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A.P. 48-3, 62251 Cuernavaca, Morelos, México
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The main aim of this paper is to provide cosmological constraints on the multiscalar field dark matter
model, in which we assume the dark matter is made up of different ultralight scalar fields. As a first
approximation, we consider they are real and do not interact with each other. We study the equations for
both the background and perturbations for N-fields and present the evolution of the density parameters, the
mass power spectrum, and the cosmic microwave background spectrum. In particular, we focus on two
scalar fields with several combinations for the potentials VðϕÞ ¼ 1=2m2

ϕϕ
2, VðϕÞ ¼ m2

ϕf
2½1þ cosðϕ=fÞ�,

and VðϕÞ ¼ m2
ϕf

2½coshðϕ=fÞ − 1�, however, the work, along with the code, could be easily extended to

more fields. We use the data from baryon acoustic oscillation, big bang nucleosynthesis, Lyman-α forest,
and supernovae to find constraints on the sampling parameters for the cases of a single field and double
field, along with the Bayesian evidence. We found that some combinations of the potentials get penalized
through the evidence, however, for others there is a preference as good as for the cold dark matter.

DOI: 10.1103/PhysRevD.106.123501

I. INTRODUCTION

So far the most accepted cosmological model considers
the contribution of cold dark matter (CDM) as a key
component for structure formation, along with a cosmologi-
cal constant (Λ), as the simplest form of dark energy.
The success of this model, know as ΛCDM, relies mainly
on the accurate agreement with several cosmological
observations, for example, measurements of the current
accelerated expansion of the Universe and the cosmic
microwave background radiation (CMB). The best descrip-
tion for the dark matter assumes it to be made up of
pressureless, nonrelativistic, neutral, and nonbaryonic par-
ticles whose interaction is primarily through gravity.
However, the assumption of a particle with these properties
brings up many unexplained features, mainly at Galactic
scales, i.e., the central density behavior in Galactic halos or
the overpopulation of substructures at small scales; for an
extended review about the problems and possible solutions,

see Refs. [1,2]. Recent studies suggest there is no longer a
missing satellites problem, however, there could be a
problem with so many satellites, see [3,4]. An alternative
that may alleviate these problems is to consider a dark
matter but now described by a single scalar field ϕ with an
associated potential VðϕÞ, whose evolution is carried out by
the Klein-Gordon equation. The idea of assuming a scalar
field as the dark matter (DM) of the Universe was introduced
about two decades ago, where the simplest possibility is to
be real, or complex, minimally coupled to gravity, and
interacting with ordinary matter only gravitationally [5–8].
Throughout the years, this model has been rediscovered and
received many names, for example: scalar field DM (SFDM)
[7], fuzzy DM [9], Bose-Einstein condensate DM [10], and,
more recently, ultralight axion DM [11]; here we will refer to
it as SFDM, as it was named in [8]. Based on this idea, the
particle associated with the field is an ultralight boson whose
mass oscillates around mϕ ∼ 10−22 eV and hence is able to
form Bose-Einstein condensates that conform the Galactic
structures [11–15]. In this work, we will consider that the
scalar field (or fields) are already formed and we will not
delve into their origin; see Refs. [11,16] for details.
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For an expanding universe, the scalar field cools down
along with the expansion, and after a while, this causes the
field, the boson gas, to freeze and then condensate. For an
ideal boson gas the condensation temperature goes like
Tc ∼m−5=3, implying that for a mass big enough the
condensation temperature becomes small, but the opposite
happens if the mass turns out to be light, or ultralight, and
the condensation temperature could be very high. However,
after the turn around, the structures start forming and the
recollapse raises the temperature of the bosons again.
Therefore, depending on the initial conditions of the galaxy
formation, the boson particles can produce excited states,
although most of the boson particles remain in the con-
densate state or in the ground state [12–14,17,18]. These
excited particles can be interpreted as other scalar fields.
Thus, once the galaxy is already formed, if it still contains
boson particles in several quantum states, then it can be
interpreted as a galaxy with different scalar fields. On the
other hand, for heavy particles these vibrations could be
neglected; however, for ultralight particles an excitation
could be comparable with its original mass. In an effective
way, the scalar field contains the mass plus the effective
mass of the excitation’s energy. Thus, this boson gas of
particles in excited states could be seen effectively as many
scalar fields with different potentials, hence the introduc-
tion of the multiscalar field dark matter model.
Another motivation to introduce several scalar fields

with different potentials could be encouraged because if 4%
of just the baryonic matter in the universe is so diverse, then
we can suspect that 26% of the matter, the dark matter,
could be made of several species with different properties
too. This diversity of particles could be observed and be
tested at various scales, for instance, at the galactic level by
observing the rotation curves as well as at the largest scales
of the Universe. If the dark matter is formed of scalar fields,
then both results should match flawlessly. In this work, we
will focus on the cosmological implications, leaving for a
parallel work the study of astrophysical features [19].
It has been shown that a scalar field with a convex

potential behaves, on average, like dust during late times
and hence mimics the behavior of the cold dark matter.
However, depending on the specific form of the potential
and even whether the field is real or complex, it may have
different behaviors before acting like a pressureless fluid.
So, in order to have a dark matter evolution, it is necessary
that the dependence of the potential with respect to the field
is such that it presents a minimum value at some critical
point around which the field oscillates [11,15,20]. Some
examples of such kinds of potentials are the parabolic
function VðϕÞ ¼ 1=2m2

ϕϕ
2 [13,14,21] and the self-inter-

acting potential with a quartic term contribution VðϕÞ ¼
1=2m2

ϕϕ
2 þ λϕϕ

4 [16,22–24] or the axionlike potential
VðϕÞ¼m2

ϕf
2½1þcosðϕ=fÞ� [25–27] and its analog VðϕÞ¼

m2
ϕf

2½coshðϕ=fÞ−1� [28,29]. Here mϕ is interpreted as the

mass of the field, λϕ is the self-interacting constant, and f
represents a decaying constant. For a single field, several
constraints on its mass have been imposed by using CMB
and matter power spectrum [30], galactic dynamics [31],
dwarf galaxies [32–34], N-body simulations with reioni-
zation process [35], and Lyman-α (Ly-α) flux spectra
[36,37]. However, the presence of small inconsistencies
among datasets are also found, as can be seen in Fig. 1 of
Ref. [16], as well as in Ref. [38]. This single field model
provides a very good description of the evolution of the
cosmological densities and the peaks of the CMB as well as
the number of substructures in galaxy arrays, among others
[11–15]. Nonetheless, it still presents some open issues
[11]. For example, numerical simulations have shown that
the mass of the field could vary for different scales of the
simulation in order to fit the observations, for instance on
the formation of galaxies [39], the whirling plane of
satellite galaxies around the Milky Way, Andromeda,
and Centaurus A galaxies [40], the same mass scale in
satellite galaxies of the Milky Way [41], or the σ8 and H0

tension [42,43], just to mention a few.
In this work, to alleviate these discrepancies, we open up

the possibility that the dark matter may be composed of
several types of scalar fields. That is, the main aim of this
work is to present a model where the dark matter may be
made up by several scalar fields, with different potentials,
and to show its constraints imposed by current cosmologi-
cal observations. This model may help us to alleviate the
inconsistencies among the constrictions of the mass values
obtained by different observations, arguing that they could
be different dark matter particles [44]. Also, if we consider
two scalar fields with different masses, the same mass
scale in the satellite galaxies of the Milky Way could be
explained, i.e., one type of particle could form the host
galaxy and the other the satellites [45]. We will refer to
this model as the multiscalar field dark matter (MSFDM).
Other areas have included similar ideas where two or more
fields are used, for instance a combination of the inflaton
and the SFDM [16], two scalar fields as dark energy
[46,47], the inflaton and the curvaton [48], two scalar fields
for inflation [49,50], interactions between dark energy and
dark matter [51], or the axiverse model [44,52,53] (see
also [54]).
Given the motivations above, in this paper we study the

background dynamics and the linear perturbations of the
model. As a first approximation we consider the scalar
fields are spatially homogeneous, real, and with no inter-
action among each other, however, this part could be easily
extended in future works. The paper is organized as
follows: In Secs. II A and II B, we present the equations
for the background and linear perturbations. In Sec. II C,
the evolution is obtained with a modified version of the
CLASS code for the background, mass power spectrum, and
CMB power spectrum for different combinations of poten-
tials. In Sec. III, we show the model constraints obtained
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with a modified version of the MONTE PYTHON code, and
finally in the last section we present our conclusions.

II. MATHEMATICAL BACKGROUND

A. Background dynamics

Throughout this paper, we base our analysis on a flat
universe filled up with the standard components: baryons,
dark energy in the form of a cosmological constant (Λ),
photons and neutrinos as relativistic species, and DM. For
the neutrinos, we consider the base model used in [55], in
which they assumed a normal mass hierarchy [56–59], two
massless neutrinos, and a massive one with the minimal
mass

P
mν ¼ 0.06 eV. In particular, we assume the DM

is described by multiple real scalar fields ϕi endowed
with their corresponding potentials ViðϕiÞ, whereas the
rest of the matter components are modeled as perfect
fluids. Assuming a Friedmann-Lemaître-Robertson-Walker
metric, the equations of motion for the background dynam-
ics are

H2 ¼ κ2

2

�X
I

ρI þ
X
i

ρϕi

�
; ð1aÞ

_ρI ¼ −3
_a
a
ðρI þ pIÞ; ð1bÞ

ϕ̈i ¼ −3H _ϕi − ∂ϕiViðϕiÞ: ð1cÞ

Here, dots represent derivatives with respect to the cosmic
time t,H is the Hubble parameter, κ2 ¼ 8πG, and ρI and pI
are the energy density and pressure of the Ith fluid species,
respectively, whereas for the scalar fields we have the
associated density and pressure given by the standard
expressions

ρϕi ¼ ð1=2Þ _ϕ2
i þ ViðϕiÞ; pϕi ¼ ð1=2Þ _ϕ2

i − ViðϕiÞ: ð2Þ

Notice that we are assuming different species of scalar
fields, representing each one by the subindex i in the above
equations. The Klein-Gordon equations (1c), for each of
the fields, can be written in a more manageable form by
using the following polar transformation [60]:

κ _ϕiffiffiffi
6

p
H

≡Ω1=2
ϕi sinðθi=2Þ;

κV1=2
iffiffiffi
3

p
H

≡Ω1=2
ϕi cosðθi=2Þ; ð3aÞ

where Ωϕi ≡ κ2ρϕi=3H2 represents the dimensionless den-
sity parameter, and similarly θi is an angular degree of
freedom directly related to the equation of state for each
one of the fields, wϕi ≡ pϕi=ρϕi ¼ − cos θi. Additionally,
we define the potential variables y1i and y2i as

y1i ≡ −2
ffiffiffi
2

p ∂ϕiV
1=2
i

H
; y2i ≡ −4

ffiffiffi
3

p ∂
2
ϕiV

1=2
i

κH
; ð3bÞ

whose form depends on the potential for a particular field.
The equivalence between the polar transformation and the
fluid equations can be seen in [61,62].
As a proof of the concept, we focus our study on the

following potentials:

ViðϕiÞ ¼

8>><
>>:

m2
ϕif

2
i ½1þ cosðϕi=fiÞ� cos;

ð1=2Þm2
ϕiϕ

2
i quadratic;

m2
ϕif

2
i ½coshðϕi=fiÞ − 1� cosh;

ð4Þ

and their possible combinations, with fi being a character-
istic energy scale for the scalar fields ϕi and mϕi its
corresponding mass scale. It can be seen that the variables
(3b) for the aforementioned potentials can be written as

y21i ¼ 4
m2

ϕi

H2
− 2λϕiΩϕi; ð5aÞ

y2i ¼ λϕiy1i: ð5bÞ

Notice that the three functional forms in (4) can be
compressed into a dimensionless parameter λϕi ¼ 3=κ2f2i ,
which facilitates the numerical calculations. Positive values
of λϕi > 0 describe the cosine potential and negative ones
λϕi < 0 the cosh potential, whereas the quadratic case
corresponds to λϕi ¼ 0 (for more details see [21,25,29]).
Then, for each field, the associated Klein-Gordon equa-
tion (1c) is represented by the following set of coupled
equations:

θ0i ¼ −3 sin θi þ y1i; ð6aÞ

Ω0
ϕi ¼ 3ðwtot þ cos θiÞΩϕi; ð6bÞ

y01i ¼
3

2
ð1þ wtotÞy1i þ

1

2
λϕiΩ

1=2
ϕi sin θi; ð6cÞ

with wtot ¼
P

I ΩIwI þ
P

i Ωiwi, where ΩI ≡ κ2ρI=3H2

and wI ¼ pI=ρI. The prime denotes derivative with respect
to the number of e-folds N ¼ ln a, and for any given
variable q we have the relationship _q ¼ Hq0.
The initial conditions necessary to solve these equations

can be seen in Eq. (2.16) of Ref. [21] for the quadratic
case, for the cosine potential see Eq. (5) Ref. [25], and for
the hyperbolic cosine see Eq. (2.6) in Ref. [29]. The
main purpose in all cases is to match a given value of
the density parameter Ωϕi;0 at the present time with the
initial values of the dynamical quantities ðθi; y1i;ΩϕiÞini at
early enough times (typically for a scale factor of the order
of aini ≃ 10−14).
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In general terms, the mass parameter mϕi determines the
start of the rapid oscillations of the field ϕi around the
minimum of the potential Vi, which happens at around
H ≃ 3mϕi. For λϕi ≠ 0, Eq. (5a) becomes a constraint
equation that must be satisfied by the field variables at
all times, whereas for λϕi ¼ 0 it simply tells us that
y1i ¼ 2mϕi=H. In fact, one expects that at late times
mϕi ≫ H, so that for the three cases in (4) the relation
y1i ¼ 2mϕi=H should be satisfied with high accuracy. Only
for the case λϕi < 0 (cosh potential) it is also necessary to
impose the scaling solution during radiation domination:
Ωϕi ¼ −12=λϕi and cos θi ¼ −1=3, and then the initial
value of y1i is calculated from Eq. (5a). Furthermore, the
field mass mϕi is not an independent parameter in this case,
and it has been shown that the two parameters are related
through [29]

mϕi

Hini
¼ 1.5

��
λϕi
3

− 4

�
Ωϕi;0

Ωr;0
aini

�
2

; ð7Þ

with Ωr;0 the present density parameter of relativistic
species and aini the initial value of the scale factor.

B. Linear density perturbations

We consider the linear perturbations for the scalar fields
by expanding the field to the leading order, with
ϕiðx⃗; tÞ ¼ ϕiðtÞ þ φiðx⃗; tÞ, where ϕiðtÞ are the background
fields described in the above section, whereas φi are the
field linear perturbations. The perturbed metric, in the
synchronous gauge is ds2¼−dt2þa2ðtÞðδlmþhlmÞdxldxm,
with hlm being the tensor perturbations of the metric.
Working in Fourier space, the perturbed Klein-Gordon
equation for each field is given by

φ̈i ¼ −3H _φi −
�
k2

a2
þ ∂

2
ϕiVi

�
φi −

1

2
_h _ϕi : ð8Þ

In Eq. (8), k is the comoving wave number, h is the trace of
hlm, and _h is known as the metric continuity. Following the
idea presented for the background in the previous section,
we use the polar variables [21,25]

ffiffiffi
2

3

r
κ _φi

H
¼ −Ω1=2

ϕi e
αi cos

�
ϑi
2

�
;

κyi;1φiffiffiffi
6

p ¼ −Ω1=2
ϕi e

αi sin

�
ϑi
2

�
; ð9Þ

where αi and ϑi are the new perturbation quantities. If we
define the new quantities

δ0i ¼ −eαi sin
�
θi − ϑi

2

�
;

δ1i ¼ −eαi cos
�
θi − ϑi

2

�
; ð10Þ

where the density contrast is δϕi ≡ δρϕi=ρϕi ¼ δ0i, then the
perturbed Klein-Gordon equation (8) can be rewritten as

δ00i ¼ −
�
3 sin θi þ

k2

k2Ji
ð1 − cos θiÞ

�
δ1i

þ k2

k2Ji
sinðθiÞδ0i −

1

2
h0ð1 − cos θiÞ; ð11aÞ

δ01i ¼ −
�
3 cos θi þ

�
k2

k2Ji
−
λϕiΩϕi

2y1i

�
sin θi

�
δ1i

þ
�
k2

k2Ji
−
λϕiΩϕi

2y1i

�
ð1þ cos θiÞδ0i −

1

2
h0 sin θi; ð11bÞ

where we have introduced the Jeans wave number as
k2Ji ¼ H2a2y1i. Other quantities of interest are the pertur-
bations for the energy density δρϕi, pressure δpϕi, and
velocity divergence Θϕi, which are

δρϕi ¼ _ϕi _φi þ∂ϕiVφi; ð12aÞ

δpϕi ¼ _ϕi _φi −∂ϕiVφi; ð12bÞ

ðρϕi þ pϕiÞΘϕi ¼
k2

a
_ϕiφi: ð12cÞ

In terms of the new variables δ0i and δ1i, they are written as

δρϕi ¼ δ0iρϕi; ð13aÞ

δpϕi ¼ ðδ1i sin θi − δ0i cos θiÞρϕi; ð13bÞ

ðρϕi þ pϕiÞΘϕi ¼
k2ρϕi
aHyi;1

½ð1 − cos θiÞδ1i − sin θiδ0i�:

ð13cÞ

Again, depending on the value of λϕi, one recovers the
perturbed equations of any of the three different potentials
of this work (4). The initial conditions for the perturbations
simply are δ0init ¼ 0 and δ1init ¼ 0. It has been shown that
the dynamical variables δ0i and δ1i quickly reach an
attractor behavior driven by the nonhomogeneous term
h0 in Eqs. (11) [21,25,29].

C. Numerical results

In this section, we show the background evolution, mass
power spectrum (MPS), and CMB power spectrum for
different combinations of potentials, obtained with a
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modified version of the CLASS code that is able to deal with
multiple scalar fields [21,25,63]. This version of the code is
publicly available and can be found in [64]. We use the ratio
R ¼ Ωϕ1;0=ΩDM;0 to parametrize the energy density of the
scalar fields, where ΩDM;0 ¼ Ωϕ1;0 þΩϕ2;0 þ Ωcdm;0 rep-
resents the current total dark matter contribution from the
scalar fields sector. The combination of the fields is
symmetric, then for reference we take ϕ1 to define R;
otherwise if ϕj is taken as reference we need to redefine
R ¼ Ωϕj=ð

P
iΩϕi þ ΩcdmÞ. The mass values for the fields

were taken from the references mentioned in the
Introduction, in particular, those reported in [45], where
the existence of at least two scalar fields with masses of
10−22 and 10−20 eV is proposed to explain the observations
of the galaxy cores.
Throughout this work, we consider several combinations

for the fields and combined them with the CDM as well.
This is because, until now, the nature of the dark matter is
not yet determined and several possibilities should be kept
in mind. As the next approximation to the single field, here
we assume two types of fields with different combinations
of potentials as dark matter, however, once we have enough
accurate data, the analysis (and the code) could be easily
generalized to N different fields.
In the first combination, we assume the field one has

Vðϕ1Þ ¼ 1
2
m2

ϕ1ϕ
2
1 while the rest of the dark matter density

is conformed by CDM, therefore Ωϕ2;0 ¼ 0. As we can see
in the left panel of Fig. 1, the main difference in the
background is the start of the scalar field oscillations due to
the mass and R values. If R > 0.5, the oscillations approach
those of a single scalar field, while if R < 0.5 the
oscillations are less evident until they disappear when
R ¼ 0 (there is only CDM). In the mass power spectrum,

the right panel of the same figure, we notice the expected
cutoff in small scales for the lightest mass values
(mϕ1 < 10−20 eV) but the behavior is lost for heavier
masses (mϕ1 > 10−20 eV) because the scalar field behaves
like dust over the shown scales. Similar to the background,
we found that the MPS of the combinations is bounded by
the cases R ¼ 1 (only SFDM) and R ¼ 0 (only CDM). We
can see an example of this in Fig. 1 for mϕ1 ¼ 10−22 eV
(black line) and 10−20 eV (blue line) with R ¼ 0.2 (dotted)
and R ¼ 0.8 (dashed). For R ¼ 0.8, the oscillations
approach the case of a single SFDM but disappear for
R ¼ 0.2; this is evident for mϕ1 ¼ 10−22 eV. In the same
way, in the right panel, when R ¼ 0.8 the mass power
spectrum shows a cutoff similar to the single case for both
values mϕ1 ¼ 10−22 and 10−20 eV, but it behaves like
CDM (red solid line) for R ¼ 0.2.
For the second combination, we assume two scalar fields

with no CDM, both of them with a quadratic potential
Vðϕ1;2Þ ¼ 1

2
m2

ϕ1;2ϕ
2
1;2 (see Fig. 2). We found that the total

contribution to the background evolution, in particular, the
oscillations of the fields, depends on the contribution of
each one through R and are bounded by the oscillations of
the lightest and the heaviest field, respectively. For the
MPS, the cutoff is more evident when the lightest field
accounts for the principal contribution to ΩDM;0

(mϕ2 > mϕ1 and R > 0.5 or mϕ2 < mϕ1 and R < 0.5),
and the behavior is closer to single field models (R ¼ 0
or R ¼ 1) depending on the dominant field, as expected. In
the left panel of Fig. 2 we show the total contribution of the
fields to the background using mϕ1 ¼ 10−22 with mϕ2 ¼
10−24 eV (green). The oscillations are more evident for
R ¼ 0.8 (dashed) than for R ¼ 0.2 (dotted) and both of
them are bounded by the single cases (solid). This is seen as

FIG. 1. Evolution, with early times enlarged, of the ratio of the density parameters ΩϕþCDM=ΩΛCDM (left) and the ratio of the linear
matter power spectrum (right) at z ¼ 0, for a SFDMþ CDMmodel using ΛCDM as reference (solid red lines). The field potential is the
quadratic one VðϕÞ ¼ 1

2
m2

ϕϕ
2, and R represents the ratio of the field contribution to the total DM. Black lines represent a mass value of

mϕ ¼ 10−22 eV while blue lines refer to mϕ ¼ 10−20 eV. Dashed and dotted lines represent R ¼ 0.8 and R ¼ 0.2 values, respectively.
The data points for the MPS were obtained from [65].
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well, but it is less noticeable due to the masses values, for
the combinationmϕ1 ¼ 10−22 withmϕ2 ¼ 10−20 eV (blue).
For the MPS, we use the same values and we find a
behavior similar to the previous case.
We also study a third combination of double field

but now with Vðϕ1Þ ¼ 1
2
m2

ϕ1ϕ
2
1 and Vðϕ2Þ ¼ m2

ϕ2f
2½1þ

cosðϕ2=fÞ�, respectively. For the background, we observe a
similar behavior to that in the previous combinations, that
is, once we kept the masses fixed and solely modified the

λϕ2 values, we saw no difference among them. The
oscillations of the fields depend on the masses and R,
similar to the quadratic potentials case. See, for example,
Fig. 3 where we take mϕ1 ¼ 10−22 eV along with mϕ2 ¼
10−24 eV with λϕ2 ¼ 104 (green), mϕ2 ¼ 10−22 eV with
λϕ2 ¼ 105 (black), and mϕ2 ¼ 10−20 eV with λϕ2 ¼ 105

(blue) for R ¼ 0.2 (dotted) and R ¼ 0.8 (dashed). For the
MPS we see differences depending on mϕ1;2 values or R
and also by varying λϕ2 values. In order to see a bump in the

FIG. 2. Evolution, with early times enlarged, of the ratio of the density parameters Ωquad1þquad2=ΩΛCDM (left) and the ratio of
the linear matter power spectrum (right) at z ¼ 0, for a double field model using ΛCDM as reference (solid red lines). The potential for
both fields is the quadratic one VðϕÞ ¼ 1

2
m2

ϕϕ
2, and R represents the ratio of the fields contribution to the total DM. Green lines

represent a mass value of mϕ2 ¼ 10−24 eV and blue lines refer to mϕ2 ¼ 10−20 eV while mϕ1 is fixed to 10−22 eV. Dashed and dotted
lines represent R ¼ 0.8 and R ¼ 0.2 values, respectively. The data points for the MPS were obtained from [65]. MPS data labels are the
same as in Fig. 1.

FIG. 3. Evolution, with early times enlarged, of the ratio of the density parameters Ωquad1þcos2=ΩΛCDM (left) and the ratio of the linear
matter power spectrum (right) at z ¼ 0, for a model with two fields usingΛCDM as reference (solid red lines). Here, the field one has the
potential VðϕÞ ¼ 1

2
m2

ϕϕ
2 with mass value mϕ ¼ 10−22 eV as reference, while the second field has Vðϕ2Þ ¼ m2

ϕ2f
2½1þ cosðϕ2=fÞ�.

Green lines represent a mass value of mϕ2 ¼ 10−24 eV with λϕ2 ¼ 104, black lines indicate mϕ2 ¼ 10−22 eV with λϕ2 ¼ 105, and blue
lines refer to mϕ2 ¼ 10−20 eV with λϕ2 ¼ 105. Dashed and dotted lines represent R ¼ 0.8 and R ¼ 0.2 values, respectively, where R
represents the ratio of the fields’ contribution to the total DM. The data points for the MPS were obtained from [65]. MPS data labels are
the same as in Fig. 1.
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MPS, we need the second field to dominate (R < 0.5) with
lighter mass and higher λϕ2. On the right side of Fig. 3, we
can see the bump before the cutoff (k ∼ 0.9) for the green
and black dotted lines, because in both cases the second
field dominates and λϕ2 has high values with lighter masses.
On the other hand, in the blue dotted line we do not observe
the bump yet because the field becomes too heavy
(mϕ2 ≥ 10−20 eV).
Finally, we study the combination of the field potential

Vðϕ1Þ ¼ 1
2
m2

ϕ1ϕ
2
1 with Vðϕ2Þ ¼ m2

ϕ2f
2½coshðϕ2=fÞ − 1�.

In the background and MPS we have a similar behavior
as before. This can be seen in Fig. 4 where we take the
combination mϕ1 ¼ 10−22 eV, mϕ2 ¼ 1.54 × 10−22 eV,
λϕ2 ¼ −8 × 103 (black), mϕ1 ¼ 10−22 eV, mϕ2 ¼ 0.6×
10−20 eV, λϕ2 ¼ −5 × 104 (blue), and mϕ1 ¼ 10−22 eV,
mϕ2 ¼ 0.3 × 10−18 eV, λϕ2 ¼ −4 × 104 (gray). It is impor-
tant to note that both fields have the same contribution
(R ¼ 0.5); other combinations require further analysis. In
the mass power spectrum, at small scales, we see that λϕ2
has a greater contribution compared to the previous case
because in the coshlike potential the scalar field mass
depends on the λϕ2 value, contrary to the coslike potential
in which these parameters are independent. When mϕ2 ∼
mϕ1 we can appreciate a different behavior depending on
the value of λϕ, for example, the black dotted line.
However, if mϕ2 ≥ mϕ1, the change in λϕ2 does not display
noticeable changes (blue and gray dotted lines).
In general for the background, we found slight

differences at early times with respect to ΛCDM, where

the oscillations presented could give us information about
how light the scalar field masses can be. We found too a
cutoff at small scales in the mass power spectrum that
differentiates our model from the CDM, and the shape
below the cutoff depends on the multifield dynamics.
Regarding the CMB spectrum, when the mass of at least

one of the fields, for any combination, is less than
mϕi < 10−26 eV, the spectrum of the fields differs from
the ΛCDM spectrum as seen in [30]. However, for masses
greater than mϕi > 10−26 eV the same CMB power spec-
trum is obtained as for ΛCDM regardless of the value of λϕ
or R. See, for example, Fig. 5 where we show the CMB
power spectra for Vðϕ1;2Þ ¼ 1

2
m2

ϕ1;2ϕ
2
1;2 with mϕ1 ¼

10−22 eV, mϕ2 ¼ 10−24 eV, and R ¼ 0.8 (green dashed
line); Vðϕ1Þ¼ 1

2
m2

ϕ1ϕ
2
1 with Vðϕ2Þ¼m2

ϕ2f
2½1þcosðϕ2=fÞ�

formϕ1 ¼ 10−22 eV,mϕ2 ¼ 10−22 eV, λϕ2 ¼ 105, and R ¼
0.2 (black dotted line), and Vðϕ1Þ ¼ 1

2
m2

ϕ1ϕ
2
1 with Vðϕ2Þ ¼

m2
ϕ2f

2½coshðϕ2=fÞ − 1� for mϕ1 ¼ 10−22 eV, mϕ2 ∝
10−20 eV, λϕ2 ¼ −5 × 104, and R ¼ 0.5 (blue dotted line).
For the three cases, we have obtained nearly the same CMB
power spectra as for the ΛCDM model (solid red line). We
also plotted the Planck 18 dataset as in Ref. [66].

III. COMPARISON WITH DATA

In this section, we present the Bayesian inference
procedure in order to constrain the MSFDM models by
using different datasets. In order to perform the cosmo-
logical analysis, we generate Monte Carlo Markov chains

FIG. 4. Evolution, with early times enlarged, of the ratio of the density parametersΩquad1þcos h2=ΩΛCDM (left) and the ratio of the linear
matter power spectrum (right) at z ¼ 0, for a model with two fields using ΛCDM as reference (solid red lines). The field one has the
potential VðϕÞ ¼ 1

2
m2

ϕϕ
2 with mass value mϕ ¼ 10−22 eV as reference, and the second field has Vðϕ2Þ ¼ m2

ϕ2f
2½coshðϕ2=fÞ − 1�.

Black lines represent a mass value of mϕ2 ¼ 1.54 × 10−22 eV with λϕ2 ¼ −8 × 103, blue lines indicate mϕ2 ¼ 0.6 × 10−20 eV with
λϕ2 ¼ −5 × 104, and green lines refer to mϕ2 ¼ 0.3 × 10−18 eV with λϕ2 ¼ −4 × 105. Dotted lines represent R ¼ 0.5, where R
represents the ratio of the fields’ contribution to the total DM. The data points for the MPS were obtained from [65]. MPS data labels are
the same as in Fig. 1.
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with the Metropolis-Hastings algorithm using a modified
version of the MONTE PYTHON code [67,68] with the
modified version of CLASS used in Sec. II C. We verified
that our chains converged using the Gelman-Rubin cri-
terion R − 1 < 0.03 implemented in MONTE PYTHON. Then
we discuss the merits of the models with respect to CDM
within the framework of the Bayesian model selection. See
[69] for a Bayesian inference review.

A. Cosmological constraints

In the previous section we saw that the main difference
throughout the models rests on the mass power spectrum at
small scales, hence we use the 3D matter power spectrum
inferred from Lyman-α data from the BOSS and eBOSS
Collaborations [65]. We also use the Ly-α baryon acoustic
oscillation (BAO) from eBOSS DR14 [70], the Galaxy
BAO from DR12 [71], 6dFGS [72], and Sloan Digital Sky
Survey (SDSS) DR7 [73], and the supernovae (SNe) Ia
survey Pantheon [74] to improve the constraining power.
As mentioned in [65], the process of inferring the MPS is
model dependent, therefore we will consider the constraints
obtained here as an approximation. On the other hand, we
found that the parameter constraints describing the scalar
field remain the same when incorporating the Planck 18
dataset. For this reason and to reduce computational time,
we have only used the data already described. See
Appendix C for further details.
The sampling parameters in the analysis are the physical

baryon density parameter ωb;0, the logarithmic power

spectrum scalar amplitude log ð1010AsÞ, the scalar spectral
index ns, the Thomson scattering optical depth due to
reionization τreio, the scalar field masses mϕi, the decay
parameters λϕi, and, instead of the cold dark matter density
parameter, we use the scalar field density parameters Ωϕi;0.
However, we found from previous analysis that the pos-
teriors of log ð1010AsÞ, ns, and τreio do not present a change
with respect to ΛCDM, therefore we will keep these
parameters fixed (see Appendix C). The flat priors used
for the remaining sampling parameters are as follows:
H0 ¼ ½10; 100� for the Hubble constant in km s−1Mpc−1,
ωb;0 ¼ ½0.005; 0.1� for the physical baryon density, and
Ωϕ1;0 ¼ Ωϕ2;0 ¼ ½0; 1� for the scalar field density param-
eters today. For the scalar field parameters, we choose the
priors to be consistent with the numerical results we found
with CLASS, and since these parameters can take values of
powers of 10, we chose a logarithmic base to efficiently
cover the entire parameter space and reduce the computa-
tional cost. This means that we have log10 ðmϕi=eVÞ ¼
½−24;−17� for the scalar field masses, log10ðλϕiÞ ¼ ½1; 6�
for the parameter on the trigonometric cosine potential,
and λϕi;aux ¼ ½−6;−1� for the hyperbolic cosine potential.
For this case, we cannot use directly log10ðλϕiÞ because
λϕi < 0, so in order to cover the parameter space we use
the auxiliary variable λϕi;aux whose relation with λϕi is
given by λϕi ¼ −10−λϕi;aux. In what follows, we will
use quadi to refer to the potential ViðϕiÞ ¼ ð1=2Þm2

ϕiϕ
2
i ,

cosi for ViðϕiÞ ¼ m2
ϕif

2
i ½1þ cosðϕi=fiÞ� and coshi for

FIG. 5. The CMB power spectrum (upper) and the ratio (lower) using ΛCDM as reference (solid red lines), for Vðϕ1;2Þ ¼ 1
2
m2

ϕ1;2ϕ
2
1;2

(green dashed line), Vðϕ1Þ ¼ 1
2
m2

ϕ1ϕ
2
1 with Vðϕ2Þ ¼ m2

ϕ2f
2½1þ cosðϕ2=fÞ� (black dotted line), and Vðϕ1Þ ¼ 1

2
m2

ϕ1ϕ
2
1 with Vðϕ2Þ ¼

m2
ϕ2f

2½coshðϕ2=fÞ − 1� (blue dotted line).
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ViðϕiÞ ¼ m2
ϕif

2
i ½coshðϕi=fiÞ − 1�. If there is no subscript,

it means that it is the single field case.
First, in Fig. 6, we show the constraints for the single

field cases, that is, the 1D marginalized posterior distribu-
tion of the free parameters for each model corresponding
to the potentials VðϕÞ ¼ 1=2m2

ϕϕ
2, VðϕÞ ¼ m2

ϕf
2½1þ

cosðϕ=fÞ�, and VðϕÞ ¼ m2
ϕf

2½coshðϕ=fÞ − 1�. It can be
noticed that the posteriors of the field masses are very
similar for the three potentials, and that the observations
considered can only put a lower bound on it, which is
logðmϕ=eVÞ≳ −21.9 at 95% C.L. for the quadratic and
hyperbolic cosine potentials and logðmϕ=eVÞ≳ −21.8 at
95% C.L. for the trigonometric cosine potential. In the case
of the trigonometric potential, we see that its extra
parameter λϕ appears unconstrained and the posterior looks
practically the same as the prior we considered above for
this parameter, which is consistent with previous studies

[26,36,37]. As for the hyperbolic cosine, we have already
mentioned the close relationship between the field massmϕ

and the self-interaction parameter λϕ, and then the con-
straints on the former are translated to logð−λϕÞ≳ 3.6 at
95% C.L. The excluded values of λϕ correspond to the
cases in which SFDM has a significant contribution as an
early radiation component. An example of this can be seen
in Fig. 7.
For completeness, we also present in Fig. 8 the 1D

posterior distributions for the cosmological common
parameters of the models: the density parameters (SFDM
and Λ) and the Hubble constantH0. The posteriors are very
similar for the three models, which shows that one recovers
the results of the standard ΛCDM model.
In Fig. 9 we show the posteriors for the combinations

Vðϕ1Þ ¼ 1=2m2
ϕ1ϕ

2
1 with Vðϕ2Þ ¼ 1=2m2

ϕ2ϕ
2
2, Vðϕ1Þ ¼

1=2m2
ϕ1ϕ

2
1 with Vðϕ2Þ ¼ m2

ϕ2f
2½1þ cosðϕ2=fÞ�, and

FIG. 6. 1D posterior distribution for the single SFDM with potentials VðϕÞ ¼ 1=2m2
ϕϕ

2 (red), VðϕÞ ¼ m2
ϕf

2½1þ cosðϕ=fÞ� (green),
and VðϕÞ ¼ m2

ϕf
2½coshðϕ=fÞ − 1� (blue). The constraints on the field mass are very similar for the three potentials, whereas the self-

interaction parameter λϕ of the trigonometric potential remains unconstrained by the data.

FIG. 7. Background and MPS evolution for the SFDM with potential VðϕÞ ¼ m2
ϕf

2½coshðϕ=fÞ − 1�. Magenta lines correspond to
λϕ ¼ −102 with mϕ ¼ 7.66 × 10−26 eV, which are ruled out from the constraints obtained. We can see the scalar field contribution to
radiation. On the other hand, black lines, that correspond to λϕ ¼ −104 with mϕ ¼ 9.58 × 10−22 eV, represent values within the
confidence regions.
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Vðϕ1;2Þ ¼ m2
ϕ1;2f

2½1þ cosðϕ1;2=fÞ�. For the quadratic-
quadratic and quadratic-cos combinations, we found a
lower bound for the mass of both fields given by
log10ðmϕ1;2=eVÞ ¼ −22.1 at 95%. While, for the cos-cos
combination, the lower bound for the mass of field one is
log10ðmϕ1=eVÞ ¼ −22.1 at 95% and for the second field
log10ðmϕ2=eVÞ ¼ −22.2 at 95%. We also found that the
density parameter Ωϕi of one field depends on the Ωϕj of
the other field. That is, if Ωϕ1 dominates then Ωϕ2 is small,
and the other way around, because the total contribution
remains constant. In [45] the authors propose two scalar
fields (with the possibility of a third one) with masses
mϕ1 ≈ 10−22 and mϕ2 ≈ 10−20 eV, and these values are

within our confidence regions. The fact that the lighter field
dominates over the massive field is also in agreement with
our results. The triangle plots of the MSFDM parameters in
Figs. 6 and 9 can be seen in Appendix C.
As we have mentioned, the main objective is to present

the model of multiple scalar fields as dark matter. Although,
for completeness, we compute the Bayes factor lnBi;j by
using the numerical package MCEvidence [75], and the ratio
is done with respect to CDM. The results are shown in
Table I. Following the Jeffreys guideline [69], if lnBi;j > 5

we have a decisive strength against model i; if 5 > lnBi;j >
2.5 it means a strong strength; if 2.5 > lnBi;j > 1 we have
a significant strength, and if lnBi;j < 1 the data prefer

FIG. 8. 1D posterior distribution for the cosmological common parameters of all the models studied in this work.

FIG. 9. 1D posterior distribution for the two SFDM with the potentials Vðϕ1;2Þ ¼ 1=2m2
ϕ1;2ϕ

2
1;2 (red), Vðϕ1Þ ¼ 1=2m2

ϕ1ϕ
2
1 with

Vðϕ1Þ ¼ m2
ϕ1f

2½1þ cosðϕ1=fÞ� (green), and Vðϕ1;2Þ ¼ m2
ϕ1;2f

2½1þ cosðϕ1;2=fÞ� (blue).
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model i. In general, we should be careful taking the values
of the Bayes factor since some of the parameters were
unconstrained by the data [76]. On the other hand, the fact
that the posteriors of the parameters of the scalar fields are
not Gaussian prevents us from using other information
criteria such as the Akaike information criterion, Bayesian
information criterion, or the Bayesian complexity, since
they need (or assume) the Gaussianity of the posterior. See,
for example, [77,78]. On the other hand, we do not present
the Bayes factor for the trigonometric potential cosine nor
for the models with more than one field because the
posteriors are not monomodal and some parameters are
not constrained, which can cause the method used in
MCEvidence to fail [75].
We found that the maximum of the likelihoods corre-

sponds to the same value − lnLmax ¼ 523.03. That is, we
can find a suitable combination of parameters such that the
model in place resembles the behavior of a cold dark matter.

IV. CONCLUSIONS

In this paper, we presented the cosmological constraints
of the multiscalar field dark matter model, in which we
assume the dark matter is composed of different ultralight
scalar fields. The idea was introduced to alleviate some of
the cosmological and astrophysical discrepancies, for
instance, the distinct values of the single scalar field mass
obtained when considering different observations, where
more than one field is needed in order to explain them. As a
first approximation, we took for granted that the scalar
fields are real, spatially homogeneous, and do not interact
with each other. We presented the equations that describe
the evolution of the background and perturbations for N
scalar fields, and by using the polar change of variables
we avoided the scalar field characteristic oscillations. Thus,
we obtained a general expression for the fields’ evolution
that depends on the potential and its derivatives, in
particular, the equations for the potentials VðϕÞ ¼
1=2m2

ϕϕ
2, VðϕÞ ¼ m2

ϕf
2½1þ cosðϕ=fÞ�, and VðϕÞ ¼

m2
ϕf

2½coshðϕ=fÞ − 1�. Under this change of variables,
these three configurations are described by a single system
of equations where the parameter λϕ is able to decide the
type of potential to use.
We showed the evolution for the background, MPS, and

the CMB power spectrum using a modified version of the
CLASS code [21,25,63] with two dark matter components.
We considered the following combinations: (a) cold dark
matter and a scalar field with potential VðϕÞ ¼ 1=2m2

ϕϕ
2,

and two scalar field models, with (b) both potentials
VðϕÞ ¼ 1=2m2

ϕϕ
2, (c) VðϕÞ ¼ 1=2m2

ϕϕ
2 and VðϕÞ¼

m2
ϕf

2½1þcosðϕ=fÞ�, and (d) VðϕÞ¼1=2m2
ϕϕ

2 and VðϕÞ¼
m2

ϕf
2½coshðϕ=fÞ−1�. Since the fields are independent

from each other, we introduced the parameter R to have
the field one as reference. We showed that the evolution of
the background is mainly affected at the beginning of the
scalar fields’ oscillations since its amplitude depends on the
masses and the contribution that each one has to the total
dark matter, being bounded by the heaviest and lightest
masses; however, these do not depend on λϕ. After the
oscillations have started, the fields’ evolution only depend
on Ωϕi;0. On the other hand, we found that, in all
combinations, the MPS presents the characteristic cutoff
of the single field at small scales. However, it does not
present the oscillations of the single case due to the
superposition of the different fields. This cutoff is far from
the ΛCDM behavior when the lightest field dominates, and
if the heaviest one dominates the MPS behavior approaches
the ΛCDM model. For the case in which one of the fields
has the axion potential, the characteristic bump appeared
when it had a light mass with large λϕ values. On the
contrary, if the mass is heavier, the bump disappeared
regardless of the values of λϕ and R. On the other hand, in
the CMB power spectrum, we have not found significant
changes unless one of the fields has mϕi ≤ 10−26 eV. That
is, regardless of the number of fields we can always find a
combination of the fields that matches the CMB observa-
tions where the total contribution of dark matter is
ΩDM ¼ 0.264, given by Planck 18 data [55].
We performed the parameter inference analysis with the

MONTE PYTHON code [67,68] using BAO, big bang nucleo-
synthesis, Ly-α forest, and supernovae for a single scalar
field with the three potentials mentioned above and for
double scalar fields. In the latter case, for simplicity we
used the following combination of potentials: Vðϕ1Þ ¼
1=2m2

ϕ1ϕ
2
1 with Vðϕ2Þ ¼ 1=2m2

ϕ2ϕ
2
2, Vðϕ1Þ ¼ 1=2m2

ϕ1ϕ
2
1

with Vðϕ2Þ¼m2
ϕ2f

2½1þcosðϕ2=fÞ�, and Vðϕ1Þ¼m2
ϕ1f

2½1þ
cosðϕ1=fÞ� with Vðϕ2Þ ¼ m2

ϕ2f
2½1þ cosðϕ2=fÞ�. For the

single case, we found a bound for the mass values that
corresponds to the one reported by the Ly-α data. We also
presented the constrictions for the potential VðϕÞ ¼
m2

ϕf
2½coshðϕ=fÞ − 1� where we have found a bound for

λϕ and, therefore, for the scalar field mass, where the latter
is also in agreement with the data reported by the Ly-α. In
this case, the excluded values correspond to the cases in
which the scalar field contributes to radiation as can be
seen in Fig. 7. For the double field models, we found
bounds for the masses and that the contribution of the
fields depends on each other. Within our confidence
regions are the masses reported in [45], in which more
than one scalar field is needed to explain the observed
galaxies’ halos.

TABLE I. Bayes factor for SFDM and double SFDM with
different potentials using ΛCDM as reference.

Quad Cosh Quad1 þ quad2

lnBi;ΛCDM 1.59 0.85 2.13
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Finally, we have found that adding more scalar fields in
order to explain astrophysical phenomena does not affect
the known cosmology. So the MSFDM can be an alter-
native candidate to dark matter that is able to explain the
observations at the cosmological and astrophysical levels.
Its difference with other models is seen in the MPS at small
scales. The results presented here can be generalized to a
larger number of fields with different potentials. We expect
that forthcoming observations of collaborations such as
DESI and LSST will allow us to better constrain the
parameters of our model.
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APPENDIX A: COMPARISON WITH axionCAMB

In addition to CLASS, there is a code that solves the
cosmology for an ultralight axion, this is a modification to
the CAMB code [79,80] called axionCAMB [30,81]. For the
case where only the scalar field is present, the formalism
presented in this work and the results of axionCAMB [30] are
in agreement as mentioned in [21]. Similarly, in [30], the
authors also studied the combination of an ultralight axion
with CDM. In Fig. 10, we have reproduced the right side
of Fig. 2 of the same reference for R > 0.1 and mϕ ¼
10−27 eV. We found that the code presented here is in good
agreement with the results of [30] except for small values of
R, which translates to very small contributions from the
scalar field (Ωϕ∼ < 0.02).

APPENDIX B: EXTENSIONS TO MSFDM
MODEL: NEUTRINO MASSES AND CURVATURE

It is well known that neutrinos have effects on the
evolution of the Universe [82,83], in particular, on the MPS
[84] where the MSFDMmodel has differences with respect
to ΛCDM. Therefore, in this section we vary the neutrino
masses to see the effects on our model. We assume the
neutrino model already presented in Sec. II A. In Fig. 11,
we show the evolution of the linear matter power spectrum

for the SFDM model (one field) with the potential VðϕÞ ¼
1
2
m2

ϕϕ
2 with mass values mϕ ¼ 10−24, 10−22, and 10−20 eV

each combined with neutrino masses mν ¼ 0.2, 0.4, 0.6,
0.8, and 1 eV; bigger values are already discarded [85–88].
We found no significant differences with respect to the
neutrino base model. However, there could be degeneracies

FIG. 10. Evolution of the linear matter power spectrum at z ¼ 0

for a CDMþ SFDMmodel with VðϕÞ ¼ 1
2
m2

ϕϕ
2 with mass value

mϕ ¼ 10−27 eV and R ¼ 0.15, 0.2, 0.5, and 1. Colors and line
types were chosen to match Fig. 2 of [30] for an easy comparison.

FIG. 11. Evolution of the linear matter power spectrum at z ¼ 0

for VðϕÞ ¼ 1
2
m2

ϕϕ
2 with neutrino masses mν ¼ 0.2, 0.4, 0.6, 0.8,

and 1 eV. Colored dotted lines represent the combinations with
mϕ ¼ 10−24 eV, colored solid lines with mϕ ¼ 10−22 eV, and
colored dashed lines with mϕ ¼ 10−20 eV. For example, the blue
dashed line represents a model with mν ¼ 0.2 and mϕ ¼
10−20 eV. The black lines represent the case for the SFDM with
masses mϕ ¼ 10−24 eV (dotted), mϕ ¼ 10−22 eV (solid), and
mϕ ¼ 10−20 eV (dashed) using the base model for neutrinos used
in [55]. The solid red line represents the MPS for ΛCDM. The
data points for the MPS are the same as used in Sec. II C and were
obtained from [65].
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with the MSFDM. For example, in Fig. 12 we compare the
evolution of the MPS for the double field model, with
potentials Vðϕ1;2Þ ¼ 1

2
m2

ϕ1;2ϕ
2
1;2, and the single field case

with different neutrino masses shown in Fig. 11. For the
double field model, we fix the mass value of field one to
mϕ1 ¼ 10−22 eV while the second mass takes mϕ2 ¼ 10−24

and 10−20 eV, with R ¼ 0.2 and R ¼ 0.8. We can see that
the MPS of both models are very similar.
In the same way, we study the case where we add

curvature to the scalar field model and find similar results
as for ΛCDM. This can be seen in the left panel of Fig. 14
where we show the 1D posterior for Ωk.

APPENDIX C: MSFDM: TRIANGLE PLOTS

In this appendix, we show the triangle plots for the
different potential combinations analyzed in Sec. II C. In
Fig. 13, we show the posteriors of the physical baryon
density parameter ωb;0, the logarithmic power spectrum
scalar amplitude log ð1010AsÞ, the scalar spectral index ns,
the Thomson scattering optical depth due to reionization
τreio, the Hubble constant H0 in km s−1 Mpc−1, the scalar
field mass log10 ðmϕi=eVÞ, the dark energy density param-
eter ΩΛ, and the dark matter density parameter ΩDM. The
last one refers to cold dark matter for ΛCDM and to the
scalar field for SFDM using Planck 18 data [55,89], the 3D
matter power spectrum inferred from Lyman-α data from
BOSS and eBOSS Collaborations [65], the Ly-α BAO from
eBOSS DR14 [70], the Galaxy BAO from DR12 [71],
6dFGS [72], and SDSS DR7 [73], and the SNe Ia survey
Pantheon [74]. As we can see, there are no differences
between the constrictions of the ΛCDM and SFDM
parameters and they agree with the values reported in

[55]. Thus, in Sec. III A we decided to vary only the
parameters corresponding to the scalar fields, leaving the
rest of the parameters fixed. Using the fact that the SFDM
model provides similar constraints for the basic parameters
using the Planck data and given that we found similar
restrictions for the scalar field mass with and without
Planck 18 data, we decided to use only the MPS from Ly-α,
BAO, and SNe Ia data. This change in the dataset used also
gives us a reduction in computational time.
On the other hand, in Figs. 15–20 we also show the 1D

and 2D posteriors of the combinations studied in Sec. III A
when we consider each dataset separately. In all cases,
we find that we need to combine the datasets to improve
the constraints on the parameters of the scalar fields. Note
that, by using only the BAO data, the restriction for H0

gives high values compared to Planck 18, so it is necessary
to use more datasets in order to constrain this parameter
(see [70]).

APPENDIX D: A GENERAL PARAMETRIZATION

In [90,91] the authors proposed a general parametriza-
tion, called α, β, γ parametrization, to describe the transfer
function of non-CDM (nCDM) models, in particular, the
fuzzy dark matter model, which in our case corresponds to
a single SFDMwith the quadratic potential. In their studies,
they found that models allowed correspond those that
meet mϕ ≳ 10−22 eV. We found this parametrization could
also describe the combination of two fields with different
combinations of potentials with the possible exception of
the cases in which the characteristic bump of the trigono-
metric cosine-type potential occurs. In Fig. 21, we show
some examples of the transfer function for the combina-
tions SFDMþ CDM, quad1 þ quad2, quad1 þ cos2, and

FIG. 12. Evolution of the linear matter power spectrum at z ¼ 0 for a single field with potential VðϕÞ ¼ 1
2
m2

ϕϕ
2 with neutrino masses

mν ¼ 0.2 (blue), 0.4 (orange), 0.6 (green), 0.8 (magenta), and 1 eV (indigo) compared with the double field model with Vðϕ1;2Þ ¼
1
2
m2

ϕ1;2ϕ
2
1;2 using mϕ1 ¼ 10−22 eV and different values of mϕ2 and R. For the single case varying neutrino mass, colored dotted lines

represent the combinations with mϕ ¼ 10−24 eV, colored solid lines with mϕ ¼ 10−22 eV, and colored dashed lines with
mϕ ¼ 10−20 eV. The dark blue and gray lines represent the MSFDM evolution and the solid red line represents the MPS for
ΛCDM. The data points for the MPS are the same as used in Sec. II C and were obtained from [65]. On the right side, a small-scale
enlargement is shown where you can see the consequence of changing the values of the neutrino masses and the scalar fields.
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quad1 þ cos h2 (solid lines) and the transfer function with
the α, β, γ parametrization (dashed lines). Although the
values of the parameters α, β, and γ were set by hand, we can
see they resemble the numerical results we obtained with the
exception of the cosine potential, where the characteristic

bump cannot be described by this parametrization. However,
further studies similar to the one done in [92] are necessary
to determine the relationship between the properties of the
scalar fields and the α, β, and γ parameters and to obtain the
respective constraints.

FIG. 13. Triangle plots for the SFDM with potential VðϕÞ ¼ 1
2
m2

ϕϕ
2 compared with ΛCDM as reference using the data from Planck

18, MPS from Ly-α BAO and SNe Ia. See text for details.
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FIG. 15. 1D and 2D posterior distribution for the potential VðϕÞ ¼ 1
2
m2

ϕϕ
2. We found constrictions for mϕ and Ωϕ. We see that it is

necessary to use different datasets to constrain the parameters of the scalar field. Here and in the following figures, the Ly-α label refers
to the MPS inferred from these data. See the text for details.

FIG. 14. On the left, we show the constraints on the curvature parameter for ΛCDM and for the SFDM model. On the right, we show
the mass value constriction for the SFDM model with potential VðϕÞ ¼ 1

2
m2

ϕϕ
2 using the data from Planck 18, MPS from Ly-α, BAO,

and SNe Ia (blue), and MPS from Ly-α, BAO, and SNe Ia (green).
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FIG. 16. 1D and 2D posterior distribution for the potential VðϕÞ ¼ m2
ϕf

2½1þ cosðϕ=fÞ�. We found constrictions only formϕ and Ωϕ.
It is necessary to use different datasets to constrain the parameters of the scalar field.
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FIG. 17. 1D and 2D posterior distribution for VðϕÞ ¼ m2
ϕf

2½coshðϕ=fÞ − 1�.

COSMOLOGICAL CONSTRAINTS ON THE MULTISCALAR FIELD … PHYS. REV. D 106, 123501 (2022)

123501-17



FIG. 18. 1D and 2D posterior distribution of the fields considering potential Vðϕ1Þ ¼ 1=2m2
ϕ1ϕ

2
1 for the first field with

Vðϕ2Þ ¼ 1=2m2
ϕ2ϕ

2
2.
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FIG. 19. 1D and 2D posterior distribution of the fields considering potential Vðϕ1Þ ¼ 1=2m2
ϕ1ϕ

2
1 for the first field with

Vðϕ2Þ ¼ m2
ϕ2f

2½1þ cosðϕ2=fÞ�.
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FIG. 20. 1D and 2D posterior distribution of the fields when both have the potential VðϕÞ ¼ m2
ϕf

2½1þ cosðϕ=fÞ�.
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