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Abstract. The current concordance model of cosmology is dominated by two mysterious
ingredients: dark matter and dark energy. In this paper, we explore the possibility that, in
fact, there exist two dark-energy components: the cosmological constant Λ, with equation-of-
state parameter wΛ = −1, and a ‘missing matter’ component X with wX = −2/3, which we
introduce here to allow the evolution of the universal scale factor as a function of conformal
time to exhibit a symmetry that relates the big bang to the future conformal singularity,
such as in Penrose’s conformal cyclic cosmology. Using recent cosmological observations, we
constrain the present-day energy density of missing matter to be ΩX,0 = −0.034 ± 0.075.
This is consistent with the standard ΛCDM model, but constraints on the energy densities
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of all the components are considerably broadened by the introduction of missing matter;
significant relative probability exists even for ΩX,0 ∼ 0.1, and so the presence of a missing
matter component cannot be ruled out. As a result, a Bayesian model selection analysis only
slightly disfavours its introduction by 1.1 log-units of evidence. Foregoing our symmetry
requirement on the conformal time evolution of the universe, we extend our analysis by
allowing wX to be a free parameter. For this more generic ‘double dark energy’ model, we
find wX = −1.01±0.16 and ΩX,0 = −0.10±0.56, which is again consistent with the standard
ΛCDM model, although once more the posterior distributions are sufficiently broad that the
existence of a second dark-energy component cannot be ruled out. The model including the
second dark energy component also has an equivalent Bayesian evidence to ΛCDM, within
the estimation error, and is indistuingishable according to the Jeffreys guideline.

Keywords: dark energy theory, cosmological parameters from CMBR, cosmological param-
eters from LSS, initial conditions and eternal universe
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1 Introduction

Over the past two decades, cosmological observations have confirmed that the background
expansion of the universe is accelerating [1, 2]. This remarkable phenomenon is usually
explained by assuming the existence of a single dark-energy component, often modelled as a
perfect fluid with a (generally time-dependent) equation-of-state parameter w(z) that results
in it exhibiting a negative pressure. The simplest form of dark energy is a cosmological
constant Λ, which corresponds to a constant equation of state wΛ = −1. Together with
cold dark matter, which is key to explaining the evolution of structure in the universe,
the cosmological constant gives rise to the standard ΛCDM model, which provides a good
fit to existing cosmological observations. Nonetheless, there have been a large number of
other exotic forms of matter proposed to provide alternative explanations for the current
accelerating universal expansion [3, 4], including, for example, topological defects [5].

In this paper, we remain focussed on the ΛCDM model, but with the inclusion of a
second, additional, dark energy component, having a different equation of state parameter.
One of the motivations for exploring such a possibility arises from Penrose’s ‘conformal cyclic
cosmology’ (CCC) model [6], which posits a cyclic universe in which the ultimate infinitely
expanded state of one phase (or ‘aeon’) is identified with the initial singularity of the next.
One way of realising such a model is to relate the future conformal singularity to the big bang,
which leads one to investigate the symmetries of the Friedmann equations when written in
terms of conformal time. Interestingly, as we will show, one finds that if the evolution of the
universal scale factor a is to have an appropriate symmetry in conformal time, one requires
the existence of an additional component with equation-of-state w = −2

3 .
Indeed, even without the above considerations, the standard form of the Friedmann

equation written in terms of cosmic time hints at such a hitherto neglected additional com-
ponent. For a homogeneous and isotropic universe described by the Friedmann-Robertson-
Walker (FRW) metric, the Friedmann equation describing the dynamical evolution of the
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wi component Ωi

1/3 radiation Ωr

0 matter (dust) Ωm

−1/3 curvature Ωk

−2/3 missing matter ? ΩX

−1 cosmological constant ΩΛ

Table 1. Canonical equation-of-state parameters for different constituents of the universe.

scale factor a(t) can be written as1

(
H

H0

)2

=
∑
i

Ωi,0 a
−3(1+wi), (1.1)

where H = ȧ/a is the Hubble parameter (the dot denotes differentiation with respect to cos-
mic time t), and the energy density ρi of each of the constituent components of the universe
is taken into account through a corresponding density parameter Ωi,0 = 8πGρi,0/(3H

2
0 ).

The equation-of-state parameters are wi, which we will assume throughout to be time-
independent. The summation in (1.1) also includes the curvature density parameter Ωk,0, so
that

∑
i Ωi,0 = 1.

In the ΛCDM model, the total density parameter is usually taken to comprise of contri-
butions from radiation (w = 1

3), matter (typically modelled as dust with w = 0), curvature
(w = −1

3), and the cosmological constant (w = −1). These are listed in table 1, in which one
can see an obvious ‘gap’ that we term ‘missing matter’ with w = −2

3 . Interestingly, forms
of matter have been proposed for which w = −2

3 , such as domain walls [7–9], or particular
scalar field models [10]. It should be noted, of course, that the true equation-of-state pa-
rameters for matter and radiation will, in general, differ from the canonical values listed in
table 1 (although these values are assumed in most cosmological analyses). For example, non-
relativistic matter does not have exactly zero pressure (w = 0), but a pressure proportional
to (v/c)2. Similarly, relativistic particles such as massive neutrinos have an equation-of-state
parameter slightly less than w = 1

3 , which changes with cosmic epoch. Nonetheless, these
deviations from the canonical values are small and the equation-of-state parameters for cur-
vature and a pure cosmological constant are fixed to the values listed in table 1. Hence the
suggestion of a missing component remains a distinguishable (distinct) possibility.

Once one admits the possibility of adding an extra component, however, it is natural
to extend one’s investigation by allowing its equation-of-state parameter to vary, rather than
fixing it to w = −2

3 . This more generic ‘double dark energy’ model comes at the cost of
breaking the desired symmetry of the Friedmann equation in conformal time, and hence
loses contact with Penrose’s ‘Cycles of Time’ proposal. Nonetheless, such a model is also
of interest in its own right since the observed acceleration of the universal expansion may
be driven by more than just a single dark-energy component. We note that a generic two-
component model of dark energy has previously been considered in [11].

1It is useful for later purposes to adopt the convention that the subscript 0 refers to evaluation at the time
t0 at which a(t) = 1, but that there is no necessary link with the present-day; t0 is merely some reference or
‘fiducial’ time.
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The structure of this paper is as follows. In section 2, we begin by considering the sym-
metry of the evolution of the scale factor a as a function of conformal time for the simplified
case of a spatially-flat, radiation-filled universe with a cosmological constant, and then pass
to the more general case with matter and curvature included in section 3. We give a brief
summary in section 4 of the phenomenology of an additional missing matter component with
w = −2

3 by investigating its effect on the expansion history of the universe, in particular
the distance-redshift relation, and on the evolution of perturbations, through the cosmic mi-
crowave background (CMB) and matter power spectra. In section 5, we describe our Bayesian
parameter estimation and model selection analysis methodology and the cosmological data
sets used to set constraints on our ‘missing matter’ and ‘double dark energy’ models. The
results of these analyses are given in section 6 and our conclusions are presented in section 7.

2 Conformal time development of a radiation-filled flat-Λ universe

We begin by considering the evolution of the scale factor in a spatially-flat, radiation-filled
universe with a cosmological constant. Such a model may seem rather artificial at first, but
in fact corresponds well to the initial and final stages of a real universe containing matter,
since radiation dominates at the beginning and Λ dominates at the end. Indeed, as argued
by Penrose in the CCC model, at the two extremes of the big bang and future conformal
singularity, only massless particles are likely to be present.

The time development of the main parameters of such a universe can be expressed
most simply in terms of cosmic time t. Using the definition H2

∞ ≡ Λ/3 (and setting c = 1
throughout), one finds

a(t) = aeq sinh1/2(2H∞t),

ρr(t) =
ρr,0

a4(t)
,

H(t) = H∞ coth(2H∞t),

(2.1)

where a4
eq = 8πGρr,0/(3H

2
∞) and the subscript eq refers to the instant teq at which the

radiation energy density ρr is equal to the vacuum energy density Λ/(8πG), and the subscript

0 refers to the time t0 when a = 1, as mentioned above.

One may also write these solutions in terms of conformal time η, related to cosmic time
by dη = dt/a. Indeed, as discussed in [12], a major motivation for working in terms of η is
that, for currently accepted values of the density parameters Ωi,0, the conformal time intervals
since the Big Bang (a = 0) and until the conformal singularity (a = +∞) are both finite. By
contrast, although the cosmic time since the Big Bang is finite, the future singularity occurs
at t =∞. This asymmetry means that it is more natural to work in terms of conformal time,
if one is to realise scenarios such as the CCC model. It is worth noting that, like cosmic
time, which corresponds to the proper time of comoving observers, conformal time also has a
clear operational definition as the time kept by a (Marzke-Wheeler) clock whose ‘tick’ is the
bounce of a light pulse confined to a pair of parallel mirrors moving, and therefore separating,
with the Hubble flow [13].

The transition to conformal time can be carried out analytically for the equations (2.1)
and results in solutions expressed in terms of elliptic functions (see Lasenby et al., in prepa-
ration, for further details). The important point to note here, however, is that one may show
that the ‘epoch of equality’ ηeq occurs exactly half way through the total conformal time
evolution from the big bang to the future singularity. Moreover, the evolution after equality

– 3 –
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Figure 1. Evolution (red solid curve) of the natural logarithm of the scale factor as a function of
conformal time in a spatially-flat, radiation-filled universe with Λ given by recent estimates (ΩΛ = 0.7
and H0 = 72 km s−1 Mpc−1), with the unit of time and space given by 1 Mpc. As an example, we
have arbitrarily taken aeq = 21/4. The blue dashed curve is the red curve reflected left-right about
η = ηtot/2. These curves are symmetrical not just left-right, but top-bottom if the line of reflection
is taken through the value of a at the mid-point, i.e. where a = 21/4. We can thus put the curves on
top of one another if we use the reciprocal, ã = a2

eq/a =
√

2/a. Then the blue curve is flipped and
slid up by an appropriate amount to lie on top of the red curve.

is identical to that before equality if one works in terms of a reciprocal scale factor defined
by ã = a2

eq/a. This equivalence is illustrated in figure 1.
Thus any radiation-filled, flat-Λ universe has the same basic symmetry: the development

of the scale factor after the mid-point in conformal time evolution is the reciprocal (up to an
overall multiplicative constant) of the development up to the mid-point.2

3 Inclusion of matter and curvature

We have just shown that for radiation-only universe with Λ the future conformal singularity
is approached in a manner identical as a function of 1/a to the way the big bang is exited
as a function of a. This symmetry is clearly interesting in connection with attempts, such
as the CCC model, to relate the final singularity in conformal time to the big bang. The
key question remaining is whether the symmetry can survive the inclusion of matter and
curvature. As we now show, this is indeed the case, but only provided a suitable amount of
the component labelled “missing matter” in table 1 is present.

Making the change of variable dη = dt/a in the Friedmann equation (1.1) and adopting
the canonical equation-of-state parameters listed in table 1, including an additional missing
matter component X, one obtains

1

H2
0

(
da

dη

)2

= Ωr,0 + Ωm,0a+ Ωk,0a
2 + ΩX,0a

3 + ΩΛ,0a
4, (3.1)

2In fact, the value chosen for aeq is arbitrary, and merely determines the units of conformal time, once Λ
has been specified; it is therefore sensible to use aeq = 1 in this case, so that the reciprocal relation is just
ã = 1/a.
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where we note that the right-hand side is simply a fourth-degree polynomial in a. Guided by
our findings in section 2 for the radiation-only, flat-Λ case, we make the change of variable
ã(η) = α2/a(η), where α is a constant. This immediately yields

1

H2
0

(
dã

dη

)2

= α4ΩΛ,0 + α2ΩX,0ã+ Ωk,0ã
2 +

Ωm,0

α2
ã3 +

Ωr,0

α4
ã4. (3.2)

We thus obtain an identical equation in the new variable, ã, if the densities are related by

Ωm,0 = α2ΩX,0, and Ωr,0 = α4ΩΛ,0. (3.3)

Noting that the l.h.s. of (3.1) and (3.2) are invariant under η 7→ −η, and the r.h.s. of each
does not contain η explicitly, this means that if the conditions in equation (3.3) are satisfied,
and if we measure η from the point where ã = a, i.e. where a2 = α2, then for general η we will
have a(η)a(−η) = α2. The relevance of satisfying (3.3) is that this leads to the derivatives of
a and ã matching at point when ã = a, which is of course necessary if the function is to go
smoothly through this point, whilst at the same time tracing out the reciprocal behaviour.
We note this behaviour will be obtained even with curvature included, since the symmetry
does not require any special value of Ωk,0.

As a concrete example of this behaviour, we show in figure 2 the evolution of the energy
densities of the components as a function of both conformal time and cosmic time, in a
spatially-flat (Ωk,0 = 0) case where equation (3.3) is satisfied, with α2 = 10. Specifically, in
this illustrative case, we have chosen Ωm,0 = 100 ΩΛ,0, Ωr,0 = 100 ΩΛ,0 and ΩX,0 = 10 ΩΛ,0.
These particular values mean e.g. that the radiation and matter densities should be equal
at a = 1, and the ‘missing matter’ and vacuum energy densities should be equal at a = 10,
both of which can be verified easily from the bottom panel.

We see in this case that we have indeed obtained symmetry in the density parameters
about the mid-point in conformal time, and moreover the a(η) plot is again symmetric under
flipping about the horizontal axis going through the value at the mid-point (a =

√
10),

meaning that it is symmetric in the inverse scale factor in the same way as for the radiation-
only case in section 2. It is straightforward to extend this example to include curvature,
which yields the same results as regards the symmetries.

It is worth noting that the form invariance of the dynamical laws governing the evolution
of the conformal metric scale factor to the reciprocity transformation ã(η) = α2/a(η) implies
an indifference of the dynamics to exchange of the roles of radiation with dark energy, and
matter with ‘missing matter’, and also to exchange of the roles of the big bang and future
conformal singularity. Moreover, as an intrinsic symmetry of a dynamical law, this invariance
has the same status with respect to the distribution of the various contributions to the
cosmological stress-energy tensor as does homogeneity and isotropy: it is only ‘broken’ by
cosmological perturbations in that sense that a particular phase-space distribution of particles
in the cosmological fluid may not obey it, but it remains valid in a statistical sense (either
on large scales or across an ensemble of universes).

As a caveat, however, one should recall that the true equation-of-state parameters for
radiation and matter (and possibly missing matter) will, in general, differ from the canonical
values listed in table 1 and vary with cosmic epoch, as discussed in the Introduction. Conse-
quently, the r.h.s. of (3.1) will not, in general, be a fourth-degree polynomial, in which case

– 5 –
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Figure 2. Evolution of a spatially-flat universe with matter and ‘missing matter’ present in the
proportions discussed in the text. The top panel shows the evolution of the radiation, matter, missing
matter and vacuum energy densities as a function of conformal time η, while the middle panel show the
same as a function of cosmic time t. The bottom panel shows the evolution of the natural logarithm
of the scale factor versus conformal time over the same period.
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it no longer has the opportunity to remain form-invariant3 under the reciprocity transforma-
tion ã(η) = α2/a(η).

Nonetheless, the basic notion of symmetric behaviour at the big bang and future con-
formal singularity remains valid, particularly since at these extremes only massless particles
are likely to be present (as argued by Penrose in the CCC model). Thus, it still seems of
interest to explore the symmetry discussed here as a possible approximate symmetry of our
universe. In particular, the key to realising this symmetry, is the existence of the ‘missing
matter’ component, which moreover has to be present in the proportion discussed earlier, and
encoded in equation (3.3). The possibility that such a ‘missing matter’ component is indeed
present in our universe seems well worth testing against current cosmological observations.

4 Phenomenology

Given the motivation presented in sections 2 and 3, we begin by investigating the phenomenol-
ogy of a cosmological model containing a second component X with negative pressure (in
the event the energy density is positive), in addition to a cosmological constant. Since our
‘missing matter’ model (for which wX = −2

3) is just a special case (albeit a very important
one) of our more generic (but less theoretically well-motivated) ‘double dark energy’ model
(for which wX is allowed to vary), we will focus here on the former as being a representative
example of the latter.

In our analysis, we do not restrict the energy density ΩX (at any epoch) to be positive.
Although once widely accepted, the trace, strong, null, weak and dominant energy conditions
all now have a somewhat weakened status following recent evidence of violations in physical
systems ranging from neutron stars to inflationary cosmology, and in particular from the
physics of scalar fields [14, 15]. Given this ongoing historical revision of the energy condi-
tions, it seems appropriate to continue in the tradition of letting the observational data take
precedence over theoretical prejudice. Indeed, from a Bayesian perspective, it seems prudent
not to impose a prior that assigns zero probability density to negative values of ΩX , since
this may exclude outcomes that are implied by the data.

The effect of the additional component X on the global expansion history of the universe
depends only on the equation-of-state parameter wX , whereas its effect on the evolution of
perturbations will also depend on the nature of the component X, in particular its assumed
dynamical properties. We therefore consider these two issues separately.

4.1 Background evolution

The global expansion history of the cosmological model is most conveniently represented
through the distance-redshift relation. Indeed, comparing the predicted relation between the
luminosity distance dL and redshift z of an object with observations of astronomical ‘standard
candles’, such as Type-Ia supernovae, has provided the most direct and convincing evidence
that the expansion of the universe is accelerating.

3In the case where the equation-of-state parameter for each component is constant, but might differ slightly
from the canonical values listed in table 1, so that wi → wi + 1

3
εi, each term on the right-hand side of (3.1)

would be separately multiplied by the appropriate factor a−εi , whereas each term on the right-hand side of (3.2)
would simply inherit the additional factor ãεi . Thus, form-invariance under the reciprocity transformation
would be recovered if εΛ = −εr and εX = −εm, together with the automatic condition εk = 0.

– 7 –
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Figure 3. Dimensionless luminosity distance H0dL(z) as a function of redshift z for a concordance
ΛCDM cosmology with an additional component X with equation-of-state parameter wX = − 2

3 , for
different values of ΩX,0 (and adjusted ΩΛ,0).

The luminosity distance to an object at redshift z is given by

dL(z) = (1 + z)
Sk
(√
|Ωk,0|χ(z)

)√
|Ωk,0|

, (4.1)

where Sk(x) = sinhx, x, sinx for spatial curvature parameter k = −1, 0, +1 respectively,
and the comoving radial coordinate χ(z) is determined by the expansion history:

χ(z) =

∫ z

0

dz̄

H(z̄)
, (4.2)

where H(z) is obtained from the Friedmann equation (1.1). The inclusion of the ΩX,0

into (1.1) thus directly affects the expansion history embodied in H(z), and hence can serve
either to increase or decrease the luminosity distance dL(z) to an object at redshift z. Figure 3
illustrates this effect for a few representative values of ΩX,0. If ΩX,0 > 0, the apparent lumi-
nosity is increased and hence the luminosity distance is reduced compared to the standard
ΛCDM model. The opposite effect occurs for ΩX,0 < 0.

The power of the luminosity distance as a cosmological probe resides in the fact that it
can be simply related to apparent brightness m(z) obtained directly from a set of standard
candles, each (assumed to be) of absolute magnitude M , namely

m(z) = M + 5 log10

[
dL(z)

Mpc

]
+ 25, (4.3)

where the constant offset ensures the usual convention that m = M for an object at dL =
10 pc. Type-Ia supernovae constitute a set of ‘standardizable candles’ that can be used to
constrain cosmological models in this way [16].

It should be pointed out that, for the background evolution, the combination of a
cosmological constant with wΛ = −1 and an additional component X with constant wX

is equivalent, under certain conditions outlined below, to a single dark energy component
with a time-varying equation-of-state parameter weff(a) given by the ratio of the combined

– 8 –
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Figure 4. The evolution of weff in equation (4.4) with redshift z (solid coloured curves) for ΩΛ,0 = 0.8,
ΩX,0 = −0.1, and wX ranging from −1.4 (blue line) to 0 (yellow line) in steps of 0.1. These curves
are overlaid on a ‘free-form’ reconstruction of w(z) for a single time-varying dark energy model
using Planck 2015 era CMB, BAO, SNIa and Lyman-α data, reproduced from [22], which shows
the posterior probability Pr(w|z), with colour scale in confidence interval values, and the 1σ and
2σ confidence intervals plotted as black lines. Reproduced from [22] with permission. c© Oxford
University Press on behalf of the Royal Astronomical Society.

pressure of the two components to their combined density [11], namely

weff(a) =
−ΩΛ,0 + wXΩX,0a

−1

ΩΛ,0 + ΩX,0 a−1
. (4.4)

Examples of such models have been studied extensively [17–21], albeit not with the particular
form of weff(a) given above. It is clear that the variation of weff with either a or redshift
z is non-linear, so weff(a) is not contained within either of the common w(z) = w0 + w1z
or w(a) = w0 + wa(1 − a) parameterisations. More importantly, it should be noted that
if ΩΛ,0 and ΩX,0 have different signs, as we allow in our analysis in section 5, then weff(a)
becomes singular at a = |ΩX,0/ΩΛ,0|. Thus, if ΩΛ,0 or ΩX,0 (or both) are allowed to take
positive and negative values, then our missing matter (or double dark-energy) model is not, in
general, described by a single time-varying dark-energy component. Nonetheless, it is worth
comparing the evolution of weff with a or z implied by (4.4) with current constraints for a
single time-varying dark-energy component. Such a comparion is plotted in figure 4, where
we have assumed the values ΩΛ,0 = 0.8, ΩX,0 = −0.1 in (4.4), which are consistent with those
obtained in section 6 from our analysis of observational data, and wX ranges from −1.4 (blue
line) to 0 (yellow line) in steps of 0.1. It is clear that the resulting weff(z) curves are indeed
consistent with the constraints on w(z) for a single time-varying dark energy model. For the
assumed values of ΩΛ,0 and ΩX,0, it is worth noting that weff in (4.4) becomes singular at
a = 1/8, or equivalently z = 7, and hence corresponds closely to a single time-varying dark
energy model over the range of redshifts for which observational constraints are available.
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Figure 5. CMB power spectra for a concordance ΛCDM model with an additional component X,
with equation-of-state parameter wX = − 2

3 , for several values of ΩX,0.

4.2 Evolution of perturbations

An additional component X will affect the growth of perturbations through its contribution
to H(z) and the evolution of the matter density. Moreover, we assume here that X has the
same dynamical behaviour as that usually assumed for a generic dark energy component.
In particular, we use the CAMB [23] dark-energy module developed by [24], in which dark
energy is assumed itself to exhibit Gaussian adiabatic perturbations. It is worth noting that,
as the equation-of-state parameter approaches−1, the effects of the dark energy perturbations
disappear, as one would expect for a pure cosmological constant.4 We modified the CAMB
software to include our additional component and calculate the predicted power spectra
of cosmic microwave background (CMB) anisotropies and matter perturbations, for several
values of ΩX,0; the values of the remaining cosmological parameters were set to their standard
concordance values with ΩΛ,0 varying accordingly to ensure that

∑
i=r,m,k,X,Λ Ωi = 1.

We plot the CMB power spectra in figure 5, from which we see that, as one might
expect, the main effect of a non-zero ΩX,0 is to shift the positions of the acoustic peaks,
which are sensitive to the spatial geometry of the universe, and hence depend on the total
energy density of all the components. Thus, one would expect constraints on ΩX,0 from CMB
observations to be tightly correlated with the constraints on ΩΛ and Ωk. For positive values
of ΩX,0, we also see an enhancement of power on the largest scales from the late-time ISW
effect. The CMB power spectrum is now well-constrained by observations over a wide range
of scales.

In figure 6, we plot the predicted matter power spectra for different values of ΩX,0; again
the other parameters are set to their concordance values, with ΩΛ,0 varied to incorporate the
missing matter density. We see that the dominant effect of the additional component is on the
normalisation of the matter power spectrum. The amplitude of fluctuations is supressed for
ΩX,0 > 0 and enhanced for ΩX,0 < 0. By contrast, the positions of the acoustic oscillations,
which depend on the matter density, are unaffected by the introduction of the additional
component.

4It should be borne in mind, however, that a possible physical instantiation of an additional component X
with wX = − 2

3
could be in the form of domain-wall topological defects, for example, in which case the effect

on the generation and evolution of perturbations may be very different to that assumed here.
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Figure 6. Matter power spectra for a concordance ΛCDM model with an additional component X,
with equation-of-state parameter wX = − 2

3 , for several values of ΩX,0.

It is worth noting that, although the background evolution of the universe is identical for
our missing matter (or double dark-energy) model and for a model with a single time-varying
dark energy component defined by (4.4) (provided ΩΛ,0 and ΩX,0 have the same sign), the
evolution of perturbations is, in general, different for the two cases. This is true even in the
simplest case where one assumes the same dynamical behaviour for the generic dark energy
components in the two models, namely that they exhibit Gaussian adiabatic perturbations.
This is illustrated in figure 7, in which we plot the CMB and matter power spectra for a
specific example of each model. Consequently, we reiterate our earlier comment that the
many previous studies of models containing a single time-varying dark-energy component
are not equivalent to the study presented here.

5 Analysis

We now perform a Bayesian parameter estimation and model comparison analysis of our
‘missing matter’ and ‘double dark energy’ models, using recent cosmological observations. In
particular, we use the Planck 2015 data release temperature measurements [25] and lensing
data [26]. In addition to CMB data, we include distance measurements of 740 Supernovae
Ia from the SNLS-SDSS collaborative effort called the joint light-curve analysis (JLA; [27])
and several Baryon Acoustic Oscillation (BAO; [28–32]) measurements of distance.

Throughout the analysis we consider purely Gaussian adiabatic scalar perturbations
and neglect tensor contributions. We assume a modified ΛCDM model specified by the
following parameters: the physical baryon density Ωbh

2 and CDM density ΩDMh
2, where

h is the dimensionless Hubble parameter such that H0 = 100h kms−1Mpc−1; the curvature
density Ωk,0 of the universe; θ, which is 100× the ratio of the sound horizon to angular
diameter distance at last scattering surface; the optical depth τ at reionisation; and the
amplitude As and spectral index ns of the primordial perturbation spectrum measured at the
pivot scale k0 = 0.05 Mpc−1. We also include 17 nuisance parameters associated with the
Planck and JLA datasets. The ranges of the uniform priors assumed on the standard ΛCDM
parameters are listed in table 2, with nuisance parameter priors set to the advised values.
Our hypothetical additional component is characterised by its density parameter ΩX,0 and
equation-of-state parameter wX . We assume a uniform prior on ΩX,0 in the range [−1, 2]
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Figure 7. CMB power spectra (top) and matter power spectra (bottom) for: a concordance ΛCDM
model with an additional component X, with equation-of-state parameter wX = − 2

3 and density
ΩX,0 = 0.2 (dark blue line); and a CDM model with a single time-varying dark energy component
with effective equation-of-state parameter weff(a) defined in (4.4) (light green line).

Parameter Prior range

Ωb,0h
2 [0.019, 0.025]

Ωdm,0h
2 [0.095, 0.145]

Ωk,0 [−0.05, 0.05]

θ [1.03, 1.05]

τ [0.01, 0.4]

ns [0.9, 1.1]

ln[1010As] [2.7, 4.0]

Table 2. Ranges of the uniform priors assumed on the standard ΛCDM parameters in the Bayesian
analysis.
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throughout. For the missing energy model, we have wX = −2
3 , and for the double dark

energy model we assume the uniform prior wX = [−3
2 ,−

1
2 ].

To carry out the exploration of the parameter space, we first incorporate the extra
component into the standard cosmological equations, by performing the minor modifications
to the CAMB code [23] described in section 4.2 (which implement a parameterised post-
Friedmann (PPF) prescription for the dark energy perturbations [24]). We then include into
the CosmoMC software [33] a fully-parallelised version of the nested sampling algorithm
PolyChord [34, 35], which significantly increases the efficiency of calculating the Bayesian
evidence and also reliably produces posterior samples even from distributions with multiple
modes and/or high dimensionality. A suitable guideline for making qualitative conclusions
has been laid out by Jeffreys [36]: if Bij < 1 model i should not be favoured over model j,
1 < Bij < 2.5 constitutes significant evidence, 2.5 < Bij < 5 is strong evidence, while Bij > 5
would be considered decisive.

6 Results

For comparison purposes, we first assume no additional component X, in order to determine
the constraints imposed by the current combined data sets on the standard ΛCDM model.
In particular, we find the data indicate the dominance of dark energy in the form of a
cosmological constant with ΩΛ,0 = 0.696± 0.007, followed by matter density (dark matter+
baryons) Ωm,0 = 0.305± 0.007 , and an almost negligible spatial curvature Ωk,0 = −0.0013±
0.0024. We also obtain the present Hubble parameter H0 = 67.78± 0.70. The constraints on
the other parameters {θ, τ, As, ns} remain essentially unaffected by the introduction below of
our additional component X, and so we do not consider them further.

6.1 Missing matter model

The inclusion of a missing matter component X with wX = −2
3 considerably broadens

the parameter constraints. In particular, we find: ΩΛ,0 = 0.734 ± 0.083, which constitutes
an order-of-magnitude increase in the error bars as compared with the standard ΛCDM
model, Ωm,0 = 0.302 ± 0.010, Ωk,0 = −0.0023 ± 0.0029 and H0 = 68.10 ± 1.04. Figure 8
shows 1D and 2D marginalised posterior distributions for the density parameters (note that
Ωm,0 = 1 − ΩΛ,0 − Ωk,0 − ΩX,0). As expected, we observe a clear degeneracy between ΩX,0

and ΩΛ,0, and slight degeneracy between ΩX,0 and Ωk,0. The 1D constraint on the density
parameter of missing matter is ΩX,0 = −0.034 ± 0.075. The current data prefer a slightly
negative value, which is difficult to interpret physically, but the errors suggest this not to
be a significant favouring. The 1D marginal shows moderate relative probability even for
ΩX,0 ∼ 0.1, and so the presence of an appreciable missing matter component cannot be ruled
out. Our results are, however, still consistent with a standard ΛCDM model.

This view is supported by our Bayesian model comparison. We find that the log-evidence
difference (or Bayes factor) between the missing matter model and the standard ΛCDM
model is BΛ+X,Λ = −1.12 ± 0.53. According to Jeffreys guideline [36, 37], the inclusion of
the missing matter component is therefore slightly disfavoured, but almost indistinguishable,
from a model perspective given current cosmological data.

6.2 Double dark energy model

We now allow for the equation-of-state parameter wX for our additional component to be
a free parameter (albeit still independent of redshift), for which we assume a uniform prior
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Figure 8. 1D and 2D marginalised posterior distributions for density parameters in the missing
matter model (note that Ωm,0 = 1−ΩΛ,0−Ωk,0−ΩX,0). The 2D constraints are plotted with 1σ and
2σ confidence contours and the cubehelix colour map [38].

in the range wX = [−3
2 ,−

1
2 ]. We thus allow for the possibility that this second dark-energy

component could be a form of phantom energy with wX < −1 [39]. It should also be
pointed out, however, that this parameterisation for the additional component necessarily
includes a cosmological constant as the special case wX = −1. This therefore leads to an
unavoidable degeneracy between the additional component and the cosmological constant,
and this should be borme in mind when interpreting the parameter constraints derived from
the cosmological data.

Figure 9 shows the resulting 1D and 2D marginalised posterior distributions for wX

and the density parameters in the model (once again, note that Ωm,0 = 1 − ΩΛ,0 − Ωk,0 −
ΩX,0). At the top-right of the figure we also give a representation of the 3D posterior in the
(wX ,ΩX,0,ΩΛ,0) subspace, where the colour indicates the value of ΩΛ,0.

The 1D constraints on the standard parameters are as follows: ΩΛ,0 = 0.797 ± 0.556,
Ωm,0 = 0.305 ± 0.009, Ωk,0 = −0.0015 ± 0.0024, H0 = 67.86 ± 1.01. The constraints on
the parameters describing the additional second dark-energy component may be given as
wX = −1.01± 0.16 and ΩX,0 = −0.101± 0.557, although these numbers obscure the nature
of the marginal (wX ,ΩX,0)-space and (wX ,ΩΛ,0)-space distributions slightly. These results
are clearly consistent with a standard ΛCDM model, although the inclusion of the additional
dark-energy component has again resulted in the uncertainties in the constraints on the stan-
dard parameters being much larger than those obtained assuming a ΛCDM model. Indeed,
the 1D marginal for ΩX,0 shows moderate relative probability even for ΩX,0 ∼ ±0.3, although
this is likely due to a value of w=− 1 simply reproducing the ΛCDM model.

Moreover, the 2D and 3D marginal distributions in figure 9 have interesting features
that are worth noting. As might be expected, we again see a pronounced degeneracy between
ΩΛ,0 and ΩX,0. The marginal distribution in (ΩX,0,ΩΛ,0) subspace shows a strong correla-
tion between these energy densities that would imply the potential for a trade-off between
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Figure 9. 1D and 2D marginalised posterior distributions for density parameters in the double dark
energy model (note that Ωm,0 = 1−ΩΛ,0−Ωk,0−ΩX,0). The 2D constraints are plotted with 1σ and 2σ
confidence contours. The top-right panel shows the 3D posterior distribution in the (wX ,ΩX,0,ΩΛ,0)
subspace, where the colour code indicates the value of ΩΛ,0 using the cubehelix colour map [38].

them. One might be concerned, however, that the marginal distribution plotted is strongly
dominated by the contribution (after marginalising over wX) from near wX = −1. If so, one
could then not infer the potential of a trade-off between these two energy densities at (any)
other values of wX . To investigate this possibility, we also calculated the conditional distri-
butions in (ΩX,0,ΩΛ,0) subspace for a small set of fixed wX -values in the range [−0.7,−1.3].
The resulting distributions were, however, very similar to that plotted in figure 9, and so
indicating that the two energy densities can indeed be traded-off against one another.

Also of interest is our Bayesian model comparison, which finds that the log-evidence
difference (Bayes factor) between the double dark energy model and standard ΛCDM is
BΛ+X,Λ = −0.43± 0.45. This shows that neither model is preferred over the other with any
significance; indeed they are in the indistinguishable range of Jeffreys guideline and identical
within 1σ of the error on the evidence calculation. Thus, the two additional parameters ΩX,0

and wX in the double dark energy model allow it the freedom to fit the data sufficiently
better than ΛCDM to compensate for the corresponding increase in the prior volume, and
hence the model is not penalised by the evidence. The Bayes factor stated is likely also aided
by the broadening of posteriors on some of the parameters, as this implies a lower Occam
factor associated with those parameters.

7 Discussion and conclusions

We have investigated the possibility that there exist two dark-energy components in the
universe: a cosmological constant, with w = −1; and an additional component X with
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equation-of-state parameter wX . In the first instance, we fix the equation-of-state parameter
of X to the value wX = −2

3 . Assuming the canonical values for equation-of-state parameters
of the other components, this ‘missing matter’ model corresponds to the special case in
which the additional component is required for the Friedmann equation written in terms of
conformal time η to be form invariant under the reciprocity transformation ã(η) = α2/a(η),
where α2 is a constant, which is relevant to scenarios such as Penrose’s conformal cyclic
cosmology (CCC) proposal. Foregoing this requirement, we then consider the more general
‘double dark energy’ model, in which wX is a free parameter assumed to have uniform prior in
the range wX = [−3

2 ,−
1
2 ]. For both models, we perform a Bayesian parameter estimation and

model selection analysis, relative to standard ΛCDM, using recent cosmological observations
of cosmic microwave background anisotropies, Type-Ia supernovae and large scale-structure.

For the missing matter model, the introduction of the additional component X signifi-
cantly broadens the constraints on the standard parameters in the ΛCDM model, but leaves
their best-fit values largely unchanged. The 1D marginalised constraint on the missing matter
density parameter is ΩX,0 = −0.034± 0.075. Thus, current cosmological observations prefer
a slightly negative value, the interpretation of which is unclear, but the posterior on this
parameter is sufficiently broad that significant relative probability exits even for ΩX,0 ∼ 0.1,
and so the presence of a missing matter component cannot be ruled out. To support this
conclusion, our results are consistent with ΛCDM and our Bayesian model selection analysis
suggests the missing matter model to be almost indistinguishable from ΛCDM, with a Bayes
factor of −1.12± 0.53 log-units of evidence.

For the double dark energy model, the constraints on standard ΛCDM parameters
are again considerably broadened. The 1D marginalised constraints on the vacuum and
second dark energy component are ΩΛ,0 = 0.797 ± 0.556 and ΩX,0 = −0.101 ± 0.557 (with
wX = −1.01 ± 0.16), respectively, which are again consistent with ΛCDM. Once more,
however, the 1D marginalised posterior on ΩX,0 is sufficiently broad that even ΩX,0 ∼ ±0.3
is not ruled out. We also find that the double dark energy model has a similar Bayesian
evidence to ΛCDM, and hence neither model is preferred over the other.
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