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Scalar-field dark matter (SFDM) halos exhibit a core-envelope structure with soliton-like cores and cold-
dark matter(CDM)-like envelopes. Simulations without self-interaction (free-field case) have reported a
core-halo mass relation of the form Mc ∝ Mβ

h, with either β ¼ 1=3 or β ¼ 5=9. These results can be
understood if the core and halo follow some special energy or velocity scaling relations. We extend these
core-halo mass relations here to include the case of SFDM with self-interaction, either repulsive or
attractive, and investigate its implications for the possible gravitational instability and collapse of solitonic
cores, leading to the formation of supermassive black holes (SMBHs). Core sizes are set by the larger of
two length scales, the de Broglie wavelength (in the free-field limit) or the radius RTF of the (n ¼ 1)-
polytrope for repulsive SFDM (in the Thomas-Fermi regime), depending upon particle mass m and
interaction strength λ. For parameters selected by previous literature to make approximately Kpc-sized
cores and CDM-like structure formation on large scales but suppressed on small scales, we find that cores
are stable for all galactic halos of interest, from the free-field to the repulsive Thomas-Fermi limit. For
attractive self-interaction in this regime, however, halos of mass Mh ∼ 1010–1012 M⊙ have cores that
collapse to form seed SMBHs withMSMBH ∼ 106–108 M⊙, as observations seem to require, while smaller-
mass halos have stable cores, for particle masses m ¼ 2.14 × 10−22–9.9 × 10−20 eV=c2, if the free-field
limit has β ¼ 1=3, orm ¼ 2.23 × 10−21–1.7 × 10−18 eV=c2, if β ¼ 5=9. We also place bounds on λ for this
case. For free-field and repulsive cases, if previous constraints on particle parameters are relaxed to allow
much smaller (subgalactic scale) cores, then halos can also form SMBHs, for the same range of halo and
black hole masses, as long as β ¼ 5=9 is correct for the free-field limit. In that case, structure formation in
SFDM would be largely indistinguishable from that in CDM. As such, while these SFDM models might
not help to resolve the small-scale structure problems of CDM, they would explain the formation of
SMBHs quite naturally, which is otherwise not a direct feature of CDM. Since CDM, itself, has not yet been
ruled out, such SFDM models must also be viable.
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I. INTRODUCTION

Two of the greatest puzzles in contemporary cosmology
and fundamental physics are:

1. The nature and origin of cosmic dark matter (DM).

2. The origin of the SMBHs observed in galactic
nuclei.

Regarding the first point, the cosmological standard
model ΛCDM suggests that DM is composed of a non-
relativistic, collisionless gas—CDM—and usually assumed
to be a weakly interacting massive particle (WIMP) which
originated as a thermal relic of the big bang [1,2]. Although
WIMP dark matter describes observations well at cosmo-
logical scales, it is in apparent conflict with some obser-
vations on small scales (e.g., the problem of cuspy-core-
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halo density profiles, overproduction of satellite dwarfs
within the Local Group, and others; see, for example,
Refs. [3–7]). In addition, all attempts to detect WIMPs
directly in the laboratory or indirectly by astronomical
signals from their decay or annihilation in distant objects
[8] have been unsuccessful, and a large range of particle
parameters originally predicted to be detectable have
thereby been ruled out. For this reason, it seems necessary
to explore alternative models to standard ΛCDM that help
us to solve all these issues. With this in mind, several
models have been proposed, one of which considers that
the DM is composed of an ultralight real or complex scalar
field, minimally coupled to gravity, and interacting only
gravitationally with the rest of the matter as of a very early
time in the cosmic evolution.
The main idea of scalar fields as the DM in the Universe

originated about two decades ago [9–16], although
some hints can be traced further back in Refs. [17,18].
Since then, the idea has been rediscovered by various
authors with different names, for example, SFDM [14],
fuzzy DM [11], wave DM [19], Bose-Einstein condensate
DM [20], or ultralight axion DM [21] (see also Ref. [22]).
However, its first systematic study started in Refs. [23,24].
In this work, we choose to call the model “SFDM.”
In order for the scalar field to behave as a “cold” DM

candidate, it is necessary that its Lagrangian possesses a
quadratic term in the potential,

VðφÞ ¼ 1

2

m2c2

ℏ2
φ2; ð1Þ

which gives rise to a pressureless fluid behavior in the
matter-dominated epoch of the Universe, where SFDM
dominates all other cosmic components.
The simplest models have only this term in the scalar

field potential, i.e., there is one tunable parameterm, which
is subject to constraints from observations, as we will
describe below. Such models are usually termed “fuzzy
dark matter”—we will often call it “free SFDM/free field”
or “free case” in this paper. However, we are interested to
study more varied models by considering the addition of a
further term in the Lagrangian of the form

VðφÞSI ¼
λ

4ℏc
φ4: ð2Þ

Similarly to the quadratic term, this quartic term may either
stem directly from a fundamental particle description of
SFDM, or it might result upon an expansion of a funda-
mental (even) potential, as, e.g., the cosine-type of “axion-
like” particles. Self-interaction has been mostly neglected
in previous literature, because of the smallness of the
respective coupling parameter λ. However, it is only
recently that the community has embarked on studying
models with self-interaction in more detail, because it turns

out that self-interaction leads to qualitative differences,
compared to the free case.
The astrophysical motivation to consider SFDM as a

DM candidate has its root in the small-scale problems
of CDM mentioned in the beginning. In order to reproduce
galactic cores of order 1 kpc for the free SFDM case,
the boson mass is typically assumed in the range of
m ∼ 10−22–10−20 eV=c2. However, once self-interaction
is included, the boson mass can be much higher than those
values and yet produce large enough cores by tuning the
ratio of λ=m4. A reassessment of the different constraints in
the literature, as well as including the implications of our
work here, will be presented in a later section (for a review
of SFDM, see Refs. [25–30]). Our work will focus on
certain dynamical aspects of SFDM structure formation,
namely the structure of equilibrium halos and possible
implications for SMBH formation.
Simulations of SFDM cores without self-interaction

[19,31–37] have shown that, upon multiple mergers,
SFDM leads to cored density profiles in the inner region
of galactic halos. These cores, referred to as “solitons” in
the literature [19,35,38–40], have been shown to have a size
of order of the de Broglie wavelength of individual bosons,

λdB ∝
1

mv
; ð3Þ

where v is the “virial velocity” of the bosons, a result
expected from analytic calculations. However, these cores
have been found to be surrounded by a Navarro-Frenk-
White-like envelope generated by quantum interference
inherent to SFDM, following a relation of the form

Mc ∝ Mβ
h; ð4Þ

where Mc and Mh are the total core and halo mass,
respectively. The particular value of this β parameter is
still under debate, given that different authors have obtained
different results. On the one hand, in Refs. [19,31], an
expression that is well adjusted with a parameter β ¼ 1=3 is
found from their fully cosmological simulations. On the
other hand, by adopting more simplified scenarios on
galaxy formation but with better resolution, some authors
[34,36] have found that a parameter β ¼ 5=9 should
describe correctly virialized core-halo mass structures in
this scenario of SFDM. This correlation between the halo
core and its “envelope” has not been anticipated by early
work, though it is possible to understand the form of each
correlation in an a posteriori way, using analytic argu-
ments. Indeed, the fact that these correlations have been
established by simulations, offers a unique opportunity to
understand and extend the correlations by considering
novel physical effects such as the addition of DM self-
interaction.
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The core-envelope structure of SFDM halos with
self-interaction has not yet been established by three-
dimensional cosmological simulations, and yet we
expect such a structure, as well. Preliminary results of
one-dimensional simulations show that a core-envelope
structure also arises in the strongly self-interacting regime of
SFDM, the so-called Thomas-Fermi (TF) regime
(T.A.Dawoodbhoy, P.R.Shapiro, T.Rindler-Daller, to be
subm.). This is good news for SFDM,because the (quantum)
cores alone cannot explain the big range of galactic halo
masses found in the Universe, and it is this simple obser-
vation which “mandates” that cores (with or without self-
interaction) have to be enshrouded by some envelopes, if
SFDM is regarded as an alternative to CDM. Early indica-
tions of the problem of the core-halomass relationship and a
toy model for the TF regime of SFDM can be found in
Ref. [30]. Those authors suggested that the wave nature
of SFDM would result in an effective pressure support
(reflecting randomwave motions and the associated density
inhomogeneity implied on small scales) when averaged over
scales larger than the core, leading to virial equilibrium
on scales well beyond the size of the core, out to the same
scales as in CDM halos, in fact. Halo envelopes were later
confirmed in the fuzzy regime through simulations by
Ref. [31] and follow-up studies, as referenced above.
In the first part of this work, we will extend the core-halo

mass relation (4) to SFDM models with self-interaction,
using analytical calculations. In all cases, the core mass
increases with halo mass. Therefore, in the second part, we
will apply our result to assess the SFDM parameter space
for which soliton cores eventually become too massive to
remain stable: beyond a critical mass, which depends upon
SFDM parameters, soliton cores will collapse and can form
black holes. This way, SFDM might provide a mechanism
to form SMBHs in the centers of halos as of an early time.
However, it turns out that it is very difficult to produce
SMBHs with fiducial values of SFDM in the fuzzy regime,
while SMBH formation is much more feasible, once self-
interaction is added, as we will show.
There is a host of observations that indicate the existence

of SMBHs—with masses ranging between 106–1010 M⊙,
placed in the center of most massive galaxies [41,42]. The
origin of SMBHs is still mysterious, given their huge
masses at the high redshifts (z > 5.6), where they have
been observed [43–56]. In order for stellar black holes
(BHs) to become supermassive, they would need to accrete
large amounts of baryonic material and DM over a short
time, which is unfeasible even if accretion happens at
maximum Eddington rate. In addition to this puzzle of
high-z SMBHs, there is also a problem in understanding
why there seem to be no medium-sized black holes with
masses approximately 102–105 M⊙. Some standard sce-
narios of the formation of SMBHs consider the following:
like stellar BHs, which result from the collapse of massive
stars, SMBHs could be produced either by the collapse of

massive clouds of gas during the early stages of formation
of a galaxy [57] or by the collapse of supermassive
Pop III stars.1 Another suggestion considers the formation
of a cluster of stellar BHs, which eventually merge into a
SMBH [60]. However, it seems that these scenarios
do not deliver a fully satisfactory explanation for the
formation and evolution of such SMBHs at high redshifts.
Additionally, observations show that the masses MSMBH of
the central SMBHs are correlated with various global
properties of their host galaxies. The most important
relationship concerns the mass of the SMBH and the bulge
mass and an even tighter correlation with the stellar
velocity dispersion of the host galaxy bulge, first reported
by Refs. [61,62]. As a result, it has been also suggested that
the central SMBH mass is correlated with the total mass of
its host galaxy [63,64].
Observations might thus indicate that the formation and

growth of SMBHs over time could be related to the DM-
dominated galactic halos. With this in mind, Ref. [65]
studies the possibility that SMBHs might form by collapse
of all or part of gravitationally bound equilibrium objects
made of SFDM, which are assumed to model nuclear
galactic halos. Several earlier works have considered this
scenario and studied its plausibility. Among them, it was
demonstrated that self-gravitating objects comprising
free scalar field configurations with masses larger than
0.6m2

pl=m, where mpl is the Planck mass, are able to
collapse and form a BH [66–72]. For the specific case of a
mass m ∼ 10−22 eV=c2, such configurations have a critical
mass of collapse of approximately 1013 M⊙. On the other
hand, simulations in spherical symmetry demonstrated that
only a part of the scalar field collapses to form a BH, while
the remaining scalar field continues to surround the
resulting BH for a very long time (longer than the age
of the Universe) and can play the role of the DM halo of the
galaxy [69,71,72]. It is important to mention that these
studies conclude that most of the scalar field configuration
collapses into a BH, leaving only a small scalar field
remnant for the halo. However, these analyses have been
performed in spherical symmetry and in a limited region of
parameter space, corresponding to typical systems known
as boson stars (BSs). Also, in these studies, those BSs have
been used to model the entire SFDM halo, an unrealistic
scenario, because simulations by Refs. [19,31–37] revealed
that SFDM halos possess a more complicated core-
envelope structure [see Eq. (4)]. However, the above results
are nevertheless useful, given that such BSs represent very
well the soliton profiles observed in the central region of a

1These scenarios are not to be confused with another (non-
standard) proposal to explain SMBHs, namely so-called super-
massive dark stars, primordial stars of supermassive size which
are powered by DM self-annihilation in models of WIMP and
related dark matter [58,59]. Once dark stars collapse, they could
form seed black holes of about 104–105 M⊙.
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galactic halo and then, given the fact that we are interested
in an extension of the model to include self-interaction,
simulations for the case of a self-interacting BS should be
also applicable to the central soliton in halos. This case is of
interest for the issue of studying the possible collapse of the
central soliton within massive galactic halos (hosting
massive galaxies). In fact, this last scenario is one of the
main objectives of our study that will be analyzed in
this work.
The paper is organized as follows. In Sec. II, we

review the basic equations necessary to describe the
self-interacting SFDM model: the Einstein-Klein-
Gordon (EKG) system for a general description and the
Gross-Pitaevskii-Poisson (GPP) system in the weak-field
limit.2 In Sec. III, we present a basic description of the
SFDM soliton profile, which is obtained as the minimum-
energy, coherent, quasistationary solution of the GPP. In
the same section, we consider a Gaussian ansatz to
describe the soliton in order to maintain some freedom
in working with the self-interaction parameter of the
SFDM model. We show that, in general, this ansatz
maintains practically all the relations that are found in
the numerical solution (e.g., the parameter dependence
for the maximum mass for collapse of the soliton,
parameter dependence in the TF regime, etc.), even those
which result from a general-relativistic treatment. This
implies that the Gaussian ansatz represents a good
approximation for the soliton. Also in this section, we
show that the results provided by this ansatz can be
easily obtained in the hydrodynamic representation of the
GPP system and by considering a simple dimensional
argument, without the need of considering any functional
form for the core profile. In Sec. IV, we extend the core-
halo mass relation to self-interacting SFDM by assuming
that some energy relations that are fulfilled by core and
halo quantities in the simplest SFDM model remain valid
in the self-interacting scenario. Because two relations
have been reported between the masses of the core and the
halo, we decided to extend both of them. In Sec. V, we
compare our results with previous works, with the
emphasis on the implied constraints of the SFDM model
parameters. For this comparison, we focus on the core
properties found in the central region of SFDM halos. We
find that for a repulsive SFDM candidate, the central
soliton remains stable and should be represented in the TF
regime, while for attractive SFDM, we have scenarios
where the soliton can collapse and form a SMBH within
massive galactic halos (hosting massive galaxies), while
the cores remain stable in those halos that host the least
massive galaxies. Finally, in Sec. VI, we present our
conclusions.

II. BASIC EQUATIONS FOR THE SCALAR
FIELD DARK MATTER MODEL

In this section, we review the basic equations necessary
to describe the dynamics of a scalar field minimally
coupled to gravity. We consider a complex field, given
that the case of a real field is easily derived from this
description.

A. Einstein-Klein-Gordon system

The set of differential equations governing the dynamics
of a self-interacting scalar field minimally coupled to
gravity is described by the EKG system,

□φþ 2
dVðjφj2Þ
djφj2 φ ¼ 0; ð5aÞ

Rαβ −
1

2
gαβR ¼ 8πG

c4
Tαβ; ð5bÞ

where

Vðjφj2Þ ¼ m2c2

2ℏ2
jφj2 þ λ

4ℏc
jφj4; ð6Þ

c is the speed of light, ℏ is the reduced Planck constant,G is
the gravitational constant, λ is a self-interaction parameter
that can be positive (repulsive) or negative (attractive),□≡
∇μ∇μ is the 4-D’Alembert operator, φ is the scalar field
with units ½ ffiffiffiffiffiffiffiffiffiffiffiffi

kg ·m
p

=s�, gαβ is the spacetime metric, RαβðRÞ
is the Ricci tensor (scalar), and Tαβ is the stress energy
tensor which possesses all the energy components that exist
in the system. Particularly, for the scalar field,

TðφÞ
αβ ¼ 1

2
ð∇αφÞ�ð∇βφÞ þ

1

2
ð∇αφÞð∇βφÞ�

− gαβ

�
1

2
ð∇γφÞ�ð∇γφÞ − Vðjφj2Þ

�
: ð7Þ

Here, greek letters range from 0 to 3, denoting spacetime
indices.

B. Weak-field limit

Structure formation of halos in a matter-dominated
Universe can be well described within the weak-field limit.
In this limit, Eq. (5) is reduced to the GPP system [73]

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
∇2ψ þmΦψ þ gjψ j2ψ ; ð8aÞ

∇2Φ ¼ 4πGρ; ð8bÞ

where ψ is defined in terms of φ as
2In what follows, “weak field” refers to the regime of weak

gravitational fields, i.e., the Newtonian regime.
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φðx; tÞ ¼ ℏffiffiffiffi
m

p e−imc2t=ℏψðx; tÞ; ð9Þ

g≡ λℏ3=ð2m2cÞ, Φ is the gravitational potential, and ρ
is a cosmological overdensity that usually possesses
contributions from the DM and the baryonic components.
If we ignore the baryonic contribution (a limitation
shared with most of the simulation work [19,31–35]),
we have ρ ¼ mjψ j2.
Observe that by using in (6) the new field ψ defined in

(9) and the definition of g, we obtain

Vðjψ j2Þ ¼ mc2

2
jψ j2 þ g

2
jψ j4; ð10Þ

which is the scalar field potential in standard physical
units.
Two important quantities that are necessary to describe

SFDM halos are the total mass Mt and total energy Et
associated with the system:

Mt ¼ m
Z
V
jψ j2d3r; ð11aÞ

Et ¼
Z
V

�
ℏ2

2m
j∇ψ j2 þm

2
Φjψ j2 þ g

2
jψ j4

�
d3r: ð11bÞ

Observe that the total energy can be written in a very
instructive way,

Et ¼ Kt þWt þ USI;t; ð12Þ

where

Kt ¼
Z
V

ℏ2

2m
j∇ψ j2d3r ð13aÞ

is the total kinetic energy,

Wt ¼
Z
V

m
2
Φjψ j2d3r ð13bÞ

is the total gravitational potential energy, and

USI;t ¼
Z
V

g
2
jψ j4d3r ð13cÞ

is the total energy associated with the self-interaction. This
last way of writing each energy contribution is very
convenient, because they also appear in the scalar virial
theorem of an isolated mass distribution,

2Kt þWt þ 3USI;t ¼ 0: ð14Þ

On the other hand, notice that if we use the
variables

ψ̂ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4πGℏ2

mc4

s
ψ ; r̂ ¼ mc

ℏ
r; t̂ ¼ mc2

ℏ
t;

Φ̂ ¼ Φ
c2

; Λ̂ ¼ c2g
4πGℏ2

¼ m2
pl

m2

λ

8π
ð15Þ

(note that mc=ℏ is the inverse Compton length and mc2=ℏ
is the bare angular frequency of the field), the GPP system
can be rewritten in a way where all the natural constants
disappear:

i
∂ψ̂
∂ t̂ ¼ −

1

2
∇̂2ψ̂ þ Φ̂ ψ̂ þΛ̂jψ̂ j2ψ̂ ; ð16aÞ

∇̂2Φ̂ ¼ jψ̂ j2: ð16bÞ

Additionally, there is a rescaling property for this GPP
system given by

ft̂; r̂; Λ̂; ψ̂ ; Φ̂g ⇒ fγ2t̂; γr̂; γ2Λ̂; γ−2ψ̂ ; γ−2Φ̂g; ð17Þ

where γ > 0 is a scaling parameter. Then, the different
physical quantities defined in (11) and (13) are also
rescaled with similar relations.

III. SOLITON PROPERTIES: GENERAL
CONSIDERATIONS

A. Weak-field limit

It has been accepted that, for the long timescales of
structure formation, the averaged density profile of cores
appearing in central regions of SFDM halos can be well fit
by coherent, quasistationary, ground-state solutions of the
GPP system. In this section, we review different previous
results which we will use in order to extend the soliton
description to self-interacting SFDM particles.
Quasistationary states of (16) are described by dimen-

sionless wave functions of the form

ψ̂ðr̂; t̂Þ ¼ ϕ̂ðr̂Þe−iμ̂ t̂; μ̂; ϕ̂ ∈ R; ð18Þ

where r̂ is the dimensionless spherical radial coordinate and
μ̂, the dimensionless GPP chemical potential, should be
fixed by the conservation of particle number. In general, the
system (16) with the ansatz (18) has an infinite number of
different solutions that fulfill appropriate initial and boun-
dary conditions [74,75].3 Each of them—usually called
Newtonian boson stars (NBSs)—can be identified by the
number of nodes (¼ zeros) of ϕ̂, before the solution decays
asymptotically. The solution without nodes—the soliton—
is considered the ground state of the GPP system, and it

3The typical boundary conditions are given by regularity in the
origin ϕ̂ðr̂ ¼ 0Þ ¼ ϕ̂0, ϕ̂

0ðr̂ ¼ 0Þ ¼ 0 and asymptotic vanishing
ϕ̂ðr̂ → ∞Þ → 0, Φ̂ðr̂ → ∞Þ ≃ −M=r2.
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possesses the smallest value of μ̂, while solutions with
nodes are usually excited NBSs.
Observe that from (17), it is possible to construct

different solutions for the soliton, once one of them is
known. In fact, as explained in Ref. [75], in the free case, it
is possible to construct all the ground-state solutions for a
given central scalar field value, just by using the rescaling
property in (17). On the other hand, in the self-interacting
case, something similar occurs: once a ground-state sol-
ution is known for a given value of Λ̂, it is possible to
construct all the ground-state solutions for different central
value of the scalar field and the same value of Λ̂, just by
using the rescaling properties provided in (17). However, if
we were interested in finding a new soliton with a different
Λ̂, it would be necessary to solve the differential equa-
tions (16) for such Λ̂ again. Therefore, we can see that once
a self-interaction parameter is added to the model, we do
not have the same freedom in working with the soliton
solution, as in the free case. Nevertheless, as we shall see in
this section, we can avoid this problem, once a Gaussian
approximation is adopted. In addition, we will also show
that the results obtained from the Gaussian ansatz can be
reconstructed by considering a dimensional argument. To
this end, let us continue to present some basic relations that
will be helpful for our later description and apply them to
the case of the free field in order to compare with our
Gaussian ansatz later.
First of all, all soliton solutions are virialized structures

that fulfill Eq. (14).
Now, let us focus on the free case. Usually one solves for

that solution for which the central value ψ̂ðr̂ ¼ 0Þ ¼ 1.
In this case, the numerical value of the dimensionless
chemical potential is μ̂ ≃ −0.69. Such a solution can be
used, together with the rescaling parameter γ in (17), to
construct solitons with different masses by fixing the γ
parameter as [76]

γ ¼ 3.6 × 10−6m22M
ðγÞ
c;7; ð19Þ

where MðγÞ
c;7 ≡MðγÞ

c =ð107 M⊙Þ and
m22 ≡m=ð10−22 eV=c2Þ:

Notice that we have left explicitly the γ dependence for the
numerical solution of the soliton.
Another important quantity is the radius that contains

99% of the soliton mass,

RðγÞ
99 ¼ 9.9

ℏ2

GMðγÞ
c m2

; ð20Þ

(see, for example, Ref. [22]), or in fiducial notation

RðγÞ
99 ≃

8.445 × 104

ðm22Þ2MðγÞ
c;7

pc: ð21Þ

Finally, the soliton fulfils the relations

MðγÞ
c ≃ 4.3

ffiffiffiffiffiffiffiffiffiffiffi
jEðγÞ

c j
MðγÞ

c

s
m2

pl

mc
; ð22aÞ

MðγÞ
c ≃ 2.6

� jEðγÞ
c j

ðmG=ℏÞ2
�1=3

; ð22bÞ

which was found in Ref. [76]. In the free case, these
relations are equivalent to

MðγÞ
c ≃ 4.3

ffiffiffiffiffiffiffiffiffi
KðγÞ

c

MðγÞ
c

s
m2

pl

mc
¼ 4.3

ffiffiffiffiffiffiffiffiffiffiffiffi
jWðγÞ

c j
2MðγÞ

c

s
m2

pl

mc
; ð23aÞ

MðγÞ
c ≃2.6

�
KðγÞ

c

ðmG=ℏÞ2
�1=3

¼ 2.6

� jWðγÞ
c j

2ðmG=ℏÞ2
�1=3

; ð23bÞ

which has been pointed out in Ref. [77].
Remark 1. We note that, thanks to the rescaling property

of GPP, the configuration does not per se admit an upper
critical mass. However, from general-relativistic calcula-
tions follow a limiting maximum mass beyond which
collapse to a BH occurs. Only for attractive self-
interactions, Λ̂ < 0, there is a maximum mass, even within
the Newtonian description, given by [78,79],

Mc;max ≃ 10.03
mplffiffiffiffiffijλjp ; ð24Þ

where we have decided to use λ instead of Λ̂ for simplicity
in the expression; the Λ̂ dependence for the above critical
mass can be easily obtained from (15).

1. Gaussian ansatz in the weak-field limit

Previous literature has made extensive use of two
different analytic approximations for the numerically
evaluated (“exact”) soliton profile of SFDM halos
without self-interaction. On the one hand, there is a rational
function approximation, which was proposed in Ref. [19],
and which is based upon an “empirical fit” to the central
region of halos from simulations (call it the Schive profile).
On the other hand, a Gaussian profile has been used to
approximate SFDM solitons in Refs. [38,80]. The use of a
Gaussian distribution is motivated by the fact that Gaussian
“wave packets” not only appear in many contexts of a linear
Schrödinger equation, it also constitutes a solution for
laboratory Bose-Einstein condensates without particle self-
interaction; see, e.g., Ref. [81]. In this work, we decided to
use the Gaussian profile, given its better physical founda-
tion and the fact that it is easier to find physical relations of
interest from it, given the difficulties described above with
respect to the quasistationary states of variable Λ̂. The
difference between the two analytic profiles can be seen in
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Appendix: the Schive profile appears to match better the
numerical result for the soliton if r̂ is small, while the
Gaussian matches better the numerical solution at large r̂.
However, what is more important in our context is the fact
that the Gaussian ansatz arrives at the same physical
relationships than the numerical solution, and only the
numerical prefactors differ by order 1 factors.
Now, the question arises as to what extent the Gaussian

can be used, if self-interaction is included. In fact, Ref. [81]
already used a Gaussian ansatz as a trial function in a
variational analysis, in order to find modified physical
relationships, valid when self-interaction is included. The
same approach is proposed in Ref. [38] in order to extend
the modeling of the SFDM soliton profile with self-
interaction by considering the Gaussian density distribution

ρðgÞc ðrÞ ¼ Mc

ðπR2
cÞ3=2

e−r
2=R2

c ; ð25Þ

where Rc is a characteristic core radius associated with the
radius that contains 99% of the total mass of the distribu-
tion4 as R99 ¼ 2.38167Rc. For the sake of the reader, let us
quote some of the results which follow from this approach:
a mass-radius relation is found in Ref. [38] by way of
minimizing the energy functional (11b) or (12) and con-
sidering the ansatz (25) as a trial function. That procedure
yields

Mc ¼ 3
ffiffiffiffiffiffi
2π

p ℏ2

Gm2Rc

1 − 6g
4πGm2R2

c

ð26Þ

or, equivalently,

Mc;7 ≃
10.076 × 105

m22

R̂c

R̂2
c − 6Λ̂

; ð27Þ

which is plotted in Fig. 1. As we already mentioned, R̂c and
Λ̂ can be calculated from Eq. (15). We can solve this
equation for the radius, in turn,

Rc ¼
3

ffiffiffiffiffiffi
2π

p
ℏ2

2Gm2Mc
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
3

ffiffiffiffiffiffi
2π

p
ℏ2

2Gm2Mc

�2

þ
�

6g
4πGm2

�
2

s
; ð28Þ

or in fiducial notation:

R̂c ¼
5.04 × 105

Mc;7m22

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 6Λ̂

�
Mc;7m22

5.04 × 105

�
2

s �
: ð29Þ

For Λ̂ ¼ 0, we recover the mass-radius relationship in
the free case. On the other hand, when Λ̂ > 0 and if the

second term in the square root dominates, we obtain

R̂c ≃ R̂ðTFÞ
c ≡

ffiffiffiffiffiffi
6Λ̂

p
, independent ofMc;7. In physical units,

the radius in this regime of strong self-interaction reads
Rc ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6g=ð4πGm2Þ

p
, which recovers the form of the so-

called Thomas-Fermi radius

RðTFÞ ¼ π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

4πGm2

r
; ð30Þ

which corresponds to the radius of an (n ¼ 1)-polytrope
(see Refs. [82,83]).5

By comparing Fig. 1 and the numerical solution (Fig. 1
in Ref. [75]), we can see that the relation (26) or (27)
maintains the same basic parameter dependence than the
numerical solution. For the attractive case (Λ̂ < 0), this
means that there exists a maximum mass (upper bound
mass) allowed by the scalar field configuration given by

Mc;max ≃ 7.70
mplffiffiffiffiffijλjp ; ð31Þ

[see also Eq. (24)], while in the repulsive and free case
(Λ̂ ≥ 0), there is no upper bound for the soliton mass. These
statements all apply in the weak-field (Newtonian) limit.
Another important property that is also maintained is the
fact that the larger the coefficient Λ̂, the more massive the
equilibrium configuration. Interestingly, the radius at which
the attractive case reaches its maximum mass is given by

FIG. 1. Mass-radius relation of the soliton in self-interacting
SFDM models: we plot Eq. (27) for m22 ¼ 1 and various self-
interaction strengths Λ̂. The particular values of Λ̂ were chosen in
such a way that they coincide with those reported in Ref. [75] in
order to simplify the comparison with their numerical result.

4This number follows simply by calculating the radius which
includes 99%, i.e., 2σ of the mass of the Gaussian distribution.

5We can compare the radius that contains 99% of the
total mass of the Gaussian ansatz and the radius obtained in
the TF regime: considering that for the Gaussian ansatz
R99 ≃ 2.38167RðTFÞ

c ≃ 5.834
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ð4πGm2Þ

p
, we can see that both

quantities are close within a factor of 2–3.
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R̂c ¼ R̂c;min ≡
ffiffiffiffiffiffiffiffiffi
6jΛ̂j

q
, which6 is just the same radius at

which the repulsive case goes over to the TF regime.
Now, we can easily show that the different energies

defined in (12) and (13) are as follows for the SFDM
Gaussian ansatz with self-interaction,

Ec ¼ −
�
3ℏ2Mc

4m2R2
c
þ gMc

2
ffiffiffi
2

p
π3=2m2R3

c

�
; ð32aÞ

Kc ¼
3

4

ℏ2Mc

m2R2
c
; ð32bÞ

Wc ¼ −
GM2

c

2
ffiffiffiffiffiffi
2π

p
Rc

; ð32cÞ

USI;c ¼
gMc

4π
ffiffiffiffiffiffi
2π

p
m2R3

c

; ð32dÞ

where in the expression for Ec we have used the virial
theorem (14), applied to the core. Equation (32b) can be
rearranged to

1

Rc
¼ 2mffiffiffi

3
p

ℏ

�
Kc

Mc

�
1=2

: ð33Þ

Using the Mc − Rc relation [see Eq. (26)], we arrive at

Mc ≃ 8.68
m2

pl

m

ðKc
Mc
Þ1=2=c

1 − 8Λ̂ðKc
Mc
Þ=c2 : ð34Þ

Observe that in the free case (Λ̂ ¼ 0), the above result
differs from the result of simulations in Eq. (23a) only by a
factor of 2. In a similar way, by interchanging Kc → −Ec
(by using the virial theorem in the free-field limit), the
above expression differs from (22a) by a factor of 2 as well.
We can reexpress the energies in (32) per core mass (i.e.,

specific energies), using the mass-radius relation (26) as

Ec

Mc
¼ −

1

4
ffiffiffiffiffiffi
2π

p
�
GMc

Rc

��
1� 1

3

�
Rcrit

Rc

�
2
�
; ð35aÞ

Kc

Mc
¼ 1

4
ffiffiffiffiffiffi
2π

p
�
GMc

Rc

��
1 ∓

�
Rcrit

Rc

�
2
�
; ð35bÞ

Wc

Mc
¼ −

1

4
ffiffiffiffiffiffi
2π

p
�
GMc

Rc

��
2 ∓ 3

2

�
Rcrit

Rc

�
2
�
; ð35cÞ

USI;c

Mc
¼ 1

4
ffiffiffiffiffiffi
2π

p
�
GMc

Rc

��
� 1

6

�
Rcrit

Rc

�
2
�
; ð35dÞ

where the upper (lower) sign is for a repulsive (attractive)
self-interaction, and in the above expressions, we have
defined Rcrit ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6jgj=ð4πGm2Þ

p
, in such a way that when

g > 0, Rcrit ¼ RðTFÞ
c , whereas when g < 0, Rcrit ¼ Rc;min.

Finally, observe that in the free case, we obtain from
(29), expressed in fiducial units

Rc ≃
6.44 × 104

ðm22Þ2Mc;7
pc: ð36Þ

The radius R99 that contains 99% of the total mass of the
soliton is R99 ¼ 2.38167Rc, which from the above equation
yields

R99 ≃
15.34 × 104

ðm22Þ2Mc;7
pc; ð37Þ

as compared to the numerical result in (21).
Additionally, if we use equations (35a), (35b), and (35c)

together with our mass-radius relation (26), we can express
the core mass in the free-field limit as

Mc ≃ 4.22

� jEcj
ðmG=ℏÞ2

�
1=3

; ð38aÞ

Mc ≃ 4.22

�
Kc

ðmG=ℏÞ2
�

1=3
; ð38bÞ

Mc ≃ 4.22

� jWcj
2ðmG=ℏÞ2

�
1=3

: ð38cÞ

Comparing (37) with the numerical result in (21), or (38)
with (22b) and (23b), we see that the difference between the
results from the Gaussian ansatz versus the exact numerical
solution is small, of a factor of a few.

2. Understanding the mass-radius relation for the
solitonic core from the hydrodynamic representation

of the GPP system

While the Gaussian ansatz has been extensively used in
the literature and is well motivated to represent the
numerical ground-state solution of the GPP system, we
include yet another derivation of the mass-radius relation in
this subsection, independent of the choice of functional
form of the “trial function.” For that purpose, we use the
hydrodynamic representation of the GPP system.
By decomposing the wave function ψ in polar form as

ψðr; tÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ρðr; tÞ
m

r
eiSðr;tÞ ð39Þ

6Notice that in referring to this radius we use the subscript
“min.” The reason we use this subscript is because, as we will see
later, this critical mass also corresponds to the minimum radius at
which these configurations remain stable (see also Ref. [38]).
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and defining a velocity field as

v̄ ¼ ℏ
m
∇S; ð40Þ

the GPP system is rewritten as an Euler and a continuity
equation given by

ρ
∂v̄
∂t þ ρðv̄ · ∇Þv̄ ¼ −ρ∇Q − ρ∇Φ −∇PSI; ð41aÞ

∂ρ
∂t þ∇ · ðρv̄Þ ¼ 0; ð41bÞ

where

Q≡ −
ℏ2

2m2

∇2 ffiffiffi
ρ

pffiffiffi
ρ

p and PSI ≡ g
2m2

ρ2: ð42Þ

The term Q is known as the quantum potential which
arises from the quantum nature of SFDM, while PSI can be
interpreted as a pressure term that is generated by the self-
interaction between SFDM particles. In order to understand
the parameter dependence of the soliton profile in the
self-interacting SFDM model, we consider the following
simplification: soliton structures fulfil ∂v̄=∂t ¼ 0 ¼ v̄.
Also, for simplicity we set ∇ ∼ 1=Rc, where Rc is the
characteristic radius of the system; then,

∇Q ∼ −
ℏ2

2m2R3
c
; ∇PSI ∼ −

gρ2

2m2Rc
;

∇Φ ∼
GMc

R2
c
; ð43Þ

where we choose the sign in ∇PSI in such a way that this
term correctly describes an attractive/repulsive pressure
term, which is also consistent with the Gaussian ansatz.
Using ρ ∼ 3Mc=ð4πR3

cÞ, which is equivalent to saying that
the soliton profile possesses a nearly constant density, we
obtain from (41)

−
ℏ2

2m2R2
c
þ a

GMc

Rc
− b

3gMc

8πm2R3
c
¼ 0; ð44aÞ

∂ρ
∂t ¼ 0; ð44bÞ

where a and b are some constants that we introduced to
apply the summation in the above expression (i.e., we are
considering, for example, that ∇Q ≃ const � ℏ2=ð2m2R3

cÞ,
and then, these constant parameters can be seen as small
corrections that correctly relate the derivative to the
characteristic radius Rc).
First, Eq. (44b) reflects our assumption of a stationary

solution, which is in agreement with (18). On the other
hand, from (44a) and considering that g > 0, we obtain

a
GMc

Rc
¼ ℏ2

2m2R2
c
þ b

3gMc

8πm2R3
c
; ð45Þ

and so it is easy to see that solitons are produced by the
equilibrium between self-gravity (left-hand side in the
above expression) and the pressures due to quantum
uncertainty and self-interaction.
Two well-studied limit cases are:
(i) The fuzzy limit.—This regime is obtained when the

second term on the right-hand side of Eq. (45) can be
ignored, and then the soliton is a result of the
equilibrium between quantum pressure and gravity.
In this limit, the Mc −Rc relation reads

McRc ¼
1

2a
ℏ2

Gm2
; ð46Þ

which maintains the same parameter dependence
found in the numerical treatment; see Eq. (20).

(ii) The Thomas-Fermi approximation.—This regime is
obtained when the first term on the right-hand side
of Eq. (45) can be ignored, and then the soliton
results as an equilibrium between gravity and the
pressure due to self-interaction. In this limit, the
soliton fulfills the Mc −Rc relation

Rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b
2a

3g
4πGm2

r
; ð47Þ

which also maintains the same parameter depend-
ence found by the exact solution; see Eq. (30).

On the other hand, if g < 0, we have

a
GMc

Rc
þ b

3jgjMc

8πm2R3
c
¼ ℏ2

2m2R2
c
; ð48Þ

and then the soliton results as an equilibrium between
gravity plus self-interaction pressure and the repulsion due
to the quantum pressure. Observe that in this scenario, we
can also define a new limiting case

(i) The strong self-interaction regime in the attractive
scenario.—This regime is obtained when the first
term on the left-hand side of Eq. (48) can be ignored,
and then the soliton can be understood as the
equilibrium between quantum pressure and attrac-
tive self-interaction. In this limit, the Mc −Rc
relation is

Rc ¼ b
3jgj
4πℏ2

Mc: ð49Þ

These configurations correspond to soliton profiles
with radius smaller than the one with the maximum
possible mass shown in Fig. 1. However, as already
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mentioned in footnote 7, these configurations turn
out to be unstable.

Rearranging Eq. (44a), we have

Mc ¼
1

2a

ℏ2

Gm2Rc

1 − b
2a

3g
4πGm2R2

c

; ð50Þ

and it is easy to see that this relation is equivalent to the one
shown in (26) from the Gaussian ansatz.
At this point, we have not yet specified the numerical

values of a and b. In order to do so, we could proceed in
two different ways. First, we use the result from the
Gaussian ansatz and set Rc ¼ Rc. In this case,

1

2a
¼ 3

ffiffiffiffiffiffi
2π

p
;

b
2a

¼ 2; ð51Þ

and the Mc − Rc relation is then given exactly by (26). On
the other hand, we could also fix the numerical values of
a and b by matching our result with the exact numerical
solution. For example, let us suppose that R is the radius
that contains 99% of the total mass of the configuration and
that such a radius can always be written as R ¼ const �Rc.
Then, from (50), we obtain

Mc ¼
1

2â

ℏ2

Gm2R

1 − b̂
2â

3g
4πGm2R2

; ð52Þ

where â and b̂ are new constants. By matching the last
expression with the result in the free case (20) and the TF
regime (30), respectively, we have

1

2â
¼ 9.9;

ffiffiffiffiffiffi
b̂
2â

s
¼ π; ð53Þ

and the final Mc − R relation should read

Mc ¼ 9.9
ℏ2

Gm2R

1 − π2 3g
4πGm2R2

: ð54Þ

We stress that this way of obtaining the mass-radius
relations for the soliton in this subsection is particularly
interesting, because the only thing we needed to do was to
consider the characteristic scales of the system. In all cases,
this simple analysis reproduces correctly the main features
already known from the numerical and analytical descrip-
tions of the soliton; i.e., the relation between Mc and Rc
does not depend upon details of the trial function. The only
differences which occur involve the numerical values of the
constants that accompany the parameter dependence of the
different relations, and they are all within factors of a few.
Nevertheless, for the sake of concreteness, we decided to
continue to use the results obtained earlier from the
Gaussian ansatz for the rest of this work.

B. Implications from a general-relativistic treatment

The analysis of the previous subsections was carried out
in the weak-field limit. This limit serves as a good approxi-
mation, given that it is very well justified at galactic scales.
Yet, it leaves out an important physical phenomenon,
namely the fact that a limiting maximum mass is predicted
to exist for the soliton, once general-relativistic effects are
considered.
It is then natural to anticipate that for certain masses of the

soliton, a relativistic treatment should be important—as it
turns out, it is possible that some of the cores of SFDMhalos
are not covered by the weak-field limit, for example, the
massive solitonic cores within massive galaxies [see Eq. (4)
or the next section for the generalization to the self-
interacting case]. In this circumstance, the correct way to
model such solitons should be in the general relativistic
framework, i.e., by solving the EKG system (5). For this
reason, in this subsection, we review an important conse-
quence obtained when relativistic effects are taken into
consideration: the maximummass beyond which the soliton
will collapse to form a BH.
By analogy to the weak-field limit, we assume that the

core profiles in the central region of galactic halos made of
SFDM are given by the minimum-energy, coherent, qua-
sistationary solution of the EKG system (5). We can obtain
such solutions by demanding spherical symmetry. In this
case, the spacetime for the self-gravitating scalar field can
be well described by the metric

ds2 ¼ −αðrÞ2dt2 þ aðrÞ2dr2 þ r2dΩ2; ð55Þ
where α and a are real metric functions, r is usually called
areal radius, and dΩ2 ≡ dθ2 þ sin2 θdϕ2 is the solid angle
square differential. [In fact, the limit procedure is shown in
Ref. [66], where a standard post-Newtonian treatment
reduced the EKG system (5), with a geometry defined
by the above metric, to the GPP equations (16)].
The set of equations (5) together with themetric (55) have

been extensively studied in the literature in the context of
BSs. The procedure by which these BSs can be constructed
is similar to that in the Newtonian case (see Ref. [84] for a
review and references therein); i.e., a harmonic time
dependence for the scalar field is proposed, a central scalar
field value φð0Þ is specified, and the same kind of boundary
conditions for the soliton solution than in the weak-field
limit are imposed. In doing so, the final configurations that
are obtained can be split into two regions—a stable7 and an

7The soliton profiles emerging from the weak-field limit are
part of this branch. Although the Newtonian approximation
makes it appear as if it is possible to construct solitons with
unlimited mass, it is important to realize that, within the New-
tonian description, there exists a critical value of the parameter γ
beyond which it is not possible to construct solitons from the
scaling property (17). This maximum value is a result of the post-
Newtonian treatment of the EKG, and it is associated with the
condition of weak gravity.
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unstable branch—divided by a maximum mass Mc;max

allowed by a BS made of scalar field.8 The stable branch
is at higher radii (i.e., right side of maximum mass), while
the unstable branch is at the left side of themaximummass at
smaller radii. For masses bigger thanMc;max, stable BSs do
not exist, and in such a case, configurations with masses
M > Mc;max should collapse to form a BH. The parameter
dependence of the maximum mass in the free and repulsive
self-interacting models is as follows:

(i) In the free case [66–72],

Mc;max ≃ 0.633
m2

pl

m
: ð56Þ

(ii) In the case of a scalar field with repulsive inter-
action, the maximum mass for stable configurations
is given by [85]

Mc;max ≃ 0.22
ffiffiffiffi
Λ̂

p m2
pl

m
: ð57Þ

Let us compare these results with ours from our ansatz.
We may assume that the Gaussian will collapse into a
BH, once R99 ¼ 2.38167Rc ≃Rsch, where Rsch ≡ 2McG=c2

is the Schwarzschild radius associated with the soliton.
By considering (29), expressing hat quantities in terms
of physical ones with (15) and equating R99 ¼ Rsch,
we obtain in the free case Mc;max ≃ 2.11 m2

pl=m, whereas
in the strongly repulsive self-interaction regime, Mc;max≃
3.57

ffiffiffiffi
Λ̂

p
m2

pl=m. Note that in both cases, the same parameter
dependence is maintained for Mc;max as for the general-
relativistic results, with the only difference again in the
numerical prefactors that accompany each relation. Of
course, the difference between these prefactors is rooted
in the fact that we are trying to match a Newtonian ansatz
with a general-relativistic result9 and, as expected, the
critical masses from general relativity are lower than the
results from the weak-field limit suggest.
Whatever SFDM regime we consider, once the soliton

has a mass which ever-so-slightly exceeds its limiting
maximum mass, the soliton will collapse to form a BH.

In order to simplify our descriptions, we will henceforth use
the term maximum mass of soliton and critical BH collapse
mass (meaning that this is the minimum mass at which a
BH could be formed in this scenario) synonymously,
because the value of the latter is basically the same as
that of the former. Since we are interested in correct orders
of magnitude estimates, this little distinction is not critical.

IV. CORE-HALO STRUCTURE IN
SELF-INTERACTING SFDM

The numerical simulations performed by several authors
[19,31–37] have revealed that halos made of SFDM with-
out self-interaction show a core-envelope structure, where a
central core transitions at a certain radius to an “NFW-like”
halo envelope.
Several attempts have been made to understand whether

there are global relationships that allow the quantities of
these central solitons to be related to properties of the halo.
However, the correct way in which they are related is not
yet fully understood, as several of these works have
reported different functional relations between the masses
of these cores and the total halo. For example, in
Refs. [19,31], it is reported from cosmological simulations
a core-halo mass relation, which we can write in a fiducial
way as

Mc;7 ≃ 1.4 × 102
M1=3

h;12

m22

; ð58Þ

where

Mh;12 ≡Mh=ð1012 M⊙Þ

and the subindex h refers to halo quantities.
References [19,31] also show that in all the galaxies that
they simulated, the final structures also fulfilled the energy
relation

Mc ≃ 4.3

ffiffiffiffiffiffiffiffi
jEhj
Mh

s
m2

pl

mc
: ð59Þ

Several authors (see, for example, Refs. [34,86,87]) have
reasoned that the above core-halo mass relationship could
be explained, if the characteristic circular or virial velocity
at the core radius is roughly the same order as that at the
halo radius (“velocity dispersion tracing”), i.e., that the
condition

vc ∼ vh ⇒
GMc

Rc
∼
GMh

Rh
ð60Þ

should be fulfilled. The physical meaning of this relation is
that the size of the soliton matches the de Broglie wave-
length, expressed with the velocity dispersion σ of the halo,

8The way to know if a configuration will have a given
dynamics proceeds by calculating the binding energy of the
BS as Eb ¼ MMSðr → ∞Þ − Nm, where MMS is the mass of the
BS enclosed within a given r, defined in terms of the Misner-
Sharp mass function MMS ¼ r

2
ð1 − 1

a2ðrÞÞ, and N is the total
number of bosons. It happens that when Eb > 0, the system has
an excess of energy and will disperse. On the other hand, if
Eb < 0, the system is gravitationally bound and will collapse to a
BH, if it is in the unstable branch. Otherwise, it will remain
coherent, if it is in the stable branch.

9We should expect differences, first by the fact that we are
comparing a Newtonian result with a general-relativistic result
but also because we are assuming an ansatz solution, which
differs from the exact Newtonian treatment (without ansatz).
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resulting in a nontrivial type of nonlocal uncertainty
principle; it has been also suggested that this relation
follows from an equilibrium between the virial temperature
of the core and the halo. On the other hand, in Ref. [76], it
was suggested that, for an isolated soliton whose mass is
written as Eq. (22a), and comparing with the result of
Ref. [31], Eq. (59), the core-halo mass relation could be
understood, if the specific energy for the central soliton and
for the host halo are the same, i.e., if the condition

jEcj
Mc

≃
jEhj
Mh

ð61Þ

applies. Observe that, from the virial theorem for a free
SFDM particle, the above condition also implies that

Kc

Mc
≃
Kh

Mh
: ð62Þ

In a more recent work, in Ref. [77], it is suggested that the
latter relation was better suited to reproduce core-halo
relations. However, so far, all of these three relations are
being used in the literature to explain the physical nature of
(58). This is because, in the free case, these three expres-
sions reduce to the same thing. This can be easily seen as
follows: suppose that the core is in virial equilibrium,
fulfilling

2Kc þWc ¼ 0: ð63Þ

Next, we assume that the halo itself also fulfils his own
virial equilibrium, i.e.,

2Kh þWh ¼ 0: ð64Þ

Of course, we might question in which sense it is mean-
ingful to assume separate virial equilibrium, for the core
and for the halo. In practice, the above relationships will
only hold approximately, especially for the halo, which
takes a longer time to virialize, during which time the core
might have already virialized. From (63), we have

Kc

Mc
¼ −

1

2

Wc

Mc
; ð65Þ

and (64) implies

Kh

Mh
¼ −

1

2

Wh

Mh
: ð66Þ

Combining the above relationships and Eq. (62) and using
expressions for the potential energy,

Wc ¼ −CðcÞ
grav

GM2
c

Rc
; Wh ¼ −CðhÞ

grav
GM2

h

Rh
; ð67Þ

with positive constants CðcÞ
grav and CðhÞ

grav of order 1, which
depend upon details of the core and halo profiles, respec-
tively, this yields

CðcÞ
grav

Mc

Rc
≃ CðhÞ

grav
Mh

Rh
: ð68Þ

Observe that the above expression is equivalent to (60).
Despite this “coincidence,” we must emphasize that it
cannot be expected to be true more generally, once
contributions from extra terms (as is the case of a self-
interaction between particles) are added to the system
[compare (35a) or (35b) with vc in (60), for example].
On the other hand, in Ref. [34], a different result was

reported, compared to Refs. [19,31]. In the simulations of
Ref. [34], noncosmological but fully virialized, they obtain
a core-halo mass relation in the form

Mc ∼M5=9
h : ð69Þ

Reference [34] also reported an empirical relation for their
results, given by

Mc ≃ 2.6
� jEhj
ðmG=ℏÞ2

�
1=3

; ð70Þ

which can be also reexpressed, using the virial theorem (14)
in the free case as

Mc ≃ 2.6
�

Kh

ðmG=ℏÞ2
�

1=3
¼ 2.6

� jWhj
2ðmG=ℏÞ2

�
1=3

: ð71Þ

It is worth mentioning that these results have been
reproduced by more authors, even in a cosmological
context (see, for example, Ref. [36]), different from those
reported in Refs. [19,31]. However, as Ref. [76] realized,
the finding of Ref. [34] in Eq. (70) can be understood, if the
condition Ec ≃ Eh applies [compare, for example, Eqs. (70)
and (22b)], which from the virial theorem in the free case
should be equivalent to Kh ≃ Kc or Wh ≃Wc. This sug-
gests that the halos generated in the simulations of Ref. [34]
were dominated by the central soliton. Therefore, a more
general scenario may mandate a relation like

Mcv2c ∼Mhv2h ð72Þ

or, in other words, the square of the circular or virial
velocity at the core radius would differ by a factor of
ðMh=McÞ from the one that is measured at the halo radius.
Notice that this last conclusion is not limited to assuming
that the halos were mostly dominated by the soliton.
Now, in this section, we are interested in extending the

core-halo mass relation to SFDM models with self-
interaction. A question that immediately arises before we
proceed concerns the correct relation upon which we shall
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build our extension. Since it appears as if more simulation
work will be required to settle this question, we will go
ahead and work out an extension for each of the reported
core-halo mass relations. This way, we can also clearly see
which analytic premises are the basis of each relation,
reported either in Refs. [19,31] or Ref. [34].
To begin with, it is necessary to be able to obtain

quantities related to the entire halo. For our purposes and
the scales of interest, it is sufficient to assume a halo with
approximately constant density. In that case, all the
energies defined in (11b) and (13) can be expressed as

EtðRÞ ¼ −
3G
10

M2ðRÞ
R

−
3g

8m2π

M2ðRÞ
R3

; ð73aÞ

KtðRÞ ¼
3G
10

M2ðRÞ
R

−
9g

8m2π

M2ðRÞ
R3

; ð73bÞ

WtðRÞ ¼ −
3G
5

M2ðRÞ
R

; ð73cÞ

USI;tðRÞ ¼
3g

4m2π

M2ðRÞ
R3

; ð73dÞ

where in the above expression we have integrated from 0 to
a given R. If we use the definition of the virial mass of the
halo as Mh ¼ 4πR3

hρ200=3, where Rh is the radius within
which the mean density ρ200 is 200 times larger than the
background density, then from the above expressions
follows

Eh ¼ −
�
3

10

GM1=3
crit

Rcrit
M5=3

h � 1

4

GMcrit

Rcrit
Mh

�
; ð74aÞ

Kh ¼
�
3

10

GM1=3
crit

Rcrit
M5=3

h ∓ 3

4

GMcrit

Rcrit
Mh

�
; ð74bÞ

Wh ¼ −
3

5

GM1=3
crit

Rcrit
M5=3

h ; ð74cÞ

USI;h ¼ � 1

4

GMcrit

Rcrit
Mh; ð74dÞ

where we have defined the quantity Mcrit ≡ 4πρ200R3
crit=3

and we have used again the critical radius Rcrit ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6jgj=ð4πGm2Þ

p
. From these last expressions, we can

already begin to infer several possible consequences
regarding our extensions. On the one hand, we can see
that if the total halo is in the TF regime (Kh ≃ 0), from

Eq. (74b), we arrive at Rh ≃ RðTFÞ
c . Of course, this is

unfavorable because it implies that we have one size for
all halos in the Universe, and halos would effectively be
limited to solitonic cores in the TF regime.

Therefore, any possible extension for models with self-
interaction that pretends to maintain an NFW-like asymp-
totic exterior would necessarily have to consider a kinetic
term, different from zero, to describe the complete halo.
Since SFDM is expected to behave like CDM at large
scales (i.e., scales much larger than either the de Broglie
wavelength in the free case or much larger than the TF
radius in the TF regime), it should be true that at sufficiently
large galactic scales, CDM should be recovered, suggesting
that these NFWenvelopes should be also found, even in the
TF regime. On the other hand, observe that the total energy
of the halo can be expressed as

Eh ∼ −
�
3

10
R5
h �

1

4
R2
critR

3
h

�
; ð75Þ

so if we demand that Rh ≫ Rcrit, we can express the total
energy of the system as

Eh ≃ −
3

10

GM1=3
crit

Rcrit
M5=3

h : ð76Þ

Notice that the above expression results in Eh ∼Wh ∼
GM2

h=Rh, even if self-interaction is allowed for the SFDM
particles. On the other hand, from (35a), the energy for the
soliton would be always in the range

1

4
ffiffiffiffiffiffi
2π

p
�
GM2

c

Rc

�
≤ jEcj ≤

1

3
ffiffiffiffiffiffi
2π

p
�
GM2

c

Rc

�
; g > 0;

1

6
ffiffiffiffiffiffi
2π

p
�
GM2

c

Rc

�
≤ jEcj ≤

1

4
ffiffiffiffiffiffi
2π

p
�
GM2

c

Rc

�
; g < 0;

and similar relations for Wc, meaning that jEcj ∼ jWcj ∼
GM2

c=Rc in all cases. With this simple analysis, we can
conclude that the extensions that follow from the relations
(60) from the results of Refs. [19,31] or (72)10 from the
results of Ref. [34] should be sufficient to capture realistic
results for our self-interaction models.

A. Extending the core-halo mass relation, using the
results of Refs. [19,31]

Now, let us study the consequences, once we assume that
Eq. (60) is the correct basis for the extension of the core-
halo mass relation in SFDM. Recently, an extension was
also considered in Ref. [86], modeling the total halo with a
generalized GPP system [88], obtaining that the total halo
could be understood as a central soliton with an effective
isothermal exterior. Nevertheless, we proceed to present
here our own extension by following the procedures that we

10Observe that by adopting this relation we are also assuming
that the results obtained in Ref. [34] are general and apply in
cases for which the mass of the central soliton is much smaller
than the mass of the total halo.
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have applied so far. For this purpose, we assume that the
core-halo mass relation, that we seek, is based upon the
condition

GMc

Rc
≃Dh

GMh

Rh
; ð77Þ

where Dh is a constant that must be fixed by numerical
simulations. On the other hand, it is not difficult to rewrite
the Mc − Rc relation for the Gaussian ansatz as

Mc ¼ ð3
ffiffiffiffiffiffi
2π

p
Þ1=2 m

2
pl

m

ffiffiffiffiffiffiffi
GMc
Rc

q
c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ

ffiffiffi
2

π

r
Λ̂
ðGMc

Rc
Þ

c2

s
: ð78Þ

We can express the above equation in terms of halo
quantities using Eq. (77). If additionally we replace
Rh ¼ ð3Mh=4πρ200Þ1=3, we obtain that the mass of the
core can be expressed in terms of the mass of the complete
halo as

Mc ¼
m2

pl

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ffiffiffiffiffiffi
2π

p
D̂hM

2=3
h

�
1þ

ffiffiffi
2

π

r
Λ̂D̂hM

2=3
h

�s
; ð79Þ

where in the above expression we have defined
D̂h ≡ ð4πρ200D3

hG
3=ð3c6ÞÞ1=3. Finding the numerical

value of D̂h by matching the above expression with
Λ̂ ¼ 0 and the core-halo mass relation in the free case,
Eq. (58), we finally arrive at our core-halo mass relation in
fiducial units:

Mc;7 ¼
1.4 × 102M1=3

h;12

m22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ Λ̂ð1.16 × 10−7M2=3

h;12Þ
q

: ð80Þ

To understand the consequences that follow from the
above result, we plot in Fig. 2 Mc (top panel), Rc (middle
panel), and ρ̄c ≡ 3Mc=ð4πR3

cÞ (bottom panel) as a function
of Mh setting m22 ¼ 1. Observe that, from this extension,
we obtain that for attractive SFDM, there is a critical halo
mass,

MðcritÞ
h;12 ¼

�
4.29 × 106

jΛ̂j

�
3=2

; ð81Þ

at which the central soliton arrives at its maximum possible
mass

Mmax
c;7 ¼ 2.05 × 105

m22jΛ̂j1=2
: ð82Þ

This maximum mass is indicated as the red square
in the plot. It is not difficult to show that the above
expression coincides with (31) once rewritten in appro-
priate units. On the other hand, when Λ̂ > 0 and

Λ̂ð1.16 × 10−7M2=3
h;12Þ ≫ 1, we arrive at the TF regime

for the central soliton profile, resulting in a core-halo mass
relation in the form

Mc;7 ≃ 4.78 × 10−2

ffiffiffiffi
Λ̂

p

m22

M2=3
h;12: ð83Þ

FIG. 2. Mass, radius, and mean density for a soliton in self-
interacting SFDM halos, in terms of total halo mass for our
Schive et al. [19,31] extension. For the following cases: repulsive
self-interaction (Λ̂ ¼ 5 × 107; solid curves), attractive self-inter-
action (Λ̂ ¼ −5 × 107; dot-dashed), and no self-interaction
(Λ̂ ¼ 0; dotted). The red squares labeling the attractive case
curves correspond to Mmax

c .
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This core-halo mass relation in the TF regime is in
agreement with the one obtained in Ref. [86].

B. Extending the core-halo mass relation,
using the results of Ref. [34]

For this extension, we consider the following condition
that should correctly describe core-halo quantities,

GM2
c

Rc
≃ Ch

GM2
h

Rh
; ð84Þ

where, as before, Ch is a constant that must be
fixed by numerical simulations. Multiplying Eq. (78) by
Mc on both sides, using the above expression and again
Rh ¼ ð3Mh=4πρ200Þ1=3, it is easy to see that the core-halo
mass relation is given by the expression

M2
c ¼

m2
pl

m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

ffiffiffiffiffiffi
2π

p
ĈhM

5=3
h

�
Mc þ

ffiffiffi
2

π

r
Λ̂ĈhM

5=3
h

�s
; ð85Þ

where Ĉh ≡ ð4πρ200C3
hG

3=ð3c6ÞÞ1=3. Similarly as in our
previous extension, we obtain the numerical value of Ĉh by
matching (85) with numerical simulations for Λ̂ ¼ 0. In
order to do so, we will proceed using Eq. (70) and noticing
that once we use (74) in the free case, it can be rewritten as

Mc ≃ 2.6

�
m4

pl

m2c2
3

10

�
4πρ200

3

�
1=3

M5=3
h

�1=3
: ð86Þ

If for consistency we use the current mean density of the
Universe ρb ¼ 1.5 × 10−7 M⊙pc−3 and ρ200 ¼ 200ρb, we
have that the core-halo mass relation obtained in Mocz
et al. [34] simulations should be roughly given by

Mc;7 ≃ 1.31 × 103
M5=9

h;12

m2=3
22

: ð87Þ

Comparing this with (85) in the free case, we obtain finally
that the core-halo mass relation with self-interaction cor-
responds in fiducial units to

M2
c;7≃

4.75×104M5=6
h;12

m22

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mc;7þ Λ̂ð1.34×10−2M5=3

h;12Þ
q

:

ð88Þ

Again, we plot Mc (top panel), Rc (middle panel), and ρ̄c
(bottom panel) as a function ofMh;12 for this case in Fig. 3.
Observe that in all cases, this extension leads to larger
masses for the central soliton than in the Schive et al.
[19,31] extension, Eq. (80). This conclusion was also
pointed out by Mocz et al. for their results of the free
case. In addition, similarly to the other extension, there is a
critical total halo mass for attractive SFDM,

MðcritÞ
h;12 ¼ 1.34 × 104

ðm22jΛ̂j3=2Þ3=5
; ð89Þ

at which the central soliton arrives at its maximum possible
mass; the latter is again indicated as the red square in the
plot. It is found by inserting (89) in Eq. (88); we arrive at
the same result as in Eq. (82), which, as we explained
before, is just the same as (31) but rewritten in our fiducial
units. (Note that the different “x-axis” coordinates of the

FIG. 3. Same as Fig. 2, except for our Mocz et al. [34]
extension, instead. Note that the curves for the attractive case
have a steeper inflection point than before, as a result of the
different power-law dependency.
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red square between Figs. 2 and 3 reflect the different core-
halo mass extensions.) On the other hand, when Λ̂ > 0 and
Λ̂ð1.34 × 10−2M5=3

h;12Þ ≫ Mc;7, we arrive at the TF regime,
in which the core-halo mass relation in this limit is given by

Mc;7 ≃ 74.15

� ffiffiffiffi
Λ̂

p

m22

�1=2

M5=6
h;12: ð90Þ

V. ASTROPHYSICAL CONSEQUENCES FOR
SFDM WITH SELF-INTERACTION

A fundamental question that arises in the SFDM model
concerns the values of its free parameters. Many constraints
have been derived already, using cosmological and astro-
physical data. In this section, we first review some of the
most representative results obtained in the literature and
apply them to our extensions; i.e., we shall confront our
extensions obtained, using the simulation results of Schive
et al. [19,31] and those of Mocz et al. [34].
In particular, we will confront the parameter space of

SFDM and our core-halo mass extensions by exploring the
possibility of SMBH formation in each scenario. As we
have seen, this question immediately arises, once we realize
that solitonic cores have limiting maximummasses, beyond
which they collapse to a BH, in light of the core-halo mass
relations of SFDM halos. Again, we remind the reader that
in order to simplify our descriptions, we will use the term
maximum mass of soliton and critical BH collapse mass
synonymously, because the value of the latter is basically
the same as the former.
We will also comment on other consequences that arise,

once we confront the parameter region that has been studied
by other observational data.
As we already mentioned, SMBHs with masses in the

range MSMBH ≃ 106–1010 M⊙ have been found in almost
all large galaxies, while this is not the case for the smallest
ones, like dwarf spheroidals (dSphs). However, BHs of
masses around 106 M⊙ have been found in some dwarf
galaxies, e.g., Ref. [89], while Ref. [90] has reported BHs
with smaller masses of 104–105 M⊙ in dwarf galaxies,
albeit this nondynamical mass estimate is very much
uncertain.11 Thus, we could try to find scenarios in which
the central solitons reach their maximum possible mass
only for the most massive galactic halos (hosting the most
massive galaxies). However, it is unclear at this point
whether the core-halo mass relations found in current
simulations of free SFDM—on which we based our
extensions—remain valid for the most massive galactic-
size halos, because all these simulations were limited to

small volumes. Therefore, it seems appropriate to apply the
core-halo mass relations to the question of SMBH for-
mation in halos whose critical mass for soliton collapse,

Mh;12 ¼ MðmaxÞ
h;12 , does not exceed a certain limit, which we

choose to set at 1 (in these units). We may think of the
resulting SMBHs as the “seeds” for possibly even more
massive SMBHs in the centers of the most massive
galaxies.
For consistency with observations, however, the mass of

these SMBH seeds would be expected to not exceed the
mass of the least massive SMBHs found in galaxies, as,
e.g., in our own Milky Way, which harbors a SMBH of
approximately 4 × 106 M⊙. We could also assume that
these SMBH seeds could be orders of magnitude smaller
but that mass range would fall into the so-called inter-
mediate mass range, which is still under debate, as
mentioned above. Therefore, we will only focus on
SMBH seeds that are still in the supermassive range.
More precisely, we will consider a fiducial mass range
of such seed SMBHs, equivalently to consider a range for
the maximum mass of solitonic cores of Mmax

c;7 ≃ 0.1–10,
whose collapse is supposed to form these SMBHs.

Similarly, we need to take fiducial values for MðcritÞ
h;12 such

that these SMBHs are not formed for the least massive
galaxies, such that they keep having a stable soliton core in
their centers, nor for very large galaxy/halo masses, as
explained above. In analogy to the above description, we
could expect that this critical mass of collapse corresponds
to the minimum mass of a galactic halo in whose center the
presence of a SMBH is expected; however, we decided
again to be flexible, and we adopted as a conservative
criterion that galactic halos with masses in the range

MðcritÞ
h;12 ≃ 10−2 − 1 are the ones that will “start” to possess

a SMBH at their center. In what follows, we will call the
combination of these two ranges of fiducial parameters
(when both are met simultaneously) our “ideal model,”
where, of course, it is understood that we refer to this ideal
model only in the context of the formation of these seeds in
the supermassive range.

A. Free case (Λ̂= 0)

This is the best-studied case in the literature and several
constraints have been found by different groups for this
model. Here, we shall review only some representative
constraints.
Using the hydrodynamical representation of the SFDM

model, it was suggested in Ref. [92] that the quantum
pressure of SFDM explains the offset between DM and
ordinary matter in galaxy cluster Abell 3827. For this
purpose, a mass of m22 ≃ 2 × 10−2 was required. When the
model is tested with the dynamics of dSphs—Fornax and
Sculpture—in Ref. [93], a mass constraint of m22 < 0.4 at
97.5% was obtained. The constraints which follow when
the survival of the cold clump in Ursa Minor and the

11Also, recently, a BH has been detected in the intermediate
mass range with a mass of approximately 150 M⊙, generated by
the merger of two smaller BHs [91]. Of course, our intention in
this work is only to explain the SMBHs within galactic nuclei, so
the formation of these objects is not covered by our models.
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distribution of globular clusters in Fornax is demanded,
requires a mass m22 ∼ 0.3–1 [94]. Explaining the half-light
mass of ultrafaint dwarfs requires m22 ∼ 3.7–5.6 [95]. The
model has been also constrained by reionization: in
Ref. [96], using N-body simulations and demanding an
ionized fraction of HI of 50% by z ¼ 8, m22 > 0.26 was
obtained. Finally, the Lyman-α forest flux power spectrum
stands out from the rest in demanding a comparatively high
upper bound of m22 ≥ 20–30 [97,98].
Here, we probe the possibility of formation of SMBHs

for free SFDM, in light of the discussion of the beginning
of this section. For this case, it is sufficient to apply the
results obtained by Schive et al. (58) and Mocz et al. (87).
Observe that by equating the core-halo mass relation (58)

and the critical mass of collapse (56) for a soliton in the free
case, which in fiducial units reads

Mmax
c;7 ¼ 8.46 × 104

m22

; ð91Þ

we obtain that the maximum possible soliton mass is
reached for a critical halo mass of

MðcritÞ
h;12 ≃ 2.204 × 108: ð92Þ

This value exceeds by many orders of magnitude even the
halos around the most massive galaxies with Mh;12 ∼ 102.
Interestingly, this result is independent of the mass of the
SFDM particle. Therefore, we find that the core-halo mass
relation due to Schive et al. [19,31] implies that the
formation of SMBHs by soliton collapse is not possible.
Now, we can proceed in the same way with equation (87)

and (91). In this case, we obtain that the critical halo mass at
which the central soliton arrives at its maximum possible
mass is

MðcritÞ
h;12 ≃

1.81 × 103

m3=5
22

; ð93Þ

i.e., different from (92). In fact, if we adopt the core-halo
mass relation of Mocz et al. [34] as the correct one, we do
have scenarios in which the central soliton in galaxies can
collapse and form a SMBH for some values of the mass
parameter of SFDM. In order to highlight what the values
for the mass parameter must be in order to achieve soliton
collapse, we plot in Fig. 4 MðcritÞ

h;12 [Eq. (93); left “y” axis]
and Mmax

c;7 [Eq. (91); right y axis] with a dot-dashed black
line as a function of m22. To understand better how this
figure should be read, let us focus on a special case, for
example, the case for whichm22 ¼ 1. In Fig. 4, we plot this
case with a red vertical line. Observe that this line intersects
in some point with the dot-dashed black line. It is precisely
at this intersection where we can talk about the critical

masses MðcritÞ
h;12 and Mmax

c;7 that correspond to this particular
example. To know exactly what these masses are,

the reader may just look at the horizontal dashed red
line and the point at which it intersects both y axes; i.e.,
for the special case of m22 ¼ 1, we obtain that galaxies

with a critical mass MðcritÞ
h;12 ¼ 1.81 × 103 should possess a

soliton with a mass that equals its maximum possible
mass Mmax

c;7 ¼ 8.46 × 104.
Clearly, this example is far away from belonging to

our ideal model. Therefore, we draw in blue and red the
fiducial mass ranges of our ideal model, i.e., Mmax

c;7 ¼
0.1–10 and MðcritÞ

h;12 ¼ 10−2 − 1, respectively. The first thing
we can observe from these two bands is that they only
overlap in a small region, which corresponds to having
collapse with critical masses of Mmax

c;7 ¼ 0.31–0.1, once
the mass of the galactic halo exceeds the corresponding

critical values MðcritÞ
h;12 ¼ 0.5–1. This overlap coincides

with values of the mass parameter in the range m22 ¼
2.69 × 105–8.46 × 105 (green region in the plot). This
implies that we could meet our ideal model only for this
range of parameters, implying that if we were interested in
explaining the possible formation of SMBHs, the range
m22 ¼ 2.69 × 105–8.46 × 105 would be favored. Let us
explain in more detail why we consider these masses
as the ones that are favored. Suppose our ideal model is
only partially fulfilled. For example, if we try to meet
the condition of obtaining collapse, once we reach critical

halo masses of MðcritÞ
h;12 ¼ 10−2 − 1, it would result in the

formation of SMBH seeds from solitons with
Mmax

c;7 ≃ 1.46 × 10−4–3.15 × 10−1, so the mass of most of
the resulting SMBH seeds would be well below the mass of
typical SMBHs found in galactic nuclei, and instead they

FIG. 4. MðcritÞ
h;12 (left y axis) and Mmax

c;7 (right y axis) as a function
of m22 (dot-dashed line). The blue and red bands correspond to

our fiducial values Mmax
c;7 ¼ 0.1–10 and MðcritÞ

h;12 ¼ 10−2 − 1, re-
spectively, whereas the green region represents the parameter
range in m22 that fulfils the ideal model, i.e., as a result of the
above fiducial choice. The golden band (upper part in the

plot) indicates the range MðcritÞ
h;12 > 102 of galactic halos whose

mass is excluded by observations (see the main text for more
explanations).
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would correspond to intermediate mass BHs. Since we do
not consider the intermediate mass range in our scenario,
the only masses that could account for such SMBH seeds
would be the most massive ones, those that fall within the
overlap region of our ideal model. Similarly, if we require
instead meeting the condition of obtaining collapse for
soliton masses Mmax

c;7 ¼ 0.1–10, the mass of the galactic
halos for which such collapse could be achieved is

MðcritÞ
h;12 ¼ 0.5–8.07, leading to a correspondingly high range

of halo masses. Although such halo masses do exist in the
Universe, we discard the most massive of them (the ones
that are not covered by our ideal model), because SMBHs
have been observed also in less massive galaxies. So, if we
want to explain the latter through this mechanism, we
require them to be formed from smaller critical halo
masses.
Finally, we compare our estimates for the particle

mass parameter with the constraints that have been found
by other groups. Once we make the comparison, we
can see that our range of preferred values m22 ¼ 2.69 ×
105–8.46 × 105 is completely in disagreement with most of
the previous studies. At best, the only agreement can be
found with those that follow from reionization and the
Lyman-α forest flux power spectrum. Despite this discrep-
ancy, it should be heeded that adopting values for the
particle mass of SFDM that are as large as ours would
imply that our model increasingly resembles standard
CDM, so that the range of parameters that we are taking
for our ideal model cannot be ruled out as of yet, if we
accept the notion that CDM has not yet been ruled out. In
that case, of course, SFDM with such model parameters
would not resolve the CDM small-scale crisis, either, but
instead, it could help to explain SMBH formation (a
feature not directly predicted by CDM), which makes it
an appealing dark matter candidate, again. By the same
token, our model can help us to turn the question around
and demand to put some extra bounds on the particle
mass parameter of SFDM. It is clear that we should avoid
making SMBHs of the wrong mass and/or for the wrong
halo masses. As we have mentioned before, if SMBHs
with masses smaller than supermassive were generated
(in the intermediate range), there would be a problem
because these BH populations have not yet been firmly
detected. That way, we could partially discard this
parameter region (m22 > 8.46 × 105). On the other hand,
if we have soliton collapse for galactic halos that are
more massive than our fiducial model, we could also rule
out that parameter region since, as we mentioned earlier,
this is not desirable if we want to use this mechanism to
explain the presence of SMBHs in galaxies with smaller
masses. If we assume that typically the most massive
galactic halos have a mass of the order of Mh;12 ≃ 102,
the above condition rules out the region m22¼1.25×102–
2.69×105.

Finally, demanding nonformation of SMBHs by this
mechanism would also give us a region of allowed
parameters for this model. If we demand that for a mass

MðcritÞ
h;12 ¼ 102 the critical mass for collapse of the soliton has

not yet been reached (marked by the golden band in Fig. 4),
we get that the mass parameter of the model should meet
the condition m22 ≤ 1.25 × 102. As such, this last con-
straint does agree with all those that have been previously
reported.

B. Repulsive case (Λ̂ > 0)

This model has been also extensively studied in the
literature, and its free parameters have been fit, using
different observations. Usually, the strong self-interaction
regime is considered, because of simplicity, and in this
case, it is the ratio g=ðm2c4Þwhich is subject to constraints.
Observe that, from (15), we have

Λ̂ ¼ 1.54m2
22 × 1037

�
g

m2c4

�
eV
cm3

; ð94Þ

i.e., we can likewise constrain Λ̂. In this section, we shall
only use the constraints that have been found in the strong
self-interaction regime, for one thing, because the bounds
are stronger and may hold for weak self-interaction, as well.
It is these bounds which will be put into context to our
results.
The first constraint, applicable to all candidates for dark

matter, refers to the fact that by the redshift of radiation-
matter equality zeq, they must all be nonrelativistic, i.e.,
behaving like a pressureless fluid. It is well known that a
scalar field with an arbitrary potential VðφÞ12 will have a
varied dynamics during its cosmological evolution. In
particular, the dynamics of SFDM with a repulsive self-
interaction has been studied previously and can be briefly
summarized as follows [9,99,100]: after inflation, the
SFDM energy density behaves either like a cosmological
constant (ρφ ∝ a0) or a stiff fluid (ρφ ∝ a−6), depending
upon whether SFDM is effectively a real or complex
field, respectively. This behavior of SFDM is rooted in
the slowly oscillating phase and is characterized by
ω2 ≡ 2c2dV=djφj2 ≪ H2. However, in its fast oscillating
regime (ω2 ≫ H2), there are two possible branches for
SFDM [99,101]. For weak self-interaction, SFDM tran-
sitions from the stiff phase to the pressureless phase without
having a radiationlike behavior in between. This happens,
because the first term in the scalar field potential (6)
dominates over the second term at the moment of transition
from slow to fast oscillation. On the other hand, for strong
self-interaction, SFDM transitions from the stiff phase to a
radiationlike phase, before behaving like a pressureless

12Here, φ is the scalar field that appears in the Klein-Gordon
equation and is related to ψ via Eq. (9).

LUIS E. PADILLA et al. PHYS. REV. D 103, 063012 (2021)

063012-18



fluid. Demanding that, at zeq, SFDM should be in its
pressureless phase implies a constraint as follows [99]:

Λ̂
m2

22

≤ 6.18 × 1020: ð95Þ

This result represents an upper bound for the self-
interaction parameter, including the weakly self-interacting
regime. This last result is also independent of whether
SFDM is real or complex, given that the strong and the
weak regimes are applicable to both cases. Hence, the
above result is applicable to all SFDM models with a
repulsive self-interaction.
On the other hand, the repulsive SFDM model has been

also probed by studying the effective number of relativistic
degrees of freedom during big bang nucleosynthesis
(BBN), Neff;BBN [99]. The analysis was performed in the
strongly self-interacting regime for complex SFDM, and it
was shown that this scenario can be made in accordance
with BBN bounds. Using the allowed 1σ-band on Neff;BBN

at that time, it was shown that the ratio g=ðm2c4Þ must
fulfill an upper and a lower bound. However, if the lower
bound of the 1σ-band on Neff;BBN is relaxed, i.e., if BBN is
considered in accordance with the standard value of
Neff ¼ 3.046, then the ratio g=ðm2c4Þ can be much smaller
than the above upper bound suggests, as long as the particle
mass m fulfils a corresponding lower bound constraint,
which ensures that the stiff-like era ends at an early enough
time. This analysis is extended in Ref. [102], to include a
scenario where the stochastic gravitational wave back-
ground (SGWB) from inflation could be amplified, as a
result of the stiff-like behavior of SFDM in the very early
Universe, after reheating, when SFDM dominates the mean
energy density in the Universe. In this case both SFDM and
the inflationary SGWB contribute to Neff;BBN. The modi-
fied bounds which result effectively shrink the available
parameter space of complex SFDM further, but in doing so,
the SGWB is boosted to a level where it can be potentially
observed by LIGO (see Ref. [102]). However, if the stiff
phase ends early enough, such that the SGWB remains
negligible, the lower and upper bounds on g=ðm2c4Þ are
determined basically again by demanding that SFDM
fulfills BBN bounds. An updated value for Neff;BBN has
been used in Ref. [102] to derive newer bounds for this
case, as well. Using (94), the corresponding bounds read as

3.55 × 1019 ≤
Λ̂
m2

22

≤ 6.33 × 1020: ð96Þ

Interestingly, if we use the above parameters in the TF
radius (30), it turns out to be of order RðTFÞ ∼ kpc.
Similarly to the previous subsection, we will now try to

see if it is possible to explain SMBH formation for
repulsive SFDM. To this end, it will be necessary to use

each of our extensions of the core-halo mass relations that
we derived in the previous section; that is, we shall probe
our extensions (80) and (88). We will consider that the
central soliton reaches its maximum possible mass by
assuming the already known numerical result (57), which
in fiducial units reads

Mmax
c;7 ¼ 2.94 × 104

ffiffiffiffi
Λ

p

m22

: ð97Þ

We may anticipate that this result is valid for those
solitons that are well within the TF regime (as we analyzed
when we compared our Gaussian ansatz with the numeri-
cal results in Sec. III B). For this purpose, we will apply
our extensions in the TF limit, i.e., using Eqs. (83)
and (90).
Let us start by analyzing the extension that is based upon

the results from Schive et al. [19,31]. If we compare (83)
and (97), we find that the central soliton will collapse above
a critical halo mass:

MðcritÞ
h;12 ≃ 4.82 × 108: ð98Þ

This is close to the value that we obtained for free SFDM in
(92), and just like there, this quantity does not depend upon
the free parameters of the SFDM particle, m and λ. Again,
through this extension, it is not possible to form SMBHs
via soliton collapse, because the required critical halo mass
is many orders of magnitude too high.
Now, let us study the extension that is based upon the

results which follow from Mocz et al. [34]. If we compare
(90) and (97), we obtain

MðcritÞ
h;12 ≃ 1.31 × 103

� ffiffiffiffi
Λ̂

p

m22

�3=5

: ð99Þ

In Fig. 5, we plotted MðcritÞ
h;12 [Eq. (99); left y axis]

and Mmax
c;7 [Eq. (97); right y axis] as a function of

Λ̂=m2
22. Similarly as in the free case, we draw in blue

and red our choice of fiducial ranges ofMmax
c;7 ¼ 0.1–10 and

MðcritÞ
h;12 ¼ 10−2 − 1, respectively. As before, we end up

with a small range of SFDM parameters that can fulfil
our ideal model (we marked them in green), which are
Λ̂=m2

22 ¼ 1.16 × 10−11 − 4.06 × 10−11. Only this region of
parameters would be favored for possible SMBH
formation.
Finally, we need to confront our estimate for

SMBH formation and the previous constraints in the
literature. We can see that our estimate is in accordance
with the constraints in (95) but would be in disagreement
with BBN constraints, unless the latter are relaxed by
considering the limit of very weak self-interaction.
However, somewhat similar to the free case, this scenario
cannot be ruled out per se, since this region of parameters
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corresponds to having a small TF radius,13 meaning the
model resembles standard CDM. On the other hand,
following the same description we did in the free case,
we can rule out the region of parameters that pertains to
Λ̂=m2

22 < 1.16 × 10−11 to avoid the formation of small BH
seeds and Λ̂=m2

22 ¼ 4.06 × 10−11 − 1.89 × 10−4 to avoid
the formation of SMBHs for large halo masses. The
requirement of nonformation of SMBHs imposes the
condition Λ̂=m2

22 ≥ 1.89 × 10−4. This last constraint is
in agreement with all the previous constraints that we
reviewed, if we relax the lower 1σ bound from BBN.
If we were to adopt this constraint, SMBHs would not

form in this scenario, and the core-halo mass relation for
this model would be given by Eq. (83) or (90).
Remark 2. Observe that we require very small values for

Λ̂=m2
22 in order to explain the possible formation of

SMBHs in this model, so we might think that these values
should not necessarily be within the TF regime. However,
from Eq. (29), we know that the TF regime is reached for
6Λ̂ðMc;7m22=ð5.038 × 105ÞÞ2 ≫ 1. If we replace Mc;7 by
Mmax

c;7 , this expression imposes the condition

Λ̂
m2

22

≫
17.14
m2

22

: ð100Þ

As long as this condition is fulfilled, the model will be in
the TF regime.

C. Attractive case (Λ̂ < 0)

This model is the least studied in the literature in the
context of halo formation and dynamics, which is odd
given that one of the most promising SFDM candidates is

axion-like particles. Their attractive self-interaction is often
ignored for mere simplicity. So, the constraints of the mass
parameter that are obtained in free SFDM are usually
shared for these attractive cases, as well. Nevertheless,
there has been some work on the effects of an attractive
self-interaction, and a few observations are used to put
limits on this parameter. The constraints that are found for
the self-interaction parameter are usually imposed on the
parameter λ; however, we can reexpress them in terms of Λ̂
by using (15) as

Λ̂ ¼ 5.93 × 1098
λ

m2
22

: ð101Þ

The evolution of the background Universe of this model
was studied in Ref. [103]. If the SFDM particle is an
ultralight axion-like particle (m22 ∼ 1)—a pseudo–Nambu-
Goldstone boson generated by a spontaneously broken
global Uð1Þ symmetry—it was suggested in Ref. [104] that
these particles should be generated during the inflationary
epoch in order to avoid observational constraints from
Planck data, due to topological defects. There, it was also
argued that by demanding that the total DM observed today
is composed of these ultralight axions, they should have a
self-interaction parameter14 jΛ̂j ∼ 5.93 × 104, although the
value of this self-interaction term can increase, as long as
the value of m also increases. These axion-like particles
have also been studied in the context of type IIB orientifold
compactifications in string theories, resulting in the pos-
sibility of obtaining stronger self-interactions jΛ̂j ∼ 5.93 ×
1012 for the case m22 ∼ 1 [105].15 Astrophysical consid-
erations can lead to further novel constraints; e.g., the
soliton with the maximum mass and smallest radius is
matched to the smallest galaxy then known—Willman I—
in Ref. [106]. By demanding that the halo of Willman I is
dominated by the self-interacting soliton close to its
maximum possible mass, the SFDM parameters were
constrained to be m22 ¼ 193 and jΛ̂j ¼ 3.25 × 108. In that
case, the critical mass for collapse of a soliton should be
close to the Willman I mass, i.e., Mmax

c;7 ∼ 0.1, which is in
agreement with one of our requirements of our ideal model
(namely the one that requires collapse once the mass of the
central soliton exceeds Mmax

c;7 ¼ 0.1–10). However, this
estimate does not fulfill the other condition of obtaining

collapse once MðcritÞ
h;12 ¼ 10−2 − 1.

Another interesting result is presented in Ref. [107],
where the addition of the attractive self-interaction, in terms
of the full trigonometric axion potential, is taken into

FIG. 5. MðcritÞ
h;12 and Mmax

c;7 as a function of Λ̂=m2
22 (dot-dashed

line). The blue, red, golden, and green regions indicate the same
meaning as in Fig. 4.

13As we have seen in Sec. III A 1, the TF radius can be
expressed, using (15) in (30), as RðTFÞ ∝ Λ̂

m2
22

; i.e., a small value of
the ratio Λ̂=m2

22 implies a small TF radius.

14The self-interaction parameter is obtained as λ ¼ m2=f2,
where f is the axion-decay constant. For an ultralight axion, the
decay constant is of order f ∼ 1016 GeV.

15Notice that in terms of the parameter λ, these values for the
self-interaction are extremely small, which corroborate the fact
that self-interaction is usually ignored.
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account. In this case, the bounds from the Lyman-α power
spectrum on the particle mass m are less restrictive than for
free SFDM mentioned above.
Now, in this subsection, we shall proceed in the same

way as for the previous SFDM models; i.e., we shall try to
find the region of parameters where our ideal model of
SMBH formation can be fulfilled. The first thing we can see
is that, different from the previous cases, once we compare
the critical mass MðcritÞ

h;12 (81) or (89) and the maximum
possible mass for the soliton Mmax

c;7 (82), the way each
quantity depends on the free parameters of SFDM is
different. It is this difference that can help us to fulfill
our ideal model more easily. Let us first consider the
extension that is based upon the results of Schive et al.
[19,31]. In fact, using (81) and (82), our ideal model works
out, as long as the SFDM parameters fulfil

jΛ̂j ¼ 4.29 × 106 − 9.24 × 107; ð102aÞ

m22jΛ̂j1=2 ¼ 2.05 × 104 − 2.05 × 106: ð102bÞ

This region of parameters is shown in Fig. 6 (they
are marked in green in the upper and lower figures). We
can combine these two last expressions to obtain an
estimate for the mass parameter. For example, if we adopt
the value jΛ̂j ¼ 4.29 × 106 (i.e., if we demand to obtain

collapse once MðcritÞ
h;12 ¼ 1), the particle mass should be in

the range m22 ¼ 9.90 − 9.90 × 102 in order to fit our
fiducial choice of Mmax

c;7 ¼ 0.1–10. If, on the other hand,

we adopt jΛ̂j ¼ 9.24 × 107 (we demand to obtain collapse

once MðcritÞ
h;12 ¼ 10−2), we obtain m22 ¼ 2.14 − 2.14 × 102.

Then, we can roughly estimate that the favored mass for
SMBH formation should be in the range

m22 ≃ 2.14 − 9.90 × 102: ð102cÞ

Now, we turn to the extension which is based upon the
results of Mocz et al. [34], using (89) and (82). In this case,
our ideal model works out, as long as the SFDM parameters
satisfy

m22jΛ̂j3=2 ¼ 7.56 × 106 − 1.63 × 1010; ð103aÞ

m22jΛ̂j1=2 ¼ 2.05 × 104 − 2.05 × 106: ð103bÞ

We have also shown this region of parameters in Fig. 6
(they are marked in green in the middle and bottom
figures). If we proceed to do an analysis similar to the
one we did to estimate (102c), we finally arrive at the
preferable parameters for SMBH formation:

jΛ̂j ¼ 3.69 − 7.95 × 105; ð103cÞ

m22 ¼ 22.99 − 1.7 × 104: ð103dÞ

Finally, we need to compare our estimates to previous
constraints. This comparison is more difficult to do since,
as we mentioned earlier, attractive SFDM has not been
explored with much detail in this context. However, we can

FIG. 6. Top: MðcritÞ
h;12 as a function of jΛ̂j for our Schive et al.

[19,31]. extension. Middle: MðcritÞ
h;12 as a function of m22jΛ̂j3=2 for

our Mocz et al. [34] extension. Bottom: Mmax
c;7 as a function of

m22jΛ̂j1=2. The blue, red, golden, and green regions indicate the
same meaning as in Fig. 4.
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see that our estimates of the self-interaction term seem to be
quite close to those reported by other works.
Now, in addition, we can adopt our estimates as

independent constraints with respect to the possible for-
mation of SMBHs. The parameter region jΛ̂j > 9.24 × 107

for our Schive et al. [19,31] extension or m22jΛ̂j3=2 >
1.63 × 1010 for our Mocz et al. [34] extension would be
ruled out, if we want to avoid formation of SMBHs for the
lightest galactic halos (e.g., those hosting small dSphs).
The same happens for the range of parameters jΛ̂j ¼ 1.99 ×
105 − 4.29 × 106 and m22jΛ̂j3=2¼3.51×103−7.56×106,
which is ruled out in order to avoid collapse in galactic
halos which are too massive. Finally, demanding non-
formation of SMBHs imposes the constraint jΛ̂j ≤ 1.99×
105, using our Schive et al. [19,31] extension, and
m22jΛ̂j3=2 ≤ 3.51 × 103, using our Mocz et al. [34] exten-
sion, which is a region of parameters that fits previous
constraints.

VI. CONCLUSIONS

We have studied the SFDM core-halo mass relations,
which have been reported in various previous simulation
papers. Our main objective was the extension of these
relations for SFDM models which include self-interaction.
After presenting the basic equations used to model SFDM,
we adopted a Gaussian ansatz to describe typical core/
soliton structures of this model. We showed that this ansatz
can correctly reproduce several properties of the numerical
results that are well known for these solitons, with a special
emphasis on the question beyond which critical mass those
solitons will collapse. This question is of immediate
importance, once we realize that the core-halo mass
relations imply that such soliton collapse could happen,
once the mass of the halo itself exceeds a certain threshold.
This has implications for SFDM with or without self-
interaction. We showed how the core-halo mass relation,
typically found in numerical simulations of structure
formation in the free SFDM model, can be generalized
to models with self-interaction. Basically, two different
core-halo mass relations have been reported in the literature
for free SFDM; hence, we decided to extend both of them.
Using our extendend core-halo mass relations, we constrain
the free parameters of the SFDM model by exploring the
possibility of SMBH formation in massive galactic halos.
Comparing our findings with previous constraints reported
by other groups through different observational evidence—
not related to the SMBH formation considered here—we
show that soliton collapse to form SMBHs is favored
neither in SFDM models without self-interaction nor in
those with repulsive self-interaction. In these cases, the
central solitons will never get close to the critical mass of
collapse. However, if, on the other hand, we accept a range
of parameters that are beyond those commonly reported for
these two scenarios, i.e., if we adopted a much smaller de

Broglie wavelength for the free-field SFDM model or a
much smaller (n ¼ 1)-polytrope radius for the repulsive
scenario, it turns out that it is possible to explain the
formation of SMBHs with masses in the desired range for
one of the two core-halo mass relations we explored.
However, in adopting such a range, SFDM becomes
indistinguishable from CDM during structure formation,
since the scale of suppressing small-scale structure is
greatly reduced for that range of parameters. However,
this does not mean that such a model of SFDM is not a
viable one for cosmic DM, since it would be hard to
distinguish it from CDM (except perhaps by direct detec-
tion or annihilation effects of the latter), and that addition-
ally it would have a natural mechanism to explain the
formation of SMBHs. To conclude with our study, we
found that in SFDM with attractive self-interaction, SMBH
formation is feasible more easily since it is possible to fulfil
our ideal model of SMBH formation completely and for
both core-halo mass extensions. Only few studies have
been done that constrain the free parameters of attractive
SFDM (by not ignoring the contribution of the self-
interaction term), so our results, that we obtained for this
case, serve as additional, independent constraints for
the model.
More simulation work will be required in order to settle

the question of which core-halo mass relation should be
expected in SFDM models with and without self-
interaction. In this work, we have built upon the existing
literature, which presents us with two different exponents
for the core-halo mass relation in free SFDM models. We
have taken them at face value, performing analytic
calculations in order to show for each case which modified
relations are expected, once self-interaction is included.
This way, our work makes clean predictions, which can be
compared to upcoming simulations of SFDM structure
formation.
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APPENDIX: ANALYTIC APPROXIMATIONS:
GAUSSIAN VS SCHIVE PROFILE

Previous literature has made extensive use of two
different analytic approximations for the central soliton
in SFDM halos without self-interaction (the free case). On
the one hand, there is a density distribution ρðpÞc given by
Ref. [19] (Schive profile),

ρðpÞc ðrÞ ¼ ρ0
ð1þ 0.091ð rrcÞ2Þ8

; ðA1Þ

where ρ0 is the central density of the soliton

ρ0 ¼ 1.93 × 107m−2
22

�
rc

1 kpc

�
−4

M⊙kpc−3 ðA2Þ

and the core radius rc is defined as the radius where the
mass density drops by a factor of 2 from its value at the
origin,

rc ≃
2.27 × 104

ðm22Þ2Mc;7
pc: ðA3Þ

On the other hand, it has been noted that the soliton profile
can be also well approximated by a Gaussian density

distribution ρðgÞc [38],

ρðgÞc ðrÞ ¼ Mc

ðπR2
cÞ3=2

e−r
2=R2

c ; ðA4Þ

where we take Rc in such a way that the radius that contains
99% of the mass of the Gaussian ansatz matches with the
numerical solution. Then,

Rc ≃
3.54 × 104

ðm22Þ2Mc;7
pc: ðA5Þ

Observe from (17) that both cases, Eqs. (A1) and (A4),

follow the same rescaling dependence ρðpÞc , ρðgÞc ∝ γ−4, as
expected.
We can compare the above analytic profiles with the

numerical solution. For that purpose, it is convenient to
rewrite each approximation in terms of dimensionless
variables (15), i.e., “hat” quantities, and by considering
the solution that has a central scalar field value equal to 1.
In this manner, we can compare each approximation
with the numerical solution with γ ¼ 1. We note that the
analytic approach given in (A1) results in a better approxi-
mation for the soliton at small r̂ than the Gaussian, as can
be seen from Fig. 7. In the top figure, we plot the
dimensionless squared wave function jψ̂ ð1Þj2, where

superscript 1 refers to γ ¼ 1, together with the Gaussian
and the Schive profile. The middle figure shows the relative

error δi ≡ jðρ̂ð1Þc − ρ̂ðiÞc Þ=ρ̂ðiÞc j, i ¼ p, g, while the bottom

figure shows the total error Δi ≡ jρ̂ð1Þc − ρ̂ðiÞc j, i ¼ p, g for
each approximation.

FIG. 7. Schive profile (red solid) vs Gaussian (red dashed)
density distributions. In the top figure, we plot each case and the
numerical solution (black solid), while in the bottom figures, we
plot the relative (middle) and the absolute (bottom) errors for each
approximation.
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