/6609296
https://doi.org/10.5281/ZENODO.6609296
https://doi.org/10.1111/j.1365-2966.2009.14548.x
https://arxiv.org/abs/0809.3437
https://inspirehep.net/literature/797103
https://doi.org/10.21105/joss.00849
https://doi.org/10.21105/joss.00849
https://doi.org/10.1007/978-1-4612-1694-0_15
https://inspirehep.net/literature/1795438
https://doi.org/10.1080/03610927808827599


J
C
A
P
0
9
(
2
0
2
3
)
0
3
1

[56] G. Schwarz, Estimating the Dimension of a Model, Annals Statist. 6 (1978) 461 [INSPIRE].
[57] L.E. Padilla, L.O. Tellez, L.A. Escamilla and J.A. Vazquez, Cosmological Parameter Inference

with Bayesian Statistics, Universe 7 (2021) 213 [arXiv:1903.11127] [INSPIRE].
[58] R. Trotta, Bayes in the sky: Bayesian inference and model selection in cosmology, Contemp.

Phys. 49 (2008) 71 [arXiv:0803.4089] [INSPIRE].
[59] H. Jeffreys, Theory of Probability, Oxford University Press (1961).
[60] L.A. Ureña-López, V.H. Robles and T. Matos, Mass discrepancy-acceleration relation: A

universal maximum dark matter acceleration and implications for the ultralight scalar dark
matter model, Phys. Rev. D 96 (2017) 043005 [arXiv:1702.05103] [INSPIRE].

[61] A. Hernández-Almada and M.A. García-Aspeitia, Multistate scalar field dark matter and its
correlation with galactic properties, Int. J. Mod. Phys. D 27 (2017) 1850031
[arXiv:1711.01388] [INSPIRE].

– 24 –

https://inspirehep.net/literature/1625827
https://doi.org/10.3390/universe7070213
https://arxiv.org/abs/1903.11127
https://inspirehep.net/literature/1726946
https://doi.org/10.1080/00107510802066753
https://doi.org/10.1080/00107510802066753
https://arxiv.org/abs/0803.4089
https://inspirehep.net/literature/782236
https://doi.org/10.1103/PhysRevD.96.043005
https://arxiv.org/abs/1702.05103
https://inspirehep.net/literature/1514001
https://doi.org/10.1142/S0218271818500311
https://arxiv.org/abs/1711.01388
https://inspirehep.net/literature/1634540

	Introduction
	Model
	Ground state: psi(100)
	Excited state: psi(210)
	Multi-states: psi(100), psi(210), psi(320)
	The characteristics of the solutions

	Data
	Analysis
	Akaike Information Criterion (AIC)
	Bayesian Information Criterion (BIC)
	Bayes factor

	Results
	Conclusions and discussion
	chi**(2) results with psi(100),psi(210),psi(320) and psi(430)

