PHYSICAL REVIEW D 103, 043506 (2021)

Bayesian model selection on scalar e-field dark energy
J. Alberto Vézquez,"" David Tamayo®,>" Anjan A. Sen,** and Israel Quiros®’*
Unstituto de Ciencias Fisicas, Universidad Nacional Autéonoma de México,
Cuernavaca, Morelos 62210, Mexico
*Facultad de Ciencias en Fisica y Matemdticas, Universidad Auténoma de Chiapas,
Tuxtla Gutiérrez, Chiapas 29050, Mexico
*Mesoamerican Centre for Theoretical Physics, Universidad Auténoma de Chiapas,
Tuxtla Gutierrez, Chiapas 29050, Mexico
*Centre for Theoretical Physics, Jamia Millia Islamia, New Delhi 110025, India
5Depcmanwnto Ingenieria Civil, Division de Ingenieria, Universidad de Guanajuato,
Guanajuato, C.P. 36000, México

® (Received 7 September 2020; accepted 12 January 2021; published 3 February 2021)

The main aim of this paper is to analyze minimally coupled scalar fields—quintessence and phantom—
as the main candidates to explain the accelerated expansion of the Universe and compare its observables to
current cosmological observations; as a byproduct we present its PYTHON module. This work includes a
parameter € which allows to incorporate both quintessence and phantom fields within the same analysis.
Examples of the potentials, so far included, are V(¢) = V¢#e*" and V(¢p) = V(cosh(ag) + p) with a,
u, and f being free parameters, but the analysis can be easily extended to any other scalar field potential.
Additional to the field component and the standard content of matter, the study also incorporates the
contribution from spatial curvature (€2;), as it has been the focus in recent studies. The analysis contains
the most up-to-date data sets along with a nested sampler to produce posterior distributions along with the
Bayesian evidence, that allows to perform a model selection. In this work, we constrain the parameter space
describing the two generic potentials, and among several combinations, we found that the best fit to current
data sets is given by a model slightly favoring the quintessence field with potential V(¢) = V¢*eP? with
p=022+1.56, p=-0.41+190, and slightly negative curvature €;, = —0.0016 £ 0.0018, which
presents deviations of 1.6¢ from the standard lambda cold dark matter (ACDM) model. Even though this
potential contains three extra parameters, the Bayesian evidence B, 4, = 2.0 is unable to distinguish this
model compared to the ACDM with curvature (€ = 0.0013 & 0.0018). The potential that provides the
minimal Bayesian evidence corresponds to V(¢) = V, cosh(a¢) with a = —0.61 + 1.36.
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I. INTRODUCTION

In the standard cosmological model, dark energy (DE) is
considered as the source that drives the current accelerated
expansion of the Universe and also the dominant compo-
nent, being around 70% of the total matter-energy content.
The observational evidence and theoretical consistency of
DE are well supported; for a review, see [1]. However,
being either a material fluid or geometry, the physical
mechanism behind DE is still a mystery. The simplest
model for the DE is the cosmological constant added to the
Einstein field equations. This idea with the addition of the
cold dark matter (CDM) component are the foundations of
the standard cosmological model or ACDM. Despite being
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the simplest approach and even if the ACDM model fits
well the current cosmological observations, it has been
shown that a cosmological constant carries several issues of
fundamental nature collectively known as “cosmological
constant problems” [2—8]. This points out that the cosmo-
logical constant as DE needs a deeper study from funda-
mental physics and perhaps it is an approximation from a
more complex model.

An alternative to the cosmological constant are the
so-called dynamical DE models, where the DE equation
of state (EOS) has the form of a barotropic perfect fluid
p = w(t)p. In ACDM, the EOS parameter w of DE is a
constant, wy, = —1, and hence implies a constant energy
density, p, = const. with a constant negative pressure
pPa = —pa; in contrast, dynamical DE with varying w(¢)
gives an evolving energy density, i.e., p(¢). Furthermore,
model-independent techniques, based on observational data
and on the minimal assumptions, are able to reconstruct
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the DE EOS and the results are in favor of a dynamical
(time-dependent) EOS [9-13]. The dynamical DE models
provide alternatives to alleviate the cosmological constant
problem among other important current conundrums in
cosmology, like the recent H tension [14,15].

Within this approach, scalar fields play a very important
role and lead to particular dynamical DE models such
as quintessence [16-24], phantom DE [25-30], k-essence
[31-34], quintom DE [35-39], among many others. The
main idea consists of introducing a scalar field whose
associated energy density is able to mimic the cosmological
constant at late times. The most popular scalar field DE
models contain a single minimally coupled scalar field with
a kinetic energy term, where the positive sign corresponds
to quintessence and the negative for phantom, and a given
scalar field potential. The energy density is the sum of the
kinetic energy and the potential whereas their difference
results in the effective pressure. The potential of the scalar
field supplies the required negative pressure to drive the
accelerated expansion of the Universe and its evolution;
consequently, the time evolution of the EOS depends
crucially on the functional form of the potential.

In this work, we focus on two scenarios: quintessence
and phantom. Quintessence is a canonical scalar field
minimally coupled to gravity [16]; it is considered as the
simplest scenario with no theoretical problems such as the
appearance of ghosts or Laplacian instabilities, it describes
a time-evolving DE which alleviates the cosmological
constant problem. For instance, the so-called “coincidence
problem,” namely, why the dark matter and dark energy
density happen to be of the same order today [40].
Phantom, on the other hand, is a noncanonical scalar field
in which the kinetic energy is negative [41-45], despite
the “wrong” sign of the kinetic term, phantom models are
able to resolve the H, tension [41]; meanwhile, in [44], the
viability of phantom fields is demonstrated, even when
quantum effects are taken into account. This is a very
important result since one of the strongest criticisms to the
phantom fields is the fact that, since their kinetic energy
density is negative, at first sight, one cannot construct a
healthy quantum theory of this field. But, in [44], up to first
order perturbations in a FLRW background, the authors
computed the expectation value of the field’s kinetic
energy, demonstrating that there is a region in the parameter
space where it is not a negative quantity.

As mentioned before, the functional form of the potential
V(¢) determines the time evolution of the scalar field and,
consequently, also that of w(z). Since we do not have yet a
derivation of V(¢) from cosmological principles, the
common approach is to propose functional forms of the
potential inspired from particle physics, mostly in a
phenomenological manner, to see how it fits to the data
and solves some cosmological challenges. In the literature,
there is a plethora of proposals for scalar field potential for
late time acceleration [5,24,46-52]. Given a potential, one

can always constrain its parameters using the current
available set of cosmological data. A step further is to test
a collection of potentials and compare its statistical viability
in terms of current observations [53-58].

Following this aim, instead of studying a particular scalar
field DE potential or a group of them, in this work we
propose two generic forms of potentials: V(¢) = V¢ ef?"
and V(¢) = Vy(cosh(a¢p) + p) (a, p, and p being free
parameters). The advantage of our proposal is that it
encompasses several potentials proposed in the literature;
for specific combinations of values of the free parameters,
these generic potentials reproduce known scalar field
potentials, for both quintessence and phantom cases
depending on a switch parameter ¢, which will be shown
in the following section. In addition, we also use the spatial
curvature density parameter €2, ; as a free parameter.

The paper is organized as follows. In Sec. II, we set up
the mathematical background of minimally coupled scalar
fields in cosmology and its description as a dynamical
system, we then introduce the switch parameter ¢ in order
to have a joint description of quintessence and phantom.
In Sec. III, we estimate the initial conditions of the variables
of the dynamical system to be solved. We present the
generic potentials and their links with other particular
potentials in Sec. IV, and in Sec. V, we introduce the code
used throughout the analysis and the observational data
sets included. In Sec. VI, we show the posteriors of the
Bayesian analysis, the constraints of the model parameters
in several particular cases, and a model comparison through
the Bayesian evidence. Finally, in Sec. VII, a summary of
our results and an outlook for future research is given.

Along this work, we use the units # = ¢ = 8zG = 1.

II. SCALAR FIELD EQUATIONS

The action of a cosmological model including a mini-
mally coupled single scalar field ¢, either quintessence or
phantom, is

s— | d‘*w——g[§+e%av¢ay¢— V(g) + Ly

where g is the determinant of the metric g,,, R is the Ricci
scalar, and the term £,, accounts for the other matter
components of the Universe (namely dark matter, baryons,
radiation, etc.). Here, to distinguish the type of field, we
have introduced the switch parameter

+1 quintessence,
€= (1)
—1 phantom.

Considering a FLRW Universe, the Friedmann equations
are thus
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k 1
H2+;:§(P¢ +pum). (2)

.k 1
H—;:—E(p¢+p¢+pM+pM), (3)

where H = a/a, a is the scale factor, over-dot describes
time derivative X = dx/dt, and k the intrinsic curvature.
The standard matter components, py; = > p;, are assumed
as perfect fluids and have a barotropic EOS of the form
p; = w;p;; hence, the usual energy conservation equation
for each one reads as

pi+3H(1+w;)p; = 0. (4)

In the case of pressureless matter, we have w; = 0, whereas
for the relativistic particles w; = 1/3; similarly, the curva-
ture can be considered as an effective perfect fluid with
equation of state w; = —1/3, and move it to the right-hand-
side on the expressions (2) and (3). For the scalar field, the
effective energy density and pressure are given by

Py = %452 + V(o). (5)

1.
Py =38 = V(@) (©)
The associated EOS of the scalar field then becomes

e’ —2V(¢9)

et +2V(g) ™

Wo

whose value can be determined from the evolution of the
field itself that satisfies the Klein-Gordon equation

$+3Hp+evV, =0, (8)
where x , = dx/dg. Following previous papers [50,59-62],

the equations of motion are written in the form of a
dynamical system by introducing the variables

Pi Py
Q» — N p— N
EYZE (Y7
1% 1%
I=—e—2, T=vI2 (9)
V2
R

The minus sign in the definition of 4 corresponds to 4) >0
(V 4 < 0) (for the opposite there would be a plus sign) such
that A remains positive; for further details, see [63]. This
convention allows to write € in terms of the potential and its
derivative through the sign function

e = sign(=0d,In V(¢)), (10)

and we can then introduce

> (0 quintessence,

éz—ad,an(qﬁ):{ (11)

< 0 phantom,

such that

A = &e = €sign(e). (12)
Thus, both types of fields are identified in a single function
€. Important to stress out, there is no crossing of the
phantom divide line, but this parameter allows to put both
models within the same analysis. This approach will also be
useful when combining both types of fields, i.e., quintom

models.
Therefore, the dynamical system to solve turns out to be

2 H
Q=30 (1+w 4+,
/ < +W’+3H2>
2 H
Q, = —39,,,(1 +wy +§_H2)’
Wi = =(1 =) (3(1 +wy) =2 /3Q4(1 + wy)sign(@) ).

& = —2(I' = 1),/3Q)(1 + wy)sign(?), (13)

where prime indicates derivative with respect to the e-fold
number x’ = dx/dIna. The last term of the first two
equations of (13) is written as

H 3

where ¢ is the deceleration parameter, and we have made
used of the Friedmann equation

1= "Qi+Q, (15)

The associated equation of state of the scalar field can be
described as a deviation of the cosmological constant,

wy = —1 +sign(€)y, (16)

with a positive function y. Moreover, the value of & will
identify the type of field to be considered, either quintes-
sence (+1) or phantom (—1), and hence the terms within the
square root [(1 + w,,)sign(€)] in the dynamical system will
remain positive.

Notice that not all equations in the dynamical system
(13) are linearly independent, i.e., either one of the
components of the matter fluids Q;, or the scalar field
component €2, can be written as a linear combination of
the remaining ones. Hence, the dimension of the phase
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space equals d =3+ (N —1) = N+ 2, where N is the
number of matter fields. As in our case, since we choose
only two additional components (matter and curvature),
then, the derivative of the curvature term, corresponding to
Q. = pi/(3H?), is given by the first expression in (13)

92:—391((1—;4—?52). (17)
Also, in (14), both the matter and curvature contribution
will be given by >, w;Q; = —-Q;/3, and due to the
Friedmann constraint (15), we can eliminate €2, in the
dynamical system. Therefore, the independent phase-space
variables are, €, wy, € and €, i.e., the phase space is
four-dimensional (4D). The dimension of the phase space
can be further reduced if an exponential potential is chosen

since, in these cases, € is a constant, as we shall see in the
next section.

III. INITIAL CONDITIONS

Even though the system can be extended for any amount
of components-i, for the sake of this work we restrict to
a Universe made of a scalar field, dust (dark matter +
baryons), and curvature, and considering a smooth tran-
sition to the radiation domination epoch (photons and three
neutrino species, N = 3.046, with minimum allowed
mass y_ m, = 0.06 eV).

Some papers pointed out the sensitivity of the initial
conditions in order to get accurate results [29]. There have
been several approaches for the conditions, for instance, by
assuming a general potential V(¢) = Vf(¢), in [53] used
Vo, ¢o, (}50 as free parameters for the initial conditions,
additional to the parameters that describe the form of the
potential.

In our case, the initial conditions can be set up right into
the matter domination epoch (a;,; ~ 107%) and we are
considering the initial conditions that realize thawing
behavior (the field is initially frozen at the flat part of
the potential due to large Hubble friction and behaves like
cosmological constant w = —1 [60]), then we are able to
choose the initial EOS of the scalar field (wy ;) very close
to the cosmological constant. Therefore, from Eq. (16), we
keep fixed y;,; = 1074, for either sign of é.

The initial value for the field density parameter, Q ;p;,
can be taken as a free parameter. However, we tested this
process and adding an extra parameter will reduce the
acceptance rate in the analysis and therefore increase
the computation time considerably. Thus, to enhance
the process and minimize the computation time, €2 ;,; is
thus selected such that its present value is Qo=
1 —>",9;,. This can easily be achieved with a shooting
method.

The parameter &;,; will decide the type of field in place
and can be either chosen as a sampling parameter or instead

Vog?
0.10
1.09
081 0.05
0.6 ——
O - 0
= 0.4 m 0.00 Qk.O
————— Qp
0.24
—0.05
0.0
6 -1 ) o 010
Ina
FIG. 1. Density parameters for a Universe where DE is

described by a quintessence field with potential V(¢) = V2,
dust described by dark matter 4+ dust (£2,,), and a curvature
component (£;) color coded to span the range of
Qo = [-0.1,0.1]. Black solid lines describe the flat-ACDM
model by using the current Planck values.

of taking the initial value of the field ¢;,;. We performed a
Bayesian analysis by using both parameters and the results,
as expected, will produce similar constraints on the base
parameters. However, the selection of using ¢;.! provides a
slightly better fit and less correlated constraints over the
selection of &;.

To illustrate the whole process, Fig. 1 displays the
density parameters for a Universe where DE is descri-
bed by a quintessence field (€;,; > 0) with potential
V(¢) = Vop?, dust describes the dark matter + baryons
(Q,,), and a curvature component (£2;) is color coded to
span the range ;o = [—0.1, 0.1]. The initial conditions are
fixed right into the matter domination epoch. Black solid
lines describe the flat-ACDM model by using the current
Planck values.

IV. POTENTIALS

The main aim of this work is to study a general
potential, for either quintessence or phantom, and com-
pare its observables with current cosmological observa-
tions, and then to include a PYTHON module into the
SimpleMC code [64,65]. As a proof of the concept, here
we focus on two general classes of potentials that
comprise a wide variety of fundamental models of
particular importance for cosmology. First, let us explore
the three-parametric class of potentials: (a) V(¢) =
Vod#eP? and then the two-parametric class: (b) V(¢) =
Vo(cosh(ag) + p).

The generic potential (a) under particular choices of the
parameters y, 3, and a boils down into potentials already
studied in the literature. Here, @, 4, y, y being positive
constant values, we have
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A. V() =Vopret?”.
For quintessence,
() p=—a, p=0: V(p) = VoM, [46].
(i) u=0,p=-A/Mp, a=1:
V() = Voexp[-id/M,,] [471.
(i) p=—z, f=y/M3, a=2:
V(g) = Vod™ explyg?/M3,] [48].
iv) u=0,=M,, a=-1
V(p) = Voexp[M,;/$] [24].
For phantom,
(i) u=06,=0:V(h) = Vog® [50].
(i) p==2, f=0: V(p) = Vo~ [50].
(i) u =0, a=1: V(¢) = Vye#? [50].
(iv) p=25=0: V(¢) = Vo 511,
In [53], the authors make a joint study about several of
these potentials.
Similarly, for the second potential,

B. V(¢p)=V,(cosh(ag) +p).

(i) p=L a=i/f: V(§) = V(cos($/f) +1) [521

(i) p=—1: V(¢) = Vy(cosh(agp) — 1) [66].

(iii) p=0: V(¢) = Vycosh(ag) [67].

In general, several of these potentials have been also
studied in the context of dark matter and inflation, for
instance, Vo? [61], Vodp* [68], Vo(cosh(dg) — 1) [69],
Vo(acos(ep/f) + 1) [701, Voe? (¢ = o) [71].

Notice that once we specify the scalar field potential, we
are able to compute € and I" [given in the expression (9)]
and hence the dynamical system (13) will be closed. For the
potential V(¢p) = Vy#eP?", we have the & and T functions
are, respectively,

—&=p¢~" + app',

1
P= 1+ lata— DAy -, (18)

and similarly for V(¢) = Vy(cosh(ag) + ), we have

. asinh(ag)
T cosh(ag) +
= —gcoth(agb). (19)

With these quantities in mind, the free parameters can
be sampled over and find out their constraints. To cover
several of the aforementioned parameters, and furthermore,
Table I shows some of these particular cases. Figure 2
displays, for the potentials we focus on, the general behavior
of its equation of state along with the H(z)/(1+2z)
function. Green error bars correspond to the galaxy and
Ly-a BAO, as we shall explain below.

TABLE I. Selected parameters and the model they described,
along with the auxiliary variables & and I'.

3 u a Model € r
g0 1 el -p 1

0w - ¢ —ugp™! -1
g0 2 P ~2p¢ 1+%
poow 1t —(upT B 1= (148
B 0 a b —apprt 1+ (- By
B2 2 PP 2 pp) RV
0 a  cosh(ag) —atanh(ag) ;7

-1 a cosh(ag)—1 -—a coth(%) T+ ‘;—j)

1 ia cos(agp) + 1 atan(%) 11-2)

V. CODE AND DATA SETS

To explore the parameter space and impose constraints
on the free parameters, we use the new version of the
SimpleMC code [64,65]. The code already contains several
samplers for a proper exploration of the parameter space,
but in particular we use a modified version of the nested
sampler Dynesty [72—74] that allows to explore complex
posterior distributions and to compute the Bayesian evi-
dence, which is used to perform a model comparison
through the Jeffreys scale [75]. The Bayesian evidence
has been used in several papers to compare DE models,
parametrizations for the DE EOS, inflationary models,
and to perform reconstructions of cosmological functions,
among many other applications; see, for instance, [9,10,
75,76]. For a comprehensive review of the parameter
inference in cosmology, see Ref. [77]. Throughout this
analysis, we use the recent baryon acoustic oscillations
(BAO) data sets from Ly-a DR14, BAO-galaxy consensus,
MGS, and 6dFGS as presented in [78-83], a collection
of currently available cosmic chronometers that provides
measurements of the Hubble function (see [84] and
references therein), a compressed version of the
Pantheon data set which speeds up the process without
losing accuracy [85], and a compressed version of Planck-
15 information (treated as a BAO experiment located at
redshift z = 1090, [65]) to improve constraints and break
degeneracies.

The flat priors of the base parameters used throughout
the analysis correspond to Q,, o = [0.05, 0.5] for the matter
density parameter today, ©,,h*> = [0.02, 0.025] for the
physical baryon density parameter, 7 = [0.4, 1.0] for the
reduced Hubble constant, and €, = [-0.03,0.03] for
the effective curvature density parameter today. Whereas
to select the priors that described the potential parameters
we based upon Fig. 2 which displays general behaviors for
the functions w(z) and H(z)/(1 + z) by varying some of
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FIG. 2. Evolution of the DE EOS parameter w(z) for selected values of the parameters of the generic potentials (both quintessence and
phantom) and H(z)/(1 + z), along with data from BAO galaxy consensus and Ly-a DR14.

these parameters. Hence, the flat priors we selected for the
potential parameters are y = [—6,6], f=[-3,3], a=[-3.3],
m =33

VI. RESULTS

Figure 4 shows the 2D marginalized posterior distri-

butions with scatter points color coded accordingly with
the parameter on the right colored bar. Notice that each
panel contains two colors that represent the type of field:
phantom (blue) and quintessence (red), depending on the
sign of &;,; and therefore on the combination of parameters
for each potential. In almost all the presented models,
except for the cos(ag) + 1 model, we notice the center of
the 2D posterior distribution is slightly inclined to the
quintessence field.

Within the potentials studied, the mean value of the
Hubble parameter is around Hy, = 68 km/s/Mpc which is
consistent with the value of the ACDM model. Despite the
diversity of potentials and even if the phantom regime is
considered, there is not a significant departure from the
standard background cosmology that may allow to alleviate
the H tension. If we see Fig. 3, up to 26, w(z = 0) can go
at most till —1.1 which is insufficient to shift the central

FIG. 3.
the potential that best fits to the data (V = V¢*ef?): the
probability of w as normalized in each slice of constant z, with
color scale in confidence interval values. Solid lines describe 1o
(68%) and 20 (95%) confidence contour levels.

This panel shows the posterior probability Pr(w|z) for
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FIG. 4. 2D marginalized posterior distributions for each set of parameters given and potential. Color blue represents models laying on
the phantom region, whereas red those models in the quintessence. Inner (outer) contours describe 16 (68%) and 26 (95%) confidence
contour levels.
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TABLE II.

Mean values along with 1o constraints on the set of parameters used to described each model. For one-tailed distributions,

the upper limit 95% C.L. is given. For two tailed, the 68% C.L. is shown. Before the last column, =2 In L , is used to compare best fit

with respect to the ACDM model. The last column contains the Bayesian evidence.

Model Q0 h Qo - B u a Emi —2InL. InZ

ACDM 0.3005(68) 0.6830(53) 0 60.44  —40.39(20)
ACDM + k 0.3008(67) 0.6849(65) 0.0013(18) e e e 59.30  —41.10(22)
ePt 0.3023(91) 0.6838(98) 0 —0.37(43) 0 1 0.37(43) 59.00 —40.81(21)
e’k 0.3026(86) 0.6812(95) —0.0016(17) e —0.34(44) 0 1 0.34(44) 58.46 —42.02(23)
" 0.3009(79) 0.6856(85) 0 0.15091) 0 —0.13(2.13) 0.29(42) 58.94 —40.95(22)
P+ k 0.3001(78) 0.6842(83) —0.0016(18)  0.31(96) 0 -0. 31( 88) .- 022(41) 5832 —42.05(23)
i 0.3003(78) 0.6863(83) 0 —0.13(96)  0.39(1.07) 2 0.36(55) 5832  —41.36(22)
M 4k 0.3011(80) 0.6832(87) —0.0015(17) —0.17(99) 0.34(1.11) 2 0.34(56) 58.18 —42.18(23)
Prebh 03013(82) 0.6850(90) 0 0.23(1.29)  0.25(1.52) —0.37(2.17) 1 032(90) 5844  —41.41(22)
PrePt +k 0.3019(82) 0.6820(90) —0.0016(18) 0.27(1.31)  0.22(1.56) —0.41(1.90) 1 0.26(92) 58.02 —42.42(23)
e 0.2989(73) 0.6879(75) 0 0.18(0.93) —0.04(1.27) 0 0.11(128) 0.1942) 5848 —41.67(22)
P+ k 0.2993(71) 0.6853(74) —0.0017(18) 0.15(1.01) —0.05(1.15) 0 0.09(1.22) 0.12(39) 5822  —42.57(23)
cosh(agp) 0.30087(80) 0.6858(85) 0 ~0.31(1.00) 0 ~0.61(1.36) 0.34(46) 5850  —40.63(21)
cosh(ag) + k  0.30090(79) 0.6835(85) —0.0016(18) —0.43(1.31) 0 0.0293) 026(41) 58.14 —41.47(22)
cos(agp) + 1 0.2977(66) 0.6895(61) 0 0.23(1.41) 1 0.01(1.03) 0.06(69) 59.12  —40.76(21)
cos(agp) + 1+ k 0.2992(69) 0.6855(73) —0.0018(18) 0.07(0.94) 1 0.38(1.33) 0.14(58) 58.54 —41.48(22)

value of H, as has been shown in [86] that it is needed
w(z =0) around —1.3 to shift the central value of H,
toward 70-71.

Finally, an important point to stress out is the presence
of pronounced degeneracies over the parameter space. For
instance, in the model with potential V(¢) = Ve/?", the
parameter space is divided into two regions, one with
p > 0, a < 0 and the other one with # < 0, @ > 0 and in the
center of this region V(¢) = V,,. Something similar hap-
pens with the potential V(¢p) = V¢*e?. A notable feature
for this case is the fact that the points do not cluster near
the center of the confidence curve, and also clearly the
particular case = 0 is constrained by the initial condition
to €;,; ~ 0. These types of degeneracies are very complex
and time consuming to explore within the standard Markov
Chain Monte Carlo methods, hence the use of nested
samplers. To complement this figure, Table II contains
mean values along with 1o constraints on the set of
parameters used to described each model. Looking at the
mean values of &, we obtain that in general there is a slight
inclination to quintessence models (¢ > 0) for an open
Universe (€, < 0) (also observed in Fig. 4).

In terms of particular models, the potential V = V,e/?
slightly favors f negative (positive for quintessence and
negative for phantom values); in contrast, the potential
V = Vel slightly favors f, which means there is a
maximum in the equation of state. For V = V,e/?", the
parameters f =~ 0.16 and a = 0.1, all either for flat or curved
Universe; notice that the power a = 0.1 of the last case lies
between the powers 0 and 2 of the first and second cases.
For the power-law potential, V = V¢, models with
an exponent |u| > 2 lay down right on the 1l limits.

The model with a potential V = Vy¢#e?, the means
are located at f~ 0.2 and u ~ —0.4, this potential with
negative curvature provides a better fit to the data compared
to the rest of the models and shows and improvement
of 1.66 with respect to the ACDM model, however with
three extra parameters. The potential V = V, cosh(a¢) has
the feature that the best fit of the parameter « is negative in
the flat case and positive in a Universe with curvature case
with a slightly preference to an open Universe. Finally, for
the potential V = V(cos(a¢) + 1), the parameters a ~ 0
and a ~ 0.4 for the flat and curvature cases, respectively.

Last column contains the Bayesian evidence (In Z),
and according to Jeffrey’s scale, the models are indistin-
guishable and hence still consistent with ACDM. In
general, we found that scalar field models preferred an
open Universe compared to positive curvature for the
ACDM model.

VII. CONCLUSIONS

In this paper, we have been able to incorporate
minimally coupled scalar fields—quintessence and
phantom—into the same analysis with the use of a switch
parameter € and then to present it as a PYTHON module for
the SimpleMC code [64]. The variables introduced here
allow us to write down the dynamical system in terms of
variables that naturally simplify the selection of initial
conditions. This & parameter will be useful when the two
fields are combined, i.e., quintom models. For the proof
of the concept, we have considered two generic classes of
potentials, a three-parametric class V(¢) = V¢ e?" and
also the two-parametric class V(¢) = V(cosh(ag) + ),
but the code can easily be extended to more specific
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potentials. One of the objectives of the code is to enable
the study of very general models of scalar dark energy
potentials such as the one presented in this work. We
found that for the combined data set, the preferred model
corresponds to V = Vy¢*e’? and negative curvature.
For this potential, Fig. 3 contains the posterior probability
of the equation of state Pr(w|z): the probability of w as
normalized in each slice of constant z, with color scale in
confidence interval values [87]. The Bayesian evidence
points out an inconclusive difference among models.
For the coming data sets, this work may be able to
identify the type of field and the scalar field potential that
best describes observations.
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