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We study the cosmological constant (Λ) in the standard Λ cold dark matter model by introducing the
graduated dark energy (gDE) characterized by a minimal dynamical deviation from the null inertial mass
density of theΛ in the form ρinert ∝ ρλ < 0with λ < 1 being a ratio of two odd integers, for which its energy
density ρ dynamically takes negative values in the finite past. For large negative values of λ, it creates a
phenomenological model described by a smooth function that approximately describes the Λ sponta-
neously switching sign in the late Universe to become positive today. We confront the model with the latest
combined observational datasets of Planckþ baryon acoustic oscillationsþ supernovaþ H . It is striking
that the data predict bimodal posterior probability distributions for the parameters of the model along
with large negative λ values; the new maximum significantly excludes the Λ, and the old maximum
contains the Λ. The improvement in the goodness of fit for the Λ reaches highly significant levels,
Δχ2min ¼ 6.4, for the new maxima, while it remains at insignificant levels, Δχ2min ≲ 0.02, for the old
maxima. We show that, in contrast to the old maxima, which do not distinguish from the Λ, the new
maxima agree with the model-independent H 0 measurements, high-precision Ly-α data, and model-
independent Omh2 diagnostic estimates. Our results provide strong hints of a spontaneous sign switch in
the cosmological constant and lead us to conjecture that the Universe has transitioned from anti-de Sitter
vacua to de Sitter vacua, at a redshift z ≈ 2.32, and triggered the late-time acceleration, and suggests
looking for such mechanisms in string theory constructions.
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I. INTRODUCTION

The standard Lambda cold dark matter (ΛCDM) model,
relying on the inflationary paradigm [1–4], has proven so
far to be the most successful cosmological model that
accounts for the dynamics and the large-scale structure of
the Universe. It is in excellent agreement with a wide
variety of the currently available data [5–9]. Nevertheless,
in addition to its long-standing profound theoretical issues
relating to the Λ (or conventional vacuum energy) [10–13],
it has recently begun to suffer from persistent tensions of
various degrees of significance between some existing
datasets (see, e.g., Refs. [14–18] for further reading).
Such tensions are of great importance as detection of even
small deviations from the standard ΛCDMmodel with high
significance could have substantial implications on our

understanding of the fundamental theories of physics
underpinning it.
One of the most intriguing tensions reported so far is the

significant deficiency in the Hubble constant H 0 value
predicted by the cosmic microwave background (CMB)
Planck data [6,9] using the base ΛCDM model when
compared with the values by direct model-independent
local measurements [19–22]. The fact that it worsens for
the simplest minimally coupled single-field quintessence
models and is only partially relieved by phantom models
(or quintom models) aggravates this tension as it suggests
the elimination of these standard dark energy (DE) models
[23–25] (see also Ref. [26] for further references).
Surprisingly, the situation changes if the DE energy density
is not restricted to be strictly positive. It has been reported
that a number of persistent low-redshift tensions, including
the H 0 tension, may be alleviated by a dynamical DE
whose energy density can assume negative values or vanish
at a finite redshift [26–37].
The possible need for DE whose energy density can

assume negative values was previously emphasized by the
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observation that, when the base ΛCDM model is consid-
ered, the Ly-α forest measurement of the baryon acoustic
oscillations (BAOs) by the BOSS Collaboration prefers a
smaller value of the dust density parameter than is preferred
by the CMB data [35]. They reported a clear detection of
DE consistent with Λ > 0 for z < 1, but with a preference
for a DE assuming negative energy density values for
z > 1.6, and argued that the Ly-α data from z ≈ 2.34 can fit
a nonmonotonic evolution of H ðzÞ, i.e., of the total energy
density ρtotðzÞ—assuming general relativity—which is
difficult to achieve in any model with non-negative DE
density [36]. In another study [37], in line with this, it was
argued that the Ly-α data can be accommodated by a
physically motivated modified gravity model that alters
H ðzÞ itself, and also that a further tension relevant to the
Ly-α data can be alleviated in models in which Λ is
dynamically screened, implying an effective DE passing
below zero and concurrently exhibiting a pole in its
equation of state (EoS), at z ∼ 2.4. DE models—either
as a physical source or an effective source arising from a
modified theory of gravity—assume negative energy den-
sity values have not been paid much attention so far (for
reviews on DE and modified theories of gravity, see
Refs. [38–44]). However, such scenarios are in fact familiar
from an effective source (say, DE) defined by the collection
of all modifications to the usual Einstein field equations in
scalar-tensor theories, namely, when the cosmological
gravitational coupling strength gets weaker with increasing
redshift [45,46]. A range of other examples of effective
sources crossing below zero also exists, including theories
in which Λ relaxes from a large initial value via an
adjustment mechanism [47,48], in cosmological models
based on Gauss-Bonnet gravity [49], in braneworld models
[50,51], in loop quantum cosmology [52,53], in higher-
dimensional cosmologies that accommodate dynamical
reduction of the internal space [54–57], and generalizations
of the form of the matter Lagrangian in a nonlinear way
[58–60].
It is possible to seek such scenarios by following a

minimalist approach, namely, starting with the minimal
extensions to the standard ΛCDM model. The most natural
one to consider is the addition of positive spatial curvature,
e.g., that of the Friedmann-Robertson-Walker (FRW)
spacetime which imitates a negative energy density source
with an EoS parameter equal to −1=3. It is easy to check
that, however, to screen Λ at, e.g., z ∼ 2.4 forΩΛ;0 ∼ 0.7, its
density parameter today is required to be Ωk;0 ∼ −0.06,
which contradicts the inflationary paradigm and is indeed
not allowed, e.g., by the joint results of the recent Planck
release [9] suggesting spatial flatness to a 1σ accuracy of
0.2%. If we stay loyal to the inflationary paradigm and then
suppose flat space, the simplest source that can realize such
a behavior can be obtained by promoting the null inertial
mass density [61,62] of the vacuum energy (ρinert ¼ 0)
to a negative constant, ρinert ¼ const < 0. The source

ρinert ¼ const has recently been of interest to many as it
mimics Λ today while leading the Universe to exhibit a
future singularity dubbed the little sibling of the big rip for
ρinert ¼ const < 0 and a finite future bounce for ρinert ¼
const > 0 [63,64]. However, in the light of the observa-
tional analyses carried out in this paper, ρinert ¼ const < 0
provides us with neither a superior DE model with respect
to the Λ nor an improvement regarding the tensions of
interest to us. For instance, the observational data suggest
that its energy density changes sign at a redshift larger than
65 (i.e., when it is already negligible) and it is indistin-
guishable from Λ today (z ∼ 0), so clearly it cannot have
consequences for the tensions with which we are con-
cerned. The simplest next step may be to consider the
minimum dynamical deviation from the null inertial mass
density, viz., in the form ρinert ∝ ρλ < 0 with λ being a real
constant. The exponent λ here will provide us with a more
featured evolution of the energy density passing below zero
at high redshifts. Importantly, for arbitrarily large negative
values of λ, it resembles a step function in redshift
describing a spontaneously sign-switching cosmological
constant at a certain redshift. Accordingly, it can also be
viewed as a phenomenological model described by a
smooth function for approximately describing a vacuum
energy that switches sign at a certain redshift and becomes
positive just recently in the late Universe and triggers the
acceleration. A source having this form (but considering
ρinert ∝ ρλ > 0) was first suggested in Ref. [65] (see also
Refs. [66,67]) for introducing an intermediate inflationary
scenario named graduated inflation. It was physically
motivated by the form of bulk viscous stresses in FRW
models and their quantum counterparts when the bulk
viscosity is proportional to a power of the density.
Accordingly, we shall call this source graduated dark

energy (gDE) as in this paper we study the present-day
acceleration of the Universe. In fact, more recently, it has
also been considered as a DE (e.g., Refs. [68–71]).
However, all these works focus on the future singularities
and the asymptotic dynamics of the Universe by retaining
the positivity of the energy density (the cases for the
negative energy density are discussed only superficially). In
contrast, here, we focus on its dynamics around the present
time and utilize its sign-switching energy-density feature to
address the tensions that arise within ΛCDM model when
the data from the late Universe are considered.
Such scenarios, in particular, the sign-switching cosmo-

logical constant that arises as a limiting case of the gDE,
can be extremely appealing from a string theoretic per-
spective. Constructing metastable de Sitter (dS) vacua
(provided by Λ > 0) has notoriously been a challenging
task in string theory and, so far, has not been concretely
achieved [72–81]. This has led many to suggest that
string theory might not have any dS vacua at all
[82–87]. This would obviously have immense implications
in cosmology and/or theoretical physics, as it seems to
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imply an inconsistency between string theory and the
Universe we live in [88–98]. In contrast, an anti-de
Sitter (AdS) background (provided by Λ < 0) solution
naturally arises in string theory or string theory motivated
supergravities with broken/unbroken supersymmetry.
Furthermore, the AdS space provides a very powerful setup
to study various strongly coupled quantum field theories via
the AdS=CFT correspondence [99,100]. Contrary to the case
of dS, which can only arise with broken supersymmetry,
there does seem to exist a large number of consistent AdS
backgrounds that can be obtained from string theory. It has
also recently been claimed that transition from AdS vacua to
dS vacua could be realized in a noncommutative quantum
field theory setup [101]. Consequently, if we could show
through gDE that the observational data prefer a DE having
ρ ∼ ρ0 > 0 (positive cosmological constant) for z ∼ 0 (just
recently) and ρ ∼ −ρ0 < 0 (negative cosmological constant)
for z ≫ 0 (most of the history of the Universe), which is
realized at large negative λ values of gDE, and that the
persistent tensions arising within the standard ΛCDMmodel
disappear/relax, this would have far reaching implications
for our understanding of the fundamental laws of physics.
We will show, by means of gDE, that the observational data
provide strong pointers in this direction. This leads us to
conjecture that the cosmological constant has spontaneously
switched sign and become positive, namely, the Universe has
transitioned from AdS vacua to dS vacua, at z ∼ 2.3, and
triggered the observed late-time acceleration, and we suggest
looking for such mechanisms in string theory.

II. GRADUATED DARK ENERGY

The energy-momentum tensor describing an isotropic
perfect fluid can be decomposed relative to a unique four-
velocity, uμ, in the form, Tμν ¼ ðρþ pÞuμuν þ pgμν, where
ρ is the relativistic energy density relative to uμ, p is the
isotropic pressure, gμν is the metric tensor, and ∇νuμuμ ¼ 0

and uμuμ ¼ −1. The set of equations arises from the twice-
contracted Bianchi identities, which by means of Einstein
field equations, Gμν ¼ −Tμν, implies the conservation
equations. Projecting parallel and orthogonal to uμ, we
obtain the energy and momentum conservation equations,
correspondingly,

_ρþ Θρinert ¼ 0 and Dμpþ ρinert _uμ ¼ 0; ð1Þ

where ρinert ¼ ρþ p, the multiplier of the four acceleration
_uμ, is the inertial mass density [61,62]. Here, Dν is the
spatial gradient (the covariant derivative operator orthogo-
nal to uμ) defined by Dνf ¼ ∇νf þ uμ _f; Θ ¼ Dμuμ is the
volume expansion rate, and overdots denote derivatives
with respect to the comoving proper time t.
Inspired by Ref. [65], we define a type of DE model, we

named graduated dark energy, which yields an inertial

mass density exhibiting power-law dependence to its
energy density as follows,

ρinert ¼ γρ0

!
ρ
ρ0

"
λ
; ð2Þ

where ρ0 is positive definite (throughout the paper, sub-
script 0 attached to any quantity denotes its value today)
and the parameters γ and λ are real constants. This can be
viewed as characterizing the minimum dynamical deviation
from the null inertial mass density, viz., from the conven-
tional vacuum energy. So that EoS parameter is w ¼ p=ρ ¼
−1þ ρinert=ρ and reads

w ¼ −1þ γ

!
ρ
ρ0

"
λ−1

: ð3Þ

We note that γ ¼ 0 corresponds to the conventional vacuum
energy with w ¼ −1 (leading to the ΛCDM model) and
λ ¼ 1 corresponds to the perfect fluid with constant EoS
parameter w ¼ −1þ γ ¼ const (leading to the wCDM
model). From the continuity equation (1), this leads to
dρþ 3γρ0ð ρρ0Þ

λ da
a ¼ 0, which is solved by

ρ ¼ ρ0½1þ 3γðλ − 1Þ ln a& 1
1−λ; ð4Þ

which satisfies

ρinert ¼ γρ0½1þ 3γðλ − 1Þ ln a& λ
1−λ; ð5Þ

w ¼ −1þ γ
1þ 3γðλ − 1Þ ln a

: ð6Þ

We note that w ¼ −1þ γ today (when a ¼ 1 or redshift
z≡ −1þ 1

a ¼ 0) and w ≈ −1 for sufficiently large and
small a, in particular, w → −1 in the far future (a → ∞)
and in the very early Universe (a → 0). Besides, provided
that the parameters γ and λ are chosen appropriately, gDE
can achieve transition from ρ > 0 to ρ < 0 at a certain
redshift. Thus, gDE can also be viewed as a phenomeno-
logical model described by a smooth function for approx-
imately describing the cosmological constant switches sign
at a certain redshift and, for instance, becomes positive just
recently in the late Universe.
The gDE (4), in fact, exhibits various types of dynamics

depending on its free parameters λ and γ; see Ref. [69] for a
comprehensive investigation. In this paper, we are inter-
ested in the case in which its energy density passes below
zero at high redshifts, which, so far, has not been paid much
attention, yet it is the case fitting the scenarios we discussed
in the Introduction that most likely address the tensions
relevant to H 0 and, in particular, to the high-precision Ly-α
data from z ≈ 2.34. For instance, in the case λ ¼ 0
(ρinert ¼ γρ0), Eq. (4) reduces to ρ ¼ ρ0 − 3ρ0γ ln a, con-
sisting of a constant ρ0 > 0 mimicking Λ > 0 and a
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dynamically screening term, −3ρ0γ ln a, in the past for
γ < 0, viz., ρ0 − 3ρ0γ ln a ¼ 0 at a ¼ e

1
3γ. Yet, the presence

of the exponent 1
1−λ in (4) will allow us to realize such a

scenario with additional features.
First, we define ρ=ρ0 ¼ xy along with ρ0 > 0, where

x≡ 1þ 3γðλ − 1Þ ln a and y≡ 1
1−λ. We note that, unless

γ ¼ 0 (conventional vacuum) or λ ¼ 1 (perfect fluid with
constant EoS parameter), x changes sign at

a ¼ a' ≡ e−
1
3

1
γðλ−1Þ; ð7Þ

which is in the past (a' < 1, the case we are interested
in) for γðλ − 1Þ > 0 and in the future (a' > 1) for
γðλ − 1Þ < 0. Next, y < 0 for λ > 1 so that ρ → (∞ as
a → a' and y > 0 for λ < 1 so that ρ → 0 as a → a', where
the latter case is of interest to us. Thus, we proceed with the
following two conditions serving our purpose,

λ < 1 and γ < 0; ð8Þ

the latter of which implies wða ¼ 1Þ < −1; i.e., the gDE
must be in the phantom region today.
To get around a mathematical obstacle, when we inves-

tigate gDE computationally (see Ref. [102]), we continue
by writing ρ

ρ0
¼ xy in an equivalent way as ρ

ρ0
¼ sgnðxÞjxjy

for y ¼ m
n with m and n being odd integers, namely,

ρ ¼ ρ0sgn½1 −Ψ ln a&j1 − Ψ ln aj 1
1−λ; ð9Þ

for Ψ≡ −3γðλ − 1Þ < 0 (i.e., γ < 0), λ < 1 and the expo-
nent 1

1−λ ¼
m
n with both m and n being odd integers. For

practical reasons, we will consider m ¼ 1, and so λ ¼ −2N
withN ¼ 0; 1; 2;…, i.e., λ ¼ 0;−2;−4;…. Here, sgn is the
signum function that reads sgnðxÞ ¼ −1; 0; 1 for x < 0,
x ¼ 0 and x > 0, respectively. Of course, in principle, there
is an infinite number of such λ values, not continuous,
between the ones we listed above, and so we can treat λ in
(9) as if it is continuous since one can always find an
allowed λ value indistinguishably close to a forbidden
λ value.
Consequently, the gDE-CDM model replaces the Λ of

the Friedmann equation of the standard ΛCDM model by
the gDE (9) serving our purposes and reads

H 2

H 2
0

¼Ωr;0a−4þΩm;0a−3þΩDE;0sgn½1−Ψlna&j1−Ψlnaj 1
1−λ;

ð10Þ

from which we also read off

ρDE
ρc;0

¼ ΩDE;0sgn½1 −Ψ ln a&j1 −Ψ ln aj 1
1−λ; ð11Þ

where Ψ < 0 and λ ¼ 0;−2;−4;… [for further possibil-
ities, see (9) and the explanations following it]. Here, the

subscripts r and m stand for relativistic source (wr ¼ 1
3) and

dust matter (wm ¼ 0), respectively.
Regarding inertial mass density (5), when γ < 0, if 1 − λ

is odd, then λ is even, and consequently, we have the
exponent λ

1−λ ¼
½even&
½odd& in (5), which in turn implies that

ρinert ≤ 0, that is, we can write

ρinert ¼ γρ0j1þ 3γðλ − 1Þ ln aj λ
1−λ; ð12Þ

under the conditions derived above. It turns out that
ρinert ¼ 0 is the upper bound, viz., ρinert;max ¼ 0.
We claimed above that gDE can also be viewed as a

phenomenological model described by a smooth function
that approximately describes the cosmological constant
switching sign at a certain redshift and becoming positive
just recently in the late Universe. Indeed, under the
conditions we consider, ρða ¼ 1Þ > 0 and ρða ≪ a'Þ=
ρða ≫ a'Þ ≈ −1 along with wða≪ a'Þ≈wða≫ a'Þ≈
−1, which imply that the energy density of the gDE at
high redshifts not only passes below zero but also settles in
a value almost equal to the negative of its present time value
and remains almost there, say, all the way to the early time
before which gDE is irrelevant to the dynamics of the
Universe. Note that the EoS parameter is just slightly below
(above) the phantom divide line for a ≫ a' (a ≪ a') with
a' < 1, and w → −1 only when either a → 0 or a → ∞.
Therefore, the energy density of gDE grows very slowly in
the future and reaches arbitrarily large values in the very
remote future, and also grows in negative values very
slowly—obviously, much slower than radiation and dust,
both which then eventually dominate gDE in the finite past
—with the increasing redshift for a ≪ a', and reaches
arbitrarily large negative values in the beginning
of the Universe. We note, however, that for arbitrarily
large negative values of λ, the energy density equation (11)
[or (9)] transforms into a step function,

ρDE
ρc;0

→ ΩDE;0sgn½1 −Ψ ln a& as λ → −∞; ð13Þ

with an EoS parameter w → −1. In this case, the energy
density of gDE is nondynamical except that it sponta-
neously changes sign at a ¼ a'. Thus, for large negative
values of λ, the gDE model is a very good approximation
for describing a cosmological constant spontaneously
switching sign at z ¼ z', namely, in the limit λ → −∞,
ρDE
ρc;0

¼ ΩDE;0 for z < z' and ρDE
ρc;0

¼ −ΩDE;0 for z > z'.
The following may be useful as a demonstration of how

the gDE-CDMmodel works and gives a guide to the values
of the parameters of the model. Let us choose a' ¼ e−1

(z' ∼ 1.7) in line with Ref. [36] (see Fig. 11 in Ref. [36]).
This leads to λ ¼ 1þ 1

3γ, where λ must be a large negative
number as we must use γ ∼ 0 (it is observationally well
known that γ¼w0þ1∼0) along with γ < 0 (our condition
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derived above). For example, γ ¼ −0.03 (or w0 ¼ −1.03)
predicted by the recent Planck release [9] leads to λ ∼ −10.
Accordingly, in Fig. 1, we depict ρðzÞ

ρc;0
, wðzÞ, and H ðzÞ=

ð1þ zÞ by considering Ωm;0 ¼ 0.30 along with two differ-
ent Hubble constant values, H 0 ¼ 70 km s−1 Mpc−1 and
H 0 ¼ 73 km s−1Mpc−1, for both the ΛCDM model and
gDE-CDM model with λ ¼ −10 and γ ¼ −0.03. See the
previous paragraph for the behaviors of ρ and w beyond
our most interested redshift range z ¼ f0; 3.5g considered
in Fig. 1. We note that, in the gDE-CDM model, the
steep change in H ðzÞ=ð1þ zÞ at z ∼ z' ¼ 1.7—due to the
sign change/pole of the energy density/EoS of the gDE—
allows it to pass through all data points as well as achieve
larger H 0 values, whereas in the case of the ΛCDM model,
it does not pass through Ly-α data at z ¼ 2.34, and the
increased H 0 value worsens this situation. This is signaling
that, with respect to the Λ, the gDE would lead to an

improved fit to the observational data and alleviate the
tensions of various degrees of significance between some
existing datasets within the ΛCDM cosmology. As, in the
gDE-CDM model, we have ρ ∼ ρ0 and w≲ −1 (slightly in
the phantom region) for z ≪ z' (also for z ∼ 0) and ρ ∼ −ρ0
and w≳ −1 (slightly in the quintessence region with
negative energy density) for z ≫ z', from the phenom-
enological point of view, such an achievement may be
signaling that indeed the cosmological constant is respon-
sible for the current acceleration of the Universe, but
it has changed sign at z' ∼ 2 and was negative at the
higher redshifts.

III. CONSTRAINTS FROM THE LATEST
COSMOLOGICAL DATA

This section provides constraints on the gDE-CDM
model using the latest observational data with a further
discussion of the model and its consequences.
In order to perform the parameter-space exploration,

we implement a modified version of the simple and
fast Markov chain Monte Carlo code which computes
expansion rates and distances from the Friedmann equation
named SimpleMC [104] and initially introduced in Ref. [36].
For a comprehensive review of the cosmological parameter
inference, see Ref. [105]. The SimpleMC code takes into
account a compressed version of recent datasets, for
instance the Planck information (PLK) (where the CMB
is treated as a “BAO experiment” at redshift z ¼ 1090)
measured by the angular scale of the sound horizon at that
time, a recent analysis of Type Ia supernova (SN) data
called Joint Light-Curve Analysis compressed into a piece-
wise linear function fit over 30 bins evenly spaced in log z,
and high-precision baryon acoustic oscillation measure-
ments (BAO), from comoving angular diameter distances,
the Hubble distance, and the volume averaged distance, at
different redshifts up to z ¼ 2.36. For a more detailed
description about the datasets used, see Ref. [36]. We also
include a collection of currently available cosmic chro-
nometer measurements (H ); see Ref. [106].
In this analysis, the radiation content is assumed

by considering three neutrino species (Neff ¼ 3.046)
with minimum allowed mass

P
mν ¼ 0.06 eV and a

radiation density parameter given by Ωr;0 ¼ 2.469×
10−5h−20 ð1þ 0.2271NeffÞ, where h0 is the present-day
value of the dimensionless reduced Hubble parameter
hðzÞ ¼ H ðzÞ=100 km s−1Mpc−1 [107]. The total radiation
content today is kept fixed in our analysis since it is well
constrained by the CMB monopole temperature, TCMB;0 ¼
2.7255( 0.0006 K [108]. Throughout our analysis, we
assume flat priors over our sampling parameters: Ωm;0 ¼
½0.05; 1.0& for the matter (dust) density parameter today,
Ωb;0h20 ¼ ½0.02; 0.025& for the physical baryon density
parameter, and h0 ¼ ½0.4; 1.0& for the reduced Hubble

FIG. 1. We use Ωm;0 ¼ 0.30 and, for gDE-CDM, γ ¼ −0.03
along with λ ¼ −10 (green). H ðzÞ=ð1þ zÞ vs z for the gDE-
CDM (green) and ΛCDM (black). H 0 ¼ 70 km s−1 Mpc−1

(solid) and H 0 ¼ 73 km s−1 Mpc−1 (dashed). H 0 ¼ 69.8(
0.8 km s−1 Mpc−1 from the TRGB H 0 [22], H ðz ¼ 0.57Þ ¼
97.9( 3.4 km s−1 Mpc−1 [103], and H ðz ¼ 2.34Þ ¼ 222.4(
5.0 km s−1 Mpc−1 from the latest BAO data [35]. H 0 ¼ 73.52(
1.62 km s−1 Mpc−1 is independent measurement from Gaia
parallaxes [20].
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constant. With regard to the gDE parameters, we assume
γ ¼ ½−0.2; 0& and λ ¼ ½−27; 0& (when λ is free).
Table I summarizes the observational constraints on the

free parameters—Ωm;0, h0, λ, and γ—as well as the derived
parameters—Ψ, z', and t0 (age of the Universe today)—of
the gDE-CDM model using the combined datasets
PLKþ BAOþ SNþ H , and for comparison shows those
parameters used on the standard ΛCDM model (γ ¼ 0).
The columns for each parameter contain the corresponding
mean values and 1σ errors, according to the number of
modes presented on the one-dimensional (1D) margin-
alized posterior distributions. In the last column, we list the
−2Δ lnLmax ¼ Δχ2min values representing the improvement
in the fit to the data with respect to the ΛCDM. At the
outset, we immediately notice that in our analyses the gDE
leads to an improvement of up to Δχ2min ¼ 6.4 (correspond-
ing to about 2.5σ) with respect to the cosmological
constant. In what follows, we discuss in detail how this
significant improvement is due to the fact that the gDE-
CDM alleviates some of the tensions the ΛCDM
experiences.
In Table I, for λ ¼ 0;−2, we observe nothing interesting

and no significant improvement to the fit with respect to
ΛCDM, viz., Δχ2min < 0.02. However, we observe some-
thing surprising occurs when λ ≤ −4 (also when λ is free),
that the data predict bimodal posterior probability distri-
butions for the parameters of the gDE-CDM, for which we
observe two sets of constraint values in each column of
Table I. This may also be seen, for example, from the top
left panel of Fig. 2, which displays 1D marginalized
posterior distributions for the γ parameters. Notice that,
for λ ≤ −4, as we move toward the larger negative values of
γ, the existence of a second (new) maximum starts
appearing significantly far away from γ ¼ 0 (ΛCDM).
The first (old) maximum containing γ ¼ 0 is always there,
but, when λ ≤ −6, it consistently shrinks with the larger
negative values of λ, during which the new maximum is
getting relatively higher and sharper. This implies that the

data significantly favor the new maximum over the old
maximum when λ≲ −6. Indeed, we read from Table I that
the improvement in the fit with respect to ΛCDM reaches
highly significant levels—e.g., Δχ2min ¼ 6 when λ ¼ −20
and Δχ2min ¼ 6.4 when λ is free—for the new maximum,
while it remains always at insignificant levels
—Δχ2min ≲ 0.02 irrespective of the value of λ—for the
old maximum. The poor improvement level of Δχ2min ≲
0.02 both in the old maximum (the maximum containing
γ ¼ 0 when λ≲ −4 and λ is free and the single maximum
when λ≲ 3) presents no evidence for favoring these over
the ΛCDM, and the constraints on the parameters for these
cases do not show a considerable deviation from those of

TABLE I. Mean values along with 1σ constraints on the set of parameters used to described the gDE-CDM parameters. For one-tailed
distributions, the upper limit 95% C.L. is given. For two-tailed distributions, the 68% C.L. is shown. The last column,
−2 lnðLΛ;max=LgDE;maxÞ, is used to compute best-fit differences of gDE-CDM from ΛCDM (−2 lnLΛ;max ¼ 73.44) based on the
improvement in the fit alone.

λ Ωm;0 h0 γ ¼ w0 þ 1 Ψ z' t0 (Gyr) −2Δ lnLmax

ΛCDM 0.302(6) 0.682(5) 0 0 ) ) ) 13.806(22) 0.0
0 0.297(7) 0.689(7) >− 0.08 >− 0.25 ) ) ) 13.796(24) 0.02
−2 0.297(7) 0.688(7) >− 0.06 >− 0.61 ) ) ) 13.795(25) 0.02
−4 0.289(6), 0.298(7) 0.700(9), 0.686(7) −0.057ð2Þ, >− 0.048 −0.86ð3Þ, >− 0.73 2.31(12),) ) ) 13.714(25), 13.791(26) 1.0, 0.02
−6 0.292(6), 0.299(6) 0.699(9), 0.685(7) −0.039ð1Þ, >− 0.037 −0.86ð3Þ, >− 0.77 2.31(12),) ) ) 13.715(25), 13.792(27) 2.0, 0.01
−10 0.294(6), 0.299(6) 0.696(8), 0.684(7) −0.025ð1Þ, >− 0.021 −0.86ð3Þ, >− 0.69 2.32(12),) ) ) 13.722(27), 13.797(25) 4.4, 0.02
−14 0.296(6), 0.300(6) 0.695(8), 0.683(7) −0.019ð1Þ, >− 0.017 −0.86ð3Þ, >− 0.76 2.33(12),) ) ) 13.719(31), 13.794(27) 5.3, 0.01
−20 0.297(6), 0.300(6) 0.696(9), 0.683(7) −0.013ð1Þ, >− 0.012 −0.86ð3Þ, >− 0.76 2.32(12),) ) ) 13.718(31), 13.795(26) 6.0, 0.02
−17.9ð5.8Þ 0.296(6), 0.299(7) 0.697(9), 0.684(8) −0.017ð8Þ, >− 0.074 −0.85ð4Þ, >− 0.69 2.32(19),) ) ) 13.719(30), 13.795(24) 6.4, 0.01

FIG. 2. 1D marginalized posterior distributions for the gradu-
ated γ parameter (top left panel), Ψ≡ 3γð1 − λÞ (right), and the
redshift location of the pole (if present) given by Eq. (14). For a
better display, we have included some particular cases of λ values.
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theΛCDM. Therefore, in what follows, we discard all these
cases and proceed in our discussions with reference to the
ΛCDM (γ ¼ 0), basically, by considering only the new
maximum that appears when λ≲ −6, e.g., by considering
the one on the left of the pair of constraints given in a
column for a parameter of the gDE-CDM in Table I.
The presence of these new maxima has important

consequences and may be better explained through the
expression (7). This expression indicates if there exists a
sign change in the energy density of the gDE (or a pole in
its EoS parameter), it will happen at a redshift

z' ¼ e−
1
Ψ − 1: ð14Þ

Hence, the quantity Ψ ¼ −3γðλ − 1Þ determines the posi-
tion of the pole and, if it is a real one, must yield a unique
value irrespective of the values λ and γ. That is, for a given
λ, the γ parameter selects its best position such that Ψ
remains unchanged, and this can be seen in the right-hand
panel of Fig. 2 (see also Table I). We observe that a peak at
Ψ ¼ −0.86—significantly away from Ψ ¼ 0 (ΛCDM)—
emerges when λ ¼ −4 and as λ takes more negative values
(see the cases λ ≤ −6) it becomes significantly higher and
sharper, fixed at Ψ ¼ −0.86, while the old peak containing
Ψ ¼ 0 becomes more prolate and lower. This implies
highly significant observational evidence for the sign
change of the energy density of the gDE (or pole in its
EoS parameter) at the redshift corresponding to
Ψ ¼ −0.86. We have shown, according to (14), in the
bottom panel of Fig. 2, the 1D marginalized posterior
distribution of the redshift for this event persistently located
at z' ≈ 2.32 (see Table I). Interestingly, but not surprisingly,
this particular position agrees with the location of the Ly-α
auto- and cross-correlation BAO (z ¼ 2.34) data and the
works [35–37]. This suggests such a behavior of DE for
alleviating the tensions besetting this observation. We
should note here that the peaks containing Ψ ¼ 0
(ΛCDM) also predict the sign change of the gDE, but
we have discarded them for the following reasons. First,

these cases correspond to the ones we have discarded
above, since they do not present any statistical evidence for
being favored over ΛCDM (the Ψ → 0 limit leading to
z' → ∞). Second, in our analyses, we observe that these
cases predict completely different z' values for different λ
values (if they were real, the predictions need to have been
stable at a certain redshift), all of which are extremely large
(even having redshift values larger than the redshift of the
big bang nucleosynthesis epoch) at which dark energy is
irrelevant to the cosmological dynamics.
The bimodal distribution that Ψ exhibits has a strong

impact on the posterior distribution of h0, and therefore on
the Hubble constant H 0, which also exhibits a bimodal
behavior. Figure 3 describes this behavior; as soon as the λ
parameter starts decreasing, the bimodal distribution on the
panel fh0;Ψg starts showing up for a particular γ value
(display in pink color). This bimodal distribution is
summarized on the marginalized error bars shown in
Fig. 4. We observe that, while the values (green) associated

FIG. 3. Top panel: 1D marginalized posterior distributions of Ψ, along with (bottom panel) 2D posterior distributions of fΨ; h0g color
coded by the γ parameter.

FIG. 4. Means values along with 1σ error bars from the 1D
marginalized posterior distributions of H 0½km s−1 Mpc−1&. Green
error bars are associated with the peak containing Ψ ∼ 0
(ΛCDM), whereas red one are associated with the new peak
stable at Ψ ∼ −0.86.

GRADUATED DARK ENERGY: OBSERVATIONAL HINTS OF A … PHYS. REV. D 101, 063528 (2020)

063528-7



with the old peak containingΨ ∼ 0 (ΛCDM) agree with the
H 0 values measured from the inverse distance ladder (e.g.,
H 0 ¼ 67.4( :5 from Planck 2018 [9]), the ones (red)
associated with the new peak stable at Ψ ∼ −0.86 (away
from Ψ ¼ 0) agree with the higher H 0 values measured
from the distance ladder measurements (e.g., H 0 ¼ 69.8(
0.8 from a recent calibration of the tip of the red giant
branch (TRGB) applied to Type Ia supernovae [22]).
Therefore, the H 0 predicted within the ΛCDM (matching
our results from the old peak) has deficiency with respect to
the TRGB H 0 value, while the ones predicted by the new
peak (appears for λ≲ −4) perfectly match with it. It
certainly favors the new peak that predicts a value matching
the independent TRGB H 0 value. It is also significant that it
uses the distance ladder approach, rather than the inverse
distance ladder approach. Also, the latter BAO calibration
of H 0 is not completely independent of the Planck
measurement, as both H 0 determinations are based on
the ΛCDM and its adopted value of the sound horizon
scale. Moreover, the independent TRGB H 0 value (so, the
values from our new peak) agrees with both Planck [9] and
Cepheid [19–21] H 0 values. However, when combined
with Cepheid measurements, the tension with the Planck
value is relieved only at about 1σ level and still remains
significant [22].
We notice in Table I that the values of the parameters

Ψðγ; λÞ—or z'ðγ; λÞ—and of the other cosmological param-
eters Ω0, h0, and t0 are quite stable for λ ≤ −10. One may
see from the last row in Table I that we confirm this
observation when we constrain the model by letting also the
parameter λ be free (we use flat prior λ ¼ ½−27; 0&). The left
panel of Fig. 5 displays the three-dimensional (3D)
marginalized posterior distribution of the fΨ; λg parameter
region color coded with the γ parameter. Here, the
bimodality of the constraints on the gDE-CDM shows
up as two detached two-dimensional (2D) outer contours.
The narrow one located at Ψ ∼ −0.86 corresponds to the
new maximum, while the wide one corresponds to the old

maximum containing the ΛCDM (top-right corner). In the
right panel of the same figure, we present the 1D posterior
distribution of the z' associated with the new maximum,
which demonstrates that the redshift at which the gDE
energy density changes sign (its EoS parameter exhibits a
pole) is stable at z' ∼ 2.32.
It was shown in Ref. [37] through the Omh2 diagnostic

(introduced to test theΛ hypothesis in a model-independent
way) that the ΛCDM is in tension with the BAO’s
statistically independent measurements of H ðzÞ at redshifts
of 0.57 and 2.34. It was shown that this tension is alleviated
in models in which the Λ was dynamically screened
(compensated) in the past and that the energy density of
such evolving DE models passes below zero (exhibits a
pole in the effective EoS) at z ∼ 2.4. These are in line with
the new maxima of the gDE-CDM, yet in addition, the fact
that the constant that plays the role of Λ in gDE is
embedded into a set of parentheses raised to a power
renders our model more featured. Therefore, we also
investigate gDE in the context of the Omh2 diagnostic.
The Omh2 diagnostic is defined in Ref. [37] as follows,

Omh2ðzi; zjÞ ¼
h2ðziÞ − h2ðzjÞ

ð1þ ziÞ3 − ð1þ zjÞ3
; ð15Þ

and depends only on H ðzÞ. Accordingly, knowing it at
two or more redshifts, one can obtain Omh2 value(s)
in a model-independent manner and thence conclude
whether or not the DE is a Λ. For the ΛCDM, omitting
radiation (negligible in the late Universe), we have h2 ¼
h20½Ωm;0ð1þ zÞ3 þ 1 −Ωm;0& leading to a constant

Omh2ðzi; zjÞ ¼ h20Ωm;0: ð16Þ

For the gDE-CDM, using (10), we have

Omh2ðzi; zjÞ

¼ h20Ωm;0 þ h20ð1 −Ωm;0Þ
sgnðxiÞjxijy − sgnðxjÞjxjjy

ð1þ ziÞ3 − ð1þ zjÞ3
;

ð17Þ

where have neglected radiation and used the zero-curvature
constraint, Ωm;0 þΩDE;0 ¼ 1. The second line of the
Omh2ðzi; zjÞ for the gDE-CDM emerges as a correction
to the one for the ΛCDM. We can calculate the predicted
Omh2ðzi; zjÞ with these two equations for any pair of
chosen redshifts using the constraints on the models and
then compare the same with the model-independent esti-
mates obtained by (15).
We calculate, from (15), the model-independent esti-

mates as Omh2ðz1;z2Þ ¼ 0.164( 0.024, Omh2ðz1; z3Þ ¼
0.123( 0.006, and Omh2ðz2; z3Þ ¼ 0.119( 0.007 by
using H ðz1 ¼ 0Þ ¼ 69.8( 0.8 km s−1Mpc−1 from the

FIG. 5. Graduated dark energy model with varying the λ
parameter. Left panel: 3D marginalized posterior distributions
for the graduated λ and Ψ parameters, color coded by the γ
parameter. Right panel: 1D marginalized posterior of the redshift
position given by the pole. The vertical line is the mean value
z' ¼ 2.32.
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TRGB H 0 [22], H ðz2 ¼ 0.57Þ ¼ 97.9( 3.4 km s−1Mpc−1

based on the clustering of galaxies in the Sloan Digital Sky
Survey (SDSS)-III, Baryon Oscillation Spectroscopic
Survey (BOSS), Data Release 11 (DR11) [103], and
H ðz3 ¼ 2.34Þ ¼ 222.4( 5.0 km s−1Mpc−1 based on the
BAO in the Ly-α forest of SDSS DR11 data [35]. We
notice that the constraint Omh2 ¼ 0.140( 0.002
(Omh2¼ 0.143(0.001 in Planck 2018 [9]) we obtained
for theΛCDM is in clear tension with the latter two of these
estimates. We see in Table II that, for λ ≤ −10 as well as the
λ free case, the constraints for all of the three Omh2 exhibit
bimodal characteristics; i.e., there are two valued con-
straints corresponding to the new (left) and old (right)
maxima. We notice Omh2ðz1; z2Þ ∼ 0.140 (as in the
ΛCDM) is almost the same for both the new and old
maxima, yet it agrees with the corresponding model-
independent estimate. However, when we consider
Omh2ðz1; z3Þ and Omh2ðz2; z3Þ, we observe that, while
the ones associated with the new maximum yield approx-
imately 0.125 in agreement with the corresponding model-
independent estimates, the ones associated with the old
maximum yield ≈ 0.140 in tension. For a visual demon-
stration, in Fig. 6, we show the marginalized posterior distri-
butions for the parameter γ in the fγ; Omh2ðzi; zjÞ; h0g

subspace for fz1; z2g, fz1; z3g and fz2; z3g, where the blue
contours and 3D scatter color plots described the gDE-CDM
model for λ ¼ −20. The color code indicates the value of γ
labeled by the color bar. Black contours display 2D mar-
ginalized posterior distributions for the ΛCDMwhich agree
with the position of the yellow points corresponding to
the old maxima of the gDE-CDM. The contours at about
Omh2 ∼ 0.125 correspond to the new maxima of the gDE-
CDM describing the case in which the energy density of the
gDE passes below zero at z ∼ 2.32.
All these superiorities in the goodness of fit to the

observational data arising in the case of the new maxima of
the gDE-CDM are obviously consequences of the fact that
the energy density of the gDE passes below zero at z' ≈ 2.3
by exhibiting a certain type of dynamics. By using the
FGIVENX package [109], we show in the upper panel of
Fig. 7 the probability (the more pink implies more
probable) distribution of the redshift dependency of the
energy density of gDE scaled to the critical energy density
of the present-day Universe, viz., ρDE=ρc;0. We observe that
gDE, viz., ρDEðzÞ=ρc;0, does not distinguish from Λ (solid
straight black line) at a value approximately 0.70 for z≲ 2,
but it reaches a junction at z ∼ 2.3, and for larger redshifts,
it either keeps tracking Λ by retaining the value approx-
imately 0.70 (the one associated with the old maximum and
disfavored by the data) or rapidly changes route and starts
to track a new value approximately −0.70 like a mirror
image of the former track at ρDE ¼ 0 (the case associated
with the new maximum and favored by the data). The rapid
sign switch of the gDE energy density at z ∼ 2.3 implies a
rapid drop in the total energy density of the Universe, and in
H ðzÞ, at that redshift. This behavior of H ðzÞ emerges in
association with the new maxima of the gDE-CDM for
more negative values of λ, as can be seen in the lower
panel of Fig. 7. This reconciles it with the lower H ðzÞ value
of the Ly-α data at z ¼ 2.34 with respect to the one
predicted by ΛCDM for that redshift. Furthermore, this
reconciliation between the gDE-CDM and Ly-α data, in
turn, provides the gDE-CDM with easiness in achieving
large H ðzÞ values for z≲ 2 and thereby predicts larger H 0,
and so gDE-CDM relieves the H 0 tension that ΛCDM has
been suffering from.

FIG. 6. Omh2 diagnostic for the graduated dark energy model
with λ ¼ −20 using three redshifts fz1; z2g (left), fz1; z3g
(middle), and fz2; z3g (right). The color code indicates the value
of γ parameter, where the yellow points mimic the ΛCDM
behavior and the pink ones the new feature introduced by the
gDE model.

TABLE II. Mean values along with 1 − σ constraints on the set of parameters that describe Omh2 diagnostic.

λ Omh2ðz1; z2Þ Omh2ðz1; z3Þ Omh2ðz2; z3Þ
ΛCDM 0.140(2) 0.140(2) 0.140(2)
0 0.134(4) 0.139(4) 0.140(4)
−2 0.135(4) 0.140(2) 0.140(2)
−4 0.136(3) 0.129(1), 0.140(2) 0.129(2), 0.140(2)
−6 0.137(2) 0.128(1), 0.140(3) 0.127(2), 0.140(2)
−10 0.137(2), 0.139(2) 0.127(2), 0.140(2) 0.123(2), 0.140(2)
−14 0.138(2), 0.139(2) 0.126(2), 0.140(2) 0.127(2), 0.140(2)
−20 0.139(2), 0.140(2) 0.125(2), 0.140(2) 0.124(2), 0.140(2)
Free 0.136(4), 0.139(2) 0.127(4), 0.140(2) 0.126(2), 0.140(2)

GRADUATED DARK ENERGY: OBSERVATIONAL HINTS OF A … PHYS. REV. D 101, 063528 (2020)

063528-9



IV. SPONTANEOUS SIGN SWITCH IN THE
COSMOLOGICAL CONSTANT

In this section, wewould like to continue by commenting
on the implication of the dynamics of gDE that leads to all
these reconciliations with the observational data on the
nature of the dark energy. First, we note the following
features of gDE that we have further understood upon
confronting the observational data. We read off from Table I
that, for larger negative values of λ, ρDE=ρc;0 ¼ 0.70, and
w0 ∼ −1.01 (i.e., in the phantom region but very close to
the conventional vacuum energy) at z ¼ 0, its energy
density switches sign rapidly (almost spontaneously) at
z' ≈ 2.32 (which is quite stable) and settles into a value
ρDE=ρc;0 ∼ −0.70 (the opposite of its present-day value)
and remains (wDE ≈ −1) there for z' ≳ 2.3. Next, we
observe in the same table that the larger the negative
values of λ, the better the fit to the data (the larger Δχ2min).
This follows the trend that makes ρDEðzÞ increasingly
resemble a step function centred at z' with two branches
yielding opposite values about zero—a pattern of flat
positive energy density for z < z' and flat negative energy

density for z > z', both of which have the same absolute
value—and indeed, we know from (13), that ρDE trans-
forms into a step function for arbitrarily large negative
values of λ. The largest negative λ value we considered in
our analyses is −27, yet it is easy to check mathematically
that considering even larger negative values would not
affect our results considerably since, for this value, the
function ρDEðzÞ already closely resembles a step function.
Thus, our results from the new maximum of the gDE for
large negative values of λ can safely be interpreted as the
results one would obtain for a cosmological constant that
achieved its present-day positive value by spontaneously
switching sign at z' ∼ 2.3, but was negative in the earlier
stage of the Universe.
Some general constraints that are typically applied to the

classical matter source, irrespective of its detailed descrip-
tion, may be utilized for further supporting our interpre-
tation (see Refs. [61,110]). Let us consider gDE as an actual
barotropic fluid, p ¼ pðρÞ, along with the best fit values
obtained on its free parameters from the observational
analysis. In this case, although it behaves almost like a
cosmological constant (in spite of the fact that it switches
sign at z ≈ 2.32) throughout the history of the Universe,
strictly speaking, it violates the weak energy condition,
namely, the non-negativity conditions on the energy den-
sity, ρ ≥ 0, for z > z', and on the inertial mass density,
ρinert ≥ 0, throughout the history of the Universe. More-
over, there are periods during which it violates the con-
dition 0 ≤ c2s ≤ 1 on the speed of sound of a barotropic
fluid given by the adiabatic formula c2s ¼ dp=dρ. The
upper limit (causality limit) is a rigorous one which cannot
be violated unless we abandon relativity theory. The lower
limit applies to a stable situation, and otherwise the fluid is
classically unstable against small perturbations of its back-
ground energy density—the so-called Laplacian (or gra-
dient) instability. It is well known that phenomenological
fluid models of DE are difficult to motivate, and adiabatic
fluid models are typically unstable against perturbations,
since c2s is usually negative for w < 0. It is possible to evade
this constraint in nonadiabatic fluid descriptions (e.g.,
canonical scalar field for which the effective speed of
sound—which governs the growth of inhomogeneities in
the fluid—is equal to unity, cs eff ¼ 1), and in an adiabatic
fluid if w decreases sufficiently fast as the Universe
expands (e.g., Chaplygin gas). However, with some excep-
tions, it is unlikely to describe gDE with a canonical scalar
field—especially when we consider the best fit values.
Also, gDE yields c2s ¼ −1þ γλð ρρ0Þ

λ−1 ¼ −1þ γλ
1þ3γðλ−1Þ ln a,

and c2sðz ¼ 0Þ ¼ −1þ γλ. Accordingly, the constrains we
obtained when λ is free predict c2sðz ¼ 0Þ ¼ −0.6957(
0.1739 for z ¼ 0 and c2s ≫ 1 while 0 < ρ ≪ ρ0 (just after
gDE assumes positive values at z ≈ 2.32). On the other
hand, whether it is positive or negative, a cosmological
constant [viz., the limit λ → −∞; see (13)] is well behaved:

FIG. 7. Top panel: ρgDE=ρc0 vs redshift z for λ ¼ −20 displays
the maximum predicted that ρgDE changes sign at z ∼ 2.3.
Bottom: H ðzÞ=ð1þ zÞ function. Included are the latest BAO
data points [36] (blue bars) where H 0 ¼ 67.3( 1.1, the Planck
2018 [9] H 0 ¼ 67.4( 0.5 data (red bar), and the TGRB model-
independent [22] H 0 ¼ 69.8( 0.8 data (green bar). The black
dashed line corresponds to best-fit values of gDE, and the solid
black line corresponds toΛCDM.We note that, due to the jump at
z ∼ 2.3, the gDE model is not in tension with the BAO Ly-α data
from z ¼ 2.34 in contrast to ΛCDM model and also gDE gives
larger H 0 values with respect to ΛCDM model and thereby
relaxes H 0 tension.
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ρinert ¼ 0, and c2s ¼ 0 (it has no speed of sound, and thereby
does not support classical fluctuations). Regarding the
negativity of its energy density (when z > z'), a negative
cosmological constant is ubiquitous in the fundamental
theoretical physics without any complication; for instance,
it can be taken as just a geometrical component (ρ < 0 will
then be an effective energy density rather than an actual
one), and it also is very natural from symmetry consid-
erations and provides the ground state (AdS background) in
various low energy limits of string theory.
Thus, bringing all these points together, it is tempting to

conclude that the cosmological constant has spontaneously
switched sign and become positive at z ≈ 2.32 and trig-
gered the late-time acceleration. Of course, one could look
for realizing such a nontrivial behavior of gDE as an
effective source in a modified gravity model (the general
constraints that are typically applied to classical matter
source might then be evaded) and reach different
conclusions.

V. CONCLUSIONS

We have considered a type of dark energy that can be
viewed as characterizing the minimum dynamical deviation
from the null inertial mass density—described by the
conventional vacuum (or cosmological constant, Λ)—in
the form ρinert ∝ ρλ with λ being a constant. This source, we
called graduated dark energy, presents a wide variety of
dynamics which were first studied in the context of inflaton
[65–67] and more recently of dark energy [68–71]. We
focused on its dynamics (which has not been studied in
detail so far) that emerges when ρinert < 0, and λ < 1 is
written as a ratio of two odd integers. In this case, it yields
an energy density that dynamically assumes negative values
in the recent past, in line, for instance, with Refs. [26–31,
35–37]. They proposed such models to address, for
instance, the persistent tensions arising between the cos-
mological constant hypothesis of the standard ΛCDM
model and the model-independent H 0 measurements
and/or high-precision Ly-α measurements of BAO.
Importantly, for large negative values of λ, gDE presents
a phenomenological model described by a smooth function.
It approximately describes the cosmological constant
spontaneously switching sign at a certain redshift to
become positive quite recently in the late Universe. In
particular, it transforms into a step function for arbitrarily
large negative λ values.
We have confronted the gDE-CDM model, replaced the

Λ hypothesis by the gDE, with the latest combined
observational data sets of PLKþ BAOþ SNþ H . We
have observed that something striking occurs when
λ ≤ −4 (also when λ is free); the data predict bimodal
posterior probability distributions for the parameters of the

gDE-CDM model: new maxima significantly far away
from γ ¼ 0 (ΛCDM) and old maxima containing γ ¼ 0.
The improvement in the goodness of the fit with respect to
the Λ reaches highly significant levels—e.g., Δχ2min ¼ 6
when λ ¼ −20 and Δχ2min ¼ 6.4 when λ is free—for
the new maxima, while it remains always at insignificant
levels—Δχ2min ≲ 0.02, irrespective of the value of λ—for
the old maxima. We have shown that, in contrast to the
old maxima covering the ΛCDMmodel, these new maxima
of the gDE-CDM model also agree with the model-
independent H 0 measurements, high-precision Ly-α data,
and model-independent Omh2 diagnostic estimates.
We have demonstrated that the superior features

endowed by the new maxima of the gDE-CDM model
are due to the energy density of the gDE rapidly changing
sign at the redshift z ≈ 2.3 (shown to be quite stable in our
observational analysis), and this in turn leads to a rapid
drop in the total energy density of the Universe, and in
H ðzÞ, at the same redshift. It has turned out that this
happens for large negative values of λ, which renders the
redshift dependency of the gDE density close to a step
function, which to a good approximation describes a
cosmological constant spontaneously switching sign.
Therefore, our findings, by means of gDE in the light of
observational data, provide strong hints of a spontaneous
sign switch in the cosmological constant. This leads us to
conjecture that the cosmological constant has spontane-
ously switched sign and become positive, namely, the
Universe has transitioned from AdS vacua to dS vacua,
at z ≈ 2.32, and triggered the late-time acceleration. This
suggests looking for such mechanisms in string theory
constructions. The fact that constructing metastable dS
and/or AdS in string theory occupies a key place in the
string theory investigations indicates that the future con-
firmation or falsification of our conjecture would have far
reaching implications for fundamental theoretical physics
as well as for the identity of the dark energy.
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