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We study a model of inflation based on N ¼ 1 supergravity essentially depending on one effective
parameter. Under a field transformation we show that this model turns out to be equivalent to a previously
studied supergravity model known to be ruled out with the original choice of the parameter. Such parameter
measures the slope of the potential at observable scales. Through a Bayesian parameter estimation, it is
shown how this model is compatible with recent cosmic microwave background temperature measurements
by Planck 2018 giving rise to a simple, viable, single field model of inflation. The tensor to scalar ratio
constraint is found to be r0.002 < 0.065 with negative running. We discuss how observables are invariant
under the field transformation which leaves unaltered the slow-roll parameters. As a consequence the use of
one presentation of the model or its field-transformed version is purely a matter of convenience.
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I. INTRODUCTION

The inflationary paradigm has proved its validity against
early universe observables which are detected with ever-
higher precision by modern experiments. Most promi-
nently, the latest data release of the Planck Satellite [1]
reports, for instance, a spectrum of primordial scalar
fluctuations with index ns ¼ 0.965� 0.004, perfectly con-
sistent with a standard slow-roll inflation model [2]. Several
realizations of inflation offer a link between this paradigm
and fundamental physics of the early universe and/or a
good fit to data, mostly in terms of a single canonical scalar
field dubbed the inflaton [3] (and see [4] for a plethora of
viable models). A common exercise is the search for
characteristic signatures to discriminate between distinct
models (potentials). The recent constraint to the tensor-to-
scalar ratio r [5] rejects several of the models of inflation
which feature large values of this parameter ([2], and see [6]
for a generic characteristic of inflationary potentials result-
ing in large r). In this context, symmetries of the slow-roll
parameters are here employed to group apparently different
potentials in a single description and thus reduce the
number of models to test by observations. This may
provide physical foundation for empirical models. In this
paper, we study a model rooted in supergravity which
essentially depends on one parameter identified with the
slope of the potential during the inflationary era. The value
of this parameter is fixed by means of a Bayesian analysis
resulting in a viable model. We discuss two interpretations

of the possible origin of the inflationary epoch suggested by
the very location of the potential. In the first presentation of
the model given by Eq. (9) and Fig. 2 we naturally interpret
inflation as a transient phenomenon with the inflaton
rolling from high energy and starting inflation somewhere
at η ¼ 1 and ending when η ¼ −1 (in this model ϵ is always
less than jηjÞ. A total number of e-folds can be quantified
containing the necessary number of e-folds for observable
inflation. A field transformation can take this potential
(without any deformation) to the one given by Eq. (14) and
Fig. 3 making easier to obtain approximated expressions
for quantities of interest. As discussed long time ago [7,8] it
is then natural to interpret the second presentation of this
model as originating from a previous phase transition from
a high energy symmetric potential where thermal effects
keep the inflaton initially at the origin, afterwards slowly
rolling toward its global minimum. In both cases the
observables are exactly the same because the potential
has not been deformed by the field transformation.
Physically relevant quantities like the spectral index, tensor
to scalar ratio and all other observables do not depend on
the particular value of ϕH

1 but only when referred to a
specific potential. The potential an all its even-number of
derivatives are unchanged by the operations of translation
and reflection but odd-number of derivatives of the poten-
tial switch sign (because of the ϕ → −ϕ transformation).
However the slow-roll (SR) parameters remain unchanged
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1where the subscript H designates values of quantities where
perturbations are produced, some 50–60 e-folds before the end of
inflation.
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since they involve an even number of factors with odd-
number of derivatives of the potential. As a consequence
observables remain the same as shown in the body of the
article. The outline of the paper is as follows: in Sec. II we
provide a brief presentation of the supergravity model by
writing the Kähler potential and the superpotential thus
specifying the F-term part of the scalar potential. Section III
contains a brief discussion of the slow-roll parameters and
their invariance under the field redefinition. In Sec. IV we
choose a convenient version of the model where analytical
approximations can be easily done. Section V contains a
Bayesian analysis for the estimation of parameter values
which best fit thePlanck 2018 data. Finally Sec. VI contains
a brief discussion of the main results and conclusions.

II. A SUPERGRAVITY MODEL OF INFLATION

The piece of theN ¼ 1 supergravity model of interest is
given by the action [9]

I ¼ −
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
Rþ Gj

i∂μΦi∂νΦ�
jg

μν þ V

�
; ð1Þ

where the Kähler metric Gj
i is defined by Gj

i ¼∂2G=ð∂Φ�
j∂ΦiÞ and the Kähler function is GðΦi;Φ�

i Þ¼
KðΦi;Φ�

i ÞþlnjWðΦiÞj2,W is a holomorphic function ofΦi

called superpotential, and K is the Kähler potential, a real
function depending on the superfields Φi as well as their
conjugates Φ�

i . The F-term part of the scalar potential is
given in terms of the real function G as follows

V ¼ eGðGiðG−1ÞijGj − 3Þ: ð2Þ
In what follows we concentrate in a single chiral superfield
Φ with scalar component z. Thus, the potential is given by

V ¼ eKðFzðKzz� Þ−1F�
z� − 3jWj2Þ; ð3Þ

where

Fz ≡ ∂W
∂z þ ∂K

∂z W; Kzz� ≡ ∂2K
∂z∂z� : ð4Þ

To first approximation we take the Kähler potential to be of
the canonical form

Kðz; z�Þ ¼ ðz − z0Þðz� − z�0Þ þ · · ·; ð5Þ

with superpotential

WðzÞ ¼ fðz0Þz2; ð6Þ
where fðz0Þ is a constant with dimensions of mass which
we simple take as Λ. The scalar potential becomes

V ¼ Λ2ejz−z0j2 jzj2ð−3jzj2 þ j2þ jzj2 − z0z�j2Þ: ð7Þ

Writing z in terms of real components

z ¼ 1ffiffiffi
2

p ðϕþ iχÞ; ð8Þ

we find that the χ-direction is a stable direction of the full
potential, shown in Fig. 1. Thus we set χ ¼ χ0 ¼ 0 and
study the potential along the inflationary ϕ-direction only
which is given by

V ¼ 1

8
Λ2e

1
2
ðϕ−ϕ0Þ2ð16ϕ2 − 8ϕ0ϕ

3 þ ð2þ ϕ2
0Þϕ4

− 2ϕ0ϕ
5 þ ϕ6Þ: ð9Þ

This potential is illustrated in Fig. 2 for some typical
values of the parameters. We see that the potential given by
Eq. (9) has a minimum at ϕ ¼ 0 with vanishing energy. For
ϕ ¼ ϕ0 the derivative of the potential is

FIG. 1. The full potential given by Eqs. (7) and (8) along the
χ and ϕ directions. The χ direction is stable and we can then study
the inflationary ϕ-direction safely on its own.

FIG. 2. Schematic plot of the inflationary potential given by
Eq. (9). Here, the inflaton rolls toward it global minimum
(conveniently located at the origin) and inflation is a transient
phenomenon with a finite total number of e-folds. We can locate
the beginning of inflation at η ¼ 1 and its end when η ¼ −1 with
the parameter ϵ always smaller than jηj. A fit to the Planck 2018
data suggest the total number of e-folds is no more than triple the
usually required 60 e-folds of observable inflation. In its form
given by Eq. (9) the resulting potential is somewhat reminiscent
of Starobinsky’s but with a different asymptotic behavior.
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V 0 ¼ 1

2
Λ2ϕ0ð8 − 4ϕ2

0Þ; ð10Þ

thus, the potential is also flat for ϕ0 ¼
ffiffiffi
2

p
. To make further

analytical progress we would have to find ϕH perhaps
through an expansion of the spectral index for ϕ − ϕ0

small. Equivalently we can shift the origin away from the
minimum at ϕ ¼ 0 and make a reflection around the new
origin, i.e., by making the field transformation ϕ → −ϕþ
ϕ0. In terms of the original field z we have that
z → −zþ z0 then

Kðz; z�Þ → zz� þ · · ·; ð11Þ

with superpotential [7–10]

WðzÞ → Λðz − z0Þ2; ð12Þ

the resulting potential is given by

V ¼ Λ2ezz
� ðz − z0Þðz� − z�0Þ½4þ z�ðzþ z0 þ zðz − z0Þz�Þ

þ ðz − 3z0 − z2z� þ zz�z0Þz�0�: ð13Þ

Parametrizing as in Eq. (8) we set the stable direction
χ ¼ χ0 ¼ 0 and study the potential along the inflationary
ϕ-direction only [7,8,10]

V ¼ Λ2e
1
2
ϕ2ðϕ − ϕ0Þ2

�
2þ 1

8
ðϕ − ϕ0Þð6ϕ0

þ ϕð2þ ϕ2 − ϕϕ0ÞÞ
�
: ð14Þ

This potential is illustrated in Fig. 3 for some typical
values of the parameters. This form of the potential can be
viewed as an example of inflection point inflation. Such
type of models have been studied in, e.g., [11,12], in the
context of the minimal supersymetric standard model
(MSSN). There, the particular A-term in the inflationary
potential (also known as A-term inflation [13]) can induce a
saddle point at which V 0ðϕ ¼ 0Þ ¼ V 00ðϕ ¼ 0Þ ¼ 0. While
this fails to reproduce an acceptable ns [14,15], a point of
inflection with nonzero V 0ðϕ ¼ 0Þ can successfully do so,
as we show explicitly for our case in Sec. IV.
In our case, we see that the potential of Fig. 3 is exactly

of the same shape as the one shown by Fig. 2 but looked at
from a different frame. The potential has not been
deformed, i.e., it has only been displaced and reflected.
Thus, all observables calculated from the potential Eq. (14)
should take exactly the same values as the ones calculated
from Eq. (9). The new SR parameters have the same values
when evaluated at the new ϕH as the old SR parameters had
when evaluated at the old ϕH. This shows explicitly how
physically relevant quantities like the spectral index, tensor
to scalar ratio and all other observables do not depend on

the frame in which the potential is evaluated. These features
are discussed in detail in the next section.

III. SLOW-ROLL PARAMETERS AND
OBSERVABLES

The potential and all its even-number of derivatives are
unchanged by the operations of translation and reflection
but odd-number of derivatives of the potential change sign
(because ϕ → −ϕ was used). However the SR parameters
remain unchanged since they involve an even number of
factors with odd-number of derivatives of the potential. In
slow-roll inflation, the spectral indices are given in terms of
the slow-roll parameters of the model, these are given by
(see, e.g., [16–17])

ϵ≡M2

2

�
V 0

V

�
2

; η≡M2
V 00

V
;

ξ2 ≡M4
V 0V 000

V2
; ξ3 ≡M6

V 02V 0000

V3
: ð15Þ

Here primes denote derivatives with respect to the
inflaton ϕ and M is the reduced Planck mass M ¼ 2.44 ×
1018 GeVwhich we setM ¼ 1 in most of what follows. For
the case at hand all the SR parameters are given by

FIG. 3. Schematic plot of the inflationary potential given by
Eq. (14). The minimum occurs for ϕ ¼ ϕ0 and the potential is flat
at the origin if ϕ0 ¼

ffiffiffi
2

p
. Here we use Planck 2018 data to fix the

slope at the origin. The fact that a viable model (according to
Planck 2018 data) does not require V 0 ¼ 0 at the origin makes us
to abandon the idea that the potential (14) originates from a phase
transition from a high energy symmetric potential where thermal
effects keep the inflaton initially at the origin. Instead we propose
that it would be more natural to think in a potential not committed
with developing inflation close to the origin. Although both
potentials are equivalent (since they give the same observables),
the potential given by Eq. (9) and Fig. 2 does not suggest that the
origin is privileged in any way being inflation a transient
phenomenon where both the beginning and end to inflation
can be found and a total number of e-folds can be quantified. For
calculations, however, we find it more convenient to work with
Eq. (14) and we stick to this presentation of the potential in what
follows.

SIMPLE SUPERGRAVITY MODEL OF INFLATION … PHYS. REV. D 101, 023507 (2020)

023507-3



complicated expressions which are functions of the poten-
tial VðϕÞ and its derivatives an are not reproduced here.
Thus, the SR parameters are given in terms of the potential
VðϕÞ and its derivatives. Because when going from the old
potential Eq. (9) to the new one Eq. (14) the potential has
not been locally changed and because odd number of
derivative terms appear always in even numbers in the SR
parameters then it follows that the observables remain
unchanged. The potential as given by Eq. (9) and Fig. 2
seems more natural than that of Eq. (14) and Fig. 3 since it
does not suggest that inflation is somehow connected with a
previous phase transition from a symmetric phase at high
energy where the inflaton is originally kept by thermal
effects at the origin.
The primordial power spectra Pi, a power-law para-

metrized spectra of scalar and tensor perturbations, is
usually given in terms of the spectral amplitude Ai and
the spectral indices ni, where the subindex i refers to either
scalar (s) or tensor (t) components

PsðkÞ ¼ As

�
k
kH

�ðns−1Þ
; ð16Þ

PtðkÞ ¼ At

�
k
kH

�
nt ¼ rAs

�
k
kH

�
nt
; ð17Þ

where k is the wave number and r≡ PtðkÞ=PsðkÞ the ratio
of tensor to scalar perturbations at pivot scale k ¼ kH, here
set to kH ¼ 0.002 Mpc−1 [18–20]. Slow-roll inflation
predicts the spectrum of curvature perturbations to be close
to scale-invariant (for a review of cosmic inflation and its
relationship with cosmological observations see [18]). This
allows a simpler parametrization of the spectra in terms of
quantities evaluated at kH such as the spectral index, the
running, and even the running of the running of scalar
perturbations [21]

PsðkÞ ¼ As

�
k
kH

�ðns−1Þþ1
2
nsk lnð k

kH
Þþ1

6
nskkðlnð k

kH
ÞÞ2
; ð18Þ

PtðkÞ ¼ At

�
k
kH

�
ntþ1

2
ntk lnð k

kH
Þ
; ð19Þ

where ntk is the running of the tensor index nt, nsk the
running of the scalar index ns in a self-explanatory
notation. In the slow-roll approximation these observables
are given by (see, e.g., [16,17,19,20])

nt ¼ −2ϵ ¼ −
r
8
; ð20Þ

ns ¼ 1þ 2η − 6ϵ; ð21Þ

ntk ¼
dnt
d ln k

¼ 4ϵðη − 2ϵÞ ¼ r
64

ðr − 8ð1 − nsÞÞ; ð22Þ

nsk ¼
dns
d ln k

¼ 16ϵη − 24ϵ2 − 2ξ2; ð23Þ

AsðkÞ ¼
1

24π2
Λ4

ϵH
; ð24Þ

where the amplitude of density perturbations at wave
number k is AsðkÞ and the scale of inflation is Λ, with
Λ≡ V1=4

H .

IV. CHOOSING A CONVENIENT VERSION
OF THE MODEL

For calculations we find more convenient to work with
Eq. (14) and we stick to this presentation of the potential in
what follows. We see that the potential given by Eq. (14)
has now a minimum at ϕ0 with vanishing energy. We
redefine ϕ0 in terms of a new parameter s as follows

ϕ0 ¼ s=8þ
ffiffiffi
2

p
; ð25Þ

and calculate the derivative of V at the origin

V 0ðϕ ¼ 0Þ=Λ2 ¼ sþ 3s2

16
ffiffiffi
2

p þ s3

256
: ð26Þ

Thus s measures the slope of the potential at the origin.
Previous works [7,8] take s ¼ 0 giving a model presently
ruled out by the data [15]. Given that there is no special
reason (apart from simplicity) to fix V 0ðϕÞ ¼ 0 at the
origin. We perform a Bayesian parameter fitting to deter-
mine the value of s (and consequently ϕ0), consistent with
Planck 2018 data set. In this way the value of ϕ0 turns out
to be very close to

ffiffiffi
2

p
resulting in a viable model. The

simplifying assumption V 0ðϕ ¼ 0Þ ¼ 0 is typically moti-
vated by the suggestion that thermal effects at higher
energy put the inflaton at the origin and then a phase
transition makes the inflaton rolls to its global minimum.
This view is partially motivated by the privileged position
given to the origin. In the equivalent potential of Eq. (9) and
Fig. 2 no such interpretation seems to arise because the
origin does not play any particular role during inflation. We
take the view, in any case, that the scalar field starts rolling
from high energies to the global minimum of the potential
and that an epoch of inflation occurs without any need for
the inflaton to start its rolling from a privileged point. Thus,
in this scheme, inflation is a transient phenomenon which
consequently lasts a measurable finite total number of
e-folds. In this case both the start and the end of inflation
localized in field space by the conditions jηj ¼ 1. Having
said so, the potential and its observables can be studied
using the frame which results more convenient for the
calculation at hand keeping in mind that the displacement
away from the origin is irrelevant. Thus, in what follows we
study the potential as given by Eq. (14) and we extract an
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approximate formula for ϕH. At ϕ ¼ 0 the derivative of the
potential Ec. (14) is given by V 0ðϕ¼0Þ¼−1

2
Λ2ϕ0ð8−4ϕ2

0Þ
thus, ϕ0 ¼

ffiffiffi
2

p
is a flat direction of the potential. As a

consequence ϕH should be close to the origin and we can
obtain an approximate value for it by a simple expansion of
the spectral index around ϕ ¼ 0. The result is

ϕnew
H ≈

1

39
ð6

ffiffiffi
2

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
33þ 39ns

p
Þ ≈ 1

12
ffiffiffi
2

p ð1 − nsÞ: ð27Þ

Making ϕH → −ϕH þ ϕ0 we obtain an approximated
expression for ϕH for the old potential of Eq. (9).

ϕold
H ≈

1

39
ð33

ffiffiffi
2

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
33þ39ns

p
Þ≈ 1

12
ffiffiffi
2

p ð23þnsÞ: ð28Þ

Using the central value reported by Planck 2018 ns ≈
0.9649 we find ϕnew

H ≈ 0.00206 while ϕold
H ≈ 1.41216. This

simple result makes explicitly clear that the value of the
field is not relevant per se since the observables are the
same whether we use ϕnew

H ≈ 0.00206 in the new potential
or ϕold

H ≈ 1.41216 in the old one. Also, the model defined
by Eq. (14) and illustrated by Fig. 3 has a Δϕ of exactly the
same size as in the old potential given by Eq. (9). The end
of inflation is here given by the condition η ¼ −1 being ϵ
much smaller than one during the whole period of inflation.
It is convenient to use the “new”versionof thepotential given
by Eq. (14) and initially assume ϕ0 ¼

ffiffiffi
2

p
since η does not

change appreciably for small changes in ϕ0. Also, the
number of e-folds is not really sensitive to small changes
in ϕ at the end of inflation and a numerical estimate of ϕe
yields a good approximation, however, extreme care should
be taken forϕ close toϕH. Thus, the solution to η ¼ −1when
ϕ0 ¼

ffiffiffi
2

p
is given by ϕe ≈ 0.1694. For the new potential ϕH

should be close to the origin and we can obtain an
approximate value for it by a simple expansion of the spectral
index around ϕ ¼ 0. We should expect that the number of
e-folds close toϕH is sensitive to changes inϕH. BecauseϕH
depends on ϕ0 and ϕ0 weakly depends on s we use Eq. (25)
and also expand in s. The result, to first order in s is

ϕnew
H ≈

2 − 3
ffiffiffi
2

p
s − 2ns

24
ffiffiffi
2

p þ 9s
; ð29Þ

which reduces to Eq. (27) when s ¼ 0. We then find the
parameter s by requiring that the number of e-folds from ϕH
to ϕe is a certain number, let us say N ¼ 60. The number of
e-folds from ϕH to the end of inflation at ϕe is given by

N ≡ −
Z

ϕe

ϕH

VðϕÞ
V 0ðϕÞ dϕ: ð30Þ

We find that s ≈ −8.3 × 10−5 thus, the required slope of
the potential at the origin is small indeed. The value of s,
which controls V 0 at the origin [see Eq. (26)], turns out to be

only a small correction to the value of ϕ0. As proved in the
following sections, this is not unexpected as V 0 at the
inflection point cannot be too large in order to obtain values
of ns consistent with CMB observations. This fine-tuning
issue of inflection point inflation has also been discussed in
the context of MSSN A-term inflation in [11,12]. Here we
rely on the Bayesian treatment of data to determine the
acceptable values of s. This is a relevant issue since, while
the small value of s does not appreciably change ϕH it is
crucial in the estimation of N, given that V 0ðϕÞ appears in
Eq. (30) is proportional to s. The beginning of inflation is
here given by the SR condition η ¼ 1 which occurs for
ϕb ≈ −0.09442 giving a total number of e-folds NT ¼ 163.
Thus, inflation is here only a transient phenomenon lasting
almost thrice the required 60 e-folds. Observables obtained
with this value for s are given in Table I.

V. ANALYSIS OF THE MODEL IN LIGHT OF
PLANCK 2018 DATA

Even though the primary parameters that describe the
CMB spectrum have already been tightly constrained in
several inflationary models and have little impact on the
B-mode spectrum, it is worthwhile to perform a full
parameter-space exploration to determine the tensor-to-
scalar ratio constraints for the model. Throughout this
model, we assume purely Gaussian adiabatic scalar and
tensor contributions with a flat ΛCDM background speci-
fied by the standard parameters (see Table II): the physical
baryon (Ωbh2) and cold dark matter density (Ωch2) relative
to the critical density (h is the dimensionless Hubble
parameter such that H0 ¼ 100h kms−1Mpc−1), θ being
100× the ratio of the sound horizon to angular diameter
distance at last scattering surface and τ denotes the optical
depth at reionization. We consider the tensor-to-scalar ratio
defined previously as r≡ PtðkÞ=PsðkÞ, and hereafter we
set the ratio r ¼ rðkHÞ at a scale of kH ¼ 0.002 Mpc−1.
The parameters describing the primordial spectrum for the
model along with its flat priors imposed in our Bayesian
analysis are shown in Table II; see [22,23] and references
therein for a Bayesian description over the primordial
spectrum.
Throughout the analysis, the Cl’s spectra—temperature

and polarization (E & B)—are computed with a modified
version of the CAMB code [24], and the parameter estima-
tion is performed using the COSMOMC program [25].

TABLE I. Observables obtained with the value s¼−8.3×10−5,
equivalently ϕ0 ¼ 1.414203. This value of s is first obtained
from the requirement of 60 e-folds of inflation using the
central value for the spectral index ns ¼ 0.9649 through Eqs. (29)
and (30).

ϕ0 N r ns nsk Λ (GeV)

1.414203 60 8.2 × 10−8 0.9649 1.7 × 10−3 5.5 × 1014
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To compute posterior probabilities for each model we use
the full-mission Planck 2015 observations of temperature
and polarization anisotropies of the CMB radiation (PLK;
[26]) and the B-mode polarization constraints from a joint
analysis of BICEP2, Keck Array, and Planck (BKP; [27])
data. Furthermore, we use baryon acoustic oscillations data

to break parameter degeneracies from CMB measurements
(BAO; [28] and references therein). We refer to this
combined dataset as Dataset I. Similarly, to incorporate
the up-to-date version of the datawe include the full-mission
Planck 2018 (TT;TE;EEþ lowEþ lensing) [1], the Keck

TABLE II. Parameters and prior ranges used in our analysis. Last four columns display mean values along with 1-σ estimation. For
one-tailed distributions the upper limit 95% CL is given. For two-tailed the 68% is shown. Derived parameters are labeled with �.

Parameter Prior range Dataset I Dataset II Dataset I Dataset II

[0.1 cm] Ωbh2 [0.01, 0.03] 0.02231� 0.00014 0.02242� 0.00013 0.02230� 0.00020 0.02242� 0.00018
ΩDMh2 [0.01, 0.3] 0.1185� 0.0010 0.11946� 0.0009 0.1185� 0.0015 0.1194� 0.0012
θ [1.0, 1.1] 1.04088� 0.00029 1.04098� 0.00029 1.04085� 0.00043 1.04099� 0.00039
τ [0.01, 0.3] 0.078� 0.014 0.057� 0.007 0.078� 0.020 0.057� 0.010
log½1010As� [2.5, 4.0] 3.089� 0.027 3.049� 0.014 3.088� 0.039 3.050� 0.020
ϕ0 [1.414−] [190, 210] 202� 1.3 202� 1.1 202� 5.6 200� 4.8
r02 [0, 0.5] < 0.078 < 0.065 < 0.106 < 0.921
N [30, 90] 60 60 63.2� 11.7 58.5� 8.3
�ns � � � 0.9670� 0.0042 0.9661� 0.0037 0.9670� 0.0058 0.9661� 0.0052
�nsk � � � −0.0018� 0.0001 −0.0017� 0.00009 −0.0017� 0.0007 −0.0020� 0.0006
�ntk½10−10� � � � −3.758� 0.070 −3.770� 0.047 −4.508� 3.821 −5.476� 3.552

FIG. 4. 2D probability posterior distributions for the power
spectrum Sugra model parameters (N ¼ 60); 2D constraints are
plotted with 1σ and 2σ confidence contours.

FIG. 5. 2D probability posterior distributions for the power
spectrum Sugra model parameters letting the e-fold number be a
free parameter. 2D constraints are plotted with 1σ and 2σ
confidence contours.
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Array and BICEP2 Collaborations 2016 [5] and the BAO
data [28], named as Dataset II.
Table II summarizes the observational constraints of the

parameters that describe the model (as well as the derived
parameters, labeled by �). Figure 4 displays 2D margin-
alized posterior distributions of the parameters used to
describe the model along to Dataset I (blue) and Dataset II
(red). A similar analysis is performed when the e-fold
number N is considered as an extra free quantity (shown in
Figure 5). The inner ellipses show the 68% confidence
region, and the outer edges the 95% region.
The Dataset II, considering N ¼ 60 constrains the

parameter of the model as ϕ0 ¼ 1.414202� 1.1 × 10−6

at 68% C.L., and r < 0.065 at 95% C.L., which can be
mapped into ns ¼ 0.9661� 0.0037, in agreement with
Planck 2018 observations, with the addition of a negative
running of the spectral index nsk ¼ −0.0017� 0.00009.
Moreover, the updated information allows to tighten the
constraints on the e-fold parameter such as N ¼ 58.5� 8.3
in agreement with the initial assumptions made in Table I.

VI. DISCUSSION OF RESULTS AND
CONCLUSIONS

In this paper we presented a model of inflation derived
from an N ¼ 1 supergravity realization, taking advantage
of the stable direction and interpreting the dynamical part as
the inflaton with a transit slow-roll period. We have
exploited the mirror-shift symmetry of the slow-roll param-
eters (and the slow-roll inflation observables) to displace
the vacuum away from the origin at ϕ ¼ 0 and represent the
potential as in Eq. (14), plotted in Fig. 3. Approximated,
analytic expressions are easier to find here as compared
with the original potential given by Eq. (9). Through a

Bayesian parameter fitting we have determined the
range of values for ϕ0 compatible with the latest Planck
2018 data, as well as the predicted spectral index and
tensor-to-scalar ratio. As shown in Fig. 4, the value ϕ0 ¼ffiffiffi
2

p
is ruled out by more than three standard deviations but

we have shown that the supergravity model is flexible
enough to accommodate values away from this refer-
ence value.
The results confirm our analytical assumption of

N ¼ 60 consistent with Planck 2018 data; in the upper
panel of Fig. 5, the number of e-folds is constrained to
a finite range of values centered around N ¼ 58.5. This
is an important feature of the model. It stems from the
transient aspect of the inflationary phase. Moreover, for
a given total number of e-folds, our inflationary model
admits only specific values of the equation of state
during the reheating stage, consistent with observed
spectral index values [29].
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