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Abstract. Nowadays cosmological inflation is the most accepted mechanism to explain the
primordial seeds that led to the structure formation observed in the Universe. Current
observations are in well agreement to initial adiabatic conditions, which imply that single-
scalar-field inflation may be enough to describe the early Universe. However, there are several
scenarios where the existence of more than a single field could be relevant during this period,
for instance, the situation where the so-called spectator is present. Within the spectator
scenario we can find the possibility that an ultra-light scalar field dark matter candidate
could coexist with the inflaton. In this work we study this possibility where the additional
scalar field could be free or self-interacting. We use isocurvature observations to constrain
the free parameters of the model.
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1 Introduction

It is well accepted that the primordial seeds of the structure formation in the Universe were
generated by quantum fluctuations given a scalar field (SF) during an inflationary epoch.
The simplest scenario where density perturbations are carried out by a single inflaton is
preferred since the initial perturbations are nearly adiabatic [1–6]. However the presence of
any light field, other than the inflaton, could also fluctuate during inflation and contribute to
the primordial density perturbations. Of particular interest is the possibility that this extra
SF can be thought of as the dark matter component (DM). This scenario is usually known
as the scalar field dark matter (SFDM) and assumes the DM is made of bosonic excitations
of an ultra-light SF. The typical mass of this field in favor of astrophysical observations is
found to be about m ∼ 10−22 eV/c2, which might include self-interaction.

The idea of scalar fields as DM began at the end of the last century (see for example [7])
and since then it has been rediscovered with different names, for instance Scalar Field Dark
Matter [8], Fuzzy DM [9], Wave DM [10, 11], Bose-Einstein Condensate DM [12] or Ultra-
light Axion DM [13, 14], amongst many others. Nevertheless, the first systematic study of
this hypothesis began in 1998 in [8]. The purpose of this SFDM is to resolve the apparent
conflict, with observations, that exhibits the cold dark matter (CDM) formed of weakly-
interacting massive particles (WIMPS) [15, 16]. Some of the CDM weaknesses may appear
at small-scales within galaxies, e.g. cuspy halo density profiles, overproduction of satellite
dwarfs within the Local Group and many others, see for instance [17–21]). Since then, the
SFDM model has been successfully tested by different probes; for a review on ultra-light
SFDM see [22–25].
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Despite several works about this model, it continues being unclear the mechanism that
generated this ultra-light SFDM particle and the time it should have been produced. Some
works in this direction consider the SFDM as an axion-like particle. In such studies the
axion is understood as a free field that could be created before or after the inflationary
era by the misalignment mechanism [26]. If it is created after inflation then the ultra-light
SFDM particle could not account for the total amount of the DM because of the production
of topological defects, whereas if it is produced during (or before) the inflationary era then
it is plausible that the SFDM accounts for the total DM in the Universe. However, recent
studies point out that constrictions coming from cosmological and astrophysical observations,
in the free field model, are sometimes in tension between them. Then it has been postulated
the possibility that the SFDM been self-interacting in order to solve such discrepancies.
Therefore it is natural to question the consequences obtained if the self-interacting candidate
is generated during the inflationary era. In this work we study such possibility. For simplicity
we do not contemplate a mechanism of creation for this particle and we only consider the
possibility that it was created during (or after) the inflationary period with a free or self-
interacting potential. It is neccesary to mention that while this work was in progress, in
reference [27] it was studied the consecuences of having a spectator SFDM that at the end of
inflation its potential remains dominated by the quartic term. However we have to stress-our
that in this paper we consider the possible dynamycs that the SFDM could obtain during
the inflationary era, obtaining in this way that the work in [27] represents a particular case
in our study.

The paper is organized as follows: first, in section 2 we review the basics of the infla-
tionary scenario. Then in section 3 we present the standard observables used to constrain our
models. Once the mathematical background and the observational constrictions are given,
in section 4 we analyze the possibility that an ultra-light (or self-interacting) SFDM was
generated during the inflationary era. We provide some limits for the mass of the scalar field
using isocurvature limits and compare them with current astrophysical and cosmological ob-
servations. Then we consider a self-interacting term for the SFDM and we also constrain its
free parameters using observations. We mention how the self-interacting SFDM model can
be helpful to select the inflationary potential that causes inflation. Finally in section 5 our
conclusions are given.

2 Inflationary scenario: SFDM as a spectator

This section provides a brief summary of the inflationary process for spectator-like SFs during
inflation following [28] (see also [29] for a more recent review). Throughout this paper we
use natural units (~ = c = 1).

A SF φi living during the inflationary era is thought to acquire quantum fluctuations
with a primordial power spectrum measured at Hubble exit as

Pφi '
(
H∗
2π

)2

. (2.1)

Here and after quantities with subscript ∗ are evaluated at the Hubble exit. Assuming that
within the inflationary era there exists several scalar fields, then it is convenient to work
on a rotating basis by defining the adiabatic field σ parallel to the trajectory of the field-
space and the entropy fields si perpendicular to the same trajectory. If the background
trajectory is a straight-line that evolves in the direction of the field responsible for inflation,
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the scenario is therefore called the inflaton scenario (IS). In this case quantum fluctuations
δσ of the adiabatic field and δsi — also called spectator fields —, are frozen at Hubble exit1

and start evolving until they re-enter the horizon. Considering the case with only one extra
SF, additional to the inflaton, then the primordial power spectrum is given by

Pσ∗(k) = Ps∗(k) '
(
H∗
2π

)2

. (2.2)

On the other hand, the curvature and isocurvature perturbations are defined as

R ≡ H

σ̇
δσ, S =

H

σ̇
δs. (2.3)

Then the final power spectra, evaluated at the beginning of the radiation-domination era,
are thus

PR = PS ' P |∗, (2.4)

where at linear order in slow-roll parameters

P |∗ =
1

2ε

(
H∗

2πMpl

)2

, (2.5)

with Mpl = 1.221× 1019 GeV being the Planck mass and

ε ≡
M2

pl

2

(
V,σ
V

)2

.

Here V,σ ≡ dV/dσ.

Gravitational waves. Given the fact that scalar and tensor perturbations are decoupled
at linear order, the amplitude of the gravitational waves spectrum and the tensor-to-scalar
ratio r, in the IS, preserve its values as in the case with no extra spectator fields during the
inflationary process.

We can see then that the incorporation of these new fields during the IS will produce
isocurvature perturbations. Such perturbations can be used to constrain the free parameters
of our SFDM models as we will see in the following sections.

3 Constraints on inflationary parameters

In the standard approximation the inflationary observables are given by the tensor-to-scalar
ratio r, the spectral index for adiabatic perturbations nR and the amplitude for adiabatic
perturbations A2

r . The constraints of these parameters are quoted at the pivot scale k0 =
0.05Mpc−1 by [1–6]

A2
r(k0) = (2.215+0.032

−0.079)× 10−9, at 68% CL, (3.1a)

rk0 < 0.064 at 95% CL, (3.1b)

nR(k0) = 0.968± 0.006. (3.1c)

1If the trajectory is curved in the field-space, entropy and adiabatic perturbations are correlated at Hubble
exit and the perturbations continue evolving until inflation ends up [28].
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Using these measurements we are able to compute the value of the Hubble expansion rate
during inflation H∗ as [30, 31]

r = 1.6× 10−5

(
H∗

1012 GeV

)2

. (3.2)

As we have noted before, if more than one SF is present during inflation we will obtain
isocurvature perturbations generated by extra scalar fields perpendicular to the trajectory of
the field-space. Parameterizing the isocurvature power spectrum for dark matter in terms of
the curvature power PR(k), we have

PDM(k) =
βiso(k)

1− βiso(k)
PR(k), (3.3)

where PDM = 〈δρDM∗/ρDM〉, δρDM∗ are the isocurvature perturbations for the DM gener-
ated by extra scalar fields during inflation, ρDM is the initial condition of DM and β(k) ≡
PDM/(PR+PDM). The uncorrelated scale-invariant DM isocurvature is constrained by Planck
data [1–6] at pivot scale k0 as

βiso(k0) < 0.038 at 95% CL. (3.4)

Notice that isocurvature perturbations can be used to compute the inflationary scale, just
by combining equations (3.1) to (3.4).

4 Constraining free and self-interacting ultra-light SFDM models

In this section we assume the possibility that an ultra-light SFDM candidate coexists with
the inflaton during the inflationary epoch. For this, we require that the SFDM candidate be
a stable spectator field with negligible classical dynamics and energy density. Such scenario
is reached by taking the inflaton scenario, i.e. within the field space, the evolution of the
system is on the inflaton direction φ whereas the direction perpendicular to the trajectory
corresponds to the SFDM ψ. Notice this requirement implies that our dark matter candi-
date evolves much slower than the inflaton and its density is smaller than the associated to
the inflaton.

As we mentioned before, to constrain the free parameters of our model the isocurvature
perturbations have to be taken into account. For this reason we review the cosmological
history that a free and a self-interacting scalar field should have gone through the evolu-
tion of the Universe, to then match the present values of the field with those during the
inflationary era and therefore use the isocurvature constrictions. We also make use of dif-
ferent cosmological and astrophysical constraints for each SFDM model in order to compare
our results.

First of all let us recap the SFs equations. The dynamical evolution of any SF is governed
by the Klein-Gordon (KG) equation

�Ψ− 2
dV

d|Ψ|2
Ψ = 0. (4.1)

where V is the potential of the system and � ≡ ∇µ∇µ is the covariant d’Alambert operator.
When a SF is complex then it is convenient to use the Madelung transformation [32]

Ψ = η exp[iθ], (4.2)
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where η ≡ |Ψ| is the magnitude of field Ψ and θ its phase. With this decomposition the KG
equation splits up on its real and imaginary components as

η̈ + 3Hη̇ + 2
dV

d|ψ|2
η − ω2η = 0, (4.3a)

ω̇η + (2η̇ + 3Hη)ω = 0, (4.3b)

where ω = θ̇ and we have defined ḟ ≡ df/dt. Eq. (4.3b) can be integrated exactly obtaining

a3η2ω = Q, (4.4)

where Q is a charge of the SF related to the total number of particles [33–37]. Plugging the
last equation into (4.3a) we obtain that the radial component of the scalar field follows

η̈ + 3Hη̇ +M2η − Q2

η3
= 0. (4.5)

The term containing Q is given by the complex nature of the SF and is interpreted as a
“centrifugal force” [37]; M2 ≡ 2(dV/d|ψ|2) is seen as an effective mass term of the scalar
field. Notice that if we assume Ψ is the SFDM and we take Q2/η3 � 1, by assuming the
SFDM candidate fulfills the slow-roll condition during inflation, then the field η will remain
frozen with value ηi until H ∼M . Here and for the rest of this work subindex i means values
right after inflation ends. Then, when H ∼M the field will start evolving depending on the
effective mass term. In order to get the slow-roll behavior of the SFDM it is necessary that
Q ' 0, as explained in [34].2 On the other hand if Ψ is the inflaton, φ it is usually considered
as a real field, then in this case θ = Q = 0.

In this work we consider only situations where the general potential can be decomposed
as V (φ, ψ) = V̂ (φ) + VSFDM(|ψ|2).

4.1 Real ultra-light SFDM candidate

4.1.1 Cosmological history

The possibility that an ultra-light SFDM candidate could coexist with the inflaton has been
recently studied in [40] considering a potential of the form

V (φ, |ψ|2) = V̂ (φ) +
1

2
m2ψ2. (4.6)

and by fixing Q = 0 for the SFDM in eq. (4.5). Such study was performed by assuming
the SFDM is an axion-like particle. However their results can be extrapolated for mostly
any free SFDM candidate. For this particular potential we observe that M2 = m2. As
already mentioned when H � m the term with m2 in eq. (4.3a) can be neglected. Bering in
mind the field is slowly rolling during the inflationary era, we can neglect second derivatives
in (4.3a), and thus the field ψ remains frozen with its initial value given by the Hubble
dragging during the early universe [41]. On the other hand, when the m ∼ H condition
is approached the SFDM starts evolving and oscillates as a free field. During its oscillation

2In fact the inflationary behavior is an attractor solution of the KG equation for a real field in the limit
when M2 � H2 [38, 39]. In this limit the typical dynamics of a real SF is a stiff-like epoch, followed by an
inflationary-like era.
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phase the dependence of ψ respect to the scale factor a is ψ ∼ 1/a3/2, while its energy density
behaves as ρψ ∼ 1/a3 [33, 34]. So the scalar density of the SFDM can we written as

ρψ =


1

2
m2ψ2

i when H � m,

1

2
m2ψ2

i

(aosc
a

)3
when H � m.

(4.7)

For typcal masses of a SFDM candidate, m ∼ 10−22 eV, the field started oscillating
during the radiation-dominated Universe. During this period the Hubble parameter evolves
in terms of the scale factor as H ∝ a−2, and the KG eq. (4.3a) can be solved exactly in terms
of a. In ref. [40] the initial conditions for the free case were obtained by using the evolution
of the form (4.7) and taking into account that the entropy of the Universe is conserved. If
the total amount of dark matter is made of SFDM particles they obtain

ψ2
i '

1034 GeV2

0.6

(g∗osc
3.36

)−3/4 (gs∗osc
3.91

)( m

10−22 eV

)−1/2
. (4.8)

Here g∗osc and gs∗osc are the effective degrees of freedom associated to the total particles
and to the entropy of the SFDM oscillations. In particular, for the ultra-light SFDM that
started its oscillations during the radiation-dominated Universe we have g∗osc = 3.36 and
gs∗osc = 3.91. Notice also that the above expression is not only fulfilled by an ultra-light
SFDM, but in fact it is correct for whichever SFDM that started its oscillations during the
radiation-dominated Universe.

4.1.2 Constraints from isocurvature perturbations

For this case we demand the energy density contribution of the SFDM being small during
inflation (DM dominates right after radiation-matter equality) and hence it is necessary that

m2

2
<
V̂ (φ)

ψ2
i

'
H2

∗M
2
p

ψ2
i

, (4.9)

where during inflation our field remains frozen at value ψi. Notice that for an ultra-light
SFDM candidate (m ∼ 10−22 eV) the above expression is fulfilled for most of the initial
conditions given by ψi. On the other hand we can constrain isocurvature perturbations
generated by a SFDM using eq. (3.3) or equivalently (3.4). The analysis was performed in
ref [40] by noticing that we can re-express the primordial spectrum as δρψ/ρψ = 2δψ/ψi
(since from eq. (4.7) we have ρSFDM ∝ ψ2) which implies that PSFDM = 4Pψ/ψ

2
i , where Pψ is

given by eq. (2.1) and ψi by eq. (4.8), and then compare it with PDM from eq. (3.3). When
such comparison is done they finally obtain the result

m

10−22 eV
<

(
2× 10−4

r

)2

. (4.10)

Then the isocurvature restrictions allow us to constrain the mass parameter of the SFDM in
terms of the tensor-to-scalar ratio measurements.

The above relation for the mass parameter must be in agreement with cosmological and
astrophysical observations. We need to stress out that we cannot use all the constrictions in
the literature since some of them consider different cosmological evolutions for the SFDM.
For example in [33] it was studied the CMB and the Big Bang Nucleosynthesis (BBN) by
understanding the SFDM was generated right after inflation with a stiff-like equation of state
(p ' ρ). Then, these kind of restrictions are not applicable to our model.
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Other constraints. We start with CMB constrictions. In reference [42] the CMB was
studied in the form of Planck temperature power spectrum, here they obtainedm & 10−24 eV.
Considering the hydrodynamical representation of the SFDM model, ref. [43] suggests the
SFDM’s quantum pressure as the origin of the offset between dark matter and ordinary matter
in Abel 3827. For this purpose they required a mass m ' 2 × 10−24 eV. When the model
is tested with the dynamics of dwarf spheroidal galaxies (dSphs) — Fornax and Sculpture
—, in reference [44] was obtained a mass constriction of m < 0.4 × 10−22 eV at 97.5%.
The constriction obtained when the survival of the cold clump in Ursa and the distribution
of globular clusters in Fornax is considered requires a mass m ∼ 0.3–1 × 10−22 eV [45].
Explaining the half-light mass in the ultra-faint dwarfs fits the mass term to be m ∼ 3.7–
5.6× 10−22 eV [46]. The model has also been constrained by observations of the reionization
process. In [47], using N-body simulations and demanding an ionized fraction of HI of 50% by
z = 8, was obtained the result of m > 2.6× 10−23 eV. Finally, using the Lyman-α forest flux
power spectrum demands that the mass parameter fulfills m & 20− 30× 10−22 eV [48, 49].

Figure 1 displays the aforementioned constraints on a m − r plane. In order to simplify
the lecture of the figure we have only plotted the upper (lower) value for the constrictions
that fit the mass of the SFDM with an upper (lower) limit. We have also added arrows that
points out the region that remains valid for such constrictions. Firstly, the gray region is
fulfilled by isocurvature observations (4.10). The dot-dashed black line corresponds to the
equality values in eq. (4.10). Then, the figure must be interpreted as follows: suppose we
have measured a value for r. Notice that such value will intersect with the dot-dashed black
line for a given mass mmax. Then, the masses allowed by the model must be those lower
than mmax.

The region that fulfills observations obtained by CMB is specified in green, while the
value provided by Abel 3827 is given by the dot-dashed red line. The region for dwarf
spheroidal galaxies is indicated in blue, Ursa with Fornax in light blue, ultra-faint dwarfs in
teal, reionization in purple and Lyman-α in orange. We notice that isocurvature perturba-
tions cannot constrain observations of the dynamics of dSphs galaxies given that both provide
an upper limit for the mass of the SFDM. However, the detectability of gravitational waves
and the different constrictions by cosmological and astrophysical observations can be used to
test the free model. For example, if we ignore by the moment the dynamics of dSphs galaxies
and we would like to fulfill at least observations provided by CMB, we should not detect
gravitational waves until r ' 1.3× 10−3 (fuchsia straight-line), while if we are interested on
the rest of observations we should not detect gravitational waves until r . 2.33× 10−5 (gold
straight-line).

These results are important given that [26] demonstrated that an ultra-light axion-like
dark matter candidate must be present during inflation. Then, if r is detected in the near
future, it could represent a strong constraint for the axion-like particle model. Notice that
if we relax the mechanism under this particle is created or if we add an auto-interacting
component, we should expect these restrictions be less effective to the model.

We also plotted the actual upper limit for r in a navy blue dashed-line. By the moment
this value is not very restrictive for the model since it represents an upper value for r.
Nevertheless the information it provides is that masses smaller than mupper — the blue
dashed-line and black dot-dashed-line intersection — are allowed by the data. However,
masses bigger than mupper cannot be discarded since the only possible way to do it is if r
would be detected.
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Figure 1. Isocurvature constraints for the SFDM candidate.

4.2 Real self-interacting SFDM candidate

4.2.1 Cosmological history

In this section a self-interacting SFDM with a positive interaction is considered. This scenario
is described by the general potential

V (φ, |ψ|2) = V̂ (φ) +
1

2
m2ψ2 +

1

4
λψ4, (4.11)

and fixing again Q = 0 for the SFDM in equation [14]. In what follows we omit the hat in
the potential V̂ (φ) in order to make simpler the lecture of the article. Then, always that
appears V must be understood that we are referring to V̂ .

Notice that for this case M2 = m2 +λψ2. As we have previously discussed the effective
mass of the field after inflation remains constant at M2 = m2 + λψ2

i until M ∼ H. Then,
depending of each contribution to M2, we can have two different dynamics.

Weakly self-interacting regime. This limit is obtained when the constant term m2

dominates, that is when

m2 � λψ2
i . (4.12)

In this regime it is possible to ignore the autointeracting term in eq. (4.5) when the oscillations
of the scalar field begins. However, by ignoring this term the field behaves as a free field
and from (4.7) the field value always decreases. Therefore the autointeracting term never
dominates and all the cosmological history remains the same as in the pure free SFDM
scenario. In fact, thanks to the decreasing behavior of this scenario we can consider that
this regime is fulfilled always that m2 ≥ λψ2

i or equivalently when λ ≤ m2/ψ2
i . If the SFDM

oscillations start at the same time than in the free case (which is a good approximation since
the effective mass of the SFDM is M2 = m2 + λψ2

i ≤ 2m2), we observe from (4.8) that it
should be satisfied that (

λ

10−96

)
≤ 0.6

( m

10−22 eV

)5/2
. (4.13)

In figure 2 we plot the weak limit obtained by our approximation. However this overesti-
mates the maximum value of λ since the dust-like behavior is obtained when the λ term is
completely negligible.
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Figure 2. Weakly self-interacting regime.

Strong self-interacting regime. This scenario is obtained when

m2 � λψ2
i . (4.14)

Here the SFDM follows the dynamical equation (see equation (A.5) of appendix A)

1

ψ2
− 1

ψ2
0

= 2λ

∫ φ0

φ

dφ

V,φ
, (4.15)

where subindex 0 means quantities at the beginning of the inflationary period. Notice that
if the inflationary process does not last for long enough time — meaning that ψ−2

0 is much
smaller than the right hand side value of the above expression —, the SFDM remains frozen
with value ψ0, while if it lasts long enough time the SFDM reaches an attractor solution.

Attractor behavior of the SF during inflation. In the strong self-interacting regime,
and after enough time, the SFDM follows the attractor solution (A.6)3

ψatt =

(
2λ

∫ φ0

φ
V −1
,φ dφ

)−1/2

, (4.16)

where φ0 is the value of the inflaton at the beginning of inflation. As we can see from the
above expression, whether or not the SFDM reaches the attractor solutions depends entirely
on the inflationary process and the value of the self-interacting term of the SFDM. In the
above expression we can identify two possible branches:

• ψatt < m/
√
λ

The SFDM follows the attractor solution until ψ ' m/
√
λ. Then the field reaches

ψi = m/
√
λ for the rest of inflation. Notice that this value corresponds to the upper

limit that the weakly self-interacting regime allows. Then the field starts evolving
when H ∼ M ' m behaving as a free SF. In this way the constrictions given in the

3In [41] was obtained the attractor behavior for a curvaton-like scalar field in a chaotic-like inflationary
scenario. However their results can be used as well in this context were the attractor behavior can be easily
obtained for whichever inflationary potential.
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non-interacting case apply and the initial conditions are also fixed by ψi. Using both
relations the λ value is approximated(

λ

10−96

)
' 0.6

(
g∗osc
3.36

)3/4(gs∗osc
3.91

)−1 ( m

10−22 eV

)5/2
. (4.17)

Without lost of generality the mass term and the auto-interacting constant are rescaled
by typical values, that is, the mass term is measured in units of 10−22 eV while the
auto-interacting constant in terms of 10−96.

• ψatt > m/
√
λ

In this scenario the dynamics of the inflaton, given by (4.16), implies that the initial
condition of the field after the inflationary period is

ψiatt =

(
2λ

∫ φ0

φend

V −1
,φ dφ

)−1/2

, (4.18)

where φend is the value of the inflaton at the end of inflation. We need to stress out
that this is the value of the field until its oscillation period starts (i.e. when M ∼ H).

In this scenario and for ψatt > m/
√
λ (regardless of whether the scalar field reached

the attractor behavior or not) we observe that at the time the SFDM starts its oscillations
its effective mass is linear in the field. In that regime the scalar field evolves as ψ ∼ 1/a
and its energy density as ρψ ∼ 1/a4, behaving as radiation. Then, when m2 ∼ λψ2

t the
effective scalar field mass is now constant, obtaining the dust-like behavior already analyzed.
Therefore, the history of the scalar field density is

ρψ =



1

4
λψ4

i when H2 � λψ2
i

1

4
λψ4

i

(aosc
a

)4
when H2

t ≤ λψ2 ≤ H2

1

2
m2ψ2

t

(at
a

)3
when H2 ≤ m2 and λψ2 < m2

(4.19)

Here sub-index t means quantities measured at transition between radiation-like to dust-like
behavior of the SFDM and

ψ2
i =

[
2m2

λ
ψ2
t

]1/2(
at
aosc

)2

. (4.20)

Notice that, for simplicity, we have taken an instantaneous transition between radiation-like
to dust-like behaviors.

Since the auto-interacting KG equation cannot be solved exactly we work with approx-
imated solutions. By using a pure approximated description of the system, [34] obtained the
relation (see its equation 80 and 86 and also [33])4(

at
aosc

)2

=
3

71/3f2( asrS )
, (4.21a)

4The reference [34] obtained this relation by considering a Universe with only a SFDM content. However
a similar analysis can be used in a Universe with several types of matter contents.
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where

f(σ) =
1

s1/3(1 + 4s)1/6
, (4.21b)

with

s =
4σ − 1 +

√
(4σ − 1)2 + 12σ

6
. (4.21c)

Additionally rS = 2mG/c2 and as = ~2λ/4πm. Then it follows that as/rS = λM2
pl/m

2.
Rearranging the expression in a more convenient way we have

σ ' 5.93× 102
( m

10−22 eV

)−2
(

λ

10−96

)
. (4.22)

Notice that when at/aosc ' 1, i.e. 3/(71/3f2(σ)) ∼ 1, there is no radiation-like epoch.
This scenario should match with the non-interacting scenario that we present previously.
Inserting eq. (4.21a) into (4.20) yields to

ψ2
i =

3

71/3f2(σ)

[
2m2

λ
ψ2
t

]1/2
. (4.23)

The relation (4.23) matches the field at ψt with its value right after inflation ends.
Then if we obtain the value of ψt by comparing with quantities at present, with the above
expressions we can also obtain the value of ψi. On the other hand, notice that at at the scalar
field behaves as dust with an effective mass M2 = m2 + λψ2

t . This implies that dust-like
oscillations of the SF began a little before than in the non-interacting case. If we allow m
to start its dust-like behavior during the radiation-dominated Universe and using the fact
that m2 is about the same order that λψ2

t , we get that such oscillations start during the
same epoch than in the non-interacting case. In fact because the decreasing behavior of the
SF during the dust-like period (ψ ∼ 1/a3/2) the auto-interacting term contribution quickly
vanishes and then the dynamics of the field is described only by the mass term m. Thus,
once the dust-like behavior starts, the dynamics is described similarly to the non-interacting
case, in such case the condition (4.8) is fulfilled by the SF as well, but interchanging subindex
i with t.5

4.2.2 Constraints from isocurvature perturbations

As we have shown in the last section we have two different scenarios for this model: a weak
self-interacting and a strong self-interacting. In the weak limit our SFDM behaves effectively
as a free field without auto-interaction, and in such case the constrictions for the free field
apply to this scenario as well. On the other hand when the auto-interacting term is big
enough, the SFDM will have a new period with a behavior similar to a radiation-like fluid.
In this way the constrictions we obtained before will not apply to this model anymore.

In the strong self-interacting regime, during the inflationary era, the SFDM follows
the solution (4.15). The value the homogeneous field acquired after inflation depends on the
amount of time the inflationary process takes place and then the condition ψatt ≶ m/

√
λ ≡ ψt

— if the inflationary period is short, then the field ψ remains frozen at value ψi ' ψ0, while
if it lasts long enough the SFDM reaches the attractor behavior (4.16) —. If the SFDM
reaches the solution (4.16) and for ψatt < ψt the field follows the attractor solution until

5In fact this is a lower limit for the strong auto-interacting case.
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Figure 3. Isocurvature constraints for the strong self-interacting regime with ψatt < ψt.

ψ ' ψt. Then the SFDM is frozen at that value and starts oscillating as a free field when
m ∼ H. We can constrain this scenario by noticing that it is the same case than the free
one but with the initial condition ψi = ψt. Matching eq. (4.8) with ψt and making use of the
constriction (4.10) we obtain (

λ

10−96

)
≤ 0.6

(
2× 10−4

r

)5

. (4.24)

In figure 3 we have plotted the above condition that is valid during the strong self-interacting
regime, when ψatt < ψt. The pink region corresponds to the region allowed by isocurvature
perturbations in this limit. As we observe the self-interacting term for this model can be
constrained in a similar way than the mass parameter in the free case. This scenario must
fulfill the relation (4.10) as well, since its cosmological evolution after inflation is only like a
free SFDM.

Additionally, in this scenario, the inflationary potential fulfills the condition(∫ φ0

φ
V −1
,φ dφ

)−1/2

<
√

2m. (4.25)

We can see that it is very difficult to obtain this relation for an ultra-light SFDM candidate.
For example, if we consider a chaotic-like inflationary potential, V (φ) = 1

2M
2
infφ

2, the above
conditions imply that (

log
φ0
φ

)−1/2

<
√

2
m

Minf
. (4.26)

However, for this potential the mass Minf of the inflaton that best matches the observations6

is of order Minf ∼ 1012 GeV [50]. If now we assume an ultra-light SFDM candidate with
a mass m ∼ 10−22 eV, given that the cosmological and astrophysical constrictions for this
model are the same than in the free case and in this scenario it is necessary to obtain an
ultra-light SFDM, the above conditions imply that the logarithmic part of the expression
should be lower that ∼ 10−43. The inflationary behavior for a chaotic-like inflaton ends when
φend ' 2Mpl [41, 50]. Moreover as it is explained in [41], the initial condition of the inflaton

6This chaotic-like inflationary potential is ruled-out now for observations, however we use it as an example
in order to obtain general constraints for our models.
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cannot be arbitrarily large since the stochastic behavior is significant for φ̇H−1 < H/2π.
If the Universe starts when the inflaton escapes from this behavior we have that its initial
condition should be

φ0 ∼ 105 ×Mpl

(
1013 GeV

Minf

)1/2

. (4.27)

where we can easily see that the condition given in (4.26) cannot be fulfilled. In fact if we
insert the left part of (4.26) in equation (4.15) and by considering the above result and the fact
that in this scenario the self-interacting term must be incredible small (see equation (4.24)) in
order to fulfil cosmological and astrophysical constrictions, we can observe that the attractor
behavior is not reached when it is assumed a chaotic-like inflationary potential. This implies
that if a self-interacting SFDM candidate coexists with the inflaton, and that during the
begining of the inflationary period it starts in the strong-field scenario, it should remain
within the strong regime since their conditions are easier to satisfy.

If the SFDM reached the solution (4.16) and when ψatt > ψt we have that the field
follows the attractor solution during all the inflationary period. Hence the initial condition
for the SFDM is given by (4.18)

ψiatt =

(
2λ

∫ φ0

φend

V −1
,φ dφ

)−1/2

. (4.28)

Then the SFDM remains frozen at value ψiatt until M ∼ H and starts oscillating with a
quartic potential. In this scenario the SFDM density behaves as ρSFDM ∝ ψ4 and in such
case we can write δρψ/ρψ = 4δψ/ψi. Therefore the primordial isocurvature perturbations for
a strong self-interacting SFDM is given by

PSFDM(k) =

(
2H∗
πψi

)2

. (4.29)

In the last section we showed the relation of the initial condition with the value of the field
today. Using eqs. (4.23) and (4.8), with g∗osc = 3.36 and gs∗osc = 3.91 and appropriate units
we obtain

r <
1.172× 10−4

71/3f2(σ)

[
2
(

m
10−22 eV

)3/2(
λ

10−96

) ]1/2
. (4.30)

Notice that the above relation is independent of whether the SFDM followed the attractor
solution or not and therefore the result is general, always that the SFDM remains in the
strong self-interacting regime at the end of inflation and its dust-like behavior started in the
radiation dominated Universe.

Similarly to the free case, the above relation must be compared with observations in
order to get constrictions for the strong self-interacting SFDM scenario.

Other constraints. In [51] it was studied the possibility that a SFDM candidate could
be self-interacting. In their work they constrain the ratio Λ ≡ m/λ1/4 to be Λ ∼ 1 eV by
analyzing the line-of-sight velocity dispersion for the eight dSphs satellites of the Milky Way
(MW). This study was complementary to the ones done in [12, 52–54] where the SFDM
model was studied by using rotational curves of the most Dark Matter dominated galaxies
from different surveys and where they obtained the constriction Λ ∼ 2.6 − 2.9 eV. On the
other hand, in [36] the model was studied in a cosmological context by demanding that

– 13 –



J
C
A
P
0
5
(
2
0
1
9
)
0
5
6

Figure 4. Isocurvature constraints for the strong self-interacting scenario with ψatt > ψt.

the SFDM candidate behaves as a dust-like component before the time of matter-radiation
equality. In such work they obtain the result Λ > 0.8 eV. Finally, it was also possible to test
the self-interacting scenario by considering the number of extra relativistic species at BBN.
When such observations are confronted with the SFDM it is obtained that it must be fulfilled
that Λ & 4 eV (see [52]).

In figure 4 we have plotted contour levels of the numerical value of the right hand side
of the relation (4.30). The grey region corresponds to values larger than 0.064 which is the
actual upper constraint on tensor-to-scalar ratio. This means that within that region we are
certain that (4.30) is fulfilled and, by the moment, just this region is completely allowed by
observations. With this in mind the plot should be understood as follows: let us suppose
that in the near future we measure a value for r. Such value will coincide with a curve in
figure 4. Then, the parameter space allowed by data should be the one where the contour
levels are bigger than the detected value of r, while the one with smaller values in the contour
levels must be discarded. Similar to the free case, if r is not detected but it continues with
an upper limit, this implies that regions with contour levels bigger than such upper value
will be allowed by the data, however regions with smaller values can not be discarded until
r is detected.

The Λ value that satisfies observations of dSph’s line-of-sight is given by the dot-dashed
red line, while the region of parameters necessary for rotational curves is presented in blue.
Similar to the plot for the free case (figure 1) we plotted the cosmological constrictions in
purple by drawing a curve that refers to the upper value of Λ and an arrow that points out
to the valid region from the constriction. We did the same for the observations for BBN but
in color fuchsia. The white region corresponds to the weak limit. We can see from figure 4
that it is possible to fulfill observations for whichever value for the mass as long as the self-
interacting constant is large enough. In other words, for a given mass, the measurement of r
can only constrain the self-interacting constant with a lower limit. Isocurvature observations
(or equivalently observations on r) can also help to impose upper values from other kind
of constrictions. As an example let us suppose that we want to be completely sure that
the measurements obtained by rotational curves are fulfilled. Then, given the actual upper
constraints in r, the only region of parameters that we can be sure that fulfills observations
are the ones in the blue region that are also inside the gray region.
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Remark: this scenario is of special interest given that it is natural to avoid isocurvature
perturbations when the auto-interacting term of the SF is big enough. Additionally, if the
SFDM reached the attractor solution it is possible to justify the initial conditions for the
SFDM model.

Similarly to the above description we can compute general constraints for the inflation-
ary potential that should generate inflation on these kind of scenarios. First we have that(∫ φ0

φ
V −1
,φ dφ

)−1/2

>
√

2m, (4.31)

which is very easy to fulfill as we saw in the chaotic-like example. Using isocurvature con-
striction we also have

r <
0.6× 1040(

λ
10−96

) (
1∫ φ0

φend
V −1
,φ dφ

)
, (4.32)

that can be satisfied as far as the auto-interacting term and the integral are small enough; for
example in the chaotic-like scenario by using (4.26) and (4.27) and taking Minf ' 10−6Mpl,
we can obtain the constriction (

λ

10−96

)
<

0.3288× 1084

r
. (4.33)

that is easily satisfied for whichever value of λ of our interest. If now we compare (4.18)
and (4.23) we have (∫ φ0

φend

V −1
,φ dφ

)−1

=
6

71/3f2(σ)

(
2m2λψ2

t

)1/2
. (4.34)

This relation is interpreted as follows: consider that the auto-interacting SFDM candidate
coexists with the inflaton, and it reached the attractor solution (4.16), and suppose there
are several measurements constraining the mass parameter m as well as the auto-interacting
parameter λ, therefore such constraints are translated into restrictions to the inflationary
potential. In order to use the above expression to constraint inflationary potentials, we
need to be sure that the term ψ−2

0 can be ignored in (4.15) i.e. the right-hand side term in
equation (4.15) is big enough compared with ψ−2

0 .

It is also necessary to be careful that the SFDM does not come to dominate the infla-
tionary period. This is guarantee by demanding that

λ

4
<
H2

∗M
2
pl

ψ4
i

, (4.35)

or in terms of (4.28)

λ >

(
16H2

∗M
2
pl

(∫ φ0

φend

V −1
,φ dφ

)2
)−1

. (4.36)

Taking the chaotic-like example and using H∗ = 1014 GeV, we obtain the constriction

λ

10−96
> 1.444× 1077. (4.37)
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Notice that the above expression requires λ > 10−19 and then by considering the cosmological
and astrophysical constrictions (Λ ∼ O(1) eV) we should have a mass parameter of order
m ∼ 10−5 eV. We have to stress out that (4.37) is obtained for a chaotic-like potential,
then, depending on the inflationary potential we will have different limits allowed for the
self-interacting scenario. On the other hand if eq. (4.36) is not fulfilled and we remain in
the strong-self interacting model it should be necessary to consider a two-field inflationary
scenario where the SFDM could obtain a non-negligible dynamics during inflation.

4.3 Complex SFDM generalization

As we have seen at the beginning of this section, when we consider a complex scalar field
its dynamics is modified only by the centrifugal term (see eq. (4.5)). However as it was
mentioned in [34] such term does not affect the dynamics of the field at cosmological levels,
obtaining then that a complex scalar field and a real scalar field have the same cosmological
history in the Universe. In this way if we take that our complex SFDM fulfills slow-roll
conditions during inflation then its constrictions for isocurvature perturbations must be the
same than in the real field analogue.

5 Discusions and conclusions

In this paper we have studied the possibility that a free or a self-interacting SFDM particle
could coexist with the inflaton during inflation. In our assumptions we have considered
the SFDM as a spectator in the inflationary process. Then, the SFDM contributes to the
primordial spectrum by generating isocurvature perturbations. By using the actual upper
constraints in the measurements of the tensor-to-scalar ratio r was possible to test the free
parameters for each model. As we discussed, at the moment it is difficult to rule-out some
regions of parameters, however it could be possible if r is measured soon.

Our main results are shown in figures 1 and 4. In figure 1 we have identified the
masses allowed in the free model by isocurvature as well as cosmological and astrophysical
observations. We obtained that in order to fulfill the constrictions imposed by CMB we should
not detect gravitational waves until r ' 1.3 × 10−3, while if we were interested in fulfilling
all the observations, we should not detect gravitational waves until r . 2.33 × 10−5. This
last result is important given that the detectability of gravitational waves could represent
a strong constriction for the free model. Analogously, in figure 4 we have plotted in a
m − λ plane the region of parameters for the strong-self-interacting model that are allowed
by observations. We noticed that for a given mass of the SFDM it is always possible to
avoid isocurvature constrictions and fit astrophysical and cosmological observations if a large
enough self-interaction is added. Then we notice with this result that the addition of a self-
interacting component to the SFDM seems to be a natural solution for the model given that
is possible to fulfill naturally all the constrictions that the model has. On the other hand
we explain how the SFDM spectator scenario could help to choose the inflationary potential
responsible to produce the inflationary period.
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A The attractor behaviour for the SFDM candidate

In this appendix we comment about the attractor behaviour of the strong-self-interacting
SFDM during inflation. For this purpose let us remember the dynamical equations that
the Universe follows when it contains only two real scalar fields φ and ψ. In that case the
Universe is described by the Friedmann and Klein-Gordon differential equations

H2 =
1

3M2
pl

[
1

2
φ̇+

1

2
ψ̇ + V (φ, ψ)

]
, (A.1a)

φ̈i + 3Hφ̇i + V,φi = 0 (A.1b)

where φ̇i ≡ dφi/dt, V,φi ≡ dV/dφi, Mpl = 1.221×1019 GeV is the Planck mass and φ1,2 = φ, ψ.

In what follows we consider the full potential V (φ, ψ) ' V̂ (φ) +m2ψ2/2 + λψ4/4.
In the IS it is assumed that the Universe is dominated by the inflaton and that it is

slowly-rolling during that process, i.e. that the slow-roll parameters

εφ ≡
M2

pl

2

(
V,φ
V

)2

, ηφ ≡M2
pl

(
V,φφ
V

)
(A.2a)

are small (εφ � 1 and ηφ � 1). In that case the Friedmann equation and the Klein-Gordon
equation associated to the inflaton are reduced to

H2 ' V̂ (φ)

3M2
pl

, (A.2b)

3Hφ̇+ V,φ = 0, (A.2c)

while the dynamics for the SFDM continue being, in general, described by equation (A.1b).

A.1 Justifying the slow-roll condition for the SFDM candidate

In order to obtain a slowling-rolling SFDM during the inflationary process it is necessary
that it fulfills a similar relation that the one by the inflaton, i.e. the slow-roll parameters
associated for the SFDM εψ and ηψ –defined in a similar way than in (A.2a)– being small

(εψ, ηψ � 1). Considering that in the IS V ' V̂ and from (A.2b) V̂ ' 3M2
plH

2 we obtain the
slow-roll parameters for the SFDM can be written as

εψ '
1

2

(
λψ3

3MplH2
∗

)2

, ηψ '
λψ2

H2
∗
. (A.3)

where, as mentioned before, H∗ is the hubble parameter measured at the epoch of inflation
and we have considered that we are in the strong-self-interacting regime. Typically the self-
interacting scenario is constrained by the ratio m/λ1/4 ∼ O(1) eV (see subsection 4.1.2 for
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more detail). As an example, notice that if we consider an ultra-light SFDM candidate with
a mass of order 10−22 eV then the self-interaction should be extremely small λ ∼ 10−88. In
that case we can observe that the slow-roll condition can be fulfilled for most of the values
of the field ψ. However notice that the constraints in this self-interacting scenario allows the
SFDM to obtain bigger masses with bigger self-interaction. Then our study is correct always
that the slow-roll parameters (A.3) are small during inflation.

A.2 Attractor solution for the SFDM

The dynamic of the SFDM during inflation is described by equation (A.2c) but interchanging
φ for ψ. In that case notice that both fields must follows the relation

dψ

V,ψ
=
dφ

V,φ
(A.4)

In the strong-self-interacting regime (where V,ψ ' λψ3) the above equation results in

1

ψ2
− 1

ψ2
0

= 2λ

∫ φ0

φ

dφ

V,φ
. (A.5)

Then, after enough time ψ becomes far smaller than ψ0 and then the field reaches the
attractor solution

ψatt =

(
2λ

∫ φ0

φ
V −1
,φ dφ

)−1/2

, (A.6)

Notice that the time needed to obtain the attractor behavior for the SFDM is described by
the inflationary potential and the self-interaction parameter. Then, the attractor behavior is
reached more quickly for the SFDM models with large self-interaction compared to models
with small self-interaction. As an example notice that when the SFDM has an extremely
small self-interaction and if the inflationary period does not last for a long time, the attractor
behavior is not reached and then the dynamics is described by (A.5). In fact if the self-
interaction is extremely small we can approximate ψend ∼ ψ0, where ψend is the value of ψ
at the end of inflation.
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