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ABSTRACT
In this paper, we consider φ2 scalar field potential as a candidate to dark matter. If it is
an ultralight boson particle, it condensates like a Bose–Einstein system at very early times
and forms the basic structure of the Universe. Real scalar fields collapse in equilibrium
configurations which oscillate in space–time (oscillatons).The cosmological behaviour of
the field equations are solved using the dynamical system formalism. We use the current
cosmological parameters as constraints for the present value of the scalar field and reproduce
the cosmological predictions of the standard � cold dark matter model with this model.
Therefore, scalar field dark matter seems to be a good alternative to cold dark matter nature.
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1 IN T RO D U C T I O N

Scalar fields are one of the most interesting and most mysterious
fields in theoretical physics. Fundamental scalar fields are needed
in all unification theories; however, there is no experimental evi-
dence of its existence. From the standard model of particles which
needs the Higgs boson, to the superstring theory which contains
the dilaton, passing through the Kaluza–Klein and the Brans–Dicke
theories or through the inflationary model, scalar fields are neces-
sary fields. Doubtless, if they exist, they have some features which
make them very special.

The Scalar Field Dark Matter (SFDM) model paradigm has
been constructed step by step. One of the first suggestions that
a (complex) scalar field could contribute to structure formation of
the Universe was given by Press, Ryden & Spergel (1990) and
Madsen (1992). Nevertheless, complex scalar fields were used be-
fore as matter candidates as boson stars by Ruffini (1969) [for a re-
cent introduction to boson stars, see for example Guzmán (2006)].
One of the first candidates to be scalar field dark matter is the
axion, one of the solutions to the strong-charge–parity problem
in quantum chromodynamics (see an excellent review in Kolb &
Turner 1990). Essentially, the axion is a scalar field with mass re-
stricted by observations to ∼10−5 eV, which has its origin at 10−30 s
after the big bang, when the energy of the Universe was 1012 GeV.
This candidate is till now one of the most accepted candidates for
the nature of dark matter, if its abundance is about 109 particles per
cubic centimetre.

The first in suggesting that a dark halo could be a Bose–Einstein
condensate (BEC) were Sin (1994) and Ji & Sin (1994), who used
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the weak field limit to show that a BEC with several nodes can fit
the rotation galaxy curves with a very good accuracy. Further in-
vestigations in this direction were performed by Lee & Koh (1996),
where they incorporated φ4 interactions to the scalar field potential
and used the Gross–Pitaevskii equation instead of the Schrödinger
one (Lee 2008). Nevertheless, Seidel & Suen (1991, 1994) showed
that when the whole BEC is in the ground state, many nodes in the
Einstein–Klein–Gordon fields are unstable, since they evolve into
the 0-node solution after a while [for a clear explanation to this point
see also Guzmán & Ureña-López (2003)]. Thus, the static solutions
given by Sin (1994), Ji & Sin (1994) and Lee & Koh (1996) are
expected to be unstable.

Later on, Peebles & Vilenkin (1999) proposed that a scalar field
driven by inflation can behave as a perfect fluid and can have inter-
esting observational consequences in structure formation. Besides
that, they performed a sound waves analysis of this hypothesis giv-
ing some qualitative ideas for the evolution of these fields and called
it fluid dark matter (Peebles 2000a,b). Independently and in an op-
posite way, Matos & Guzmán (1999) proposed a scalar field coming
from some unification theory can condensate and collapse to form
haloes of galaxies. Very early, this scalar field behaves as a perfect
fluid, however its ultralight mass means that the bosons condensate
at very high temperature and collapse in a very different way to the
fluid dark matter of Peebles & Vilenkin (1999). They were able to fit
reasonably rotation curves of some galaxies using an exact solution
of the Einstein equations with an exponential potential (Matos &
Guzmán 1999; Guzmán & Matos 2000; Bernal, Matos & Núñez
2008). The first cosmological study of the SFDM was performed in
Matos & Ureña-López (2000a,b) where a cosh scalar field potential
was used. The cosmology reproduces all features of the � cold dark
matter (�CDM) model in the linear regime of perturbations.

On the other hand, Lesgourgues, Arbey & Salati (2002) and
Arbey, Lesgourgues & Salati (2003) used a complex scalar field
with a quartic potential m2φφ† + λ(φφ†)2 and solved perturbation
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equations (weak field limit approximation) to fit the rotational
curves of dwarf galaxies with a very good accuracy, provided that
m4/λ ∼ 50–75 eV4.

The importance of scalar fields in the dark sector has been in-
creased; for instance, several authors have investigated the uni-
fication of dark matter and dark energy in a single scalar field
(Padmanabhan & Choudhury 2002; Arbey, Lesgourgues & Salati
2003; Bertacca, Bartolo & Matarrese 2008). Recently Liddle &
Ureña-López (2006) and Liddle, Cédric & Ureña-López (2008)
proposed that the landscape of superstring theory can provide the
Universe with a φ2 + � scalar field potential. Such a scalar field
can inflate the Universe during its early epoch; after that, the scalar
field can decay into dark matter. The constant � can be interpreted
as the cosmological one. This model could explain all unknown
components of the Universe in a simple way. Another interesting
model in order to explain the scalar fields unification, dark sector
and inflation, uses a complex scalar field protected by an internal
symmetry (Pérez-Lorenzana, Montesinos & Matos 2008).

In the present work, the main idea is that if scalar fields are
fundamental, they live as unified fields in some very early moment at
the origin of the Universe. As the Universe expands, the scalar fields
cool together with the rest of the particles until they decouple from
the rest of the matter. After that, only the expansion of the Universe
will keep cooling the scalar fields. If the scalar field fluctuation
is under the critical temperature of condensation, the object will
collapse as a BEC. After inflation, primordial fluctuations cause
the scalar fields to collapse and form haloes of galaxies and galaxy
clusters. The cooling of scalar fields continues till the fluctuation
separates from the expansion of the Universe.

In this work, we study the most simple model of SFDM, using a
φ2 scalar field potential. In Sections 2 and 3 we review the statistical
description of a boson gas condensating to form a BEC, focusing
on the necessary features for the BEC to form a halo of a galaxy and
integrating the Einstein equations with BEC matter. In Section 4,
we transform the Einstein field equations in to a dynamical system,
then we numerically integrate them and look for the attractor points.
We give some conditions on how these field equations can show the
right behaviour to reproduce the Universe we observed. Finally, in
Section 5, we conclude that this SFDM model could explain the
dark matter of the Universe.

2 THE STATISTICS O F A BEC

In this section, we review the condensation of an ideal Bose gas of
N particles with mass m contained in a volume V with temperature
T and with only a portion ρ0 of the system in the ground state. In
order to see that and to be self-contained, let us start from its grand
partition function Q, which is given by

Q(z, V , T ) =
∏

p

1

1 − ze−βε p
, (1)

where the fugacity z ≡ eβμ is defined in terms of the chemical
potential μ and β ≡ 1/T . In this paper, we use the fundamental
constants � = c = kB = 1.

Then, the equation of state for an ideal Bose gas is

PV

T
= logQ = −

∑
p

log(1 − ze−βε p ). (2)

Thus, the grand partition function gives the pressure P directly as a
function of z, V and T.

On the other hand, the particle number N and the internal energy
U are

N = z
∂

∂z
logQ =

∑
p

ze−βε p

1 − ze−βε p
, (3)

U = − ∂

∂β
logQ =

∑
p

ε pze−βε p

1 − ze−βε p
, (4)

where ε p is the single-particle energy with momentum p and the
average occupation numbers 〈n p〉 are given by

〈n p〉 = ze−βε p

1 − ze−βε p
, (5)

which satisfy the conditions

N =
∑

p

〈n p〉, (6)

U =
∑

p

ε p〈n p〉. (7)

Now we let V → 0 take the limit of continuity and replace sums
over p by integrals over p, and we obtain the following equation of
state

PV

T
= − 2V

(2π)2

∫ ∞

0
dp p2 log(1 − ze−βp2/2m) − log(1 − z),

N = 2V

(2π)2

∫ ∞

0
dp p2 ze−βp2/2m

1 − ze−βp2/2m
+ z

1 − z
. (8)

These equations can be written into the equivalent form

PV

T
= V

λ3
g5/2(z) − log(1 − z), (9)

N = V

λ3
g3/2(z) + z

1 − z
, (10)

where λ = √
2π/mT is the thermal wavelength and

g5/2(z) = − 4√
π

∫ ∞

0
dxx2 log(1 − ze−βx2

),

g3/2(z) = z
∂

∂z
g5/2(z). (11)

Moreover, the internal energy is found from the formulas (2) and
(4),

U = 3

2

T V

λ3
g5/2(z), (12)

and as consequence the relation U = 3/2PV is fulfilled.
From equation (5), we see that

〈n0〉 = z

1 − z
, (13)

which is the average occupation number for a single particle with
occupation level p = 0. Equation (10) can also be written as

λ3 〈n0〉
V

= λ3 N

V
− g3/2(z). (14)

This equation tell us that 〈n0〉
V

> 0 and therefore the temperature and
the specific volume are such that λ3 N

V
> g3/2(z). This means that a

finite fraction of the particles will be in the ground state with p = 0,
that is, the Bose gas condensates. In the region of condensation, the
fugacity z ∼ 1 and the function g(z) goes to the Riemann ζ function
gl(z)⇀ζ (l).
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The thermodynamical surface which separates the condensation
region from the rest of the P − V − T space is given by

λ3
c

N

V
= g3/2(1) = 2.612, (15)

thus λc can be interpreted as the value for which the thermal wave-
length is of the same order of magnitude as the average interparticle
separation. Equation (15) defines the critical temperature for which
the Bose Condensate forms. This temperature is given by

Tc = 2π

m
5/3
φ

(
ρ

g3/2(1)

)2/3

, (16)

where ρ = mφN/V is the density of the Bose gas. At constant
temperature, equation (16) defines a critical density

ρc = mφg3/2(z)

λ3
. (17)

Thus, the region of condensation of the Boson gas is determined by
T < Tc or ρ > ρc.

After the Bose gas condensates most of the bosons lie in the
ground state, the scalar field starts to oscillate around the minimal
of its potential and the scalar field starts to behave as dust (Turner
1983). Thus, after the scalar field decouples from the rest of the
matter, the temperature of the BEC goes like

TBEC = T
(0)

BEC

( a0

a

)2
, (18)

where T (0)
BEC is the actual temperature of the BEC, a is the scale

factor of the Universe and a0 = 1 is the value of the scale factor at
present.

In the same way, as the BEC behaves as matter, its density goes
like ρBEC = ρ

(0)
BEC/a3, where ρ

(0)
BEC is the actual matter content of

BEC in the Universe. With this result, equation (16) can also be
transformed into

Tc = 2π

m
5/3
φ

(
�

(0)
BECρcrit

ζ (3/2)

)2/3
1

a2
, (19)

= 6.2 × 10−31

(
�

(0)
BECh2

)2/3

(mφ/GeV)5/3

1

a2
GeV, (20)

where �
(0)
BEC is the actual rate of BEC, ρcrit is the critical density

of the Universe, h ≡ H0/(100 km s−1 Mpc−1), H0 being the actual
value of Hubble’s parameter.

If the actual standard model of particles could be extended to
higher temperatures, we would have to expect that the scalar field
which forms the BEC interacts with the rest of the particles to
a temperature over some temperature Ts. Because the physics of
elemental particles is well known up to temperatures of GeV, we
do not expect that any exotic particles as these scalar fields appear
under temperatures of TeV. Here, we have two possibilities. The first
one is that the scalar field has never had interaction with the rest of
the particles and it evolves independently from the rest of the fields,
with only a gravitational interaction. In this case, the scalar field
condensates at the beginning of the Universe. The second possibility
is that in the early Universe the scalar field lived unified with the
rest of the particles in a thermal bath and at some moment during
its evolution separates from the interaction. If this is the case let us
suppose here that the scalar field which forms the BEC decouples
from the rest of the matter at a temperature higher than TeV. Beneath
this temperature, the scalar field has almost no interaction with the
rest of the matter. If we expect that this scalar field forms a BEC,

its critical temperature must be lower than the temperature of the
scalar field decoupling. This fact gives us an upper bound of the
mass mφ of the scalar field

mφ < 10−17 eV. (21)

On the other hand, from numerical simulations (Seidel & Suen
1991) we know that scalar fields form gravitationally bounded ob-
jects with a critical mass given by

Mcrit ∼ m̃
m2

pl

mφ

, (22)

where mpl is the Planck mass and m̃ is a factor such that m̃ ≈ 0.6
for both complex scalar fields (boson stars) and real scalar fields
(oscillatons). With the value given in (21), the scalar field can form
a gravitationally bounded BEC with a critical mass given by

Mcrit > 1.491 × 1064 GeV, (23)

= 2.658 × 1040 gr, (24)

= 13.36 × 106 M�. (25)

This is an interesting result; if there exists a scalar field and it plays
any role in the Universe at this moment, it must have a mass lower
than the mass given in (21) and must be forming gravitationally
bounded BECs with masses around the mass given in Alcubierre
et al. (2002).

3 SELF-GRAVI TATI NG BEC

In this section, we give some general features of the gravitational
collapse of the BEC; we only pretend to show a generic behaviour
of any self-gravitating BEC. The BEC cosmology have been studied
by Fukuyama, Masahiro & Tatekawa (2008) and many numerical
simulations of this collapse are given in Alcubierre et al. (2002),
Guzmán & Ureña-López (2004, 2006) and besides. Guzmán &
Ureña-López (2003) found that a BEC in the ground state is very
stable under different initial conditions. After the Bose gas con-
denses the gravitational force makes the gas collapse and form
self-gravitating objects. Let us suppose that the halo is spherically
symmetric, which could not be too far from the reality. In that case,
the space–time metric reads

ds2 = −e2ν dt2 + dr2

1 − (2MG/r)
+ r2 d�2, (26)

where the function ν = ν(r) is essentially the Newtonian potential
and M = M(r) is the mass function given by

M = 4π

∫
ρ r2 dr,

dν

dr
= G

M + 4πr3 P

r2 [1 − (2MG/r)]
. (27)

The Einstein field equations reduce to equations (27) and the
Oppenheimer–Volkov equation

dP

dr
= −G

(P + ρ)(M + 4πr3 P )

r2[1 − (2MG/r)]
. (28)

Let us focus on the case when the gas is far from forming a black
hole. In that case, we suppose that 2MG � r and equation (28)
reduces to

dP

dr
= −4πG r P (P + ρ). (29)
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The equation of state can be obtained from the equation PV =
2/3 U, (10) and (12). Combining all equations we obtain that

P = 2π

m
8/3
φ

g5/2(z)

g3/2(z)5/3
(ρ − ρ0)5/3 (30)

= ω(ρ − ρ0)5/3, (31)

where ω is the constant,

ω ≡ 2π

m
8/3
φ

g5/2(z)

g3/2(z)5/3
, (32)

and ρ0 = mφ 〈n0〉/V is the mean density of the particles in the ground
state. Thus, the Oppenheimer–Volkov equation (28) transforms into

dρ

dr
= −12

5
πGr(ρ − ρ0)

[
ω(ρ − ρ0)5/3 + ρ

]
. (33)

This differential equation can be easily numerically solved. Nev-
ertheless, we have two interesting limits of equation (33). First,
suppose that the ω constant is small, such that P � ρ. This situation
occurs for big scalar field masses mφ ∼ mPlanck. In that case, the
equation (33) contains an analytical solution given by

ρ(r) = ρ0

1 − {1 − [ρ0/ρ(0)]} e− 6
5 πGρ0r2

, (34)

here ρ(0) is the central density of the BEC. Observe that when
⇀∞, the function ρ(r)⇀ρ0. For numerical convenience, we set
ρ(0) = ερ0 in the plot, ε being a constant. The function changes
dramatically for different values of ε. If ε > 1, the density ρ(r)
decreases, but if ε < 1 the density increases. The behaviour of the
density is shown in Fig. 1. This means that if the central density of
the BEC is greater than the density of the ground state, we have the
upper profile in Fig. 1, but if it is less than it we have the bottom
profile.

The second and, for us, more interesting limit of equation (33)
is when P  ρ. This occurs when the scalar field mass is small
enough, mφ � mPlanck, as for astrophysical BEC. In this limit, the
Oppenheimer–Volkov equation also has an analytical solution given
by

ρ(r) = ρ(0) − ρ0

{2πGr2ω[ρ(0) − ρ0]5/3 + 1}3/5
+ ρ0,

=
[

p(0)/ω

2πGr2p(0) + 1

]3/5

+ ρ0, (35)

or equivalently P = 1/[2πGr2 + 1/P(0)]. In this case, the pressure
dominates over the density of the BEC. The pressure acquires a
maximum at the origin r = 0. Far enough away from the centre of
the BEC we can approximate equation (35) with

ρ =
(

1/ω

2πGr2

)3/5

+ ρ0, (36)

which implies a space–time metric for the BEC given by

ds2 = dr2

1 − 2
(
r0r4/5 + 4

3 πGρ0r2
) − exp(2ν) dt2 + r2 d�2, (37)

where r0 ≡ 10/9(4π2/ω3)1/5. Function ν determines the circular
velocity (the rotation curves) Vrot of test particles around the BEC.
Using the geodesic equation of metric (37), one obtains that V2

rot =
rgtt,r/(2gt t ) = rν ′ (Matos, Guzmán & Núñez 2000). Using equa-
tions (27), we can integrate the function ν and obtain the rotation
curves. The plot is shown in Fig. 2, where we see that the form
of the rotation curves are analogous as expected from those ob-
served in galaxies, especially in low surface brightness (LSB) and

0302010
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ρ/ρ0

ε = 2

0302010
r
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1

ρ/ρ0

ε = 1/2

Figure 1. Plot of the ρ(r) function given in equation (34) for ε > 1 (top
plot) and for ε < 1 (down plot). The plot is done in terms of ρ(r)/ρ0. We
have set ε = 2 and ε = 1/2 for each plot, respectively, and ρ0 = 0.002.

dwarf ones (de Blok & Bosma 2002; de Blok, Bosma & McGaugh
2003; Simon et al. 2005); also, SFDM predicts a core density profile
that could have some astrophysical advantages (Sánchez-Salcedo,
Reyes-Iturbide & Hernandez 2006) over the standard model (cuspy
profiles). However, the discussion of the central region of the rota-
tion curves continue. This is the main reason why it is not convenient
to try self-gravitating BECs in the Newtonian limit. It remains that
the Newton theory can be derived from the Einstein one for slow ve-
locities, weak fields and pressures much smaller than the densities.
However, these last conditions are not fulfilled in self-gravitating
BEC.

From these results and from the simulations given in Guzmán
& Ureña-López (2003), it follows a novel paradigm for structure
formation that is different from the bottom-up one. In the SFDM
paradigm, after the big bang the scalar field expands until it decou-
ples from the rest of the matter. If the scalar field has sufficiently
small mass that its critical temperature of condensation is less than
the temperature of decoupling, the scalar field forms a BEC. Then
the scalar field collapses, forming objects whose final mass is not
bigger than the critical mass m2

Planck/mφ . These objects contain a
density profile very similar to the profile shown in the top panel of
Fig. 1. They are very stable under perturbations. It has been proposed
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Figure 2. Rotation curve derived from metric (37). The velocity and the
coordinate r are in arbitrary units.

that the dark matter in galaxies and clusters is a scalar field with a
mass of 10−22 eV (Alcubierre et al. 2002). If this were the case, the
main difference for the structure formation of this ultralight scalar
field with the bottom-up paradigm is that the SFDM objects form
just after the collapse of the scalar field and remain unchanged dur-
ing the rest of the Universe expansion. Furthermore, they can collide
together but after the collision the objects remain unaltered, since
they behave like solitons (Bernal & Guzmán 2006). This means
that in a merging of BECs they pass through each other without any
alteration in total mass, as collisionless dark matter. This paradigm
implies then that we must be able to see well-formed galaxies with
actual masses for very large redshifts, longer than those predicted
by the bottom-up paradigm, that is, by CDM. In this sense, some
authors (Cimatti et al. 2004) suggest a discrepancy between the
observed population of massive spheroidal galaxies at high redshift
with the numerical simulations of hierarchical merging in a �CDM
scenario that underpredict this population. However, the discussion
continues because other physical processes, such as feedback, could
have important effects in this galaxies.

4 TH E C O S M O L O G Y

In this section, we review the cosmology given by a SFDM model
with two different scalar field potentials: V (φ) = 1

2 m2φ2 and
V(φ) = V0[cosh (κλφ) − 1], where m is the mass of the boson
particle, V0 and λ are free parameters fixed with cosmological data
and κ2 = 8πG. Based on the current observations of 5-yr WMAP
(Wilkinson Microwave Anisotropy Probe) data (Hinshaw et al. 2008)
we will consider a universe evolving in a spatially flat Friedmann
Lemaı̂tre–Robertson–Walker spacetime. We assume that this uni-
verse contains a real scalar field (φ) as dark matter, radiation (r),
neutrinos (ν), baryons (b) and a cosmological constant (�) as dark
energy.

The total energy density of a homogeneous scalar field is given
by

ρφ = 1

2
φ̇2 + V (φ),

the radiation and baryonic components are represented by perfect
fluids with baryotropic equation of state pγ = (γ − 1)ργ , where γ

is a constant, 0 ≤ γ ≤ 2. For example, for radiation and neutrinos

(γr,ν = 4/3), for baryons (γ b = 1) and finally for a cosmological
constant (γ � = 0).

Thus, the field equations for a universe with these components
are given by

Ḣ = −κ2

2
(φ̇2 + γργ ),

φ̈ + 3 Hφ̇ + ∂φV = 0,

ρ̇γ + 3 γ H ργ = 0, (38)

and the Friedmann equation

H 2 = κ2

3

(
ργ + 1

2
φ̇2 + V (φ)

)
. (39)

In order to analyze the behaviour of the different components of
this universe, we are going to use the dynamical system formalism
found in Appendix A.

4.1 The φ2 scalar potential

We start our cosmological analysis of SFDM by taking the potential

V (φ) = 1

2
m2φ2, (40)

and developing the standard procedure to transform it into a dynam-
ical system. For doing so, the new variables (A2) for the system of
equations (38) read

x ≡ κ√
6

φ̇

H
, u ≡ κ√

6

mφ

H
,

zγ ≡ κ√
3

√
ργ

H
. (41)

Using the definitions given in (41), the evolution equations (38)
for potential (40) transform into an autonomous system

x ′ = −3 x − m

H
u + 3

2
π x,

u′ = m

H
x + 3

2
π u,

z′
γ = 3

2
(π − γ ) zγ ,

− Ḣ

H 2
= 3

2
(2x2 + γ z2

γ ) ≡ 3

2
π,

(42)

where, as in Appendix A, prime denotes a derivative with respect to
the e-folding number N = ln (a). Again the choice of phase-space
variables (41) transforms the Friedmann equation into a constraint
equation,

F ≡ x2 + u2 + z2
γ = 1. (43)

Because we are considering an expanding universe, which im-
plies that H > 0, and from the variable definitions (41), we can see
that u, zγ ≥ 0. With these variables, the density parameters can be
written as

�DM = x2 + u2,

�γ = z2
γ ,

�� = l2, (44)

where we have added explicity a cosmological constant variable
l ≡ z�. Moreover, with the physical constraint 0 ≤ � ≤ 1 and the
Friedmann equation �DM + �γ + �� = 1, the variable space is
bounded by

0 ≤ x2 + u2 + z2
γ + l2 ≤ 1.
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On the other hand, observe that the variable space (42) is not a
completely autonomous one, because H is an external parameter. In
order to close the system, we define a new variable s given by

s ≡ m

H
, (45)

the dynamical equation (A3d) of which is

s ′ = 3

2
π s.

With this new variable, system (42) is now an autonomous one. The
whole closed system is

x ′ = −3 x − su + 3

2
π x, (46a)

u′ = s x + 3

2
π u, (46b)

z′
γ = 3

2
(π − γ ) zγ , (46c)

l′ = 3

2
π l, (46d)

s ′ = 3

2
π s. (46e)

In order to acquire the geometrical information that dynamical
system analysis provides (see Appendix A), we study the stability
of (46). To do this, we define the vector x = (x, u, zγ , l, s) and
consider a linear perturbation of the form x → xc + δx. The
linearized system reduces to δx ′ = Mδx, where M is the Jacobian
matrix of x ′ and reads as

M =

⎛
⎜⎜⎜⎜⎜⎝

3
2 π − 3 + 6x2 −s 3γ x z 0 −u

6x u + s 3
2 π 3γ u z 0 x

6x z 0 3
2 π + 3γ z2 − γ 0 0

6x l 0 3γ l z 3
2 π 0

6x s 0 3γ s z 0 3
2 π

⎞
⎟⎟⎟⎟⎟⎠ .

The equilibrium points xc of the phase space {x, u, zγ , l, s},
considering only γ = 4/3, are then

(i) {±1, 0, 0, 0, 0} kinetic scalar domination,
(ii) {0, 0, 1, 0, 0} radiation domination,
(iii) {0, 0, 0, 1, s} cosmological constant domination, and
(iv) {0, u, 0, l, 0} cosmological constant and potential scalar

domination.

Finally, the eigenvalues of the matrixM valued at the critical points
listed above read

(i) {6, 3, 3, 3, 3 −γ },
(ii) { 3γ

2 ,
3γ

2 ,
3γ

2 ,
7γ

2 , 3
2 (−2 + γ )},

(iii) {0, 0, 1
2 (−3 − √

9 − 4s2), 1
2 (−3 + √

9 − 4s2), −γ }, and
(iv) {−3, 0, 0, 0, −γ }

As we can see, the radiation domination epoch shows a saddle
point; however, in order to reproduce the big bang nucleosynthesis
process it is necessary that this kind of matter would have dominated
the past of the Universe. In other words, the radiation points should
have corresponded to a source point. The domination of dark matter
in the past (a source point) and the cosmological constant in the
future (an attractor point) are shown in Fig. 3.
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Figure 3. Evolution of the density parameters for the system of equations
(46). The plot shows the dark matter domination epoch at early times, a
source point. The cosmological constant in the future of the universe is an
attractor point.

In the following, we integrate system (46) with the constraint
(43), following the procedure shown in Appendix A. In general, this
system is very difficult to integrate because it is a non-linear four-
dimensional differential system of equations. It is clear that system
(46) is a complete system which may or may not fulfill the constraint
(43). However, as is shown in Appendix A, system (46) together
with constraint (43) is completely integrable. For simplicity, we will
take all the perfect fluid components as the equation z′

γ = 3/2(π −
γ )zγ with the Friedmann equation x2 + u2 + z2

γ = 1.
Thus, we substitute 3/2π from equation (46e) into the rest of the

equations. With this substitution equation (46c) integrates in terms
of s as

zγ =
√

�
(0)
γ s exp

(
−3

2
γ N

)
, (47)

where �(0)
γ is an integration constant. We multiply (46a) by 2x and

(46b) by 2u and sum both equations. We obtain

(x2 + u2)′ = −6 x2 + 2 ln(s)′(x2 + u2). (48)

Now, we put constraint (43) and equation (47) into equation (48) to
obtain

6 x2 = 2 ln(s)′ − 3γ s2 �(0)
γ exp(−3 γ N ). (49)

We substitute (49) and (47) into (46e) to obtain 0 = 0. Therefore,
s is not an independent variable and we cast it into the system as
a control variable which parametrizes the decrease of H, a similar
result is found by Ureña-López & Reyes-Ibarra (2007). In what
follows we will use this important result.

Of course, to guess variable s in order to fulfill constraint (43)
is not so easy. In order to avoid this problem, we can consider the
observed dynamic for H and model it by the following ansatz

H ≡ t0
n−1

tn
, (50)

because the behaviour for H at different epochs is well known:

Hdust = 2

3t
, Hrad = 1

2t
, H� =

√
�

3
. (51)
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φ2 as dark matter 1365

There exists a restriction in the parameter n. Because is well known
that H is a function that is monotonically decreasing, n has to satisfy
n ≥ 0. With the ansatz (50), the dynamical equation for s reads

s ′ = (mt0)
1
n −1n

(
1

s

) 1
n −2

= s0 s−k, (52)

where we have defined k ≡ 1/n − 2.
In the following, we investigate if this system can reproduce the

observed Universe. We introduce the components of the background
universe into the dynamical system described by (46) adding to
it baryons (b), radiation (z) and neutrinos (ν). Thus, the system
transforms into

x ′ = −3 x − su + 3

2
π x, (53a)

u′ = sx + 3

2
π u, (53b)

b′ = 3

2
(π − 1) b, (53c)

z′ = 3

2

(
π − 4

3

)
z, (53d)

ν ′ = 3

2

(
π − 4

3

)
ν, (53e)

l′ = 3

2
π l, (53f)

s ′ = s0 s−k, (53g)

with π = 2x2 +b2 + 4
3 z2 + 4

3 ν2 and the Friedmann equation reduces
to the constraint

F = x2 + u2 + b2 + z2 + ν2 + l2 = 1. (54)

Using this ansatz, we can reduce to quadratures the solution of
system (53). In order to do this, we observe that

3

2
π = s0 s−k−1.

Now, using this last identity, equation (53c)–(53f) can be integrated
to give

zγ = z0 [s0 (k + 1) N + s1]1/(k+1)e− 3
2 γ N ,

for each corresponding value of γ . Finally, equations (53a) and
(53b) can be integrated as follows. We divide (53a) by x and (53b)
by u and take the difference between both equations. We define y =
x/u to obtain

y ′ + 3y + q(N )y2 = −q(N ), (55)

where function q(N) = [s0(k + 1) N + s1]1/(k+1). Equation (55) is a
Riccati equation which can be reduced to a Bernoulli equation by
defining y = w + y1, where y1 is a known solution of (55). It reduces
to

w′ + (3 + 2 q y1) w + q z2 = 0. (56)

Equation (56) can be further reduced by defining w = 1/w, we
obtain

W ′ − (3 + 2 q y1) W − q = 0, (57)

the integral of which is

W = eA

∫
e−A q dN, (58)

with A = ∫
(3 + 2 q y1) dN . Thus

u = u0 q exp

(∫
y q dN

)
, (59a)

x = x0 q e−3 N exp

(
−

∫
q

y
dN

)
, (59b)

zγ = z0 q e− 3
2 γ N , (59c)

y = 1

W
+ y1. (59d)

In the particular case where s0 = 0, the integrals can be solved
analytically, however this value for s0 does not have a physical
meaning.

On the other hand, we can evaluate the integrals using numerical
methods for different values of the free constants. We can obtain
a numerical solution for the system using (59) or directly inte-
grating system (53) with an Adams–Bashforth–Moulton (ABM)
method and using as initial data the WMAP + baryon acoustic
oscillations + supernovae (WMAP+BAO+SN) recommended val-
ues �

(0)
� = 0.721, �

(0)
DM = 0.233, �

(0)
b = 0.0454, �(0)

r = 0.0004,
�(0)

ν = 0.0002; the result is the same.
Figs 4 and 5 show the numerical solutions of the dynamical sys-

tem (53). In Fig. 4, we set n ≥ 1 and as examples we show n = 1, 5.
From these figures, it is clear that the radiation remains subdomi-
nant for these values of n. On the other hand, in Fig. 5, where the
plots were made for n = 1/2, 1/5, the radiation and the neutrinos
behave in exactly the same way as in the �CDM model so we ex-
pect that both of these can reproduce the observed Universe. The
first values for n are not able to explain the big bang nucleosyn-
thesis, since radiation never dominates as is required. However, the
last values for n can reproduce the radiation-dominated era. Fol-
lowing the radiation-dominated era, φ2 dark matter becomes the
component that dominates the evolution and finally the Universe is
dominated by the cosmological constant. Fig. 6 shows the constraint
F in (54) in order to visualize the integration’s error. Observe that
F ≈ 1 at every point in the evolution, indicating that the Friedmann
equation is exactly fulfilled all the time; this behaviour is exactly
the same for all runs.

4.2 The cosh scalar potential

Now we are going to compare above results with the potential

V (φ) = V0 [cosh(κλφ) − 1] . (60)

In order to do so, we define new variables as

x ≡ κ√
6

φ̇

H
,

u ≡
√

2 V0

3

κ

H
cosh

(
1

2
κλφ

)
,

v ≡
√

2 V0

3

κ

H
sinh

(
1

2
κλφ

)
,

zγ ≡ κ√
3

√
ργ

H
, l ≡ κ√

3

√
ρ�

H
. (61)
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Figure 4. Evolution of the density parameters for the system (53) with n =
1 (top panel) and n = 5 (bottom panel). These values of n do not reproduce
the standard behaviour of �CDM.

Substituting definitions (61) into equations (38), we obtain

x ′ = −3 x − λvu + 3

2
π x,

u′ = λxv + 3

2
π u,

v′ = λxu + 3

2
π v,

z′
γ = 3

2
(π − γ ) zγ ,

l′ = 3

2
π l,

(62)

where again the prime means derivatives with respect to the
e-folding number N = ln(a) and we also use the function π = 2x2 +
γ z2. From the definitions (61) it follows the constraints

u2 − v2 = 2V0 κ2

3

1

H 2
= 1

λ2

m2
φ

H 2
, (63)

and the Friedmann equation (43) written with these variables reads

F = x2 + u2 + z2 + l2 = 1. (64)

However, equation (64) is actually not a real constraint, since
it is inherent in the dynamical equations (62) [see Appendix A
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Figure 5. Upper panel: evolution of the density parameters for the system
(53) with n = 1/2. Lower panel: evolution of the density parameters for the
system (53) with n = 1/5. SFDM reproduces the standard �CDM behaviour
in both cases.
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Figure 6. Evolution of the function F = x2 + u2 + b2 + z2 + ν2 + l2 in
(54) for the system (53) with n = 1, 5, 1/2 and 1/5. Function F is exactly
the same for all values of n in all these cases.
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equation (A6)]. Furthermore, constraint (63) is also inherent in the
dynamical system; observe that from the second and third equations
in (62) it is straightforward to find

H ′ = −3

2
π H. (65)

However, this relation follows directly from the field equations
(38). This means that system (62) is compatible with the constraint
(63). Using the constraint (63) in the dynamical system (62), we
obtain

x ′ = −3 x − u

√
λ2u2 +

( m

H

)2
+ 3

2
π x,

u′ = x

√
λ2u2 +

( m

H

)2
+ 3

2
π u,

z′ = 3

2
(π − γ ) z,

l′ = 3

2
π l. (66)

We notice that the same situation as φ2 potential occurs. Intro-
ducing again the variable s ≡ m/H with its dynamical equation

s ′ = (mt0)
1
n −1 n

(
1

s

) 1
n −2

, (67)

we obtain

x ′ = −3 x − u
√

λ2u2 + s2 + 3

2
π x,

u′ = x
√

λ2u2 + s2 + 3

2
π u,

z′
γ = 3

2
(π − γ ) zγ ,

l′ = 3

2
π l,

s ′ = s0

(
1

s

) 1
n −2

. (68)

The density parameters are the same as we have defined in (44).
We solve (68) numerically with the same initial conditions as the
system of equations (53) and with λ ≈ 20. The solutions are shown
in Fig. 7. The plot shows the dynamical evolution for a universe
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Figure 7. Evolution of the density parameters for the system (68), where
the scalar field potential is given by the equation (60).

with SFDM with the potential (60); notice that this is equivalent to
potential (40).

Finally, we use the same dynamical system formalism for the case
of �CDM in order to compare it with SFDM. We consider that the
background universe is composed by baryons, radiation, neutrinos,
CDM and a cosmological constant with an equation of state of a
perfect fluid. We solve this system numerically and in general terms
the dynamic of both scalar potentials is indistinguishable from the
standard model. This is an important goal of this paper.

The next step is to compute the age of the Universe using our
model. The age equation can be written as

to =
∫ N

No

1

H
dN. (69)

Using the definition for l from (41) or (61), equation (69) reduces
to

to =
√

3

κ
√

ρ�

∫ N

No

l dN. (70)

We compute (70) and obtain that to � 13.77 Gyr. This re-
sult is in agreement with the cosmological observations from
WMAP+BAO+SN which estimate to = 13.73 ± 0.12 Gyr and there-
fore Ho = 70.1 ± 1.3 km s−1 Mpc−1. Furthermore, in Fig. 7, we see
that the scale factor of decoupling is a ∼ 10−3; this means a redshift
of z ∼ 1000. At this redshift, the neutrinos made up ∼12 per cent
of the Universe. On the other hand, WMAP cosmological obser-
vations show that when the Universe was only 380 000 yr old,
neutrinos permeated the Universe within 10 per cent of its total en-
ergy density. Thus, SFDM is in agreement with the measurements
of WMAP. This result shows that scalar field is a plausible candidate
for dark matter because it behaves like CDM.

5 C O N C L U S I O N S

SFDM has proved to be an alternative model for the dark matter
nature of the Universe. We have shown that the scalar field with an
ultralight mass condensates very early in the Universe and gener-
ically form BECs with density profiles which are very similar to
those of the CDM model, but with an almost flat central density
profile, as it seems to be in LSB and dwarf galaxies. This fact can
be a crucial difference between both models. If the flat central den-
sity is not confirmed in galaxies, we can rule out the SFDM model,
but if this observation is confirmed it can be a point in favour of
the SFDM model. We also show that the 1/2m2φ2 potential and
the V0[cosh(κλφ) − 1] model are in fact the same. They have the
same predictions and a control variable which determines the be-
haviour of the model, given naturally the right expected cosmology
and the same cosmology as the CDM model. This implies that the
differences between both models, the CDM and SFDM, are in the
non-linear regime of perturbations. In this way, they form galaxies
and galaxy clusters, especially in the centre of galaxies where the
SFDM model predicts a flat density profile. If the existence of su-
persymmetry is confirmed, the DM supersymmetric particles would
be observed by detectors and they would have the right mass, DM
density and coupling constant, and therefore the SFDM model can
be ruled out. However, if these observations are not confirmed, the
SFDM is an excellent alternative candidate for the nature of the DM
of the Universe.
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Ureña-López for reading the draft and giving his suggestions to
improve the paper. We also thank Blanca Moreno Ley and J.
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Ureña-López L. A., Reyes-Ibarra M. J., 2007, preprint (arXiv:0709.3996)

APPENDI X A : DYNAMI CAL SYSTEM REVIEW

The theory of dynamical systems is used in the study of physical
systems that evolve over time. It is assumed that the physical state
of the system at an instant of time t is described by an element x of
a space phase X, which can be of finite or infinite dimension. The
evolution of the system is represented by a differential autonomous
equation in X, written symbolically as

dx
dt

= f (x), x ε X, (A1)

where f : X → X.
The main step to get qualitative information on solutions is study-

ing the flow of the equation in the vicinity of its critical points based
on the Hartman–Grobman theorem, namely the study of its stability.

The essential idea is firstly to find the fixed (or critical) points of
the equation (A1) which are given by f (xc) = 0, and then linearize
the differential equation at each critical point, that is, expand about
the points x = xc + δx, which yields to

δx ′ = Mδx,

whereM is the Jacobian matrix of x ′. Therefore the general solution
for the linear perturbation evolution can be written as

δx ′ = δx0eN δt ,

where N is the matrix composed of the eigenvalues mi associated
with M.

The stability of the system (A1) depends on the values of the
eigenvalues: if the real part of all eigenvalues is negative, the fixed
point is asymptotically stable, that is, an attractor. All eigenvalues
with positive real parts make the fixed point asymptotically unstable
(commonly called a source or repeller).

On the other hand, a saddle point happens when there exists a
combination of stable and unstable points. For an extended review
see Coley (2003).

Then we give a procedure for transforming equations (38) and
(39), with an arbitrary potential, into a dynamical system. We define
the dimensionless variables

x ≡ κ√
6

φ̇

H
, u ≡ κ√

3

√
V

H
,

zγ ≡ κ√
3

√
ργ

H
. (A2)

Using above definitions (A2), the evolution equations (38) trans-
form into an autonomous system

x ′ = −3 x + 3

2
π x − κ√

6 H 2
V,φ, (A3a)

u′ = 3

2
π u + κ√

6 H 2
V,φ

x

u
, (A3b)

z′
γ = 3

2
(π − γ ) zγ , (A3c)

−H ′

H
= 3

2

(
2x2 + γ z2

γ

) ≡ 3

2
π. (A3d)

This last equation (A3d) can also be written as

s ′ = 3

2
π s, (A4)

C© 2009 The Authors. Journal compilation C© 2009 RAS, MNRAS 393, 1359–1369

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/393/4/1359/1006571 by guest on 23 D
ecem

ber 2019



φ2 as dark matter 1369

for the variable s = const./H, and determines the evolution of the
horizon. Here, a prime denotes a derivative with respect to the e-
folding number N = ln (a). The Friedmann equation (43) transforms
into a constraint equation

F = x2 + u2 + z2
γ = 1. (A5)

With these variables, the SFDM density can be written as

�DM = x2 + u2.

Observe that if we derive (A5) with respect to N and substitute
system (A3) into this, we obtain

F ′ = 3 (F − 1) π, (A6)

indicating that constraint (A5) is compatible with system (A3) for
all scalar field potentials if the Friedmann equation is fulfilled.

Now we show that system (A3) together with constraint (A5)
is completely integrable. To integrate system (A3), first observe
that we can substitute 3/2π from equation (A4) into the rest of the
equations. With this substitution equation (A3c) can be integrated
in terms of s as

zγ =
√

�
(0)
γ s exp

(
−3

2
γ N

)
, (A7)

where � (0)
γ is an integration constant. Now we multiply (A3a) by

2x and (A3b) by 2u and sum both equations. We obtain

(x2 + u2)′ = −6 x2 + 2 ln(s)′(x2 + u2). (A8)

Now, we put constraint (A5) and equation (A7) into equation (A8)
to obtain

6 x2 = 2 ln(s)′ − 3γ s2 �(0)
γ exp(−3 γ N ). (A9)

Now we have to integrate equation (A4) with all these results.
If we substitute (A9) and (A7) into (A3d) or (A4) we obtain 0 =
0, which means s is an arbitrary variable which parametrizes the
decrease of H and can be cast into the system as a control variable.
In other words, equations (A3d) and (A4) are actually identities,
and not equations.

Thus, we set the variable s from system (A3) as arbitrary in the
equations (A3a), (A3b) and (A3c).

This paper has been typeset from a TEX/LATEX file prepared by the author.
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