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In this work, we first discuss the possibility that dark energy models with negative energy density values
in the past can alleviate the H0 tension, as well as the discrepancy with the baryon acoustic oscillation
(BAO) Lyman-α data, both which prevail within the ΛCDM model. We then investigate whether two
minimal extensions of the ΛCDM model, together or separately, can successfully realize such a scenario:
(i) the spatial curvature, which, in the case of spatially closed universe, mimics a negative density source
and (ii) simple-graduated dark energy (gDE), which promotes the null inertial mass density of the usual
vacuum energy to an arbitrary constant—if negative, the corresponding energy density decreases with
redshift similar to the phantom models, but unlike them crosses below zero at a certain redshift. We find
that, when the Planck data are not included in the observational analysis, the models with simple-gDE
predict interesting and some significant deviations from the ΛCDM model. In particular, a spatially closed
universe along with a simple-gDE of positive inertial mass density, which work in contrast to each other,
results in minor improvement to the H0 tension. The joint dataset, including the Planck data, presents no
evidence for a deviation from spatial flatness but almost the same evidence for a cosmological constant and
the simple-gDE with an inertial mass density of order Oð10−12Þ eV4. The latter case predicts almost no
deviation from the ΛCDM model up until today—so that it results in no improvement regarding the BAO
Ly-α data—except that it slightly aggravates the H0 tension. We also study via dynamical analysis the
history of the Universe in the models, as the simple-gDE results in futures different than the de Sitter future
of the ΛCDM model.
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I. INTRODUCTION

There is a growing consensus in recent years that the
standard Lambda cold dark matter (ΛCDM) model must in
fact be an approximation to a more realistic cosmological
model that has not been understood yet [1]. This new model
is not expected to exhibit phenomenologically too drastic
deviations from the ΛCDM model, which is in excellent
agreement with most of the currently available data [2–6],
even if it could be conceptually very different. The recent
developments, both theoretical (e.g., the de Sitter swamp-
land conjecture [7–14]) and observational (e.g., the ten-
sions prevailing within the ΛCDM model and preference
for some unexpected and/or nontrivial extensions of this
model; see Refs. [15–52] and [53–56] for more references),
along with the notoriously challenging cosmological con-
stant problem [57,58], suggest that attaining this newmodel

would not be a straightforward task. These tensions are of
immense interest not only in cosmology but also in
theoretical physics, as they could imply new physics
beyond the well-established fundamental theories under-
pinning, or even extending, the ΛCDM model. The so-
called H0 tension—the deficit in the Hubble constant H0

predicted by the Planck cosmic microwave background
(CMB) data within the ΛCDM model [6] when compared
to the direct local distance ladder measurements [59–64]—
among others is now described by many as a crisis. See
Ref. [53] for a comprehensive list of references on the H0

tension and Ref. [65] for a recent review on its possible
solutions. It becomes quite perplexing as it worsens when
the simplest minimally coupled single-field quintessence
models are used instead of cosmological constant (Λ)
and only partially improves when the simplest phantom
(or quintom) models are used [31–35]. Surprisingly, it has
been reported that the H0 tension—as well as a number of
other low-redshift discrepancies—may be alleviated by a
dynamical dark energy that assumes negative or vanishing
energy density values at high redshifts [15,19,36–52].
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The fact that, when spatial curvature is allowed on top of the
ΛCDM model, the Planck data combined with other astro-
physical data [baryon acoustic oscillations (BAO), cosmic
chronometers, etc.] favor spatial flatness (Ωk0 ¼ 0) with
extremely high precision, while the Planck data alone favor
positive spatial curvature (Ωk0 < 0) might also be implying
such dark energy models [6,22–27].
The constraint on H0 from the CMB power spectrum is

inferred from the distance between the acoustic peaks that
measures the angular scale at last scattering θ⋆ ¼ r⋆=DM,
where r⋆ ¼ R∞

z⋆ csH−1dz is the comoving sound horizon—
determined by the pre-recombination physics—(cs being
the sound speed in the plasma) and DM ¼ R z⋆

0 H−1dz is the
comoving angular diameter distance—determined by the
postrecombination physics—at last scattering, for which
the redshift z⋆ ≃ 1090 [66]. As dark energy [in general,
described by an equation of state (EoS) parameter wðzÞ≡
p=ρ ∼ −1 with ρ and p being the energy density and
pressure, respectively] is negligible at high redshifts, it is
not expected to affect the prerecombination physics, viz.,
r⋆. Also, Planck satellite measures θ⋆ very robustly (with
an accuracy of 0.03%) and almost independently of the
cosmological model [6]. Therefore, DM must remain the
same in different dark energy models (with some excep-
tions, e.g., early dark energy models [67], which prescribe
DM ∝ r⋆). Thus, dark energy models that assume negative
energy density values for z > z� (z� being the redshift at
which the energy density crosses below zero) imply a
reduction inHðzÞ compared to the one in theΛCDMmodel
for z > z�, more than the phantom/quintom dark energy
models could achieve (for these models, the energy density
typically decreases and approaches zero with redshift).
The compensation of this reduction to keep DM unaltered
results in an enhanced HðzÞ for z < z�, i.e., H0 as well.
Besides, this sign change in the dark energy density can
even lead to a nonmonotonic behavior of HðzÞ that fits
better with the Lyman–α (Ly-α) BAO measurements, e.g.,
those from the Baryon Oscillation Spectroscopic Survey
(BOSS) and from its extended version eBOSS in the Sloan
Digital Sky Survey Data Release 14 (SDSS DR14) [68,69],
which (combined) present approximately 1.7σ tension with
the prediction of the Planck (2015) [5] best-fit ΛCDM
model. Such models were first suggested by the BOSS
Collaboration when it was shown that the BAO peak
position in the Ly-α at an effective redshift z ∼ 2.34
(BOSS DR11) [36] presents an approximately 2.5σ dis-
crepancy with the CMB predictions from the Planck (2015)
[5] best-fit ΛCDM model. Then, they reported a dark
energy density consistent with a positive cosmological
constant for z < 1, but with a preference for negative values
for z > 1.6, and argued that this discrepancy can be
addressed by a nonmonotonic behavior of HðzÞ at z ∼ 2
[15]. The Planck Collaboration (2018) [6] excludes the
Ly-α BAO measurements from their default BAO
compilation—as they do not significantly constrain the

ΛCDMmodel, as well as its simple extensions, when CMB
and galaxy BAO data are already used—and, mentioning
from Ref. [36] that it is difficult to construct well-motivated
extensions of the ΛCDM model that can resolve this
tension, suggest further work is needed to assess whether
it is a signature of new physics or not. Recently, the Λ
assumption was investigated by introducing the graduated
dark energy (gDE) characterized by a minimal dynamical
deviation from the null inertial mass density ϱ ¼ 0 (where
ϱ≡ ρþ p) of the Λ—or the usual vacuum energy of the
quantum field theory (QFT)—in the form ϱ ∝ ρλ < 0 with
λ < 1 being a ratio of two odd integers, for which its energy
density ρ dynamically takes negative values in the past [46].
For large negative values of λ, gDE creates a phenomeno-
logical model described by a smooth function that approxi-
mately describes the Λ spontaneously flipping sign in the
late Universe to become positive today. It was shown via
the gDE that the joint observational data, including the
Planck CMB and Ly-α BAO (BOSS DR11) data as well,
suggest the Λ spontaneously changed sign at redshift z ≈
2.32 and triggered the late-time acceleration, which alle-
viates both the H0 tension and the discrepancy with the
Ly-α BAO measurements. Currently, using the Ly-α BAO
measurements in the final eBOSS (SDSS DR16), which
contains all data from eBOSS and its predecessor, the
BOSS, the tension with the prediction of the Planck (2015)
[5] best-fit ΛCDM model is reduced to only approximately
1.5σ [70,71]. On this account, the dark energy density that
is almost constant today but assumes negative values in the
past is not indispensable, yet it has potential to result in a
better agreement with the existing observational data and
the direct H0 measurements.
Such scenarios elaborated by allowing negative energy

densities in the Friedmann equation can be achieved as
minimal extensions of the ΛCDM model. The simplest
example of this type of contribution may be thought of as a
single effective fluid defined as the total contributions of
the positive cosmological constant and constant positive
spatial curvature (which mimics a negative energy density
source with w ¼ −1=3) to the Friedmann equation.
However, if its energy density crosses below zero at
z ∼ 1.6 in line with Ref. [15], then the spatial curvature’s
density parameter today is required to be Ωk0 ∼ −0.12
(assuming Ωm0 ∼ 0.3 for dust), which contradicts the
standard inflationary paradigm and the joint results of
the recent Planck release [6] suggesting spatial flatness
to a 1σ accuracy of 0.2%. Yet, recent observations hint
toward a spatially closed universe, in particular, the Planck
CMB power spectra prefer a closed universe at more than
99% confidence level (assuming the nominal likelihood)
[22–25]. If we adhere to the inflationary paradigm, with a
faithful assumption on the spatial flatness, such behavior
can be achieved in a minimalist way by promoting
phenomenologically the null inertial mass density ϱ ¼ 0
of the usual vacuum energy of the QFT to a negative
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constant ϱ ¼ const < 0—henceforth, simple-graduated
dark energy (simple-gDE) corresponding to the case λ ¼ 0
of the gDE. Its energy density decreases with increasing
redshift like phantom dark energy models, but unlike them
crosses below zero at a certain redshift. The source satisfying
ϱ ¼ const has recently been of interest to many as it can
resemble Λ today, while leading to a future singularity
dubbed as the little sibling of the big rip (LSBR) for
ϱ ¼ const < 0 or a finite future bounce for ϱ ¼ const > 0
[72–74]. Such a contribution to the Friedmann equation
may also be obtained from a modified gravity; see, for
instance, Ref. [75], where it arises from barotropic perfect
fluid via the energy-momentum squared gravity of the form
fðTμνTμνÞ ∝ lnðλTμνTμνÞ. However, if its energy density is
positive today and crosses below zero at z ∼ 1.6, then its EoS
parameter today yields w0 ∼ −1.35, which obviously is not
expected to be permitted by the observational data. On the
other hand, in case Ωk0 and ϱ ¼ const are simultaneously
allowed to be free parameters on top of the ΛCDM model, it
can be possible to draw both Ωk0 and w0 parameters to
observationally reasonable values, though they together can
still lead to sufficiently large deviations from the ΛCDM
model resulting in better agreement with the observational
data. Yet, at the end of the day, we may find ourselves with a
completely different outcome. In particular, given that there
exist model-independent inferences of H0 from the inverse
distance ladder, which show that combined dataset of BAO
and Type Ia Supernovae (SN) with/without Cepheids prefer
lowH0 values independently of Planck data and the adopted
dark energy model suggesting late-time modifications alone
is unable to alleviate the H0 tension and turned attention to
early-time modifications (such as early dark energy), which
lowers the sound horizon [76–80]. Also, notice that our
discussions above also imply that the spatial curvature with
Ωk0 > 0 (spatially open universe) and the simple-gDE
with ϱ > 0 (in this case, the energy density increases with
increasing redshift, likewise the quintessence dark energy
models) would exacerbate both the H0 tension and discrep-
ancy with the BAO Ly-α measurements, both which prevail
within the ΛCDM model. In what follows, we explore in
detail whether the spatial curvature (Ωk0) and the simple-
gDE (ϱ ¼ const) extensions, separately or simultaneously, of
the standard ΛCDM model result in improvements in fitting
the observational data. We also discuss the implications of
our observational constraints on the past and future history of
the Universe and nature of the vacuum energy.

II. MODEL

The energy-momentum tensor describing an isotropic
perfect fluid can be decomposed relative to a unique
4-velocity uμ (satisfying uμuμ ¼ −1 and ∇νuμuμ ¼ 0) in
the form of Tμν ¼ ðρþ pÞuμuν þ pgμν, where ρ is the
(relativistic) energy density relative to uμ, p is the isotropic
pressure, and gμν is the metric tensor. In general relativity

(GR)—described by the Einstein field equations
Gμν ¼ −Tμν—the set of equations arises from the twice-
contracted Bianchi identity implying∇μGμν ¼ 0 and hence
resulting in ∇μTμν ¼ 0. Projecting parallel and orthogonal
to uμ, we obtain the energy and momentum conservation
equations, correspondingly,

_ρþ Θϱ ¼ 0 and Dμpþ ϱ _uμ ¼ 0; ð1Þ

where Θ ¼ Dμuμ is the volume expansion rate, a dot
denotes the derivative with respect to the comoving time
t, and we have used ∇νuμ ¼ Dνuμ − _uμuν [81,82]. Notice,
in the momentum conservation equation in (1), that Dμp is
the pressure gradient and _uμ is the 4-acceleration, and
therefore ϱ ¼ ρþ p defines the inertial mass density.
The usual vacuum energy of the QFT (described by the

EoS pcc ¼ −ρcc) corresponds to the source that yields null-
inertial mass density,

ϱcc ¼ 0; ð2Þ

for which ρcc ¼ const > 0, namely, the energy density is a
constant—via the energy conservation equation in (1)—
and supposed to be positive as suggested by the cosmo-
logical observations. The simplest phenomenological
generalization of the usual vacuum energy (2) is then to
promote its null inertial mass density to an arbitrary
constant,

ϱci ¼ const; ð3Þ

for which the energy density ρci (supposed to be positive
today, i.e., ρci0 > 0) and the pressure pci are not necessarily
constant—here and in what follows, the subscript 0
attached to any quantity denotes its present-day (z ¼ 0)
value. It is worth noting that this promotion corresponds to
taking the inertial mass density, instead of vacuum energy
density (or Λ), as one of the constants of nature. We do not
consider the possibility of ρci0 < 0 throughout our study, as
it obviously contradicts the observations. The energy
density of this source, which we call simple-graduated
dark energy, reads

ρci ¼ ρci0 þ 3ϱci lnð1þ zÞ; ð4Þ

which satisfies the EoS parameter (w≡ −1þ ϱ=ρ)

wci ¼ −1þ 1þ wci0

1þ 3ð1þ wci0Þ lnð1þ zÞ ; ð5Þ

where z ¼ −1þ a0
a is the redshift with a being the scale

factor of the Robertson-Walker (RW) metric. This source,
regardless of the sign of ϱci, eventually becomes indistin-
guishable from the Λ in the past (say, wci ≈ −1 for z ≫ 0),
and thus the extension of the ΛCDM model via this source
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approximates indefinitely close to the ΛCDM model as
the dust dominates it in the past. Yet, as the future Universe
will eventually be dominated by this source, the future
will be drastically different depending on the sign of ϱci; the
Universe hits a bounce (H ¼ 0) in the finite future if ϱci>0
and exhibits LSBR singularity in the infinite future if
ϱci < 0 [72]. The latter case, ϱci < 0, is of particular interest
to us, as in this case ρci decreases as z increases; namely, the
source exhibits a phantomlike behavior as the logarithmic
term (the new term that arises due to the deviations from
null inertial mass density) dynamically screens ρci0 in the
finite past (z > 0). However, in contrast to the usual
phantom dark energy models (described by w < −1 with
ρ > 0), (i) its energy density does not asymptotically
approach zero as z increases but crosses below zero at

zci� ¼ −1þ e−
1

3ð1þwci0Þ ð6Þ

and then keeps growing in negative values, and (ii) its EoS
parameter yields wci0 < −1 for z < zci� and wci0 > −1 for
z > zci�. Unless wci0 ≠ −1, it yields wci → −1 both in the
far future (z → −1) and in the very early Universe (z → ∞)
and exhibits a pole at zci�, i.e., when the energy density
crosses zero, which is in the finite past for wci0 < −1 and
in the finite future for wci0 > −1. The case wci0 ¼ −1
corresponds to the usual vacuum energy—for this,
we obtain either z� ¼ −1 or z� ¼ ∞; both transitions
imply such a thing would never happen. One may have
noticed that simple-gDE (4) with ϱci < 0 is reminiscent
of the phenomenological emergent dark energy (PEDE)
[83] described by the energy density ρ ¼ ρ0 −
ρ0 tanh ðlog10ð1þ zÞÞ that decreases monotonically with
increasing redshift due to the tanh term. However, in
contrast to the simple-gDE, PEDE does not introduce an
extra free parameter compared to the ΛCDM model and,
like in the usual phantom dark energy models, yields
positive definite energy density (vanishing for arbitrarily
large redshifts) controlled by a particular EoS parameter
that is −1.14 today and increases from −1.29 in the past
to −1 in the future. One may further see Refs. [84,85] for
one-parameter extension of PEDE and compare with
simple-gDE.
The spatial curvature of the RW metric can effectively

be treated as a source described by an EoS parameter
wk ¼ −1=3, and the corresponding energy density reads

ρk ¼ ρk0ð1þ zÞ2; ð7Þ

for which ρk0 > 0, ρk0 ¼ 0, and ρk0 < 0 correspond to
spatially open, flat, and closed universes, respectively.
Now, we define the effective source (kci) made up of the

constant inertial mass density source (ci) and the spatial
curvature (k), for which the energy density, ρkci ≡ ρci þ ρk,
reads

ρkci ¼ ρci0½1þ 3ð1þ wci0Þ lnð1þ zÞ� þ ρk0ð1þ zÞ2; ð8Þ

from (4) and (7). Note that, in the past (z > 0), it
never scales faster than either the dust energy density ρm ∝
ð1þ zÞ3 or the radiation energy density ρr ∝ ð1þ zÞ4, so
that we can always recover the standard cosmology at
sufficiently large redshifts and thus leave the usual pre-
recombination physics and dynamics of the Universe—as
well as the comoving sound horizon at last scattering r⋆—
unaltered. It crosses zero at the redshift

zkci� ¼

8>>>>>>>><
>>>>>>>>:

−1þ e−
1

3ð1þwci0Þ−
1
2
W0ðxÞ

o
for wci0 < −1;

−1þ
ffiffiffiffiffiffiffiffiffiffiffi
− Ωcc0

Ωk0

q o
for wci0 ¼ −1;

−1þ e−
1

3ð1þwci0Þ−
1
2
W−1ðxÞ

1þ e−
1

3ð1þwci0Þ−
1
2
W0ðxÞ

)
for wci0 > −1;

ð9Þ

where W0ðxÞ and W−1ðxÞ are the two real branches of
the Lambert WðxÞ function with the argument defined as

x ¼ Ωk0
Ωci0

2
3ð1þwci0Þ e

− 2
3ð1þwci0Þ. Ωi ¼ ρi=ρc is the density param-

eter of the ith fluid, and Ωk ¼ ρk=ρc corresponds to the
spatial curvature, with ρc ¼ 3H2 being the critical energy
density.
We calculate from (8) that ρkci crossing below zero, for

example, at zkci� ¼ e − 1 ≈ 1.72 (along with Ωm0 ¼ 0.30)
in line with Ref. [15] requires Ωk0 ¼ 0.7þ 5.17=
ð3wci0 − 3.39Þ. This implies significantly large deviations
from the spatial flatness (Ωk0 ¼ 0) or the cosmological
constant (wci0 ¼ −1), when only one of these is allowed
to be a free parameter. Namely, we have Ωk0 ¼ −0.11 for
wci0 ¼ −1 and wci0 ¼ −1.33 for Ωk0 ¼ 0. Such large
deviations are not expected to be permitted by the obser-
vational data. However, as may be seen in Fig. 1 in caseΩk0
and wci0 are simultaneously allowed to be free parameters,
it is possible to bring each of them to more reasonable
values; namely, we have Ωk0 ¼ −0.07 along with
wci0 ¼ −1.1. Thus, it is possible to have an overall large
deviation from the standard ΛCDM model, while keeping
the deviations from spatial flatness and cosmological
constant at relatively moderate levels.
The Friedmann equation giving the complete description

of the model under consideration here reads

H2

H2
0

¼ Ωci0½1þ 3ð1þ wci0Þ lnð1þ zÞ� þ Ωk0ð1þ zÞ2

þΩm0ð1þ zÞ3 þ Ωr0ð1þ zÞ4; ð10Þ

where the density parameters, except the one corresponding
to the spatial curvature Ωk0, are positive definite. The
H ¼ HðzÞ here can even exhibit a nonmonotonic behavior,
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which may then reconcile the model with the Ly-α BAO
measurements, as discussed in the Introduction. One may
check that (10) has a minimum at z ¼ zmin satisfying the
relation (neglecting radiation as Ωr0 ∼ 10−4 for z ∼ 1)

3Ωm0ð1þ zminÞ3 þ 2Ωk0ð1þ zminÞ2 ¼ −3Ωci0ðwci0 þ 1Þ:
ð11Þ

And it passes through its minimum in the past, i.e.,

zmin > 0; if wci0 <
3 − Ωk0

3ðΩk0 þ Ωm0 − 1Þ : ð12Þ

It implies wci0 < −1.43 for the spatially flat universe
(Ωk0 ¼ 0), while, e.g., wci0 < −1.28 for the spatially closed
universe withΩk0 ¼ −0.11. For example, zmin ¼ 1 requires
wci0¼−4.43 for Ωk0¼0 and wci0¼−3.60 for Ωk0¼−0.11.
Such large deviations from the cosmological constant
and/or the spatial flatness may be implying that, when
confronted with the observational data, the effective source
that can assume negative density values in the finite past,
i.e., ρkci given in (8), would not be able to lead to a
nonmonotonic evolution of HðzÞ at about z ∼ 1 so as to
reconcile it with the Ly-α BAO measurements. Of course,
this can still result in a partial improvement in fitting the
Ly-α BAO measurements, while predicting larger H0

values (with respect to the ΛCDM model) toward address-
ing the so-called H0 tension. Yet, a conclusive answer as to
whether the model under consideration here (10) does
better than the ΛCDM model cannot be given unless we
rigorously confront the model with the latest observatio-
nal data.

III. OBSERVATIONAL CONSTRAINTS

We perform a parameter estimation and provide obser-
vational constraints from the latest data on the free
parameters of the models under consideration—in the rest
of the paper, oΛCDM refers to the model including the
spatial curvature on top of the standard ΛCDM model, and
similarly oDE and DE refer to the models considering the
simple-gDE (characterized by constant inertial mass den-
sity) with and without the spatial curvature, respectively. To
explore the parameter space, we make use of the new
version of the SIMPLEMC code [86], initially released in
Ref. [15]. The code already contains several samplers for a
proper exploration of the parameter space, but in particular,
we use a modified version of the nested sampler DYNESTY
[87,88] that allows us to produce posterior distributions
and computes the Bayesian evidence, used to perform a
model comparison through the Jeffreys scale [89]. A
Bayesian model selection was applied to get insights from
cosmological functions [90], and in particular to the dark
energy EoS in Refs. [28,91,92]. The SIMPLEMC code uses a
compressed version of the recent Planck CMB data (PLK),
a recent reanalysis of Type Ia supernova data (SN), and
high-precision BAO measurements at different redshifts up
to z ¼ 2.36, viz., Ly-α DR14, BAO-Galaxy consensus, the
SDSS Main Galaxy Sample (MGS) and the Six-Degree
Field Galaxy Survey (6dFGS) as presented in Refs. [3,68,
69,93–95]. We do not use the final eBOSS (SDSS DR16),
which contains all the data from eBOSS and its predeces-
sor, as the covariance matrix is not available so far [70,71].
We also include a collection of currently available mea-
surements on HðzÞ from cosmic chronometers (H) (see
Ref. [96] and references therein). To improve the con-
straining power on the parameter space, we also include a
big bang nucleosynthesis prior on the baryons contribution
[97]. See Ref. [98] for an extended review of the cosmo-
logical parameter inference procedure we used. In the
analysis, the radiation density parameter is given by
Ωr0 ¼ 2.469 × 10−5h−20 ð1þ 0.2271NeffÞ—where h0 ¼
H0=100 km s−1 Mpc−1 is the dimensionless reduced
Hubble constant [99] and Neff ¼ 3.046 is the standard
number of effective neutrino species with minimum
allowed mass mν ¼ 0.06 eV—as the present-day photon
energy density is already extremely well constrained by
today’s CMB temperature T0 ¼ 2.7255� 0.0006 K [100].
Throughout our analysis, we assume flat priors over our
sampling parameters:Ωm0 ¼ ½0.05; 1.0� for the dust density
parameter today, Ωb0h20 ¼ ½0.02; 0.025� for the physical
baryon density today, and h0 ¼ ½0.4; 1.0� for the reduced
Hubble constant. We assume wci0 ¼ ½−1.5;−0.5� for
the present-day EoS parameter of the simple-gDE (3)
and Ωk0 ¼ ½−0.6; 0.6� for the density parameter corre-
sponding to the spatial curvature today.
Table I displays the constraints at 68% confidence level

(CL) on the free parameters—Ωm0, Ωb0h20, h0, wci0, and

FIG. 1. Ωk0 vs wci0 satisfying zkci� ¼ 1.72 along with
Ωm0 ¼ 0.30. The point fΩk0; wci0g ¼ f0;−1g corresponds to
the ΛCDM model.
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Ωk0—as well as the derived parameters—ϱci, Ωci0, Ωkci0,
zci�, and zkci� (or zkcc�)—from both the combined datasets
of BAOþ SNþH and BAOþ SNþH þ PLK sepa-
rately. In the last three rows, we list the best fit
(−2 lnLmax), the log-Bayesian evidence for each of the
models (lnZ), and the log-Bayesian evidence for each of
the models relative to the reference model, the ΛCDM
model (Δ lnZ ¼ lnZ − lnZΛCDM). According to the
Jeffreys scale the Bayes factor jΔ lnZj lying in the range
[0,1) implies the strength of the evidence to be weak/
inconclusive, while a positive/significant evidence is
implied by the values in the range [1,3) [101]. Figure 2,
complementary to Table I, displays the constraints in the
form of one-dimensional marginalized posterior distribu-
tions as well as two-dimensional marginalized distributions
(the inner and external contours are for 68% and 95% CLs,
respectively).
We start by noticing that, as is the case for both

the ΛCDM and oΛCDM models as well, the combined
BAOþ SNþH þ PLK dataset puts tight constraints on the
free parameters of both theDE and oDEmodels, and then the
constraints on the extended models (i.e., oΛCDM, DE, and
oDE models) do not significantly differ from those on the
ΛCDM model. Accordingly, none of the extended models
suggest significant deviation in the history of the Universe up
until today from the one described by the ΛCDMmodel, yet
both the DE and oDE models predict futures completely
different than the de Sitter future of theΛCDM and oΛCDM
models.We find no significant improvement regarding the so-
called low-redshift tensions prevailing within the ΛCDM
model. Nevertheless, in case the CMBdataset is not included,
i.e., the combined BAOþ SNþH dataset is used, in the
analysis, the constraints on the extended models exhibit
interesting and some significant deviations from those on
theΛCDMmodel that deserve a closer look. In what follows,
in this section, we discuss some of the interesting results and
findings along with their implications.

A. In the case of BAO+SN+H dataset

The oDE model, having the lowest −2 lnLmax value, is
the one that fits best to the combined BAOþ SNþH
dataset. The Bayesian evidence on the other hand suggests
that there is a significant evidence for preferring the
ΛCDM model over the extended models, as for which
jΔ lnZj ∼ 1.5. It is striking that, when only the models
including spatial curvature are compared with each other,
there is no evidence to prefer the oΛCDM model, which
yields Ωk0 ¼ −0.011� 0.077 consistent with spatially flat
universe, over the oDE model, which yields Ωk0 ¼
−0.122� 0.117 suggesting spatially closed universe
with high significance. The constraints on Ωb0h20 are
almost exactly the same for all the models, but the
constraint on the Hubble constant (or h0) in the case of
the DE model, H0 ¼ 67.06� 2.02 km s−1Mpc−1, is
smaller than the one in the case of the ΛCDM model,TA
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H0 ¼ 68.27� 0.88 km s−1Mpc−1. Namely, the combined
BAOþ SNþH dataset suggests that, contrary to our
initial expectations discussed in Sec. II, the simple-gDE (3)
upgrading the null inertial mass density of the usual
vacuum energy to an arbitrary constant worsens the so-
called H0 tension. The reason is being that the data favor
ϱci ¼ ð3.46� 4.76Þ × 10−31 g cm−3 (corresponding to
wci0 ¼ −0.937� 0.084) rather than a definitely negative
inertial mass destiny ϱci < 0 (viz. phantom character today,
i.e., wci0 < −1 and ρci0 > 0)—see the negative correlation
between h0 and wci0 in Fig. 2. The inclusion of spatial
curvature however lifts H0 to the values larger than those
allowed within the ΛCDM model, as the data favor
negative values of Ωk0—see the negative correlation
between h0 and Ωk0 in both models in Fig. 2. In the case
of the oDE model, the data favor spatially closed universe
with high significance, viz., Ωk0 ¼ −0.122� 0.117, suffi-
cient to compensate for the decreasing effect of wci0 ¼
−0.872� 0.097 or ϱci ¼ ð7.65� 5.72Þ × 10−31 g cm−3
on the Hubble constant, and predict H0 ¼ 68.84�
2.60 km s−1 Mpc−1. See, in Fig. 2, the negative correlation
between Ωk0 and wci0, and also that the existing negative
correlation between h0 and wci0 in the case of the DE
model disappears with the inclusion of spatial curvature,
i.e., in the case of the oDE model. See also Fig. 3
which demonstrates the interplay between H0, ϱci and
Ωk0 in the light of the observational data. Notice that,
when the oDE model (or the oΛCDM model predicting
H0 ¼ 68.62� 2.68 km s−1Mpc−1) is compared to the
ΛCDM and DE models, it is the increased error along
with the slightly enhanced mean value of the constraint on

H0 that reconciles the oDE model (or the oΛCDM model)
with the model independent measurements of the Hubble
constant, for instance, with the distance ladder measure-
ments, e.g., H0 ¼ 69.8� 0.8 km s−1Mpc−1 from a recent
calibration of the tip of the red giant branch (TRGB)
applied to Type Ia supernovae [62]. Thus, neither the
oΛCDM model nor the oDE model can robustly address
the so-called H0 problem. Similarly, the oDE model, as
well as the DE model, better agrees with the Ly-α data from
z ≈ 2.34 due to the widening in the 1D marginalized
posterior distribution of H0, not due to a non-monotonic

FIG. 3. Two-dimensional (68% and 95% CLs) marginalized
distributions of H0 with respect to ϱci of the DE and of the oDE
models for the combined BAOþ SNþH (without PLK) and
BAOþ SNþH þ PLK (with PLK) datasets.

FIG. 2. One- and two-dimensional (68% and 95% CLs) marginalized posterior distributions for the free parameters of DE, oDE,
ΛCDM, and oΛCDM models using the combined datasets of BAOþ SNþH (left panel) and BAOþ SNþH þ PLK (right panel).
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evolution of HðzÞ at about z ∼ 1 as a result of a ρkci
assuming negative density values in the past. See Fig. 4,
wherein we present the probability distribution of the
HðzÞ=ð1þ zÞ vs z in the case of the combined BAOþ
SNþH dataset for the DE (left) and oDE (middle) models
and include the TRGB H0 and BAO data points for
comparison (solid lines represent 1σ and 2σ accordingly
and darker implies more probable as shown in the color bar).
We observe that the reason H0 takes larger values is that,

as we go from today (z ¼ 0) to the past, the energy density
of the effective source ρkci (8) can cross below zero in the
recent past, at a redshift zkci� > 0.92 for the oDEmodel and
zkci� > 1.26 for the oΛCDM model. In both models, this
happens because of the closed space (Ωk0 < 0), whereas
the simple-gDE opposes it—notice that the energy density
of the simple-gDE never crosses below zero in the past, but
in the far future (zci� < −0.78). In the DE model, in which
H0 takes the smallest values among all the models, the
simple-gDE cannot cross below zero in the recent past,
but either in the far future (zci� < −0.96) or remote past
(zci� ≳ 107). The interplay between Ωk0, h0 (or H0), and
zkci�, in the light of observational data, is well demonstrated
in Fig. 5: The larger negative values of Ωk0, the lower the
value of z� (viz., zkci� for the oDE model and zkcc� for the
oΛCDMmodel) accompanying by larger (more red) values
of h0 (or H0). The Hubble constant achieves its largest
values within 68% CL, H0 ∼ 72 km s−1Mpc−1, if z� ∼ 1
(the smallest z� value allowed within 68% CL). On the
other hand, for large z� values, the H0 values predicted
within the oΛCDM and oDE models approach those
predicted within the ΛCDM and DE models, respectively.

B. In the case of BAO+SN+H +PLK dataset

The DE and oDE models fit to the combined BAOþ
SNþH þ PLK equally well (having the same −2 lnLmax
value), and both fit better than the ΛCDM and oΛCDM
models. The Bayesian evidence, on the other hand, presents
significant evidence against the models including spatial

curvature, as it is jΔ lnZj ∼ 2 for both the oΛCDM and
oDE models, and suggests there is no evidence to prefer
the oΛCDM model over the DE model, as it is Δ lnZ ¼
−0.17� 0.36 for the DE model. The inclusion of the
Planck CMB data in the analysis does not considerably
change the constraints on the parameters of the oΛCDM
model, though Ωk0 now favors slightly positive values, but
still remains consistent with spatially flat universe, viz.,
Ωk0 ¼ 0.0012� 0.0018. Nevertheless, the constraints on
all the common parameters of the ΛCDM and oΛCDM

FIG. 4. HðzÞ=ð1þ zÞ vs z for DE (left), oDE (middle) models using the combined BAOþ SNþH datasets and for oDEmodel (right)
using BAOþ SNþH þ PLK dataset, in which we consider the observational HðzÞ values, H0 ¼ 69.8� 0.8 km s−1 Mpc−1 from the
TRGB H0 [62], BAO Galaxy consensus, and Ly-α DR14 (red error bars) [69,95].

FIG. 5. Two-dimensional (68% and 95% CLs) marginalized
distributions of the h0,Ωk0 with respect to zkci� of oDEmodel and
to zkcc� of oΛCDM for the combined BAO þ SNþH dataset.

ACQUAVIVA, AKARSU, KATıRCı, and VAZQUEZ PHYS. REV. D 104, 023505 (2021)

023505-8



models now become almost the same. On the other hand,
the inclusion of the Planck CMB data in the analysis
considerably changes the constraints on the parameters of
the oDE model—in particular, on the parameters Ωk0 and
wci0—and brings, by predicting Ωk0 ¼ −0.0001� 0.0019,
the oDE model almost indistinguishably close to the DE
model. It is remarkable that the oDE model now prefers
spatial flatness with a precision higher than the oΛCDM
model does; in spite of that, when the Planck CMB data
were not included in our analyses, the oΛCDM model
was consistent with spatial flatness, but the oDE model
was not. This resurrection of the spatial flatness is accom-
panied by the fact that the simple-gDE now resembles
the usual vacuum energy, namely, it still yields positive
inertial mass density, but now closer to zero, ϱci ¼
ð2.85� 2.58Þ × 10−31 g cm−3. This constraint now is
almost the same as the one in the case of the DE model,
ϱci ¼ ð3.06� 2.28Þ × 10−31 g cm−3, whereas it was
allowed to take negative values when the Planck CMB
data were not included in our analysis; see Fig. 3. These
slightly positive inertial mass density values correspond to
the present-day EoS parameters of the simple-gDE wci0 ¼
−0.948� 0.041 for the DE model and wci0 ¼ −0.951�
0.045 for the oDE model and then result in slightly
smaller H0 values, H0 ¼ 67.72� 0.97 km s−1 Mpc−1 for
the DE model and H0 ¼ 67.73� 0.99 km s−1Mpc−1 for
the oDE model, compared to the standard ΛCDM value
H0 ¼ 68.29� 0.52 km s−1Mpc−1—see the negative cor-
relation between h0 andwci0 in Fig. 2 as well as the negative
correlation between H0 and ϱci in Fig. 3. In contrast to the
results without the Planck CMB data, the deficit in H0 in
the case of the oDE model cannot be compensated by the
spatial closedness of the universe, as with the inclusion of
the Planck data the present universe is spatially flat with an
accuracy of 0.2%. The data predict zkcc� ∼ 10 (oΛCDM)
and zkci� ∼ 7 (oDE) for the lower limit of the redshift at
which the energy density of the effective source crosses
below zero in the oΛCDM and oDE models. And, even
these lower limits remain too large for the energy density
crossing below zero to be efficient in enhancing the
constraints on H0 in the oΛCDM and oDE models.
Finally, one may see Fig. 3 for a very good summary of

the observational constraints on the two minimal extensions
of the standard ΛCDM model—(i) the spatial curvature
(Ωk0) and (ii) simple-gDE promoting the null inertial mass
density of the usual vacuum energy to an arbitrary constant
ϱci—and their influence on the Hubble constant H0. The
combined BAOþ SNþH þ PLK dataset presents evi-
dence at equal strength for the usual vacuum energy (null
inertial mass density) and the simple-gDE with a constant
inertial mass density very close to zero, viz., at the order
of Oð10−12Þ eV4. This latter possibility predicts almost
exactly the same history of the universe up until today
as the standard ΛCDM model—so that it does not
result in any improvement regarding the Ly-α BAO

measurements—except that it slightly aggravates the so-
called H0 tension prevailing within the standard ΛCDM
model; see the right panel in Fig. 4. Yet, the constraints on
the model considering simple-gDE instead of the Λ suggest
totally different futures for the universe in comparison to
the standard ΛCDM model. As we discussed in Sec. II, the
future will be drastically different depending on the sign
of ϱci: a bouncing (H ¼ 0) universe in the finite future if
ϱci > 0 and a forever expanding universe for ϱci ≤ 0 with
the infinite future limit of the de Sitter Universe for ϱci ¼ 0
and of the LSBR for ϱci < 0. In the next section, in light of
the observational analyses presented here, we will discuss
in detail the complete history of the Universe predicted by
these four models under consideration in this paper.

IV. DYNAMICAL ANALYSIS

To analyze the asymptotic behavior of the models under
consideration, we resort to the well-known methods of
dynamical systems. In the case of homogeneous cosmol-
ogies such as the one analyzed here, one usually starts by
defining a set of dimensionless variables, e.g., the density
parameters introduced above, and then proceeds to study
their evolution in the parameter space by transforming
Einstein and conservation equations in terms of the new
variables. The fixed (or critical) points of such a system
represent classes of solutions that can be interpreted as
cosmological phases with a specific matter component
dominating. In the present context, such a method allows us
to determine under which conditions the scenarios envi-
sioned by the DE and oDE models can be considered as
future phases of our Universe (i.e., future attractors of the
dynamical system). This will be done by implementing the
constraints on the free parameters from both the combined
datasets of BAOþ SNþH and BAOþ SNþH þ PLK
presented in Table I.
Cosmologies with spatial curvature or simple-gDE

different from the ΛCDM model can present recollapsing
as well as bouncing scenarios: in such cases, the usual
expansion-normalized variables are ill defined due to the
vanishing of the expansion H at the turning points of the
scale factor. With the aim of capturing also these cases in a
global stability analysis, we construct properly the dimen-
sionless autonomous system and define the following
dimensionless variables,

Xm ¼ ρm
3D2

; Xr ¼
ρr
3D2

; Xci ¼
ρci0
3D2

; XH ¼ H
D
;

ð13Þ

where the normalization D and its evolution are
governed by

D2 ¼ H2 þ jkj
a2

;
_D
D2

¼ XH

�
_H
D2

þ X2
H − 1

�
: ð14Þ
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By inspecting the dimensionless variables above, we see
that Xm and Xr are positive definite. The sign of Xci
depends on the sign of ρci0, which has already been
supposed to be positive. Finally, XH is defined in the
interval ½−1; 1�, and its sign depends on the sign of the
Hubble parameter H; it is positive for expanding models
and negative for collapsing ones. The boundary values þ1
and −1 of this variable correspond to spatially flat
expanding and collapsing models, respectively. The nor-
malization D has been introduced in Ref. [102] as a means
to compactify the parameter space of spatially homo-
geneous cosmologies and include bouncing/recollapsing
scenarios in the analysis, as is well defined throughout
the whole cosmological evolution including possible turn-
ing points of the scale factor (see also Ref. [103] for a
comprehensive review of this and other methods to treat
noncompact dynamical systems). To decouple the dynam-
ics ofD from the dynamics of the other variables, we define
the new time parameter dτ ¼ Ddt and take derivatives of
the definitions given in (13) with respect to τ:

X0
m ¼ −2XmXH

�
_H
D2

þ X2
H þ 1

2

�
; ð15Þ

X0
r ¼ −2XrXH

�
_H
D2

þ X2
H þ 1

�
; ð16Þ

X0
ci ¼ −2XciXH

�
_H
D2

þ X2
H − 1

�
; ð17Þ

X0
H ¼ ð1 − X2

HÞ
�

_H
D2

þ X2
H

�
: ð18Þ

The fixed points of such a system describe specific
asymptotic cosmological solutions, whose stability in
general depends on the free parameters involved. The
cosmological interpretation of the critical points is
expressed in terms of the effective EoS parameter
(weff ≡ peff=ρeff )

weff ¼
1
3
Xr þ Xci½wci0 þ 3ð1þ wci0Þ ln a�

Xm þ Xr þ Xci½1 − 3ð1þ wci0Þ ln a�
ð19Þ

and deceleration parameter

q ¼ −1 −
1

X2
H

_H
D2

: ð20Þ

The _H and ln a terms in all the previous equations will be
provided by Raychaudhuri and Friedmann equations, and
they will have different forms in terms of the dimensionless
variables depending on the sign of the spatial curvature
(viz., k); hence, we are going to present the analysis of the

critical points of the system for the cases k ≤ 0 (Ωk0 ≥ 0)
and k > 0 (Ωk0 < 0) separately.

A. Nonpositive spatial curvature k ≤ 0 (Ωk0 ≥ 0)

For nonpositive spatial curvature (flat/open space),
Friedmann and Raychaudhuri equations in terms of
the dimensionless variables take the following forms,
respectively:

2X2
H − 1 ¼ Xm þ Xr þ ½1 − 3ð1þ wci0Þ ln a�Xci; ð21Þ

_H
D2

¼ 1

2
− 2X2

H −
1

2
Xr −

3

2
½wci0 þ 3ð1þ wci0Þ ln a�Xci:

ð22Þ

By substituting ln a from the Friedmann equation into the
Raychaudhuri equation, we obtain

_H
D2

¼ −1þ X2
H −

3

2
Xm − 2Xr −

3

2
ð1þ wci0ÞXci: ð23Þ

This expression closes the autonomous system in the case
of negative spatial curvature. The effective EoS and
deceleration parameters are given by

weff ¼ −1þ 3Xm þ 4Xr þ 3ð1þ wci0ÞXci

3ð1 − 2X2
HÞ

; ð24Þ

q ¼ 2þ 3Xm þ 4Xr þ 3ð1þ wci0ÞXci

2X2
H

− 2: ð25Þ

B. Positive spatial curvature k > 0 (Ωk0 < 0)

For positive spatial curvature (closed space), Friedmann
and Rauchaudhuri equations are

1 ¼ Xm þ Xr þ Xci½1 − 3ð1þ wci0Þ ln a�; ð26Þ

_H
D2

¼ −
1

2
− X2

H −
1

2
Xr −

3

2
½wci0 þ 3ð1þ wci0Þ ln a�Xci:

ð27Þ

Following the same procedure as before, we substitute ln a
from the Friedmann equation into the Raychaudhuri
equation to obtain

_H
D2

¼ 1 − X2
H −

3

2
Xm − 2Xr −

3

2
ð1þ wci0ÞXci; ð28Þ

giving the closure of the autonomous system for positive
spatial curvature. The cosmological parameters in this case
can be calculated through the following expressions:
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weff ¼ −1þ Xm þ 4

3
Xr þ ð1þ wci0ÞXci; ð29Þ

q ¼ 3Xm þ 4Xr þ 3ð1þ wci0ÞXci − 2

2X2
H

: ð30Þ

C. Critical points

The critical points of the system are found by solving
X0 ¼ 0 given by (15)–(18), together with (23) for k ≤ 0 or
(28) for k > 0. The coordinates of the critical elements
in the parameter space are listed in Table II together with
the eigenvalues of their stability matrix and their
stability character, for the case Xci > 0. We note that the
dynamical system is invariant under the simultaneous
change of sign fð1þ wci0Þ → −ð1þ wci0Þ; Xci → −Xcig,
because these quantities appear always in the combination
ð1þ wci0ÞXci. Consequently, if one is interested in analyz-
ing the case wci0 < −1 with positive dark energy density,
the results will be the same as in the case wci0 > −1 with
negative dark energy density.
There can be up to ten critical points in the phase space.

In what follows, we go through each critical point discus-
sing its mathematical and physical features:

(i) Points A�: They describe exponentially expanding
(Aþ) or collapsing (A−) spatially flat models, with
weff ¼ −1 and q ¼ −1. A vanishing eigenvalue
signals that the system is indifferently unstable along
the XH eigendirection. A numerical study tells us
that the stability along the eigendirection depends on
wci0: assuming Xci > 0, the expanding model is a
future attractor if wci0 < −1, while it is an unstable
saddle if wci0 > −1; the collapsing model instead is

a past source if wci0 < −1 and an unstable saddle
if wci0 > −1.

(ii) Points B�: They are spatially flat dust-dominated
solutions, with weff ¼ 0 and q ¼ 1=2. Such points
are always unstable saddles.

(iii) Points C�: They are spatially flat radiation-
dominated models with weff ¼ 1=3 and q ¼ 1.
The expanding solution Cþ is a past source, while
the contracting C− is a future attractor.

(iv) Points D�: These points represent the Milne Uni-
verse with scale factor a ∼ t. They exist only in the
case of negative spatial curvature (open space), and
they are unstable saddles.

(v) Set E: The set of points E is a static model (XH ¼ 0)
that can be sourced by different combinations of
parameters satisfying the relation

Xm ¼ −
2

3
−
4

3
Xr − ð1þ wci0ÞXci: ð31Þ

Such a model has effective EoS parameter
weff ¼ −1=3. Plugging the coordinates of the point
back into Friedmann (21), one can obtain the scale
factor of the static universe:

a ¼ exp

�
1

3ð1þ wci0Þ
þ 1 − Xm − Xr

2þ 3Xm þ 4Xr

�
: ð32Þ

From (31), assuming the physically reasonable
requirements that Xm ≥ 0 and Xr ≥ 0, together
with the assumption Xci > 0, then we must have
wci0 < −1 (or Xci < 0 and wci0 > −1). For instance,
in the case of purely simple-gDE-dominated uni-
verse (Xm ¼ Xr ¼ 0), in order to keep the model

TABLE II. Coordinates, eigenvalues, and stability of the critical points (CPs) of the system, assuming Xci > 0.

k CP Xm Xr Xci XH Eigenvalues Stability

k ≤ 0 Aþ 0 0 0 1 f−4;−3;−2; 0g n
Sinkwci0<−1
Saddlewci0>−1

A− 0 0 0 −1 f4; 3; 2; 0g n
Sourcewci0<−1
Saddlewci0>−1

Bþ 1 0 0 1 f3; 3;−1; 1g Saddle
B− 1 0 0 −1 f−3;−3;−1; 1g Saddle
Cþ 0 1 0 1 f4; 4; 2; 1g Source
C− 0 1 0 −1 f−4;−4;−2;−1g Sink
Dþ 0 0 0 1=

ffiffiffi
2

p f− ffiffiffi
2

p
;

ffiffiffi
2

p
;

ffiffiffi
2

p
; 1=

ffiffiffi
2

p g Saddle
D− 0 0 0 −1= ffiffiffi

2
p f− ffiffiffi

2
p

;− ffiffiffi
2

p
;

ffiffiffi
2

p
;−1= ffiffiffi

2
p g Saddle

E − 1
3
ð2þ 4Xr þ 3ð1þ wci0ÞXciÞ ∀ ∀ 0

�
0; 0;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Xr − 9

2
ð1þ wci0ÞXci − 1

q
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Xr − 9
2
ð1þ wci0ÞXci − 1

q �
Saddle

k > 0 F 1
3
ð2 − 4Xr − 3ð1þ wci0ÞXciÞ ∀ ∀ 0

�
0; 0;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Xr − 9

2
ð1þ wci0ÞXci − 1

q
;ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Xr − 9
2
ð1þ wci0ÞXci þ 1

q �
Center

SIMPLE-GRADUATED DARK ENERGY AND SPATIAL … PHYS. REV. D 104, 023505 (2021)

023505-11



static, one needs Xci ¼ − 2
3ð1þwci0Þ. Owing to the

presence of wci0, the solution corresponding to this
critical point does not exist in the case of the usual
vacuum energy (wci0 → −1), where a static universe
is possible only for positive spatial curvature (closed
space). According to the ranges of values specified
after (32), the set is unstable.

(vi) Set F: The only set of critical points of the system for
positive spatial curvature (closed space) represents

static solutions. The effective EoS parameter of the
model is weff ¼ −1=3, while the scale factor of the
static universe, obtained from (26), is given by

a ¼ exp

�
1

3ð1þ wci0Þ
−

1 − Xm − Xr

2 − 3Xm − 4Xr

�
: ð33Þ

If we consider only simple-gDE as a source of the
static universe, one has to have Xci ¼ 2

3ð1þwci0Þ and
hence wci0 > −1 if Xci > 0. Under the same
assumption of positive dark energy density, the
set behaves as a center. In Fig. 6, we show the
presence of periodic orbits evolving around
the critical line F for Xr ¼ 0. These represent cyclic
cosmological dynamics, periodically passing
through phases of expansion and contraction with-
out any past or future singularity.

As already stated above, the stability of the de Sitter
points A� depends on whether wci0 is less or greater than
−1. The same holds true for the existence of E and F:
assuming Xci > 0, the former exists only for wci0 < −1,
while the latter exists for wci0 > −1. Finally, the locations
of E and F in the parameter space depend on the specific
value of wci0.
In Fig. 7, we show the trajectories of the system inside

the invariant subsets ðXci; XHÞ and ðXci; XmÞ for the case
wci0 > −1: the corresponding case wci0 < −1 can be
obtained by simply mirroring the plots through Xci ¼ 0.
Moreover, the value wci0 ¼ −1=2 that we choose in order to
plot the two-dimensional invariant subsets is only a
representative value that allows a better visualization, but
it is worth stressing that the topology of the trajectories and
the stability character of the critical points do not change as
long as wci0 does not cross the value −1.

FIG. 6. Example of trajectory circling around the critical line F
in the invariant subset Xr ¼ 0. Initial conditions are not related to
observations and are chosen in such a way to show the existence
of cyclic dynamics in the oDE model.

FIG. 7. Invariant subset dominated by dark energy and spatial curvature (left and middle panels) and by matter and dark energy in the
expanding case (XH ¼ 1, right panel), with wci0 ¼ −0.5 and Xr ¼ 0. Critical points are indicated with black dots and the green shaded
areas indicate accelerated phases of the dynamics (q < 0).
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D. Critical points at infinity

The parameter space spanned by our dimensionless
variables Xi is not compact, and hence some trajectories
can escape to infinity. For instance, solutions in the right-
most panel of Fig. 7, emerging from the source Bþ and
passing close to the unstable point Aþ in the upper half
plane (Xci > 0) will evolve toward Xci → ∞. This should
represent phases of the cosmic evolution in which the dark
energy contribution dominates over the other components,
and hence it is important to understand the behavior of the
system at infinity. We consider the spatially flat expanding
case, XH ¼ 1, and we compactify the parameter space by
defining the new variables Yi as

Xm ¼ Ym

Z
; Xr ¼

Yr

Z
; Xci ¼

Yci

Z
; ð34Þ

with Y2
m þ Y2

r þ Y2
ci þ Z2 ¼ 1. The system at infinity

corresponds to the unit sphere in the limit Z → 0, where
the original variables blow up. We recast the system of
equations (15)–(17) in terms of the variables (34), imple-
ment the constraint Y2

m þ Y2
r þ Y2

ci þ Z2 ¼ 1 in order to get
rid of Yci, and take the limit Z → 0; the resulting reduced
system at infinity is

Y 0
m ¼ Ymð3Y2

m þ 4Y2
r − 3Þ;

Y 0
r ¼ Yrð3Y2

m þ 4Y2
r − 4Þ: ð35Þ

By solving the system Y 0
m ¼ Y 0

r ¼ 0, we find the following
critical points:

(i) fYm ¼ 1; Yr ¼ 0; Yci ¼ 0g
(ii) fYm ¼ 0; Yr ¼ 1; Yci ¼ 0g
(iii) fYm ¼ 0; Yr ¼ 0; Yci ¼ 1g.
The last point is of particular interest, because Yci

dominates over the other variables. In terms of the old
variables, this means that Xci dominates over Xm and Xr,
and hence the Friedmann equation takes the form

1 ¼ Xci½1 − 3ð1þ wci0Þ ln a�

¼ ρci0
3

a2

_a2
½1 − 3ð1þ wci0Þ ln a�: ð36Þ

Solving this equation for aðtÞ with initial condition
aðt0Þ ¼ 1, one gets

a ¼ exp

� ffiffiffiffiffiffiffi
ρci0
3

r
ðt − t0Þ − ð1þ wci0Þ

ρci0
4

ðt − t0Þ2
�
: ð37Þ

For wci0 > −1, this model describes a bounce, with

maximum scale factor a ¼ e−
1

3ð1þwci0Þ; for wci0 < −1, it
describes the LSBR, which is an abrupt event first proposed
in Ref. [72], for which the Hubble parameter diverges,
whereas its time derivative remains finite:

H ¼
ffiffiffiffiffiffiffi
ρci0
3

r
−
ð1þ wci0Þρci0

2
ðt − t0Þ; ð38Þ

_H ¼ −
ð1þ wci0Þ

2
ρci0 ¼ −

1

2
ϱci: ð39Þ

In the spatially flat expanding case and considering a
dark-energy-dominated phase, the system reduces to

X0
ci ¼ 3ð1þ wci0ÞX2

ci: ð40Þ

Hence, for wci0 > −1 (ϱci > 0), the point at infinity is a
future attractor bouncing scenario, while for wci0 < −1
(ϱci < 0), it is a past attractor LSBR model. In the next
section, we will show numerically that, although the
presence of curvature renders such point at infinity an
unstable saddle, the dynamics for wci0 > −1 (ϱci > 0) still
leads to a recollapsing scenario.

E. Dynamics constrained by observations

At this point, we are ready to implement into the
dynamical system the values of the cosmological param-
eters offered by the datasets in Table I in order to identify
the trajectories and late-time attractors of the system under
observational constraints. As the initial conditions for the
evolution of our dynamical system, we consider the mean
values as well as their deviations within the 1σ error bar,
by relating the fractional densities to the Xi variables
according to the following:

Ωm ¼ Xm

X2
H
; Ωr ¼

Xr

X2
H
; Ωci ¼

Xci

X2
H
; ð41Þ

Ωk ¼
8<
:

− 1
3
ð1 − 1

X2
H
Þ for k ≤ 0;

1
3
ð1 − 1

X2
H
Þ for k > 0.

ð42Þ

The current state of the Universe being in an expanding
phase, we choose XH > 0 at present day. As a conse-
quence, we can expect the trajectory to be in the basin
of past attraction of the radiation-dominated point Cþ;
the trajectory emerges from there and passes close to the
matter-dominated saddle Bþ, the second epoch of the
cosmological evolution.
Assuming ρci0 > 0, we see that (i) for wci0 > −1

(ϱci > 0) the recollapsing scenario takes place irrespective
of spatial curvature and (ii) for wci0 < −1 (ϱci < 0) the
asymptotic future attractor is point Aþ, the de Sitter
Universe.
In Figs. 8 and 9, we plot the trajectories corresponding

to the cosmological parameters constrained, respectively,
by the combined datasets of BAOþ SNþH and
BAOþ SNþH þ PLK, given in Table I. The first two
panels of these figures show the cosmic evolution for
wci0 ¼ −1, for the ΛCDM and oΛCDM models; the
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asymptotic future behavior is the usual cosmological
constant-dominated phase with Xci ¼ 1. In the remaining
panels of the same figures, we plot the trajectories for the
DE model and oDE model, highlighting three trajectories
corresponding to the mean value of wci0 and its upper and
lower values in the error bar region. From the values
provided by Table I, it is clear that both datasets (with or
without Planck CMB data) favor wci0 > −1 (ϱci > 0), and
hence the recollapsing model is a generic future behavior;
in the DE model, it appears as a future attractor at infinity,
while when spatial curvature is allowed in the oDE model
the recollapse takes place due to the change in sign of XH.
For wci0 < −1 (ϱci < 0) (not favored, but is still a pos-
sibility, by the observational data), on the other hand, the
de Sitter point Aþ is a future attractor; the DE model
constrained without Planck CMB data is the only one that
allows such a scenario within 1σ confidence region (see the
third panel of Fig. 8).

V. CONCLUSIONS

In this paper, we first discussed briefly the possibility
that dark energy models with negative energy density

values in the past can alleviate the H0 tension, as well
as the discrepancy with the Ly-α BAO measurements, both
of which prevail within the standard ΛCDM model. We
have then investigated in detail whether two minimal
extensions of the ΛCDM model, together or separately,
can successfully realize such a scenario: (i) the spatial
curvature, which, in the case of spatially closed universe,
mimics a negative energy density source with an EoS
parameter w ¼ −1=3 and (ii) simple-graduated dark
energy, which promotes the null inertial mass density of
the usual vacuum energy to an arbitrary constant as
ϱ ¼ const (i.e., the minimal deviation from null value),
which, if negative, results in the corresponding energy
density decreasing with increasing redshift similar to the
phantom models, but unlike them crossing below zero at a
certain redshift—see the graduated dark energymodel [46]
for the minimal dynamical deviation from the null inertial
mass density. We have found that, when the Planck CMB
data are not included in the observational analysis using
the combined BAO+SN+H dataset, the models with
simple-gDE predict interesting and some significant devi-
ations from the ΛCDM model. In particular, this dataset
predicts Ωk0 and ϱci that oppose each other in enhancing

FIG. 8. Trajectories corresponding to theΛCDM, oΛCDM, DE, and oDEmodels, for values of the parameter wci0 in the allowed range
according to the combined BAO þ SNþH dataset given in Table I.

FIG. 9. Trajectories corresponding to theΛCDM, oΛCDM, DE, and oDEmodels, for values of the parameter wci0 in the allowed range
according to the combined BAO þ SNþH þ PLK dataset given in Table I.
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H0, namely, predicts a spatially closed universe of Ωk0 ¼
−0.122� 0.117 along with a simple-gDE of a positive
inertial mass density ϱci ¼ ð7.65� 5.72Þ × 10−31 g cm−3,
which results in H0 ¼ 68.84� 2.60km s−1Mpc−1 imply-
ing no robust improvement in the H0 tension—notice the
increased errors of this value with respect to the ones,
H0 ¼ 68.27� 0.88km s−1Mpc−1, in the case of the
ΛCDM model. Besides, the Bayesian evidence suggests
that there is a significant evidence for preferring the ΛCDM
model over the extended models. The combined BAOþ
SNþH þ PLK dataset, including the Planck CMB data,
presents significant evidence against the oΛCDM and oDE
models, i.e., a deviation from spatial flatness in both
models considering the Λ and the simple-gDE as the dark
energy sources, but presents almost the same evidence for
the ΛCDM model and the DE model (simple-gDE) with a
positive inertial mass density at the order ofOð10−12Þ eV4,
namely, ϱci ¼ ð3.06� 2.28Þ × 10−31 g cm−3. It is striking
that this constraint implies statistically a significant
deviation from the usual vacuum energy (ϱ ¼ 0), but,
alas, with a sign opposite to our original expectation
that would help alleviate the H0 tension. This, however,
predicts almost no deviation from the ΛCDM model
up until today—so that it does not result in any
improvement regarding the Ly-α BAO measurements—
except that it predicts slightly lower constraint H0 ¼
67.73� 0.99 km s−1Mpc−1 on the Hubble constant
compared to one H0¼68.29�0.52 kms−1Mpc−1 obtained
for the ΛCDM model and thereby aggravates the H0

tension. We have also studied via dynamical analysis the
complete history of the Universe in the models, in

particular, as the simple-gDE results in two distinct futures
depending on the sign of the inertial mass density different
than the de Sitter future of the ΛCDMmodel. It turns out that
the recollapse of the Universe in the finite future is a generic
behavior of the simple-gDEmodels, as ϱ > 0within 68%CL
independent of whether the Planck data are included or not in
the observational analyses—with the exception of the spa-
tially flat simple-gDE case (DE) constrained without Planck
CMB data, which allows a small incursion of ϱ into the
negative value region. Finally, it is surprising to observe, via
simple-gDE—which promotes phenomenologically the null
inertial mass density of the usual vacuum energy of QFT to
an arbitrary constant—that the data favor a positive constant
inertial mass density (ϱ ¼ const > 0), rather than a constant
positive energy density (Λ > 0), as one of the constants of
nature subject to measurements. Therefore, we find it
tempting to investigate whether such a generalization of
the usual vacuum energy can be derived/predicted from a
fundamental theory of physics.
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