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The dynamics of a cosmological model of dark matter and dark energy represented by a scalar field

endowed with a cosh-like potential plus a cosmological constant is investigated in detail. By studying the

appropriate phase space of the equations of motion, it is shown that a standard evolution of the Universe is

recovered for appropriate values of the free parameters, and that the only late-time attractor is always the

de Sitter solution. We also discuss the appearance of scalar field oscillations corresponding to dark matter

behavior.
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I. INTRODUCTION

One of the greatest mysteries of modern cosmology
doubtless is the nature of dark matter (DM) [1,2]; around
23% of the matter of the Universe is attractive, but of
unknown nature. The most accepted DM candidates are
particles from the minimal supersymmetric standard model
[3,4]. The paradigm arising from this is the cold dark
matter (CDM) model that has been proved at the cosmo-
logical level with great success. For example, it predicts
very well the formation and clustering of galaxies [5].

Nevertheless, some inconsistencies of the model appear
when compared with observations at the galactic level in
the last decade. Among other problems, the predicted
number of satellite galaxies around large galaxies is
much bigger than the observed one [6], and the DM density
profile at the center of galaxies seems to be less steep than
predicted [7].

Even though there have been several attempts to deal
with these inconsistencies [8], one compelling possibility
is that the DM particle is a scalar field [9]. The idea is
rooted in the fact that, for the sake of mathematical and
physical consistency, almost all the unified theories of
physics contain scalar fields as the simplest geometrical
objects; these appear with a plethora of names: Higgs,
inflatons, dilatons, scalerons, radions, etc. Moreover, the
discovery of the dark energy (DE) renewed the interest of
cosmologists in scalar fields (see [10] for a comprehensive
review).

In Ref. [9,11] some of us proposed that a scalar field
rolling down a convex self-interaction potential can be a
reasonable candidate for DM, calling this paradigm scalar
field dark matter (SFDM). This hypothesis has some nice
features. For instance, SFDM does not need extra assump-
tions to explain the flat DM profile in the centers of
galaxies [12], or the number of satellite galaxies around
the Milky Way [13].
The SFDM hypothesis has been investigated for a num-

ber of self-interaction potentials like the cosh-like
[11,14,15], and the quadratic ones [15,16], with the con-
sequent discovery of several exact solutions of cosmologi-
cal interest. However, within the cosmological context, a
full and detailed study of the dynamics of SFDM models,
to uncover their relevant asymptotic properties, is still
desirable.
The main goal of the present paper is, precisely, to study,

within the cosmological context and by means of the
dynamical systems tools, the asymptotic properties of the
SFDM model driven by a cosh-like potential. Several
relevant cosmological solutions will be correlated with
concepts like past and future attractors, signaling the way
the cosmic dynamics transits from early-time to intermedi-
ate, and then to late-time asymptotic states.
It is shown that the SFDM model driven by a cosh-like

potential with a cosmological constant term added can also
describe the cosmic dynamics of the standard model
�CDM. Due attention will be paid to the late-time oscil-
latory solution that can be associated with CDM behavior
in the model.
The paper has been organized as follows. The relevant

physical features of the model are discussed in Sec. II, and
then, in Sec. III, its mathematical features are specified.
The details of the dynamical systems study of the SFDM
model with a cosh-like potential are given in Sec. IV.
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Finally, in Sec. V, the physical discussion of the results and
brief conclusions of the study are provided. We use
throughout natural units �2 ¼ 8�G ¼ c ¼ 1.

II. SCALAR FIELD MODELWITH A COSH-LIKE
POTENTIAL

In a cosmological context, scalar fields with a cosh-like
self-interaction potential have been studied in [11,13,14].
In those references the following potential was investi-
gated,

Vð�Þ ¼ V0½coshð��Þ � 1��; (1)

where � and � are free parameters; for an instance of an
effective potential like this in string theory, see [17]. It was
shown, see also [18], that during the oscillatory phase
around the minimum of the potential in the case �> 0,
the virial theorem gives the following expression for the
mean equation of state:

h!�i ¼
�
p�

��

�
¼

� _�2 � 2V
_�2 þ 2V

�
¼ �� 1

�þ 1
: (2)

In consequence, for � ¼ 1 the scalar field behaves like
pressureless dust, h!�i ¼ 0. A scalar field potential with

this value of � could therefore play the role of CDM in the
Universe. For �< 1=2 this potential is a good candidate
for quintessence models of DE [10,14].

In this paper we will focus our attention, precisely, on a
cosh-like potential (1) with � ¼ 1 and a cosmological
constant term (�) added to it, i.e.,

Vð�Þ ¼ V0½coshð��Þ � 1� þ�: (3)

The latter ingredient is necessary to include DE in the
model, as long as oscillations of the scalar field around
the minimum of the cosh potential play the role of the
CDM.

The � term can also be thought of as part of the scalar
field Lagrangian (for instance, as a way to introduce the
quantum effects of the scalar field [19]), so that the result-
ing picture may represent the unification of DM and DE
with a single field, a bit in the spirit discussed in [20]. We
shall call it just the SFDM for short, implicitly assuming
that DE is already part of the scalar field Lagrangian.

The expected dynamics of the model is the following
[13,14]. Initially, the energy density in the scalar field was
comparable to that of radiation at very early times, so that
the cosh-like potential (1) behaves as an exponential one of
the form Vð�Þ / expð��j�jÞ. Because of the properties of
the exponential potential [21], the scalar field approaches
the so-called scaling solution, for which it redshifts exactly
as the then dominant radiation fluid.

At later times the form of Vð�Þ changes to quadratic,
resulting in rapid oscillations of the scalar field around
� ¼ 0; at this stage the scalar field equation of state
mimics that of CDM. For reasonable values of the �

term in the potential, the late-time dynamics should be
that of the standard �CDM model.

III. MATHEMATICAL FEATURES OF THEMODEL

We start with a Friedmann-Robertson-Walker spacetime
with flat spatial sections, filled with a mixture of two fluids:
(i) a perfect fluid of ordinary matter with density �� and

barotropic index 0 � � � 2 (� ¼ 1 for dust, � ¼ 4=3 for
radiation, etc.) and (ii) a scalar field cold dark matter

component with energy density �� ¼ _�2=2þ Vð�Þ and
parametric pressure p� ¼ _�2=2� Vð�Þ. The relevant

cosmological equations of the model are the following,

_H ¼ �1
2ð _�2 þ ���Þ; (4a)

€� ¼ �3H _�� dV

d�
; (4b)

_�� ¼ �3H���; (4c)

plus the Friedmann constraint:

H2 ¼ 1
3

�
�� þ 1

2
_�2 þ V

�
: (5)

As discussed in the former section, the potential Vð�Þ in
(3) already comprises both DM and DE. Since in this
model � � 0, the scalar field energy density performs
damped oscillations around Vð0Þ ¼ Vmin ¼ �, meaning
that the CDM energy density—accounted for by the oscil-
latory component—decreases until, eventually, the cosmo-
logical constant dominates.
In a natural scenario for cosmic dynamics, the scalar

field � runs from arbitrarily large negative values (j�j �
1) to vanishing ones (j�j � 1). In consequence, at early
times the dynamics is driven by an exponential potential

j�j � 1=� ) Vð�Þ � V0

2
e���; (6)

whereas at late times it is associated with a quadratic
potential plus a cosmological constant:

j�j � 1=� ) Vð�Þ � 1
2m

2�2 þ�; m2 � V0�
2:

(7)

IV. DYNAMICAL SYSTEMS STUDY

The dynamical systems tools offer a very useful ap-
proach to the study of the asymptotic properties of the
cosmological models [10,22]. In order to be able to apply
these tools one has to (unavoidably) follow the steps
enumerated below.
(i) First: to identify the phase space variables that allow

writing the system of cosmological equations in the
form of an autonomous system of ordinary differen-
tial equations (ODEs). There can be several different
possible choices; however, not all of them allow for

TONATIUH MATOS et al. PHYSICAL REVIEW D 80, 123521 (2009)

123521-2



the minimum possible dimensionality of the phase
space.

(ii) Next: with the help of the chosen phase space
variables, to build an autonomous system of ODEs
out of the original system of cosmological
equations.

(iii) Finally (sometimes a forgotten or underappreciated
step): to identify the phase space spanned by the
chosen variables, which is relevant to the cosmo-
logical model under study.

After this recipe one is ready to apply the standard tools of
dynamical systems.

A. Autonomous system of ODEs

Let us to introduce the following dimensionless phase
space variables in order to build an autonomous system out
of the system of cosmological equations (4c) and (5) [21]:

x �
_�ffiffiffi
6

p
H
; y �

ffiffiffiffi
V

p
ffiffiffi
3

p
H
: (8)

After this choice of phase space variables we can write the
following autonomous system of ODEs,

x0 ¼ �
ffiffiffi
3

2

s
@�V

V
y2 � 3xþ 3

2
xð2x2 þ ���Þ; (9a)

y0 ¼
ffiffiffi
3

2

s
@�V

V
xyþ 3

2
yð2x2 þ ���Þ; (9b)

where a prime denotes a derivative with respect to the time
variable � � lna (properly speaking, the number of e-
foldings of expansion), and the dimensionless density pa-
rameter �� � ��=3H

2 is given through the following

expression:

�� ¼ 1� x2 � y2; (10)

which is just a rewriting of the Friedmann constraint (5).
As long as one considers just constant (@�V ¼ 0) and

exponential self-interaction potentials (@�V=V ¼ const),

Eqs. (9a) and (9b) form a closed autonomous system of
ODEs. However, if one desires to go further and to con-
sider a wider class of self-interaction potentials beyond the
exponential one—as is the case in the present study—the
system of ODEs (9a) and (9b) is not a closed system of
equations anymore, since, in general, @�V=V is a function

of the scalar field itself.
Away out of this difficulty can be the method developed

in [23]. In order to be able to study arbitrary self-
interaction potentials, one needs to consider an extra vari-
able v that is related to the derivative of the self-interaction
potential through the following expression:

v� � �@�V=V ¼ �@� lnV: (11)

Hence, an extra equation,

v0 ¼ � ffiffiffi
6

p
�xv2ð�� 1Þ; (12)

has to be added to the above autonomous system of equa-
tions. The quantity � � V@2�V=ð@�VÞ2 in Eq. (12) is, in

general, a function of �. The idea behind the method in
[23] is that � can be written as a function of the variable v,
and, perhaps, of several constant parameters, as happens
for a wide class of scalar potentials.
Let us introduce a new function, fðvÞ ¼ v2ð�ðvÞ � 1Þ,

so that Eq. (12) can be written in the more compact form

v0 ¼ � ffiffiffi
6

p
�xfðvÞ: (13)

Equations (9a), (9b), (10), and (13) form a three-
dimensional—closed—autonomous system of ODEs,

x0 ¼
ffiffi
3
2

q
�y2v� 3xþ 3

2x½2x2 þ �ð1� x2 � y2Þ�; (14a)

y0 ¼ �
ffiffi
3
2

q
�xyvþ 3

2y½2x2 þ �ð1� x2 � y2Þ�; (14b)

v0 ¼ � ffiffiffi
6

p
�xfðvÞ; (14c)

that can be safely studied with the help of the standard
dynamical systems tools [22]. Notice the obvious symme-
try of the ODEs (14) under the simultaneous change of sign
of � and v: � ! ��, v ! �v.
An important limitation of the approach explained above

is related to the fact that, for potentials that vanish at the
minimum—such as, for instance V ¼ V0ðcoshð��Þ � 1Þ�,
or V ¼ m2�2=2—variable v diverges at this important
point of the late-time dynamics. However, thanks to the
presence of � in Eq. (3), such an issue is absent in the
present study, and the approach of [23] can be safely
applied.
In terms of the phase space variables x, y, and v, the

following relevant magnitudes, (i) the deceleration pa-
rameter q � �ð1þ _H=H2Þ and (ii) the effective equation

of state parameter of the scalar field �� � 2 _�2=ð _�2 þ
2VÞ, can be written, respectively, as

q ¼ �1þ 3
2ð2x2 þ ���Þ; (15a)

�� ¼ 2x2

x2 þ y2
: (15b)

B. Function fðvÞ for the cosh-like potential (3)
We now find function fðvÞ in Eq. (14), for the potential

(3). According to the definition (11), one has

vð�Þ ¼ sinhð��Þ
coshð��Þ � 1þ 	

; (16)

where 	 � �=V0. From (16) it follows, in particular, that

lim
�!�1

vð�Þ ¼ �1; lim
�!0

vð�Þ ¼ 0: (17)

The value 	 ¼ 1 is a critical one. Actually, the function
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(16) has an extremum whenever

coshð��extÞ ¼ 1

1� 	
) vext ¼ ½	ð2� 	Þ��1=2: (18)

The fact that the cosh function is always equal to or bigger
than unity means that vð�Þ has an extremum only if 0<
	< 1. It can be seen that v 2 ½�vext; vext�.

For 	 	 1 the function v is, at least, a monotonically
nondecreasing function as the scalar field takes values in
the interval �1<�<1; then, in this case v 2 ½�1; 1�.
We show in Fig. 1 some examples of function vð�Þ to
illustrate the different behaviors just discussed above.

The function vð�Þ in Eq. (16) can be inverted to have the
cosh function written in terms of v,

coshð��ðvÞÞ� ¼ ð	� 1Þv2 � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	ð	� 2Þv2

p
1� v2

; (19)

where the ‘‘�’’ signs refer to the two different branches of
coshð��Þ.
In order to illustrate the discussion above, in Fig. 2 we

plot the cosh function vs v for two sets of values of the
parameters of the potential. For the case	> 1, the positive
branch actually depicts the right (whole) cosh-function
behavior.
For the case 	< 1, instead, the whole cosh-function

behavior has to be covered by a union of that part of the
negative branch to the left of the vertical asymptote v ¼
�1, starting at infinitely large values of coshð��Þ (i.e.,
infinitely large negative values of �) until the gray curve
meets the dark one (the positive branch) at the union point

at v ¼ vmin ¼ �1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ð2� 	Þp

.
The same is true for positive values of �: the right cosh-

function behavior is depicted by a union of that part of the
negative branch to the right of the vertical asymptote at
v ¼ 1, starting at infinitely large positive values of�, until

it joints the positive branch at v ¼ vmax ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ð2� 	Þp

.
The range of intermediate-to-small values of � (including
the special point at � ¼ 0) is completely covered by the
positive branch of function (19).
For the potential (3), function fðvÞ appearing in

Eqs. (13) and (14) can be written in the following way:

f�ðvÞ ¼ �ð1� v2Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 	ð	� 2Þv2

p
	� 1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 	ð	� 2Þv2
p ; (20)

where the � signs refer to the positive and the negative
branches of function fðvÞ [directly related to the positive
and the negative branches of the cosh function in Eq. (19)],
respectively. In Eq. (20) the choice of the ‘‘þ’’ or the ‘‘�’’

–1

–0.5

0

0.5

1

v

–6 –4 –2 0 2 4 6
phi

FIG. 1. A plot of function vð�Þ for the chosen values of the
parameters of the potential � ¼ 1, 	 ¼ 10, darker curve; 	 ¼ 1,
dark-to-gray curve; and 	 ¼ 0:5, soft-gray curve.
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cosh

–0.6 –0.4 –0.2 0 0.2 0.4 0.6
v

–5

0

5

10

15

20

cosh

–1 –0.5 0 0.5 1
v

FIG. 2. A plot of function coshð��Þ vs v, for the chosen values of the free parameters of the potential (left, � ¼ 1, 	 ¼ 10; right,
� ¼ 1, 	 ¼ 0:5). Both branches of the cosh function, the positive (dark curve) and the negative one (gray line) are shown. Notice that,
for the second case (	< 1), the whole cosh-function behavior is depicted by a union of part of the negative and the entire positive
branches.
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sign is to be made simultaneously in the numerator and in
the denominator on the right-hand side. Hence, for in-
stance, for the positive branch of fðvÞ one has

fþðvÞ ¼ þð1� v2Þ ffiffiffiffiffiffi
. . .

p
	� 1þ ffiffiffiffiffiffi

. . .
p ; etc: (21)

It has to be emphasized that, while for values of the free
parameter 	 	 1 the positive branch fþðvÞ in Eq. (20) is
enough to depict the whole dynamics, for 0<	< 1, in-
stead, one needs to take into account both branches f�ðvÞ.

Actually, in the latter case the piece of the dynamics in
the v interval

1< jvj � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ð2� 	Þp (22)

is covered by the corresponding values of f�ðvÞ in
Eq. (20): f�ðjvj> 1Þ. The rest of the dynamics—including
the late-time behavior—is covered by the piece of the
positive branch lying in the interval jvj � 1: fþðjvj �
1Þ. In consequence, for 0<	< 1, the whole dynamics is
covered by

f0<	<1 ¼ f�ðjvj> 1Þ [ fþðjvj � 1Þ: (23)

To summarize, for 	 	 1 the cosmic dynamics driven
by potential (3) can be associated with the following three-
dimensional (compact) phase space, spanned by the vari-
ables x, y, and v (we take into account only expanding
cosmologies H 	 0),

�		1 ¼ fðx; y; vÞ: 0 � x2 þ y2 � 1; jxj � 1;

0 � y � 1; jvj � 1g; (24)

and we have to worry only about the positive branch of
fðvÞ in Eq. (20). Meanwhile, for 0<	< 1, the three-
dimensional (compact) phase space is given by

�0<	<1 ¼
�
ðx; y; vÞ: 0 � x2 þ y2 � 1; jxj � 1;

0 � y � 1; jvj � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ð2� 	Þp

�
; (25)

and depending on the piece of the dynamics one is inter-
ested in, one has to rely either on the negative branch of
Eq. (20), f�ðjvj> 1Þ (early-times-to-intermediate dynam-
ics), or on the positive branch, fþðjvj � 1Þ (late-time

dynamics), the whole dynamics being described by
f0<	<1 in Eq. (23).
In what follows, depending on the value of parameter 	,

we shall look for fixed points of the autonomous system
(14), with fðvÞ given, either by (i) the positive branch of
Eq. (20), within the phase space �		1 defined in Eq. (24),
whenever 	 	 1, or (ii) by f0<	<1 defined in Eq. (23),
within the phase space �0<	<1 defined in Eq. (25), if 0<
	< 1.

C. Equilibrium points and stability

The fixed points of the autonomous system (14), in the
phase space �		1 defined by Eq. (24) or in �0<	<1

defined by Eq. (25), are listed in Table I, while the eigen-
values of the corresponding linearization matrices are
shown in Table II.
In the case when the parameter 0<	< 1, by looking at

the definition of the function fðvÞ in Eq. (20), it might
seem that, in addition to the critical points in Table I, there
can be also equilibrium points associated with the values

v ¼ �1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ð2� 	Þp

. However, if one looks at Fig. 3, one

can see that at v ¼ �1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
	ð2� 	Þp

the derivative of the
function f0<	<1 in Eq. (23) is undefined, so that the linear
approach undertaken in this investigation is not valid any
more. At any rate, our numerical studies (see below)
indicate that the above points in phase space are not critical
points, so that we shall not include them in our analysis.
The main properties of the equilibrium points shown in

Tables I and II can be summarized as follows.
(i) The existence of the fluid-dominated solution, equi-

librium point P1, is independent of the value of
variable v, meaning that this phase of the cosmic
evolution is present at all times. However, the fluid-
dominated solution is always a saddle point.

(ii) The kinetic-energy-dominated solution, equilibrium

point P2, is decelerating. For � � ffiffiffi
6

p
it is the past

attractor for any phase space trajectory.
(iii) The scalar-field-dominated solution, equilibrium

point P3, exists whenever � � ffiffiffi
6

p
, and it is accel-

erating for � <
ffiffiffi
2

p
(decelerating otherwise). It is

always a saddle point.
(iv) The scaling solution, equilibrium point P4, exists

whenever � 	 ffiffiffiffiffiffi
3�

p
but it is always a saddle point.

This solution is correlated with a decelerated ex-

TABLE I. Properties of the fixed points for the autonomous system (14).

Pi x y v Existence �� �� �� q

P1 0 0 v Always 1 0 Undefined �1þ 3�=2
P2 �1 0 �1 Always 0 1 2 2

P3 �=
ffiffiffi
6

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2=6

p
1 �2 � 6 0 �1 �2=3 �1þ �2=2

P4

ffiffi
3
2

q
�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�ð2��Þ

2�2

q
�1 �2 	 3� 1� 3�=�2 3�=�2 � �1þ 3�=2

P5 1 1 0 Always 0 1 0 �1
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pansion of the Universe for � 	 2=3 (and infla-
tionary otherwise). The � field mimics matter
with a barotropic equation of state �� ¼ �, and

its energy densities scale such that

��

��
¼ 1

�2=3�� 1
: (26)

(v) The late-time dynamics driven by potential (3) is
correlated with the minimum Vmin ¼ � at � ¼ 0—
and its neighborhood—which, in the phase space�,
is depicted by equilibrium point P5. This point
corresponds to the inflationary de Sitter solution
3H2 ¼ �. Since the real parts of the eigenvalues
of the linearization matrix for P5 are all negative
(see Table II), the de Sitter solution is always the
future attractor for any phase space trajectory.

Equilibrium points P2, P3, and P4 are associated with
early-time dynamics since, according to Eq. (16), v ¼ 1 is
correlated with infinitely large values of the variable � for
which V ’ ðV0=2Þe���. Indeed, we see from Eq. (14) that
if we set v ¼ 1, then the equations of motion of the
exponential case [21] are exactly recovered, even though
the fixed points of the present dynamical system have
different properties.

Contrary to the exponential case, we have found that all
critical points have been made unstable by the presence of
the new variable v. Maybe not surprisingly, parameter 	
has nothing to do with the existence of the critical points
and their properties.
The only exception to the rule is point P5, which stands

as the only stable point in phase space and is also affected
by the presence of parameter 	. If � <

ffiffiffiffi
	

p
=2, all eigen-

values of point P5 are real and positive, meaning that the
physical system does not perform any oscillation at late
times.
A physical explanation for this is found in the following.

Taking into account that the mass of the scalar field is
m2 ¼ �2V0, we find

�2

	
¼ m2

�
’ m2

3H2
; (27)

where we have used the fact that point P5 corresponds to a
de Sitter solution, 3H2 ¼ �. Thus, we see that the condi-
tion �2 <	 is equivalent to m2 <H2, which is the condi-
tion for overdamped oscillations (slow-rolling) of the
scalar field around the minimum of the potential.
In the opposite case, � >

ffiffiffiffi
	

p
=2, corresponding to m2 >

H2, the linear perturbations of the scalar field perform
damped oscillations around the minimum of the potential

TABLE II. Eigenvalues of the linearization matrices corresponding to the fixed points in Table I. We have used the following

definition: R � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11�2 � 28�þ 12ð1þ 2�2½3�� 2þ 12ð1� �Þ�2=�2 � �2ð1� 3�2=�2Þ�=�2Þp

.

Pi �1 �2 �3

P1 �3þ 3�=2 3�=2 0

P2 6� 3� 3� ffiffiffiffiffiffiffiffi
3=2

p
�

ffiffiffi
6

p
�

P3 �3þ �2=2 �2 � 3� �2

P4 �3ð2� �Þ=4þ ffiffiffi
3

p
R=4 �3ð2� �Þ=4� ffiffiffi

3
p

R=4 3�

P5 �3� �3ð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2=	

p Þ=2 �3ð1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4�2=	

p Þ=2

0
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f

–0.8 –0.6 –0.4 –0.2 0 0.2 0.4 0.6 0.8 1
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f
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FIG. 3. (Left) A plot of function fþ in Eq. (20) vs v, for the chosen values of the free parameters in Fig. 1. (Right) A plot of f vs v for
	 ¼ 0:5< 1 (� ¼ 1). Both branches of fðvÞ in Eq. (20), the positive (darker curve) and the negative one (gray line), are depicted.
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that are characterized by a cyclic frequency

! ¼ 3

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2

	
� 1

s
: (28)

The general solution for the evolution of linear perturba-
tions 
x ¼ ð
x; 
y; 
vÞ in the neighborhood of the equi-
librium point P5 can be written as


x ¼ C1a1e
�1� þ C2a2e

�2� þ C3a3e
�3�

¼ C1a1e
�3�� þ e�3�=2ðC2a2e

i!� þ C3a3e
�i!�Þ;

(29)

where the �’s and the a’s are the eigenvalues and the
eigenvectors, respectively, of the linearization matrix
around P5, and the C’s are arbitrary constants.

The oscillatory behavior with frequency ! is what,
according to Refs. [11,13,14], can be associated with
CDM because the amplitudes of the perturbations decrease
at a rate / expð�3�=2Þ. The corresponding mean energy
density of the scalar field then dilutes with an effective
equation of state h!�i ¼ 0 [see Eq. (2)], i.e., h��i / a�3.

The above results are illustrated in Figs. 4 and 5 for a
fixed value � ¼ 4=3. In particular, it is apparent the way
the orbits, at late times, coil around the segment
fðx; y; vÞ ¼ ð0; y; 0Þ: 0 � y � 1g until, eventually, they
reach the inflationary de Sitter attractor P5 ¼ ð0; 1; 0Þ.
The oscillating solution arises due to the choice of the
free parameters that obey the constraint � >

ffiffiffiffi
	

p
=2.

For completeness, we show in Figs. 6 and 7 the late-time
and the early-to-intermediate-time behaviors of the orbits
of Eq. (14), respectively, for small values of the parameter
	 (0<	< 1).
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FIG. 4. (Top left) Orbits of the autonomous system (14) with function fðvÞ in Eq. (20), (top right) and the corresponding flux in time
�, for the values � ¼ 2, 	 ¼ 10, and � ¼ 4=3). (Bottom) Projection of the orbits onto the phase plane ðx; yÞ. Notice that the kinetic-
energy-dominated solution ðx; y; vÞ ¼ ð1; 0; 1Þ is the past attractor, while the de Sitter solution (0, 1, 0) is the future attractor. The
radiation-dominated solution ð0; 0; vÞ is always a saddle fixed point for any given v.
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Because of the choice of the values of the free parame-
ters obeying also the condition �2 >	=4 as in the former
case, the orbits coil around the de Sitter segment ðx; y; vÞ ¼
ð0; y; 0Þ until, eventually, they reach the de Sitter solution
3H2 ¼ � (Fig. 6). The early-times-to-intermediate behav-
ior (Fig. 7) clearly shows that the kinetic-energy-
dominated solution (equilibrium point P2) is the past at-
tractor, while the scaling solution (point P4) is a saddle
equilibrium point.

We want to emphasize that the spiral form of the orbits
of Eq. (14)—see Fig. 6—is what can be properly inter-
preted as CDM behavior, so that, only for � >

ffiffiffiffi
	

p
=2, the

scalar field component in our model should be called
SFDM.

V. DISCUSSION AND CONCLUSIONS

It was in Refs. [11,13] that a careful analysis of the
properties of the cosh potential as a CDM candidate was
done. The main assumptions were that the scalar field

energy density was initially close to the scaling regime,
and that the scalar field was massive enough to be DM at
late times. The scaling regime allows the tracking behavior
of the scalar field during the radiation-dominated epoch,
and a large value of its mass starts the CDM behavior at
early times so that we can recover a proper DM-dominated
epoch at intermediate times in the evolution of the
Universe. At the end, it was determined from some cos-
mological constraints that � ’ 20 and m ’ 10�23 eV.
In terms of the dynamical system analysis carried out

here, the required evolution of the scalar field is recovered
if the equilibrium points P1 (fluid-dominated), P4 (scaling
solution), and P5 (de Sitter solution) exist in the phase
space. This is the case for large values of �. Moreover, we
need trajectories close to point P5 to oscillate around it; for
the value of the scalar field mass given above and the
expected one for the cosmological constant �, we find
that �2=	 � 1 and then the desired CDM behavior around
point P5 is guaranteed.
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FIG. 5. (Top left and top right) Different perspectives of the local late-time behavior of the orbits of the autonomous system (14),
with function fðvÞ in Eq. (20), for the values � ¼ 5, 	 ¼ 3, and � ¼ 4=3. (Bottom) Projection of the orbits into the phase plane ðx; vÞ.
At late times the phase space trajectories coil around the de Sitter segment fð0; y; 0Þ: 0 � y � 1g until, eventually, they reach the
inflationary de Sitter attractor (0, 1, 0).
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The cosmic evolution of the � field after the end of
inflation most probably starts in the neighborhood of P1,
where there is domination of a radiation fluid (� ¼ 4=3).
However, this point is very unstable, and the field evolves
towards the neighborhood of point P4 so that the scalar
field tracks the dominating radiation fluid.1 Meanwhile,
variable v ! 0, and the scalar field evolution is then driven
away from point P4 and ends up making oscillations
around point P5, which is the only stable solution.

The expected DM intermediate epoch appears once the
oscillations of the scalar field start. Because the scalar field
energy density redshifts slower than the radiation one, it
will dominate the expansion of the Universe before the
(purely) de Sitter solution shows up.

In other words, the cosmological model transits by each
one of the mentioned phases, spending some time in their
respective neighborhoods. This will happen for a wide
range of initial conditions, specially if the equipartition
of energy is achieved at the end of inflation, thanks to the
early exponential behavior of the model.

As mentioned before, a simpler scalar field model for
DM and DE could be a quadratic potential plus a cosmo-
logical constant [20], but this model needs some extra fine-
tuning in the initial conditions to recover an appropriate

DM-dominated epoch. The cosh potential is a good ex-
ample that shows how higher-order interaction terms in the
potential produce a nontrivial evolution at early times and
help to alleviate the fine-tuning in the initial conditions.
Our results are also strongly dependent on the assump-

tion that the scalar field in the model does not interact with
other matter fields. This is just the standard DM hypothe-
sis, even though it is known that models with interactions
in the dark sector have a very different dynamic; see
Ref. [24] for an instance of an interacting scalar field
endowed with an exponential potential.
As a final remark, we mention again our implicit as-

sumption that the SFDM model with a cosh potential is
indeed a (double) unification of DM and DE; actually, the
inflaton field could also be united if some extra hypotheses
are used (see Ref. [25]). Unification is a possibility that
arises naturally in the SFDM model [20], but one that
requires full functionality of the model as an alternative
to CDM. This is ongoing research that will be published
elsewhere.
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