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ABSTRACT
We study the covariance properties of real space correlation function estimators – primarily
galaxy–shear correlations, or galaxy–galaxy lensing – using SDSS data for both shear cata-
logues and lenses (specifically the BOSS LOWZ sample). Using mock catalogues of lenses
and sources, we disentangle the various contributions to the covariance matrix and compare
them with a simple analytical model. We show that not subtracting the lensing measurement
around random points from the measurement around the lens sample is equivalent to perform-
ing the measurement using the lens density field instead of the lens overdensity field. While the
measurement using the lens density field is unbiased (in the absence of systematics), its error
is significantly larger due to an additional term in the covariance. Therefore, this subtraction
should be performed regardless of its beneficial effects on systematics. Comparing the error
estimates from data and mocks for estimators that involve the overdensity, we find that the
errors are dominated by the shape noise and lens clustering, which empirically estimated co-
variances (jackknife and standard deviation across mocks) that are consistent with theoretical
estimates, and that both the connected parts of the four-point function and the supersample co-
variance can be neglected for the current levels of noise. While the trade-off between different
terms in the covariance depends on the survey configuration (area, source number density), the
diagnostics that we use in this work should be useful for future works to test their empirically
determined covariances.

Key words: gravitational lensing: weak – galaxies: evolution – large-scale structure of Uni-
verse – cosmology: observations.

1 IN T RO D U C T I O N

Galaxy–galaxy lensing, the measurement of the tangential shape
distortion (shear) due to gravitational lensing by galaxies, has
emerged as an important cosmological probe to study the dark mat-
ter distribution around galaxies and the growth of large-scale struc-
ture (Bartelmann & Schneider 2001; Weinberg et al. 2013). Since
lensing is sensitive to all matter, galaxy–galaxy lensing provides
a unique way to map the matter distribution around galaxies (or
galaxy clusters) and has been measured to good precision by many
surveys (e.g. Fischer et al. 2000; Hoekstra, Yee & Gladders 2004;
Sheldon et al. 2004; Heymans et al. 2006; Mandelbaum et al. 2006;
Leauthaud et al. 2012; van Uitert et al. 2012; Velander et al.
2014; Hudson et al. 2015; Viola et al. 2015; Buddendiek et al. 2016;
Clampitt et al. 2017). Several studies have used galaxy–galaxy lens-
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ing to study the halo mass of galaxies and understand the galaxy–
halo connection (e.g. Hoekstra et al. 2004; Heymans et al. 2006;
Mandelbaum et al. 2006; Leauthaud et al. 2012; Tinker et al. 2012;
van Uitert et al. 2012; Gillis et al. 2013; Velander et al. 2014; Hudson
et al. 2015; Sifón et al. 2015; van Uitert et al. 2016). In combina-
tion with galaxy clustering, galaxy–galaxy lensing can also be used
to recover the underlying matter correlation function, which can
then be used to constrain cosmology (Seljak et al. 2005; Baldauf
et al. 2010; Mandelbaum et al. 2013; More et al. 2015; Buddendiek
et al. 2016; Kwan et al. 2017) and to test the theory of gravity
(Zhang et al. 2007; Reyes et al. 2010; Blake et al. 2016).

With the increasing precision of cosmological surveys, there has
been an increasing focus on estimating the covariances of the mea-
surements more accurately as well, since the uncertainties in co-
variance matrices can lead to incorrect estimation of uncertain-
ties in cosmological parameters (e.g. Hartlap, Simon & Schneider
2007; Dodelson & Schneider 2013; Taylor, Joachimi & Kitching
2013; Mohammed, Seljak & Vlah 2017). Estimating the non-
Gaussian or connected part of the covariance matrix, which has two
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contributions, is especially challenging. The first contribution is due
to mode couplings between small-scale (or in-survey) modes from
the non-linear evolution of structure (Scoccimarro, Zaldarriaga &
Hui 1999; Cooray & Hu 2001; Hu & White 2001; Mohammed,
Seljak & Vlah 2017). The second term is the supersample vari-
ance contribution from the couplings of modes within the survey
to the modes corresponding to length-scales that are larger than
the survey size (e.g. Hu & Kravtsov 2003; Hamilton, Rimes &
Scoccimarro 2006; Takada & Hu 2013; Li, Hu & Takada 2014;
Schaan, Takada & Spergel 2014; Takada & Spergel 2014). Current
prescriptions for estimating covariances include using numerical
simulations (e.g. Dodelson & Schneider 2013; Manera et al. 2013;
Li et al. 2014), using a physically motivated halo model (e.g.
Takada & Hu 2013; Schaan et al. 2014) and using analytical es-
timates based on perturbation theory (e.g. Mohammed et al. 2017).

While many studies have explored this issue of covariance ma-
trices for two-point functions in general, galaxy–galaxy lensing
covariances have been relatively less well studied. When address-
ing this question, one must also address the question of which
estimator is used for the measurement. Several estimators for the
galaxy–galaxy lensing signal can be found in the literature. One
estimator uses the average tangential shear of background galaxies
with respect to the lens galaxies. Another estimator also includes the
subtraction of tangential shear around random points, which has an
expectation value of zero in the absence of systematics and which
can be used to remove the impact of coherent additive shear system-
atics. Subtraction of the lensing shear around random points is often
argued to be beneficial primarily due to the way it removes these
additive systematic errors (e.g. Mandelbaum et al. 2005, 2013).
However, another motivation for the latter estimator can be found
in the work on optimal estimators of galaxy clustering: Landy &
Szalay (1993) illustrated that the estimators that are constructed us-
ing mean-zero quantities (overdensity), while having an expectation
value that is the same as the simple estimator, have better covari-
ance properties.1 For example, in the case of galaxy surveys, random
points (R) that follow the area coverage of the lenses are typically
used to estimate the mean of the galaxy field (D) in the presence of
complicated survey masks. They are then used to convert the galaxy
field into the normalized overdensity (mean-zero) field (D − R)/R,
the autocorrelation of which is the standard Landy–Szalay (LS) es-
timator for galaxy clustering with improved covariance properties.
Likewise, for galaxy–galaxy lensing, estimating the mean tangen-
tial shear around lens galaxies corresponds to correlating the galaxy
density field (nonzero mean) with the shear field, while subtraction
of the mean tangential shear around random points results in corre-
lating the mean-zero galaxy overdensity with the shear.

In general, most galaxy–galaxy lensing studies either compute
the covariance matrices analytically assuming shape noise and mea-
surement noise only (see e.g. Viola et al. 2015), or use the jackknife
method, which has the advantage that it includes all observational
effects, though it is noisier and also limits the scales that can be used
in the analysis (see e.g. Blake et al. 2016; Hildebrandt et al. 2017,
for comparison of theoretical and jackknife covariance). It is also

1 Sometimes the reverse claim is made in the literature – i.e. that the estimator
with the signal around random points subtracted has increased variance. This
claim is typically made in cases where not enough random points are used,
in which case there is indeed some added variance. Our argument that the
covariance properties of this estimator are superior is true in the limit of
infinite random points: they are nothing other than a Monte Carlo method to
determine the survey volume and hence the mean density. We explore this
issue in more realistic cases in this work.

not clear how well the jackknife method can capture the supersam-
ple covariance, though since galaxy–galaxy lensing is dominated by
shape noise in current generation surveys, supersample covariance
is expected to be subdominant. Recently Shirasaki et al. (2017, see
also Blake et al. 2016) did a detailed study of the galaxy–galaxy
lensing covariance matrix using realistic N-body and ray tracing
simulations. In version 1 of their paper, they found that once the
scales are of similar order as the jackknife division size, the jack-
knife method overestimates the errors compared to errors obtained
from the standard deviation across different simulation realizations,
even in the presence of shape noise. This overestimation in jackknife
errors was interpreted as increased contribution from supersam-
ple covariance, since the jackknife method has effectively divided
the survey into several small survey realizations, and the supersam-
ple covariance grows with the square of the mass variance within
the survey volume (Takada & Hu 2013), which can scale differently
from the usual inverse-volume scaling of the covariance terms. The
analysis by Shirasaki et al. (2017) applies to the galaxy–galaxy
lensing estimators without subtracting the measurement around the
randoms lens sample, as in e.g. Leauthaud et al. (2012), Viola et al.
(2015), Hudson et al. (2015), van Uitert et al. (2016) and Blake et al.
(2016) [Blake et al. (2016) subtracted the measurement around ran-
dom points from the signal, but this was not done for the covariance
estimation]. Other galaxy–galaxy lensing studies subtract out the
signal around the randoms (e.g. Sheldon et al. 2004; Mandelbaum
et al. 2005, 2006; Clampitt et al. 2017; Kwan et al. 2017). In an
updated version of their paper, Shirasaki et al. (2017) show that after
subtracting out the measurement around randoms, the covariance
decreases and the covariance from the jackknife method is consis-
tent with the covariance obtained using different mock realizations
(for scales smaller than the size of the jackknife regions).

In this work, we explore the covariance properties of these two
galaxy–galaxy lensing estimators both in the presence and the ab-
sence of systematic errors. We show that there is a theoretical reason
to believe that the estimator with the mean shear around random
points subtracted should have more optimal covariance proper-
ties, and we explore the impact of this difference in practice for
one particular survey. Aside from the issue of removing system-
atics, we demonstrate the correlated noise term between measure-
ments around galaxies and randoms, which results in more opti-
mal variance properties after subtracting the shear around random
points. We also study the differences in the covariance matrices
obtained from the jackknife method and standard deviations across
several mock realizations, similar to Shirasaki et al. (2017). We
demonstrate several methods of empirically estimating specific co-
variance contributions, and interpret the results of those methods
in terms of which galaxy–galaxy lensing covariance terms they
include.

This work is organized as follows. In Section 2, we briefly review
the theoretical formalism and estimators, and in Section 3 we present
the data used. Results are presented in Section 4, and we conclude in
Section 5. In Appendix A, we derive the expressions for covariance
when cross-correlating non-zero mean quantities and in Appendix B
we present comparisons of different estimators in the case of galaxy
clustering measurements.

Throughout this work, we use the Planck 2015 cosmological
parameters (Planck Collaboration XIII 2016) with �m = 0.309,
ns = 0.967, As = 2.142 × 10−9, σ 8 = 0.82. Theory predictions
are computed using the linear theory + halofit (Smith et al. 2003;
Takahashi et al. 2012) power spectrum generated with the CAMB

(Lewis & Bridle 2002) software. We use h = 1 when computing dis-
tances and hence our �� measurements are in units of h M� pc−2.

MNRAS 471, 3827–3844 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/471/4/3827/4002679
by University of Florida user
on 11 January 2018



Covariance of galaxy–galaxy lensing estimators 3829

2 FO R M A L I S M A N D M E T H O D O L O G Y

2.1 Galaxy lensing

Here, we briefly review the formalism of galaxy–galaxy lensing.
For a general review of gravitational lensing, we refer the reader
to Bartelmann & Schneider (2001), Weinberg et al. (2013) and
Kilbinger (2015).

In galaxy–galaxy lensing, we measure the projected surface mass
density � around the lens galaxies. In the case of a spherically
symmetric lens, we can write the convergence and shear as

κ(rp) = �(rp)

�c

(1)

γt (rp) = �̄(<rp) − �(rp)

�c

. (2)

�̄(<rp) is the mean surface mass density within the transverse
separation rp, and the critical surface density is defined as

�c = c2

4πG

fk(χs)

(1 + zl)fk(χl)fk(χs − χl)
, (3)

where fk(χ ) is the transverse comoving distance (fk(χ ) = χ in a flat
universe). 1 + zl converts the c2/G factor to comoving space.

We can write � in terms of the projected galaxy–matter correla-
tion function as

�(rp) = ρ̄m

∫
d� ξgm(rp, �) = ρ̄mwgm(rp), (4)

where � denotes the line-of-sight separation from the halo centre,
and we have ignored the effects of lensing window function, which
depends on �. Nominally the definition for � should include a
factor of 1 + ξ gm within the integral (rather than just ξ gm), but the
constant term does not contribute to γ t because it gets removed
by subtraction of the �̄(< rp) term. In the linear bias regime, the
galaxy–matter projected correlation function can be derived from
the matter power spectrum as

wgm(rp) = bgrcc

∫
dzW (z)

∫
d2k

(2π)2
Pδδ(k, z)ei(rp ·k), (5)

where bg is the galaxy bias and rcc is the galaxy–matter cross-
correlation coefficient, both of which are assumed to be independent
of redshift in this equation. Pδδ(k, z) is the matter power spectrum
(linear+halofit) at redshift z. To lowest order, lensing measurements
are not affected by redshift space distortions, and hence we do not
include any corrections for them. The weight function W(z) depends
on the redshift distribution of the source galaxies and on the weights
used in the estimators when measuring the signal (see Section 2.2).
We explicitly include these weights when computing the effective
redshift zeff for the theory calculations.

2.2 Estimator

Our observable quantity for the galaxy–galaxy lensing measurement
is ��, which is estimated in bins of rp as

�̂�gR(rp) =
∑

ls wlsγ
(ls)
t �(ls)

c∑
Rs wRs

−
∑

Rs wRsγ
(Rs)
t �(Rs)

c∑
Rs wRs

. (6)

The summation is over all lens–source (ls) pairs. γ t is the tangen-
tial shear measured in the lens–source frame. �c is the geometric

factor defined in equation (3), and the optimal weight wls for each
lens–source pair (wRs is defined analogously for random–source
pairs) is defined as (see Mandelbaum et al. 2005)

wls = �−2
c

σ 2
γ + σ 2

SN

. (7)

The �−2
c enters the inverse variance weight because we defined the

�� in equation (6) as the maximum likelihood estimator (Sheldon
et al. 2004). Note that the denominator in equation (6) has a sum
over weights wRs, measured by using random lenses rather than lens
galaxies. Division by

∑
RswRs rather than

∑
lswls corrects for the

dilution of the shear signal by source galaxies that are physically
associated with the lens but appear to be behind the lens due to
photo-z scatter. These galaxies do not contribute any shear but are
counted in the total weights (sum over wls). The correction factor
for this effect

∑
lswls/

∑
RswRs (properly normalized to account for

different number of random and real lenses) is usually called the
boost factor (Sheldon et al. 2004; Mandelbaum et al. 2005) and is
∼1 for the scales we use in this work rp � 1 h−1 Mpc. Finally, we
subtract the shear signal measured around the random points to re-
move any systematics that may contribute a spurious shear signal at
large scales, and to construct a more optimal estimator. Throughout
this paper, the subscript ‘gR’ is used to indicate that the measure-
ment around random points is subtracted from the measurement
around the lenses:

�̂�gR(rp) = �̂�g(rp) − �̂�R(rp). (8)

One of the main goals of this paper is to test how the subtraction
of the signal measured around random points impacts the covariance
matrix of the final measurement. Hence, we will study the signals
measured around galaxies and randoms separately as well. We will
refer to the signal measured around galaxies by �̂�g and around
random points by �̂�R . The ratio of the number of random points
used to the number of lens galaxies is NR:

NR = Number of random lenses

Number of lens galaxies
. (9)

In case of NR = 0, �̂�gR ≡ �̂�g .
To estimate jackknife errors, we use 100 approximately equal

area (∼10 deg on a side) jackknife regions to obtain the jackknife
mean and errors for each rp bin.

2.3 Covariance: theoretical expectations

As is derived in Appendix A, the covariance for ��g is given by

Cov(��g)(|rp,i |, |rp,j |)
=
[ AW (rp,i − rp,j )

AW (rp,i)AW (rp,j )

1

LW

∫
dk k

2π
J2(krp,i)J2(krp,j )

× (
�2

c

(
Pgg(k) + Ng

) (
Pκκ (k) + Nγ

) + ��2ρP 2
gδ + Tgγgγ

)]
+
{

1

AW (rp,i)AW (rp,j )LW

∫
dk k

2π
J2(krp,i)J2(krp,j )

× W̃ (k)2�2
c

(
Pκκ (k) + Nγ

)}
. (10)

Here, the lens galaxy power spectrum can be written as Pgg =
b2

gPδδ(k) in the linear bias regime, the lens galaxy shot noise

power spectrum is Ng = 1
ng

, the shape noise term is Nγ = σ 2
γ

ns
,

the galaxy–shear cross-power spectrum is Pgγ = ρbgrccPδδ(k), and
the convergence power spectrum Pκκ is given in equation (A34).
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We compute the 〈�c〉 when performing the measurements, and

use 〈�c〉 ∼ 4.7 × 103 hM�
pc2 , ns ∼ 8 h2 Mpc−2 (after accounting for

weights) in theoretical covariance calculations. J2 is the second-
order spherical Bessel function, σγ ∼ 0.36/2R is the shape noise,
��2 ≈ 700 h−1 Mpc is the line-of-sight integration length using
the lensing window function, W(k) is the projected lens window
function in Fourier space (see Appendix A for the expressions for
the window function) and LW is the line-of-sight length of the lens
window function. Tgγ gγ is the connected part of the covariance,
which we will ignore in numerical calculations. AW (defined in
equation A36) is the window function-dependent effective area
covered by each bin, and accounts for the edge effects due to
the survey window. For scales much smaller than the survey win-
dow, AW ≈ AW , where AW is the survey area. In the �� mea-
surements in this work, we only divide the lens sample into jack-
knife regions, but the source sample stays the same and hence
the edge effects are small. When calculating numerical predictions
for the jackknife errors, we set the window function AW ≈ AW

(ideally we should set AW for jackknife to be same as that of
full sample, but in the case of an idealized LOWZ-sized window,
AW ≈ AW for the scales of interest). In Appendix B, we show the
effects of AW on the jackknife covariance in the case of clustering
measurements.

The covariance for ��gR is similar to what is shown in
equation (10), except that it does not contain the last term in curly
brackets, {}. This term arises because of the non-zero mean value
of the lens density (here the lens sample is assumed to be nor-
malized and hence its mean is 1). This term is independent of
the lens overdensity and only depends on the window function
of the lens sample. Hence, it get removed when the measurement
around random points is subtracted from the measurement around
galaxies.

2.4 Covariance matrix estimation methods

To estimate the covariance matrix, we use two different methods.
The first is the jackknife method, in which we divide the whole sur-
vey into NJk = 100 approximately equal-area regions (∼90 deg2 ≡
762, 1252, 1632 [Mpc h−1]2 at z = 0.16, 0.27 and 0.36, respectively).
We then make NJk measurements by dropping one region at a time,
so that each measurement contains NJk − 1 regions. The jackknife
variance estimate (diagonals of the covariance matrix) is then

VarJk(�̂�) = NJk − 1

NJk

NJk∑
i=1

(��i − ��)2. (11)

Our second method is to measure �� using NM mock realizations
of the lens sample and then compute the standard deviation (Std) of
the measurement across all realizations:

VarStd(�̂�) = 1

NM − 1

NM∑
i=1

(��i − ��)2. (12)

Finally, for comparison, we also show error estimates using subsam-
ples of the survey. We use the same subsampling as in the jackknife
method, but in this case we perform the measurements using one
subsample at a time. The variance in this case (error on the mean)
is

Varsubsample(�̂�) = 1

NJk(NJk − 1)

NJk∑
i=1

(��i − ��)2. (13)

3 DATA

3.1 SDSS

The SDSS (York et al. 2000) imaged roughly π steradians of the
sky, and the SDSS-I and II surveys followed up approximately
one million of the detected objects spectroscopically (Eisenstein
et al. 2001; Richards et al. 2002; Strauss et al. 2002). The imaging
was carried out by drift-scanning the sky in photometric condi-
tions (Hogg et al. 2001; Ivezić et al. 2004), in five bands (ugriz;
Fukugita et al. 1996; Smith et al. 2002) using a specially designed
wide-field camera (Gunn et al. 1998) on the SDSS Telescope (Gunn
et al. 2006). These imaging data were used to create the catalogues
of shear estimates that we use in this paper. All of the data were
processed by completely automated pipelines that detect and mea-
sure photometric properties of objects, and astrometrically calibrate
the data (Lupton et al. 2001; Pier et al. 2003; Tucker et al. 2006).
The SDSS-I/II imaging surveys were completed with a seventh data
release (Abazajian et al. 2009), though this work will rely as well on
an improved data reduction pipeline that was part of the eighth data
release, from SDSS-III (Aihara et al. 2011); and an improved pho-
tometric calibration (‘ubercalibration’, Padmanabhan et al. 2008).

3.2 SDSS-III BOSS

Based on the SDSS photometric catalogue, galaxies were selected
for spectroscopic observation (Dawson et al. 2013), and the BOSS
spectroscopic survey was performed (Ahn et al. 2012) using the
BOSS spectrographs (Smee et al. 2013). Targets were assigned to
tiles of diameter 3◦ using an adaptive tiling algorithm (Blanton
et al. 2003), and the data were processed by an automated spectral
classification, redshift determination and parameter measurement
pipeline (Bolton et al. 2012).

We use SDSS-III BOSS data release 12 (DR12; Alam
et al. 2015; Reid et al. 2016) LOWZ galaxies in the redshift range
0.16 < z < 0.36.

The LOWZ sample consists of luminous red galaxies at z < 0.4,
selected from the SDSS DR8 imaging data and observed spec-
troscopically in the BOSS survey. The sample is approximately
volume-limited in the redshift range 0.16 < z < 0.36, with a
number density of n̄ ∼ 3 × 10−4 h3 Mpc−3 (Manera et al. 2015;
Reid et al. 2016). We use the same sample as used by Singh,
Mandelbaum & Brownstein (2017), who mask out certain regions
on the sky which have higher galactic extinction or poor imaging
quality (Reyes et al. 2012), which leaves 225 181 galaxies in the
sample.

3.3 Re-Gaussianization shapes and photometric redshifts

The shape measurements for the source sample used in this work are
described in more detail in Reyes et al. (2012). Briefly, these shapes
are measured using the re-Gaussianization technique developed by
Hirata & Seljak (2003). The algorithm is a modified version of ones
that use ‘adaptive moments’ (equivalent to fitting the light intensity
profile to an elliptical Gaussian), determining shapes of the point
spread function (PSF)-convolved galaxy image based on adaptive
moments and then correcting the resulting shapes based on adap-
tive moments of the PSF. The re-Gaussianization method involves
additional steps to correct for non-Gaussianity of both the PSF and
the galaxy surface brightness profiles (Hirata & Seljak 2003). The
components of the distortion are defined as

(e+, e×) = 1 − (b/a)2

1 + (b/a)2
(cos 2φ, sin 2φ), (14)
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where b/a is the minor-to-major axis ratio and φ is the position angle
of the major axis on the sky with respect to the RA–Dec. coordinate
system. The ensemble average of the distortion is related to the
shear as

γ+, γ× = 〈e+, e×〉
2R (15)

R = 1 − 1

2

〈
e2
+,i + e2

×,i − 2σ 2
i

〉
, (16)

where σ i is the per-component measurement uncertainty of the
galaxy distortion, and R ≈ 0.87 is the shear responsivity represent-
ing the response of an ensemble of galaxies with some intrinsic
distribution of distortion values to a small shear (Kaiser, Squires &
Broadhurst 1995; Bernstein & Jarvis 2002). A discussion of correc-
tions for shear-related systematic biases and the residual systematic
uncertainties can be found in Mandelbaum et al. (2013). These es-
timates are based on a combination of null tests using the shear
catalogue and external image simulations.

The photometric redshifts for the catalogue were estimated us-
ing the template-fitting code ZEBRA (Feldmann et al. 2006). Us-
ing photometric redshifts for the source sample introduces a bias
in galaxy–galaxy lensing through misestimation of the �c factor
(with the most severe misestimation arising due to the inclusion
of some lens-foreground ‘source’ pairs due to scatter in photomet-
ric redshifts). Nakajima et al. (2012) showed that this bias can be
large, but can be estimated to within 2 per cent using a representa-
tive calibration sample with spectroscopic redshifts. We compute
these correction factors using the method of Nakajima et al. (2012)
with the LOWZ lens redshift distributions to be ∼10 per cent and
then multiply our measurements with a calibration factor of 1.1.

3.4 Mock source catalogue

We generate 100 mock catalogues of the shape sample by randomly
rotating the shapes of galaxies in the real source sample, while
keeping their positions (RA, Dec., z) fixed. Random rotations re-
move any coherent shear (cosmological or due to systematics) in
the sample while maintaining the shape noise and measurement
noise in each realization. As a result, �� measurements using ro-
tated (mock) sources will not have any coherent signal and their
covariance matrix will only have contributions from shape noise
and measurement noise. The comparison of the covariance matrix
of mocks with the covariance from real sources will allow us to
study the contribution of shape noise and measurement noise to the
covariance in the real data.

3.5 QPM mocks

To estimate the galaxy–galaxy lensing covariance matrix using
a mock lens sample, we use the QPM mocks (White, Tinker &
McBride 2014) that have been used in several BOSS analyses (e.g.
Cuesta et al. 2016; Gil-Marı́n et al. 2016; Grieb et al. 2017). QPM
mocks are constructed using the quick particle mesh method (White
et al. 2014) to mimic the large-scale clustering properties of BOSS
galaxies. In this work, we use 100 QPM mocks with the same sky
coverage, mask and jackknife splitting as in the LOWZ sample.

4 R ESULTS

In this section, we present our results from measuring galaxy–
galaxy lensing using different estimators and different combinations
of lens and source galaxies. We perform several tests to study the

Table 1. Table showing the main sources of statistical uncertainty for dif-
ferent combinations of lens, source and estimators in this work. We use the
notation from equation (10), with Pgg = bgPδδ , Ng is the galaxy shot noise
term, Nγ is the shape noise and the terms in curly brackets {} involving W2

are the window function-dependent covariance contributions to ��g.

Lens-shape Error term
sample

LOWZ-SDSS (Pgg + Ng)(Pγγ + Nγ ) + P 2
gγ + Tgγgγ

+{W2(Pγ γ + Nγ )}
QPM-SDSS (Pgg + Ng)(Pγ γ + Nγ ) + {W2(Pγ γ + Nγ )}
LOWZ-Mock (Pgg + Ng)Nγ + {W2Nγ }
QPM-Mock (Pgg + Ng)Nγ + {W2Nγ }
Randoms-Mock NgNγ + {W2Nγ }

Figure 1. �� measured for the LOWZ sample, with different numbers
of random catalogues used. The errors shown are from the jackknife
method. The signal without subtraction of the lensing signal around ran-
dom points (NR = 0, cyan points) shows the presence of additive system-
atics in the SDSS source sample. These systematics are removed with the
subtraction of the signal measured around random points. Theory predic-
tions use the linear theory+halofit power spectrum with fixed cosmology
along with the best-fitting linear bias and rcc = 1, and fitting was done for
10 h−1 Mpc < rp < 65 h−1 Mpc.

effects on the estimated covariance by using different covariance
estimation methods, varying NR, varying the clustering properties
of lens sample and varying the source sample (without and with
systematics). A summary of the various terms in the covariance that
contribute for different combinations of lens and source samples is
presented in Table 1, and a summary of the results is in Fig. 7.

4.1 LOWZ lensing results

We begin by showing the galaxy–galaxy lensing measurements
using the LOWZ lens sample. Fig. 1 shows �� measured using
LOWZ lens galaxies and different numbers of random points. When
using no randoms (the NR = 0 case), there is evidence for a spurious
systematic signal at large scales. This spurious signal arises because
the PSF correction method used to measure the galaxy shapes is
unable to fully remove all of the PSF anisotropy. The SDSS sur-
vey strategy results in large-scale coherent PSF anisotropy which,
when improperly removed, causes a large-scale coherent galaxy
shape alignment (see Mandelbaum et al. 2005, 2013, for a detailed
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Figure 2. Jackknife errors in the LOWZ �� measurement (square root of
diagonal elements of the covariance matrix), for different numbers of random
catalogues. The errors generally follow the ∝1/rp scaling expected from
shape noise and logarithmic binning in rp, though there is some saturation at
large scales due to the correlated shape noise and systematics. Also shown
are the theory predictions, which are consistent with data at small scales,
though there are differences at large scales due to systematics that are not
included in the theory.

discussion). The fact that this spurious signal gets removed when
the measurement around randoms is subtracted has been the pri-
mary motivation for the subtraction of the signal around random
points in SDSS galaxy–galaxy lensing measurements.

However, the subtraction of the signal around random points also
reduces the errors in the measurements, especially at large scales
(the noise in the ��g term has contributions from systematics as
well as shape noise, as we will show in later sections). In Fig. 2,
we show the variations in the error estimates (square root of the
diagonal covariance matrix elements) with different numbers of
random catalogues NR. At small scales, where the errors follow the
expected scaling for shape noise (∝1/rp in logarithmic rp bins),
subtracting the signal around random points increases the error
estimates, though with NR � 10, the errors converge to NR = 0 case.
The errors in this regime should scale with NR as(

δ��(NR)

δ��(NR = 0)

)2

= 1 + 1

NR

. (17)

Given that the jackknife error estimates using 100 regions have
uncertainty of the order of ∼15 per cent (

√
2/99; Taylor et al. 2013),

using NR = 10 is sufficient and henceforth our results will use
NR = 10 unless a different value is explicitly given. However, note
that when using large numbers of mocks for error estimates, more
randoms might be required.

At large scales, contributions to the noise from systematics and
the correlated shape noise (Pgg(Pγ γ + Nγ γ ) term) start dominating
and hence the error estimates diverge from the 1/rp scaling. The er-
rors are mostly consistent with the theoretical predictions calculated
using equation (10). At large scales there is a contribution from the
systematics that is not included in the theory predictions, hence the
errors diverge from those predictions especially for the NR = 0 case

where systematics are most important. We distinguish between the
different terms in the variance in the following sections.

Fig. 3 shows the correlation and cross-correlation matrices for
��g, ��R and ��gR, both from theory and data and their dif-
ference. The measurements of �� around galaxies (��g) and
randoms (��R) are highly correlated for rp � 10 h−1 Mpc. When
we subtract the measurement around randoms, this correlated noise
gets removed and hence the noise in ��gR decreases compared
to that in ��g at large scales. The bin-to-bin correlations also de-
crease, though there are still some residual correlations due to the
clustering of the lens sample and the effects of systematics. Since
the theory prediction does not include systematics, the residuals
after subtracting the theory correlation matrix from the jackknife
are not consistent with zero. A cleaner test of the theoretical ex-
pressions will use randomly rotated sources, which do not have any
systematic shear correlations, in the next subsection.

4.2 Mock sources

In this section, we quantify the effects of additive shear system-
atics on the covariance estimation, especially on the differences
in the errors with and without ��R subtracted. We create 100
mock realizations of the source sample by randomly rotating the
source galaxies. The resulting source catalogues should exhibit
no coherent signals of cosmological origin or due to systematics.
When measuring �� around the LOWZ galaxies with these ran-
domly rotated source catalogues, we should observe realistic lev-
els of correlated shape noise, but no systematics, cosmic variance
or supersample covariance. All terms involving shear correlations
– Pγ γ , Pgγ and Tgγ gγ – are zero and hence do not contribute to
the covariance.

Fig. 4 shows the jackknife and standard deviation errors obtained
with and without subtracting ��R. Subtracting ��R reduces the
errors, and the results are consistent with the theory predictions.
However, the magnitude of the difference in errorbars for ��gR

versus ��g shown here (factor of ∼2 at the largest scale) is lower
compared to what was seen with real SDSS sources (factor of ∼5),
which suggests that a bit more than half the contribution to the
errorbars for ��g with real sources came from shear correla-
tions, mostly caused by the systematics rather than cosmic shear
given the low redshift of this sample. In the case of ��gR, the
errors computed using the standard deviation (Std) across the re-
alizations are consistent with the jackknife errors with ��R sub-
traction. In the case of ��g, the Std errors are lower than the
jackknife errors because of the much larger effective window for
Std (full survey window) compared to the jackknife (1/Njk of the
survey window).

As shown in Figs 3 and 4, in the case of the jackknife win-
dow, the predictions from theory are consistent with the data at the
∼10 per cent level for both ��g and ��gR, which is within the
noise in the jackknife errors. In the case of ��g with the full survey
window, the theory predictions for the errors are lower than the
jackknife errors. This is likely because when computing the theory
predictions, we assume an idealized geometry (see Appendix A),
which underestimates the window function effects from the realis-
tically complicated window in the data.

Fig. 4 and the theoretical predictions demonstrate that even in a
survey with no known additive systematic errors, measurements of
�� in the rp range where correlated shape noise is important will
have substantially better S/N when using the more optimal ��gR

estimator.
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Figure 3. Upper row: correlation and cross-correlation matrices for �� measured around galaxies (��g), randoms (��R) and the difference of the two
(��gR), both from theory and data (jackknife). Due to the shape noise, there are strong autocorrelations and cross-correlations at large scales in both ��g

and ��R. Subtracting the measurement around the random points removes most of the correlated noise (from systematics and correlated shape noise), though
there are still some residual bin-to-bin correlations in ��gR, primarily due to the clustering of lens galaxies. Bottom row: the difference between the correlation
matrices (note we do not take the difference of the covariances here) from the jackknife and the theoretical predictions (left) and from the mocks and the
theoretical predictions (right). In the case of the jackknife matrices, there are systematics that are not included in the theory predictions, so the latter are
underpredicated. In the case of the mock sources (or rotated sources, RoS), shear systematics are removed and the theory predictions are consistent with the
data within the noise in the jackknife covariances.

4.3 Lens mocks

In this section, we vary the lens properties to examine how the
covariance depends on the lens sample properties.

4.3.1 QPM mocks

In this section, we measure �� around the galaxies in the QPM
mocks using the real and mock source sample. In both cases, shear–
galaxy correlations will be absent, i.e. Pgγ = Tgγ gγ = 0, while the
former will include Pγ γ terms and the latter will not. Even though the
QPM mocks have somewhat different clustering at small scales than
the real LOWZ sample (see Fig. B1), the typical separation between
galaxies (∼1–2 h−1 Mpc) is very similar between the mocks and
the LOWZ sample and hence the QPM mocks are adequate to
test the effects of lens clustering, Pgg, on the galaxy–galaxy lensing
covariance. The signal around the QPM mocks should include large-
scale systematics and realistic levels of shape noise.

The left-hand panel of Fig. 5 shows the error estimates in the
�� measurements with the ��gR estimator using NR = 10, and

with the ��g estimator (without the measurement around random
points subtracted). The jackknife errors with the ��R subtraction
are consistent with the error estimates using the standard deviation
across 200 QPM mocks. Also the jackknife errors for the LOWZ
sample are consistent with the jackknife and standard deviation
errors computed from the QPM mocks. This consistency confirms
that the errors are dominated by the shape noise, Nγ (Pgg + Ng)
with some contributions from systematics, while contributions from
cosmic variance and supersample covariance (not included in the
signal with the QPM mocks) are subdominant.

As in the case of the LOWZ lens sample, the theoretical predic-
tions for the errors in the left-hand panel of Fig. 5 are lower than the
actual errors. This is due to the effect of systematics (there are no
connected terms in this case). In the right-hand panel, we show the
errors estimated by using the rotated (or mock) sources. In this case,
there are no shear correlations (either cosmological or due to sys-
tematics) and the theoretical predictions for the errors are consistent
with the measured errors in the case of ��gR. The discrepancies in
the case of ��g are due to the idealized window function used for
the extra term in the theory calculations.
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Figure 4. �� errors using different estimators with LOWZ galaxies as
lenses and 100 mock realizations of the source sample obtained by randomly
rotating the SDSS source galaxies. Open black and blue markers show the
mean and standard deviation of the jackknife errors. Solid red and magenta
lines show the errors from the standard deviation (StD) across different
realizations of ��g and ��gR. Dashed lines are the theory predictions for
the curves with corresponding colours. In the bottom panel, we plot the ratio
of the different errors with respect to the StD errors of ��gR. Jackknife
errors for the real LOWZ sample are also plotted for comparison (NR = 10
for LOWZ). Note that in the ��g case, the correlated noise in these mocks
is lower than when using real sources due to the removal of the contribution
from systematics.

4.3.2 Randoms

In this section, we measure �� by replacing the LOWZ galaxies
with random lens catalogues. In this case, the covariance only has
contributions from terms with lens shot noise, Ng(Pγ γ + Nγ ), as
there is no lens clustering, Pgg = 0. We use 75 random samples that
are the same size as the LOWZ sample, along with 10 additional
random samples, which are used to compute ��R. In this section
we only show results using the mock source sample, so Pγ γ = 0.

Fig. 6 shows the errors in the �� measurements using randoms
lenses, with and without ��R subtracted out. Also shown are the
error estimates using the standard deviation of the signal measured
across all 75 independent realizations.

In the case of ��gR errors from jackknife, the errors from the
standard deviation and theory are consistent. The errors also follow
the expected 1/rp scaling (no lens clustering in this case), except at
the largest scales where there are some deviations, possibly due to
small amounts of large-scale power in the distribution of the random
catalogues that enables them to match the selection function of the
LOWZ sample. Also, the errors in the case of the random lenses
are in general lower than those for the LOWZ sample or the QPM
mocks at large scales due to the effects of lens clustering. Finally,
for ��g the errors do not follow the typical 1/rp scaling because
of the additional W2Nγ term.

4.4 Putting it all together

Using the results of the previous subsections, we can now under-
stand the contributions of various terms in the covariance, using
both theoretical predictions and errors estimated using data and
mocks.

In Fig. 7, we show the error estimates from various combinations
of data and mocks (left-hand panel) and theory calculations using
various terms in equation (10) (right-hand panel). In Table 1, we

Figure 5. Same as Fig. 4, using the QPM mocks as the lens sample with real sources (left-hand panel) and rotated (mock) sources (right-hand panel). As
in Fig. 4, the errors with real sources are higher due to contributions from systematics. The theoretical predictions are consistent except at large scales due
to systematics and the effects of the LOWZ window function, which are not well captured by the idealized window function assumed in the theoretical
calculations. Also in the case of the real sources, the LOWZ jackknife errors are consistent with those for the QPM mocks, suggesting that errors from the
connected part of the covariance are subdominant.
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Figure 6. Same as Fig. 4, now using 75 random realizations of the LOWZ
lens catalogue (no clustering) with rotated (mock) sources. Since the lens
sample has no clustering and sources have no shear correlations, the errors
only include shot noise terms and hence scale as 1/rp, except at the largest
scales where the random points have some clustering as they match the
selection function in LOWZ.

also show various terms that contribute to various combinations of
data and mocks.

As shown in Table 1, we can use the random lenses with the ro-
tated (mock) sources to compute the contributions of lens shot noise

and source shape noise to the covariance. Including the lens sam-
ples with clustering (LOWZ or QPM) then provides the contribution
from the clustering of the lenses. Substituting the real sources with
mock lenses (QPM) provides the contributions from shear correla-
tions (systematics or cosmological). Thus, we can study all terms
except for those arising from lens–source correlations (Pgγ and
Tgγ gγ ) using the mocks we have used in this paper. Using more
realistic simulations as in Shirasaki et al. (2017) will further allow
a study of these lens–source correlations terms, though as shown in
previous sections, contributions from these terms are subdominant
when using the SDSS shape sample.

As demonstrated in Fig. 7, at small scales the errors are dominated
by the shot noise terms NgNγ , where Ng is the galaxy shot noise
power spectrum and Nγ is the shape noise power spectrum. At larger
scales (rp � 20 h−1 Mpc), the term involving the lens clustering,
PggNγ , starts dominating (in the literature this term is commonly
referred to as ‘correlated shape noise’). The contributions from
the shear power spectrum terms are in general small, with Pγ γ

and Pgγ terms only contributing ∼10 per cent of the error even at
rp ∼ 100 h−1 Mpc for this particular survey. In this work, we did not
compute the trispectrum terms (Tgγ gγ ), but based on the comparison
between the LOWZ and QPM lens samples (see Fig. 5), we find no
evidence that such terms are important at any scale considered in
this work for SDSS.

We also show the contributions of the window function-
dependent terms in ��g. As the size of the window function in-
creases, W(k) approaches a delta function, δD(k). As a result, the
contribution of these terms to the covariance decreases with increas-
ing window size, which is the reason why the jackknife errors have
higher contributions than the standard deviation from the mocks
using full survey window. Once these terms are removed, the er-
rors in ��gR are consistent from both the jackknife and the full
window. Normally we do expect ��gR to be different between the

Figure 7. Figure summarizing the main error estimates discussed in this paper. Note that unlike in other plots, the y-axis here is the error on �� error without
a factor of rp. In the left-hand panel, we show the errors estimated using different combinations of the data and mock catalogues (RoS stands for ‘rotated
sources’ (or mock sources); but unless explicitly mentioned, the curves use the real sources). In the right-hand panel, we show the error estimates from different
terms that contribute to the theoretical covariance using the notation of equation (10). In the bottom panels, the curves are divided by the jackknife errors on
the real LOWZ ��gR, which contains contributions from systematics that are not included in the theoretical expressions, hence the ratios are systematically
below 1. For different curves, the power spectra terms not mentioned in the legend are set to zero, e.g. for the cyan curves (NgNγ ) all autopower spectra are
zero. There is still an {Nγ } term in this case in ��gR.
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Figure 8. Comparison of the error estimates obtained using the jackknife
method and the standard deviation across 100 subsamples of the lens samples
(QPM except for the two lines labelled ‘LOWZ’). The same subsamples were
used for both methods. All calculations use ��g − ��R with NR = 10. ‘Jk,
Std’ refers to the errors from the jackknife and from the standard deviation of
the mock samples as defined in Section 2.4 for ��gR (signal, not the noise),
while ‘Subsample, Std’ refers to the errors from the standard deviations of
��gR measured as the mean of subsamples in each realization. 〈Jk error〉
(〈Subsample error〉) is the mean of the jackknife (subsample) error across
the realizations. Dashed lines are the corresponding theory predictions.

jackknife and the full window due to the edge effects (see results for
clustering in Appendix B). However, in this work we only apply the
jackknife to the lens sample while using the full source sample at
all times. Hence, the edge effects in the jackknife and full window
cases are the same, though our theory curves underpredict these
edge effects since we assumed an idealized window function with
circular symmetry and no holes (see Appendix A).

4.5 Comparison of different error estimates

In this section, we compare the error estimates from the jackknife
method with 100 regions against those from taking the mean and
error on the mean from 100 subsamples. The primary motivation
for this comparison is to test for edge effects and to check whether
the jackknife method underestimates the errors once the scales are
close to the size of the subsamples. The subsamples were defined in
the same way for both methods and the division was only done on the
lens sample. Each subsample/jackknife region is cross-correlated
with the entire shape sample. Subsampling on the lens sample alone
is sufficient in the shape noise-dominated regime, since the shape
noise for different subsamples will be uncorrelated. In the case of
other measurements, e.g. clustering, the measurement across differ-
ent subsamples will get correlated once the length-scale approaches
the size of the subsample, and the errors will be underestimated in
both cases.

Fig. 8 shows the comparison of three different error estimates:
jackknife, subsampling and standard deviation for the QPM mocks.
All error estimates are consistent with each other (within the

Figure 9. Comparison of the correlation matrices for the QPM mocks
from the jackknife, subsampling and standard deviation methods across 200
realizations. All calculations use ��g − ��R with NR = 10.

uncertainties), though the scatter in the subsampling errors is some-
what higher than the jackknife errors. In Fig. 9, we also show the
correlation matrix for the three different error estimates; they are all
consistent with each other.

5 C O N C L U S I O N S

In this work, we have studied the behaviour of covariances in
galaxy–galaxy lensing measurements using mock catalogues and
theoretical predictions, including a comparison of two different
galaxy–galaxy lensing estimators with different covariance prop-
erties. The mock catalogues include randomly distributed lenses,
QPM mocks that have similar clustering as LOWZ galaxies, and
mock source catalogues obtained by randomly rotating the real
SDSS source galaxies. Our main results are summarized in Fig. 7
and Table 1.

For the SDSS, at small scales the covariance is dominated by
the pure uncorrelated shape noise, which is white, but at larger
scales, contributions from lens and shear correlations also matter.
Using mock source catalogues obtained by randomly rotating the
sources, we show that the errors are dominated by the terms involv-
ing the shape noise, Nγ (Pgg + Ng). When using the real sources
from SDSS, we also found evidence of contributions to the covari-
ance from the systematics to the covariance, even when subtracting
random signal (i.e. using lens overdensity). While our theory cal-
culations did not include the contributions from systematics or the
connected term (including the supersample variance), the consis-
tency of the covariances when using LOWZ and QPM mocks as
lenses demonstrates that contributions from the connected terms
are subdominant and the differences between the theoretical pre-
dictions and the measurements in Fig. 2 arise primarily from the
systematics. This conclusion in general depends on the survey con-
figuration, and for different surveys the tradeoffs between shape
noise and other covariance contributions must be re-evaluated.

We also demonstrated that the additional variance seen on large
scales when not subtracting the shear around random points is only
partially contributed by systematics. Even without systematics, on
scales where correlated shape noise is important, using the subop-
timal estimator (lens density instead of overdensity) for galaxy–
galaxy lensing can reduce the per-bin S/N by a substantial factor
(up to a factor of 2 on the largest scales considered, which are
∼10 times the correlation length of the lens galaxies). Our co-
variance calculations suggest that this reduction in the covariance
primarily arises from the removal of shear correlations (including
shape noise), which only depends on the window function of the lens
sample. Covariance estimation methods using subsamples (includ-
ing the jackknife) have a smaller survey window and hence have
a higher contribution from this term compared to the full survey
window. The tests using mock lens and mock source catalogues are
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consistent with this explanation. Our results suggest that the dis-
crepancy between the jackknife error estimates and standard devia-
tion across different realizations observed by (Shirasaki et al. 2017,
version 1) can be explained by the fact that they used the lens den-
sity instead of the lens overdensity in the galaxy–galaxy lensing
measurements, given that the contributions from the additional co-
variance terms due to use of density depend on the survey window.
This assertion has been confirmed in the updated work (version 2)
of Shirasaki et al. (2017).

In our calculations of covariances, we also identified the effects
of the window function, which can be important when comparing
the covariance estimations from empirical methods such as jack-
knife or subsampling, which divide the survey window into smaller
parts. Since in our jackknife estimates we only split the lens sample,
these effects are not important in our lensing measurements. In Ap-
pendix B, using clustering measurements, we show that the window
function effects can alter the covariance by up to 40–50 per cent on
scales approaching the size of the subsamples. Finally, for both
clustering (Appendix B) and lensing (Section 4.5), we also demon-
strated using mocks that the jackknife errors are consistent with the
errors from the subsampling methods for the scales that are smaller
than the subsample size at the effective redshift of the sample.

Our results emphasize the importance of using the optimal
galaxy–galaxy lensing estimator ��g − ��R even in the absence
of systematics, for g–g lensing estimates that extend to scales above
a few Mpc, to obtain better covariance properties and to enable
use of internal error estimates like the jackknife. Our conclusions
are also applicable to galaxy–CMB lensing cross-correlations, as
were done by Singh et al. (2017). Finally, we recommend the use
of the tests of covariances demonstrated in this work and those in
Shirasaki et al. (2017) for ongoing and future surveys, to better
understand which terms are dominating the covariances.
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A P P E N D I X A : C OVA R I A N C E

A1 General case

Here, we derive the expression for the covariance of the cross-correlation function of two fields with non-zero mean. The results depend
on the estimator used for that cross-correlation function, as we will show explicitly below (see also Landy & Szalay 1993), and directly
motivate the use of estimators that involve subtraction of the mean density for both fields. While we will use the example of clustering in
this section, the results are in general true for any tracer of large-scale structure. In Section A3, we will use the results from this section to
compute the covariance for the galaxy–shear cross-correlation function.

We are interested in the cross-correlation function of two (biased) tracer fields, gX, gY, of the matter density field (ρm, not just δρm)

gi = (1 + δi + ni)Mi, (A1)

where i = X or Y, Mi is the mean value of the field (mean number density in the case of galaxies) and ni is the noise in the tracer field (shot
noise in the case of galaxies, shape noise in the case of shear). Hereafter, in this section we will assume that the field is normalized so that
Mi = 1. For notational compactness, we also define

δ̂i = δi + ni (A2)

gi = 1 + δ̂i . (A3)

In Fourier space

g̃i(k) = δD(k) + δ̃i(k) + ñi(k) = δD(k) + ˜̂
δi(k), (A4)

where δD is the Dirac delta function.
We can write the cross-correlation function of two fields as (analogous to normalized DD

RR
− 1)

ξ̂XY (r) = ξ̂g1g2 (r) = 1

VW (r)

∫
d3r ′W (r ′ + r)W (r ′)

[
g1(r ′)g2(r ′ + r) − 1

]
(A5)

= 1

VW (r)

∫
d3r ′W (r ′ + r)W (r ′)

[
δ̂1(r ′)δ̂2(r ′ + r) + δ̂1(r ′) + δ̂2(r ′ + r) + 1

]
− 1 (A6)

= 1

VW (r)

∫
d3r ′W (r ′ + r)W (r ′)δ̂1(r ′)δ̂2(r ′ + r) (A7)

= 1

VW (r)

∫
d3r ′W (r ′ + r)W (r ′)

[
δ1(r ′)δ2(r ′ + r) + n1(r ′)n2(r ′ + r)

]
(A8)

ξ̂XY (r) = ξ̂g1g2 (r) = ξXY (r) + ξnXnY
(r), (A9)

where g1 belongs to field X and g2 to field Y. W (r) is the survey window function. We have assumed that the noise and δi have zero mean and
are also uncorrelated with each other on all scales. The normalization factor is the integral over window functions

VW (r) =
∫

d3r ′W (r ′ + r)W (r ′) =
∫

d3k
(2π)3

e−ik·rW̃ (k)W̃ (−k). (A10)
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The covariance of the correlation function is given as

Cov(ξ̂g1g2 (r i)ξ̂g3g4 (rj )) =
〈
ξ̂g1g2 (r i)ξ̂g3g4 (rj )

〉
−
〈
ξ̂g1g2 (r i)

〉 〈
ξ̂g3g4 (rj )

〉
, (A11)

where g1, g3 belong to field X and g2, g4 belong to Y. Using equation (A5), we obtain

Cov(ξ̂g1g2 (r i)ξ̂g3g4 (rj )) =
〈

1

VW (r i)VW (rj )

∫
d3r

∫
d3r ′W (r)W (r ′)W (r + r i)W (r ′ + rj )

[
g1(r)g2(r + r i)g3(r ′)g4(r ′ + rj )

− g1(r)g2(r + r i) − g3(r ′)g4(r ′ + rj ) + 1
] 〉 −

〈
ξ̂g1g2 (r i)

〉 〈
ξ̂g3g4 (rj )

〉
(A12)

Cov(ξ̂g1g2 (r i)ξ̂g3g4 (rj )) =
〈

1

VW (r i)VW (rj )

∫
d3r

∫
d3r ′W (r)W (r ′)W (r + r i)W (r ′ + rj )g1(r)g2(r + r i)g3(r ′)g4(r ′ + rj )

〉

−
〈
ξ̂g1g2 (r i)

〉
VW (r i)

−
〈
ξ̂g3g4 (rj )

〉
VW (rj )

− 1 −
〈
ξ̂g1g2 (r i)

〉〈
ξ̂g3g4 (rj )

〉
. (A13)

We use 〈g1g2g3g4〉ij as short-hand for the first term in equation (A13), which we would like to simplify.

〈g1g2g3g4〉ij =
〈

1

VW (r i)VW (rj )

∫
d3r

∫
d3r ′g1(r)g2(r + r i)g3(r ′)g4(r ′ + rj )W (r)W (r ′)W (r + r i)W (r ′ + rj )

〉
. (A14)

Writing the gi in terms of its Fourier space counterpart g̃i , we get

〈g1g2g3g4〉ij = 1

VW (r i)VW (rj )

∫
d3r

∫
d3r ′

∫∫∫∫ 4∏
n=1

[
d3kn

(2π)3

] ∫∫∫∫ 4∏
m=1

[
d3qm

(2π)3
W̃ (qm)

]
× ei(k1−q1)·r ei(k2−q2)·(r+ri )ei(k3−q3)·r ′

ei(k4−q4)·(r ′+rj ) 〈g̃1(k1)g̃2(k2)g̃3(k3)g̃4(k4)〉 (A15)

〈g1g2g3g4〉ij = 1

VW (r i)VW (rj )

∫∫
d3k1

(2π)3

d3k3

(2π)3

∫∫∫∫ 4∏
m=1

[
d3qm

(2π)3
W̃ (qm)

]
e−i(k1−q1)·r i e−i(k3−q3)·rj

× 〈
g̃1(k1)g̃2(−k1 + q1 + q2)g̃3(k3)g̃4(−k3 + q3 + q4)

〉
. (A16)

We have integrated over d3r and d3r ′ and then over d3k2 and d3k4, to obtain the last expression.
We now expand the four-point function into two separable parts: the connected or non-Gaussian component

〈
δ̃1δ̃2δ̃3δ̃4

〉′
and the Gaussian

component, which using Wick’s theorem can be expanded as the sum of the product of two-point functions.

〈g1g2g3g4〉ij = 1

VW (r i)VW (rj )

“
d3k1

(2π)3

d3k3

(2π)3

∫∫∫∫ 4∏
m=1

[
d3qm

(2π)3
W̃ (qm)

]
e−i(k1−q1)·r i e−i(k3−q3)·rj

[〈
δ̃1δ̃2δ̃3δ̃4

〉′

+ 〈
δ̃1δ̃2

〉 〈
δ̃3δ̃4

〉 + [〈
δD,1δD,2

〉 + 〈ñ1ñ2〉
] 〈

δ̃3δ̃4

〉 + 〈
δ̃1δ̃2

〉 [〈
δD,3δD,4

〉 + 〈ñ3ñ4〉
]

+ 〈
δ̃1δ̃3

〉 〈
δ̃2δ̃4

〉 + [〈
δD,1δD,3

〉 + 〈ñ1ñ3〉
] 〈

δ̃2δ̃4

〉 + 〈
δ̃1δ̃3

〉 [〈
δD,2δD,4

〉 + 〈ñ2ñ4〉
]

+ 〈
δ̃1δ̃4

〉 〈
δ̃2δ̃3

〉 + [〈
δD,1δD,4

〉 + 〈ñ1ñ4〉
] 〈

δ̃2δ̃3

〉 + 〈
δ̃1δ̃4

〉 [〈
δD,2δD,3

〉 + 〈ñ2ñ3〉
]

+ 〈
δD,1δD,2ñ3ñ4

〉 + all permutations + 〈ñ1ñ2ñ3ñ4〉 + 〈
δD,1δD,2δD,3δD,4

〉 ]
. (A17)

We have? omitted the positional arguments for δ̃i and ñi , which are the same as for gi in equation (A16). We defined δD,i = δD(ki) and〈
δ̃i δ̃j

〉 = Pij (ki)δD(ki + kj ), where Pij (k) is the power spectrum.
Simplifying, the terms involving 〈ξ12(r i)〉

〈
ξ34(rj )

〉
cancel out, and using the fact that g1 and g3 belonged to field X and g2 and g4 belonged

to field Y, we can write the covariance as

Cov =
[ VW (r i − rj )

VW (r i)VW (rj )

∫
d3k

(2π)3
e−ik·r i eik·rj P̂XX(k)P̂YY (k) + VW (r i + rj )

VW (r i)VW (rj )

∫
d3k

(2π)3
e−ik·r i e−ik·rj P̂XY (k)P̂XY (k) + TXYXY

]

+
{

1

VW (r i)VW (rj )

∫
d3k

(2π)3
e−ik·r i eik·rj W̃ (k)W̃ (−k)

(
P̂YY (k) + P̂XX(k)

)}

+
{

1

VW (r i)VW (rj )

∫
d3k

(2π)3
e−ik·r i e−ik·rj W̃ (k)W̃ (k)

(
P̂XY (k) + P̂XY (k)

)}
. (A18)

Here P̂ij = Pij + Pij,N , where Pij, N is the noise power spectrum. TXYXY is the connected term. To simplify expressions, we have assumed
that the power spectrum is a slowly varying function of k and that we are working with modes much smaller than the survey size, so
that P (k − q) ≈ P (k) and then P (k) can be moved out of the window function integrals. For scales much smaller than the survey size,

MNRAS 471, 3827–3844 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/471/4/3827/4002679
by University of Florida user
on 11 January 2018



3840 S. Singh et al.

VW (r) → VW , where VW is the physical volume of the survey, the expression simplifies to the more familiar form

Cov =
[

1

VW

(∫
d3k

(2π)3
e−ik·r i eik·rj P̂XX(k)P̂YY (k) +

∫
d3k

(2π)3
e−ik·r i e−ik·rj P̂XY (k)P̂XY (k)

)
+ TXYXY

]
+
{

1

V 2
W

∫
d3k

(2π)3
e−ik·r i eik·rj W̃ (k)W̃ (−k)

(
P̂YY (k) + P̂XX(k)

)}
+
{

1

V 2
W

∫
d3k

(2π)3
e−ik·r i e−ik·rj W̃ (k)W̃ (k)

(
P̂XY (k) + P̂XY (k)

)}
. (A19)

The terms in square brackets ([ ]) are the usual covariance terms while the terms in braces ({}) arise when the means of the fields are not
subtracted. These additional contributions depend on the survey window function and become less important as the survey size increases. In
the case of a large uniform survey, limVW →∞ W̃ (k) = δD(k). As a result, the terms in braces ({}) approach zero faster (under the assumption
P̂ (k = 0) = 0) and the two estimators (correlating mean zero field or correlating mean non-zero fields) are equivalent. However, in case
P̂ (k = 0) �= 0, e.g. due to shot noise in case of galaxies, the ({}) terms approach the value of P (k = 0). We also emphasize that this additional
contribution to the covariance will be present in the analysis in Fourier space as well.

A2 Projected case

The projected correlation function is defined as the integral of the 3D correlation function over the line-of-sight separation, �.

ŵ(rp) =
∫ �max

�min

d�W (�)ξ̂ (rp, �), (A20)

where W(�) is the line-of-sight weight function (not necessarily the same as the window function).
To compute the covariance, we start with equation (A17), carry out the line-of-sight integrals assuming the integration length is long

(getting delta functions of the form δD(k‖,i − q‖,i)). Then, carrying out integrals involving the line-of-sight window functions, we assume that
the relevant line-of-sight modes are small, such that power spectrum is only dependent on the projected modes (k‖ � k⊥, P (k) ≈ P (k⊥))

Cov =
∫

d�WY (�)WY (�)

[ VW (r i − rj )

VW (r i)VW (rj )

∫
d2k⊥
(2π)2

e−ik⊥·rp,i eik⊥·rp,j P̂XX(k⊥)P̂YY (k⊥)

+ VW (r i + rj )

VW (r i)VW (rj )

∫
d2k⊥
(2π)2

e−ik⊥·rp,i e−ik⊥·rp,j P̂XY (k⊥)P̂XY (k⊥) + TXYXY

]
+
∫

d�WY (�)WY (�)

{
LW

VW (r i)VW (rj )

∫
d2k⊥
(2π)2

e−ik⊥·rp,i eik⊥·rp,j W̃X(k⊥)W̃X(−k⊥)
(
P̂YY (k⊥) + P̂XX(k⊥)

)
+ LW

VW (r i)VW (rj )

∫
d2k⊥
(2π)2

e−ik⊥·rp,i e−ik⊥·rp,j W̃X(k⊥)W̃X(k⊥)
(
P̂XY (k⊥) + P̂XY (k⊥)

)}
. (A21)

Here, we distinguished between the window functions of tracers X and Y, LW is the line-of-sight length of the window function (of X) and we
ignore the edge effects along the line of sight. Thus, the volume element can be written as

VW (rp) = AW (rp)LW . (A22)

AW is the physical survey area at the lens redshift.
Note that P̂YY can in principle be evaluated at a different epoch as Y1 and Y2 are at separation �i and �j, i.e. PYY (k⊥) ∼ PYY (k⊥

χz

χz+�
)

where χ z is the line-of-sight distance to the mean redshift where we are evaluating the covariance. Under the assumption that the power
spectrum evolution within the �max limits is small, we keep PYY(k⊥) (ignoring its � dependence), and simplify the expression as

Cov =
[ AW (rp,i − rp,j )

AW (rp,i)AW (rp,j )

��2

LW

∫
d2k⊥
(2π)2

e−ik⊥·rp,i eik⊥·rp,j P̂XX(k⊥)P̂YY (k⊥)

+ AW (r i + rj )

AW (r i)AW (rj )

��2

LW

∫
d2k⊥
(2π)2

e−ik⊥·rp,i e−ik⊥·rp,j P̂XY (k⊥)P̂XY (k⊥) + TXYXY

]
+ ��2L

2
W

VW (rp,i)VW (rp,j )

{∫
d2k⊥
(2π)3

e−ik⊥·rp,i eik⊥·rp,j W̃ (k⊥)W̃ (−k⊥)
(
P̂YY (k⊥) + P̂XX(k⊥)

)
+

∫
d2k⊥
(2π)3

e−ik⊥·rp,i e−ik⊥·rp,j W̃ (k⊥)W̃ (k⊥)
(
P̂XY (k⊥) + P̂XY (k⊥)

)}
, (A23)

where we defined

��2 =
∫

d�W (�)W (�) (A24)

��1 =
∫

d�W (�). (A25)

For the case of galaxy clustering, we assume W(�) is a top-hat function for � ∈ [−100, 100], which leads to ��2 = ��1 = 200 h−1 Mpc.
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A3 Galaxy lensing case

We now use the formalism of Appendices A1 and A to derive the covariance for the galaxy–galaxy lensing case. We will assume the same
sky coverage for the lens and shape samples. Note that the shear is a mean-zero field since lensing is only sensitive to the matter density
contrast, and hence some of the terms in equation (A18) will drop out.

We begin by defining the observed shear as the sum of the true shear and noise.

γ̂ = γ + γN (A26)

We also assume that the mean shear around random points is not subtracted. In that case,
the galaxy–shear (projected) cross-correlation can be written as

��(rp) = 1

VW (r)

∫
d3r�c(zl, zs)g(r)γ̂ (r + rp)Wγ (r + rp)Wg(r) (A27)

= 1

VW (r)

∫
d3r�c(zl, zs)(1 + δ̂)(r)γ̂ (r + rp)Wγ (r + rp)Wg(r) (A28)

��(rp) = 1

VW (r)

∫
d3r�c(zl, zs)δ̂(r)γ̂ (r + rp)Wγ (r + rp)Wg(r). (A29)

The covariance of two �� is

Cov(��g1γ2 (rp,i)��g3γ4 (rp,j )) = 〈
��g1γ2 (rp,i)��g3γ4 (rp,j )

〉 − 〈
��g1γ2 (rp,i)

〉 〈
��g3γ4 (rp,j )

〉
. (A30)

Following the derivation in Appendices A1 and A and noting that the shear has a mean of zero, and �� is a projected galaxy–matter
correlation function, the full covariance analogous to equation (A21) is

Cov =
[∫

d�W (�)W (�)
VW (r i − rj )

VW (r i)VW (rj )

∫
d2k⊥
(2π)2

e−ik⊥·r i eik⊥·rj P̂gg(k⊥)P̂δδ(k⊥)

]
+
[∫

d�W (�)W (�)
VW (r i + rj )

VW (r i)VW (rj )

∫
d2k⊥
(2π)2

e−ik⊥·rp,i e−ik⊥·rp,j P̂gδ(k⊥)P̂gδ(k⊥) + Tgγgγ

]
+
∫

d�W (�)W (�)

{
L2

W

VW (r i)VW (rj )

∫
d2k⊥
(2π)3

e−ik⊥·r i eik⊥·rj W̃ (k⊥)W̃ (−k⊥)P̂δδ(k⊥)

}
, (A31)

where the lensing window function is

W (�) = ρ
�c(χs, χl)

�c(χs, χl + �)
. (A32)

The line-of-sight integral in the terms involving Pδδ leads to the shear autocorrelation function, and the final expression is

Cov =
[

VW (rp,i − rp,j )

VW (rp,i)VW (rp,j )

∫
d2k⊥
(2π)2

e−ik⊥·r i eik⊥·rp,j cos 2φk,i cos 2φk,j P̂gg(k⊥)�2
c

(
σ 2

γ

ns

+ Pκκ

)]

+
[VW (rp,i + rp,j )��2

VW (rp,i)VW (rp,j )

∫
d2k⊥
(2π)2

e−ik⊥·rp,i e−ik⊥·rp,j cos 2φk,i cos 2φk,j ρ
2P̂gδ(k⊥)P̂gδ(k⊥) + Tgγgγ

]
+
{

L2
W

VW (rp,i)VW (rp,j )

∫
d2k⊥
(2π)3

e−ik⊥·rp,i eik⊥·rp,j cos 2φk,i cos 2φk,j W̃ (k⊥)W̃ (−k⊥)�2
c

(
σ 2

γ

ns

+ Pκκ

)}
, (A33)

where the convergence power spectrum is

Pκκ (k) =
∫ χs

0
dχ

ρ

�c(χ, χs)

ρ

�c(χ, χs)
Pδδ

(
k
χl

χ

)
. (A34)

For lensing, using the full lens and source redshift distribution, we compute ��1 ≈ 900 h−1 Mpc and ��2 ≈ 700 h−1 Mpc.
Again as in Appendix A1, the terms in square brackets ([ ]) are the usual covariance terms for the mean zero fields and the terms in curly

brackets ({}) are additional contribution from terms involving δD, i, arising from the suboptimal estimator without the mean subtracted.
Note that this additional contribution only depends on the window function of the lens sample and is independent of the clustering or

number density of the lens sample. Hence, this noise term is consistent across the real lens galaxy sample and uniformly distributed random
points, which is why the subtraction of the shear around random points removes this contribution to the covariance. Also the window
function-dependence of this term is the reason why the jackknife/subsample methods of estimating errors show increased contribution from
this term compared to the standard deviation across independent mock catalogues, since the effective window function for the subsamples is
smaller.

MNRAS 471, 3827–3844 (2017)
Downloaded from https://academic.oup.com/mnras/article-abstract/471/4/3827/4002679
by University of Florida user
on 11 January 2018



3842 S. Singh et al.

A4 Numerical estimates

A4.1 Clustering

To compute numerical estimates, we assume angular symmetry for both the power spectra and the window function. Further, in the case of
galaxy clustering, X ≡ Y and PXX = b2

gPδδ . After carrying out the angular and line-of-sight integrals (for the projected correlation function)
in equation (A23), we get

Cov(wgg) =
[

2
AW (|rp,i − rp,j |)
AW (rp,i)AW (rp,j )

��2

LW

∫
dkk

2π
J0(krp,i)J0(krp,j )

(
b2

gPδδ(k) + 1

ng

)2

+ Tgggg

]

+ 4

{
2��2

AW (rp,i)AW (rp,j )

∫
dkk

2π
J0(krp,i)J0(krp,j )W̃ (k)W̃ (k)

(
b2

gPδδ(k) + 1

ng

)}
, (A35)

where Jn is the Bessel function of order n, �max is the line-of-sight integration length and

AW (r) =
∫

dk k

2π
J0(kr) (W (k))2 (A36)

AW (|r i − rj |) =
∫

dk k

2π
J0(kri)J0(krj ) (W (k))2 . (A37)

For the window function, we assume a circular geometry with a survey area of 9000 deg2, with a mean redshift of z = 0.27. W(k) is defined
as

W (k) = 2πR2 J1(kR)

kR
, (A38)

where R ≈ 1275 h−1 Mpc is the physical scale corresponding to 95 deg at z = 0.27.
Finally, to get the covariance for bins in rp, COVbin, we integrate the covariance in equation (A35) as

COVbin =
∫ rp,i,h

rp,i,l
dr ′

p,ir
′
p,i

∫ rp,j,h

rp,j,l
dr ′

p,j r
′
p,j COV(r ′

p,i , r
′
p,j )∫ rp,i,h

rp,i,l
dr ′

p,ir
′
p,i

∫ rp,j,h

rp,j,l
dr ′

p,j r
′
p,j

, (A39)

where rp, i, l, rp, i, h are the lower and upper limits of the bins, respectively.

A4.2 Galaxy lensing

We carry out the angular integrals in equation (A33), to get

Cov(��) =
[

AW (rp,i − rp,j )

AW (rp,i)AW (rp,j )

1

LW

∫
dkk

2π
J2(krp,i)J2(krp,j )�2

c

(
b2

gPδδ(k) + 1

ng

)(
Pκκ (k) + σ 2

γ

ns

)]

+
[ AW (rp,i − rp,J )

AW (rp,i)AW (rp,J )

��2

LW

∫
dkk

2π
J2(krp,i)J2(krp,j )

(
bgrccρPδδ(k)

)2 + Tgγgγ

]
+
{

1

AW (rp,i)AW (rp,j )

∫
dkk

2π
J2(krp,i)J2(krp,j )W̃ (k)W̃ (k)�2

c

(
Pκκ (k) + σ 2

γ

ns

)}
, (A40)

Cov(��) is then integrated to get the covariance in bins as described in equation (A39).

APPENDIX B: C LUSTERING R ESULTS

In this appendix, we present the comparison of different estimators and error estimation methods for the galaxy clustering measurements.
We begin by defining the standard LS estimator for clustering (Landy & Szalay 1993)

ξ̂LS(rp, �) = (D − R)2

RR
= DD − 2DR + RR

RR
, (B1)

where ξ is the 3D correlation function, rp is the projected separation on the sky and � is the line-of-sight separation between the pair of
galaxies. The use of D − R indicates that we are correlating overdensity fields. The estimator can then be expanded into its standard pair
counting form. DD denotes summation over all galaxy–galaxy pairs within the bin, DR are the cross pairs between galaxies and randoms and
RR are the random–random pairs.

In addition, we define the basic estimator from pair counting

ξ̂s2(rp, �) = DD

RR
− 1 (B2)

Motivated by the galaxy–galaxy lensing estimator without subtraction of the mean galaxy density, we also define the estimator correlating an
overdensity field (D − R) with a density field (D)

ξ̂s1(rp, �) = D(D − R)

RR
= DD − DR

RR
. (B3)
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Figure B1. (a) Comparison of the projected clustering for the LOWZ sample and the QPM mocks. The LOWZ errors are from the jackknife method, while
the QPM values are the mean and standard deviation across 150 realizations. The red line is the Planck 2015 �CDM prediction along with the best-fitting
bias from Singh et al. (2017); note that the points on large scales have correlated errors. (b) Comparison of clustering measurements using different estimators
(note different rp range). 〈Subsample〉 refers to the mean signal across the subsamples, in each realization. We then take the mean and standard deviation of
〈Subsample〉 across realizations.

We want to work with projected correlation functions, analogous to galaxy–galaxy lensing. Thus, we integrate ξ gg over the line of sight to
obtain the projected correlation function wgg.

ŵgg(rp) =
∫ �max

−�max

ξ̂ (rp, �)d�. (B4)

The choice of �max depends on two considerations: we want to choose large �max to capture the full correlation function and to mitigate
the effect of redshift space distortions (Kaiser 1987). However, in a survey of finite redshift window, the bins at large � are also noisier
which increases the noise in the projected correlation function as well. In this work, we use �max = 100 h−1 Mpc with linear bins of size
d� = 10 h−1 Mpc.

In Fig. B1, we show the clustering measurement for the LOWZ sample as well as for one realization of the QPM mocks, with jackknife
errors for both. At small scales, the clustering between the mocks and data does not agree very well with a maximum difference of order
∼30 per cent. This is expected, since the QPM mocks are generated using low-resolution simulations, which only resolve the large-scale
density field (White et al. 2014). Here, we compare the estimators and error estimations self-consistently from the QPM mocks, and thus the
failure to exactly match the LOWZ sample clustering is not important.

In Fig. B2, we compare the clustering error estimates using different estimators. The LS estimator yields the lowest errors followed by the
estimator in equation (B3). The relative trends between the estimators are consistent with the theory estimates from expressions in equations
(A18) and (A35) and, more generally, with the idea that each time you substitute a zero-mean field with a field that has a non-zero mean, the
variance increases. We caution that for the clustering measurements, we have not completely explored the consistency between theory and
empirical error estimates. Our theory estimates do not capture the full contributions from non-linear bias, redshift space distortions and the
connected part of the covariance. Also in equation (A18) P̂ij (k) = P̂ (k) and some terms from equation (A18) will be removed in the case of
the estimator in equation (B3); see equation (A23).

In Fig. B2, we also compare the error estimates from jackknife and standard deviation across different mock realizations, using different
estimators. Our results suggest that the jackknife overestimates the errors at all scales, even when the scales are larger than the jackknife region
size. This is contrary to the expectations, since at scales larger than the jackknife region size, the assumption that the regions are independent
is violated and thus the errors are expected to be underestimated. However, since the jackknife regions are much smaller than the survey
size, the contribution from supersample variance and other window function-dependent terms is expected to be larger in the jackknife. In the
case of the LS estimator, our theory estimates (the difference between solid and dashed green lines) suggest that the increase in error from
edge effects is also important at large scale and can lead to the jackknife errors being overestimated by 10–20 per cent. For the non-optimal
estimators, the increased contribution from the additional terms identified in Appendix A dominates and hence the increase in jackknife errors
compared to the standard deviation is substantially more, when compared to the LS estimator.
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Figure B2. Left-hand panel: comparison of errors for different clustering estimators defined in equations (B1)–(B3). The LS ( (D−R)2

RR
) estimator, equation

(B1), gives the lowest error followed by the estimator in equation (B3) and then the estimator in equation (B2). Also shown are the jackknife errors for the LS
estimator, with the jackknife overestimating the errors by ∼10–20 per cent at all scales. We additionally show the estimated errors from the theory predictions.
Note that the theory estimates use the linear theory+halofit matter power spectrum, and do not include contributions from non-linear galaxy bias and connected
parts of the covariance, hence the theory errors are underestimated at small scales. The difference between the solid and dashed theory lines are due to the
edge effects as estimated by AW . Right-hand panel: comparison between the different error estimation methods in mocks. 〈Subsample〉 refers to the mean
and standard deviation across subsamples. 〈Subsample-2〉 is similar to 〈Subsample〉, except for each subsample we also count the cross terms with other
subsamples. This reduces edge effects but also leads to correlations between different subsamples at large scales.
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