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ABSTRACT
We analyse the broad-range shape of the monopole and quadrupole correlation functions

? E-mail: achuang@aip.de
† E-mail: mpi@iac.es



2 Chuang et al.

of the BOSS Data Release 12 (DR12) CMASS and LOWZ galaxy sample to obtain con-
straints on the Hubble expansion rate H(z), the angular-diameter distance DA(z), the nor-
malised growth rate f(z)σ8(z), and the physical matter density Ωmh

2. We adopt wide and
flat priors on all model parameters in order to ensure the results are those of a ‘single-probe’
galaxy clustering analysis. We also marginalise over three nuisance terms that account for
potential observational systematics affecting the measured monopole. However, such Monte
Carlo Markov Chain analysis is computationally expensive for advanced theoretical mod-
els. We develop a new methodology to speed up the analysis. Using the range 40h−1Mpc
< s < 180h−1Mpc, we obtain {DA(z)rs,fid/rs (Mpc), H(z)rs/rs,fid km s−1 Mpc−1,
f(z)σ8(z), Ωmh

2} = {956 ± 28, 75.0 ± 4.0, 0.397 ± 0.073, 0.143 ± 0.017} at z = 0.32
and {1421 ± 23, 96.7 ± 2.7, 0.497 ± 0.058, 0.137 ± 0.015} at z = 0.59 where rs is
the comoving sound horizon at the drag epoch and rs,fid = 147.66 Mpc for the fiducial
cosmology used in this study. Combining our measurements with Planck data, we obtain
Ωm = 0.306 ± 0.009, H0 = 67.9 ± 0.7 km s−1 Mpc−1, and σ8 = 0.815 ± 0.009 assuming
ΛCDM; Ωk = 0.000±0.003 and w = −1.02±0.08 assuming owCDM. Our results show no
tension with the flat ΛCDM cosmological paradigm. This paper is part of a set that analyses
the final galaxy clustering dataset from BOSS.

Key words: cosmology: observations - distance scale - large-scale structure of Universe -
cosmological parameters

1 INTRODUCTION

The cosmic large-scale structure from galaxy redshift surveys pro-
vides a powerful probe of the properties of dark energy and the
time dependence of any cosmological model in a manner that is
highly complementary to measurements of the cosmic microwave
background (CMB) (e.g., Bennett et al. 2013; Ade et al. 2014a),
supernovae (SNe) (Riess et al. 1998; Perlmutter et al. 1999), and
weak lensing (see e.g. Van Waerbeke & Mellier 2003 for a review).

The amount of galaxy redshift surveys has dramatically in-
creased in the last decades. The 2dF Galaxy Redshift Survey (2dF-
GRS) (Colless et al. 2001, 2003), the Sloan Digital Sky Survey
(SDSS, York et al. 2000; Abazajian et al. 2009, the WiggleZ
(Drinkwater et al. 2010; Parkinson et al. 2012), have collected
hundreds of thousands of galaxy redshifts. The Baryon Oscillation
Spectroscopic Survey (BOSS, Dawson et al. 2013) of the SDSS-
III (Eisenstein et al. 2011) has observed 1.5 million luminous red
galaxies (LRGs) at 0.1 < z < 0.7 over 10,000 square degrees. The
newest BOSS data set has been made publicly available in SDSS
Data Release 12 (DR12, Alam et al. 2015). The planned space mis-
sion Euclid1 will survey over 30 million emission-line galaxies at
0.7 < z < 2 over 15,000 deg2 (e.g. Laureijs et al. 2011), and the
upcoming ground-based experiment DESI2 (Dark Energy Spectro-
scopic Instrument) will survey 20 million galaxy redshifts up to
z = 1.7 and 600,000 quasars (2.2 < z < 3.5) over 14,000 deg2

(Schlegel et al. 2011). The proposed WFIRST3 satellite would map
17 million galaxies in the redshift range 1.3 < z < 2.7 over 3400
deg2, with a larger area possible with an extended mission (Green
et al. 2012).

The methodologies of the data analyses of galaxy clustering
have also developed along with the growing survey volumes. The
observed galaxy data have been analysed, and the cosmological re-
sults delivered (see, e.g., Chuang et al. (2016) for more references).
In principle, the Hubble expansion rateH(z), the angular-diameter

1 http://sci.esa.int/euclid
2 http://desi.lbl.gov/
3 http://wfirst.gsfc.nasa.gov/

distance DA(z), the normalized growth rate f(z)σ8(z), and the
physical matter density Ωmh

2 can be well constrained by analysing
the galaxy clustering data alone. Eisenstein et al. (2005) demon-
strated the feasibility of measuring Ωmh

2 and an effective distance,
DV (z), from the SDSS DR3 (Abazajian et al. 2005) LRGs, where
DV (z) corresponds to a combination ofH(z) andDA(z). Chuang
& Wang (2012) measured H(z) and DA(z) simultaneously us-
ing the galaxy clustering data from the two dimensional two-point
correlation function of SDSS DR7 (Abazajian et al. 2009) LRGs.
The methodology has been commonly known as the application of
Alcock-Paczynski effect (Alcock & Paczynski 1979) on large-scale
structure. The methodology has been improved and also applied to
different galaxy samples, e.g., see Chuang & Wang (2013a,b); Reid
et al. (2012); Blake et al. (2012); Xu et al. (2013).

Galaxy clustering allows us to differentiate between smooth
dark energy and modified gravity as the cause for cosmic accel-
eration through the simultaneous measurements of the cosmic ex-
pansion history H(z) and the growth rate of cosmic large scale
structure, f(z) (Guzzo et al. 2008; Wang 2008; Blake et al. 2012).
However, measuring f(z) requires measuring higher-order statis-
tics of the galaxy clustering (see Verde et al. 2002). Song & Perci-
val (2009) proposed using the normalized growth rate, f(z)σ8(z),
which summarizing the growth rate measured from the two point
clustering statistics. Percival & White (2009) developed a method
to measure f(z)σ8(z) and applied it on simulations. Wang (2012)
estimated expected statistical constraints on dark energy and mod-
ified gravity, including redshift-space distortions and other con-
straints from galaxy clustering, using a Fisher matrix formalism.
f(z)σ8(z) has been measured from observed data in addition to
H(z) andDA(z) (e.g., see Samushia et al. 2012; Blake et al. 2012;
Reid et al. 2012; Chuang et al. 2013; Wang 2014; Anderson et al.
2014a; Beutler et al. 2014; Chuang et al. 2016; Samushia et al.
2014) determined f(z)σ8(z) from the SDSS DR7 LRGs. Blake
et al. (2012) measuredH(z),DA(z), and f(z)σ8(z) from the Wig-
gleZ Dark Energy Survey galaxy sample. Analyses have been per-
formed to measure H(z), DA(z), and f(z)σ8(z) from the SDSS
BOSS galaxy sample (Reid et al. 2012; Chuang et al. 2013; Wang
2014; Anderson et al. 2014a; Beutler et al. 2014; Chuang et al.
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2016; Samushia et al. 2014; Alam et al. 2015; Gil-Marı́n et al.
2016b).

We aim to measureH(z),DA(z), and f(z)σ8(z) based on the
observed anisotropic galaxy clustering measurement from the final
BOSS data release, along the same lines, as a series of compan-
ion papers (Beutler et al. 2016; Satpathy et al. 2016; Sanchez et al.
2017b; Grieb et al. 2016; Gil-Marı́n et al. 2016b). However, these
complementary works either adopt the best fit values for Ωch

2,
Ωbh

2, and ns (Beutler et al. 2016; Sanchez et al. 2017b; Grieb
et al. 2016; Gil-Marı́n et al. 2016b) or the 1-σ gaussian priors (Sat-
pathy et al. 2016) from the Planck measurements to construct their
theoretical models. In this work, we relax these assumptions using
wide priors following Chuang et al. (2016). In particular, we allow
for 10σ deviations, to minimize the potential bias from priors, so
that one can safely combine our single-probe measurements with
other data sets (i.e. CMB, SNe, etc.) to constrain the cosmologi-
cal parameters of a given dark energy model. Meanwhile, we also
include a model to minimize the impact from the observational sys-
tematics as done in Chuang et al. (2016). However, due to the large
parameter space, the Monte Carlo Markov Chain analysis becomes
expensive and that makes it difficult to use complex models, which
are computationally slow, and thus we will call from here on slow
models. One would need to use very strong priors, e.g. fixing values
or 1-σ gaussian priors, when extracting cosmological constraints.

To cope with this challenge, we develop in this study a new
methodology to speed up the analysis when using a slow model.
This includes two steps: 1) generation of Markov chains with a
computationally fast model (less accurate), which we will refer to
from here on, as fast model; 2) replacement/calibration of the likeli-
hoods with an accurate model (slow). For convenience, we use the
”Gaussian streaming model” described in Reid & White (2011),
while we should mention that there have been more developments,
e.g. Carlson et al. (2013); Wang et al. (2014); Taruya et al. (2013);
Vlah et al. (2013); White (2014); Taruya et al. (2014); Bianchi
et al. (2015); Vlah et al. (2015); Okumura et al. (2015). Although
the model we use might not be the most accurate model to date,
it is good enough for our purposes and the scale ranges used in
this study, as we will demonstrate below. In addition, in Pellejero-
Ibanez et al. (2016) (one of our companion papers), we develop
and demonstrate the methodology to summarize a joint data set of
galaxy sample and CMB data without introducing informative pri-
ors.

This paper is organized as follows. In Section 2, we intro-
duce the SDSS-III/BOSS DR12 galaxy sample and mock cata-
logues used in our study. In Section 3, we describe the details
of the methodology that constrains cosmological parameters from
our galaxy clustering analysis. In Section 4, we present our single-
probe cosmological measurements. In Section 5, given some sim-
ple dark energy models, we present the cosmological constraints
from our measurements and the combination with other data sets.
We compare our results with other studies in 6. We summarize and
conclude in Section 7.

2 DATA SETS

2.1 The CMASS and LOWZ Galaxy Catalogues

The Sloan Digital Sky Survey (Fukugita et al. 1996; Gunn et al.
1998; York et al. 2000; Smee et al. 2013) mapped over one quarter
of the sky using the dedicated 2.5 m Sloan Telescope (Gunn et al.
2006). The Baryon Oscillation Sky Survey (BOSS, Eisenstein et al.

2011; Bolton et al. 2012; Dawson et al. 2013) is part of the SDSS-
III survey. It has collected the spectra and redshifts for 1.5 million
galaxies, 160,000 quasars and 100,000 ancillary targets. The Data
Release 12 (Alam et al. 2015) has been made publicly available4.
We use galaxies from the SDSS-III BOSS DR12 CMASS catalogue
in the redshift range 0.43 < z < 0.75 and LOWZ catalogue in
the range 0.15 < z < 0.43. CMASS samples are selected with
an approximately constant stellar mass threshold (Eisenstein et al.
2011); LOWZ sample consists of red galaxies at z < 0.4 from the
SDSS DR8 (Aihara et al. 2011) image data. We are using 800,853
CMASS galaxies and 361,775 LOWZ galaxies. Note that the num-
ber of galaxies used in this study is slightly smaller than the one
used by the Alam et al. (2016) (BOSS collaboration paper for final
data release) by ∼ 40, 000. The difference is in the LOWZ sam-
ple used (see Alam et al. 2016 for details). The effective redshifts
of these sample are z = 0.59 and z = 0.32 respectively. The de-
tails of generating these samples are described in Reid et al. (2016).
In addition, we split both CMASS and LOWZ samples into two
redshift bins (four bins in total). The effective redshifts are {0.24,
0.37, 0.49, 0.64}; and numbers of galaxies are {154367, 207408,
425612, 375241}.

2.2 Mock Catalogues

In this study we rely on a set of 2,000 mock galaxy catalogues
explicitly produced to resemble the clustering of the BOSS DR12
data. In particular we make use of the MD-Patchy BOSS DR12
mock galaxy catalogues (Kitaura et al. 2016b). These mocks are
generated with the PATCHY code (Kitaura et al. 2014, 2015).
The calibration was performed on accurate N-body-based ref-
erence catalogues using halo abundance matching to reproduce
the number density, clustering bias, selection function, and sur-
vey geometry of the BOSS data on 10 redshift bins (Rodrı́guez-
Torres et al. 2016). The mock catalogues were constructed assum-
ing ΛCDM Planck cosmology with {ΩM = 0.307115,Ωb =
0.048206, σ8 = 0.8288, ns = 0.96}, and a Hubble constant
(H0 = 100h km s−1 Mpc−1) given by h = 0.6777. As shown in
a mock catalogue comparison study (Chuang et al. 2015), PATCHY
mocks are accurate within 5% on scales larger than 5 Mpc/h (or k
smaller than 0.5 h/Mpc in Fourier space) for monopole and within
10-15% for quadrupole. Kitaura et al. (2016b) had also demon-
strated the accuracy of BOSS PATCHY mock catalogues which are
in very good agreement with the observed data in terms of 2- and
3-point statistics. These mocks have been used in recent galaxy
clustering studies (Cuesta et al. 2016; Gil-Marı́n et al. 2016a,b;
Rodrı́guez-Torres et al. 2016; Slepian et al. 2015) and void cluster-
ing studies (Kitaura et al. 2016a; Liang et al. 2015). They are also
used in Alam et al. (2016) (BOSS collaboration paper for final data
release) and its companion papers including this paper and Ross
et al. (2017); Vargas-Magaña et al. (2016); Beutler et al. (2016);
Satpathy et al. (2016); Beutler et al. (2017); Sanchez et al. (2017b);
Grieb et al. (2016); Sanchez et al. (2017a); Pellejero-Ibanez et al.
(2016); Slepian et al. (2016b,a); Salazar-Albornoz et al. (2016);
Zhao et al. (2017); Wang et al. (2016).

4 http://www.sdss3.org/
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3 METHODOLOGY

In this section, we describe the measurement of the multipoles of
the correlation function from the observational data, construction
of the theoretical prediction, and the likelihood analysis that leads
to constraining cosmological parameters and dark energy.

3.1 Two-Dimensional Two-Point Correlation Function

We convert the measured redshifts of the BOSS CMASS and
LOWZ galaxies to comoving distances by assuming a fiducial
model, i.e., flat ΛCDM with Ωm = 0.307115 and h = 0.6777
which is the same model adopted for constructing the mock cata-
logues (see Kitaura et al. 2016b). We use the two-point correlation
function estimator given by Landy & Szalay (1993):

ξ(s, µ) =
DD(s, µ)− 2DR(s, µ) +RR(s, µ)

RR(s, µ)
, (1)

where s is the separation of a pair of objects and µ is the cosine
of the angle between the directions between the line of sight (LOS)
and the line connecting the pair the objects. DD, DR, and RR rep-
resent the normalized data-data, data-random, and random-random
pair counts, respectively, for a given distance range. The LOS is
defined as the direction from the observer to the centre of a galaxy
pair. Our bin size is ∆s = 1h−1Mpc and ∆µ = 0.01. The Landy
and Szalay estimator has minimal variance for a Poisson process.
The random catalogue is generated with the radial and angular se-
lection function of the observed galaxies. One can reduce the shot
noise due to random data by increasing the amount of random
points. The number of random data we use is about 50 times that of
the observed galaxies. While calculating the pair counts, we assign
to each data point a radial weight of 1/[1 +n(z) ·Pw], where n(z)
is the radial number density and Pw = 1 · 104 h−3Mpc3 (see Feld-
man et al. 1994). We include the combination of the observational
weights assigned for each galaxy by

wtot,i = wsys,i ∗ (wrf,i + wfc,i − 1), (2)

wherewtot,i is the final weight to assign on a galaxy i;wsys,i is for
removing the correlation between CMASS galaxies and both stellar
density and seeing; wrf,i and wfc,i correct for missing objects due
to the redshift failure and fiber collision. The details are described
in Reid et al. (2016) (see also Ross et al. 2012). Later, we will
also test the impact of systematics by removing wsys,i from the
analysis.

3.2 Multipoles of the Two-Point Correlation Function

The traditional multipoles of the two-point correlation function, in
redshift space, are defined by

ξl(s) ≡ 2l + 1

2

∫ 1

−1

dµ ξ(s, µ)Pl(µ), (3)

where Pl(µ) is the Legendre Polynomial (l =0 and 2 here). We
integrate over a spherical shell with radius s, while actual measure-
ments of ξ(s, µ) are done in discrete bins. To compare the measured
ξ(s, µ) and our theoretical model, the last integral in Eq.(3) should
be converted into a sum,

ξ̂l(s) ≡

∑
s−∆s

2
<s′<s+ ∆s

2

∑
06µ61

(2l + 1)ξ(s′, µ)Pl(µ)

Number of bins used in the numerator
, (4)

where ∆s = 5 h−1Mpc in this work.

Fig.1 shows the monopole (ξ̂0) and quadrupole (ξ̂2) measured
from the BOSS CMASS and LOWZ galaxy sample compared with
the best fit theoretical models. We split both CMASS and LOWZ
sample into two redshift bins and show the multipoles from these
four bins in Fig. 2.

We are using the scale range s = 40 − 180h−1Mpc and
the bin size is 5 h−1Mpc. Fig. 1 and 2 show the measured mul-
tipoles from various redshift ranges and their best fits. The theoret-
ical models will be described in the next section.

3.3 Theoretical Two-Point Correlation Function

We use two theoretical models for this study. One is the two-
dimensional dewiggle model (Eisenstein et al. 2007) and the other
is the Gaussian streaming model (Reid & White 2011). The former
model is very fast but less accurate for high bias tracers; the lat-
ter is more accurate but much slower in terms of computation. We
develop a new methodology to take the advantages from both of
them.

3.3.1 Fast model – two-dimensional dewiggle model

We use the fast model (two-dimensional dewiggle model) which
includes the linear bias, nonlinear evolution at BAO scales, linear
redshift space distortion, and nonlinear redshift space distortion at
BAO scales on top of the linear theoretical model. The theoreti-
cal model can be constructed by first and higher order perturbation
theory. The procedure of constructing our fast model in redshift
space is the following: First, we adopt the cold dark matter model
and the simplest inflation model (adiabatic initial condition). Thus,
we can compute the linear matter power spectra, Plin(k), by us-
ing CAMB (Code for Anisotropies in the Microwave Background,
Lewis et al. 2000). The linear power spectrum can be decomposed
into two parts:

Plin(k) = Pnw(k) + P linBAO(k), (5)

where Pnw(k) is the “no-wiggle” or pure CDM power spectrum
calculated using Eq.(29) from Eisenstein & Hu (1998). P linBAO(k) is
the “wiggled” part defined by Eq. (5). The nonlinear damping effect
of the “wiggled” part, in redshift space, can be well approximated
following Eisenstein et al. (2007) by

PnlBAO(k, µk) = P linBAO(k) · exp

(
− k2

2k2
?

[1 + µ2
k(2f + f2)]

)
,

(6)
where µk is the cosine of the angle between k and the LOS, f is the
growth rate, and k? is computed following Crocce & Scoccimarro
(2006) and Matsubara (2008) by

k? =

[
1

3π2

∫
Plin(k)dk

]−1/2

. (7)

The dewiggled power spectrum is

Pdw(k, µk) = Pnw(k) + PnlBAO(k, µk). (8)

Besides the nonlinear redshift distortion introduced above, we
include the linear redshift distortion as follows in order to obtain
the galaxy power spectrum in redshift space at large scales (Kaiser
1987),

P sg (k, µk) = b2(1 + βµ2
k)2Pdw(k, µk), (9)

where b is the linear galaxy bias and β = f/b is the linear redshift
distortion parameter.
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Figure 1. Measurement of monopole and quadrupole of the correlation function from two redshift bins. Left panel: measurements from the BOSS DR12
LOWZ galaxy sample within 0.15 < z < 0.43 compared to the best-fitting theoretical models (solid lines). The χ2 per degree of freedom (d.o.f.) is 0.91.
Right panel: measurements from the BOSS DR12 CMASS galaxy sample within 0.43 < z < 0.75 compared to the best-fitting theoretical models (solid
lines). The χ2/d.o.f. is 1.07. The error bars are the square root of the diagonal elements of the covariance matrix. In this study, our fitting scale ranges are
40h−1Mpc < s < 180h−1Mpc; the bin size is 5h−1Mpc.

We compute the theoretical two-point correlation function,
ξ(s, µ), by Fourier transforming the non-linear power spectrum
P sg (k, µk). This task is efficiently performed by using Legendre
polynomial expansions and one-dimensional integral convolutions
as introduced in Chuang & Wang (2013a).

The purpose of using fast model is to mimic the slow model
in a very efficient way. We thus define the following calibration
functions to the fast model:

ξcal0 (s) = (1− e−
s
s1 + e

−
(
s
s2

)2

)ξ0(s), (10)

ξcal2 (s) = (1− e−
s
s3 + e

−
(
s
s4

)2

)ξ2(s), (11)

where we find the calibration parameters, s1 = 12, s2 = 14,
s3 = 20, and s4 = 27h−1Mpc, by comparing the fast and slow
models from a visual inspection. Later, we will explain that the
calibration parameters will speed up the convergence but will not
bias the results when doing a MCMC analysis. Therefore, it is not
critical to find the optimal form of calibration function and its pa-
rameters.

3.3.2 Slow model – Gaussian streaming model

We use an advanced model called ”Gaussian streaming model” de-
scribed in Reid & White (2011). The model assumes the pairwise
velocity probability distribution function is Gaussian and can be
used to relate real space clustering and pairwise velocity statistics
of halos to their clustering in redshift space by

1 + ξsg(rσ, rπ) =

∫ [
1 + ξrg(r)

]
e−[rπ−y−µv12(r)]2/2σ2

12(r,µ) dy√
2πσ2

12(r, µ)
,

(12)
where rσ and rπ are the redshift space transverse and LOS dis-
tances between two objects with respect to the observer, y is the
real space LOS pair separation, µ = y/r, ξr

g and ξs
g are the real

and redshift space galaxy correlation functions respectively, v12(r)
is the average infall velocity of galaxies separated by real-space dis-
tance r, and σ2

12(r, µ) is the rms dispersion of the pairwise velocity

between two galaxies separated with transverse (LOS) real space
separation rσ (y). ξr

g(r), v12(r) and σ2
12(r, µ) are computed in the

framework of Lagrangian (ξr) and standard perturbation theories
(v12, σ2

12).
For large scales, only one nuisance parameter is necessary

to describe the clustering of a sample of halos or galaxies in this
model: b1L = b−1, the first-order Lagrangian host halo bias in real
space. One would need another parameter, σ2

FoG, to model an ad-
ditive, isotropic velocity dispersion accounting for small-scale mo-
tions of halos and galaxies (one halo term). However, in this study,
we consider relative large scales (i.e. 40 < s < 180h−1Mpc), so
that we do not include this parameter. Further details of the model,
its numerical implementation, and its accuracy can be found in Reid
& White (2011).

3.3.3 Model for observational systematic errors

It is well known that the observations could be contaminated by
systematic effects, e.g. see Ross et al. (2012) and Ross et al. (2016;
companion paper). To obtain robust and conservative measure-
ments, we include a model for systematics. The model is a simple
polynomial given by

A(s) = a0 +
a1

s
+
a2

s2
, (13)

where a0, a1, and a2 are nuisance parameters. Following Chuang
et al. (2016), we only include the systematics model for the
monopole of the correlation function since the quadrupole is in-
sensitive to the systematics effects of which we are aware. On the
other hand, if we add another polynomial to the quadrupole as it
is usually done in papers of measuring BAO only (e.g. Anderson
et al. 2014a; Cuesta et al. 2016), we would not be able to extract
any information from redshift space distortions.

3.4 Covariance Matrix

We use the 2000 mock catalogues created by Kitaura et al. 2016b
for the BOSS DR12 CMASS and LOWZ galaxy sample to estimate
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Figure 2. Measurement of monopole and quadrupole of the correlation function from four redshift bins. Top left panel: measurements from the BOSS
DR12 LOWZ galaxy sample within 0.15 < z < 0.30 compared to the best-fitting theoretical models (solid lines). The χ2/d.o.f. is 0.71. Top right panel:
measurements from the BOSS DR12 LOWZ galaxy sample within 0.30 < z < 0.43 compared to the best-fitting theoretical models (solid lines). The χ2/d.o.f.
is 1.20. Bottom left panel: measurements from the BOSS DR12 CMASS galaxy sample within 0.43 < z < 0.55 compared to the best-fitting theoretical
models (solid lines). The χ2/d.o.f. is 1.15. Bottom right panel: measurements from the BOSS DR12 CMASS galaxy sample within 0.55 < z < 0.75

compared to the best-fitting theoretical models (solid lines). The χ2/d.o.f. is 0.85. The error bars are the square root of the diagonal elements of the covariance
matrix. In this study, our fitting scale ranges are 40h−1Mpc < s < 180h−1Mpc; the bin size is 5h−1Mpc.

the covariance matrix of the observed correlation function. We cal-
culate the multipoles of the correlation functions of the mock cata-
logues and construct the covariance matrix as

Cij =
1

(N − 1)(1−D)

N∑
k=1

(X̄i −Xk
i )(X̄j −Xk

j ), (14)

where

D =
Nb + 1

N − 1
, (15)

N is the number of the mock catalogues, Nb is the number of data
bins, X̄m is the mean of the mth element of the vector from the
mock catalogue multipoles, and Xk

m is the value in the mth ele-
ments of the vector from the kth mock catalogue multipoles. We
are using the scale range s = 40− 180h−1Mpc and the bin size is
5 h−1Mpc. The data points from the multipoles in the scale range
considered are combined to form a vector, X , i.e.,

X = {ξ̂(1)
0 , ξ̂

(2)
0 , ..., ξ̂

(N)
0 ; ξ̂

(1)
2 , ξ̂

(2)
2 , ..., ξ̂

(N)
2 ; ...}, (16)

where N is the number of data points in each measured multipole;
here N = 28 is the same for all the redshift bins. The length of the

data vector X depends on the number of multipoles used. We also
include the correction, D, introduced by Hartlap et al. (2006).

3.5 Likelihood

The likelihood is taken to be proportional to exp(−χ2/2) (B.P.
1992), with χ2 given by

χ2 ≡
NX∑
i,j=1

[Xth,i −Xobs,i]C−1
ij [Xth,j −Xobs,j ] (17)

where NX is the length of the vector used, Xth is the vector from
the theoretical model, and Xobs is the vector from the observed
data.

As explained in Chuang & Wang (2012), instead of recalcu-
lating the observed correlation function while computing for differ-
ent models, we rescale the theoretical correlation function to avoid
rendering the χ2 values arbitrary (the amount of information from
data sample used needs to be fixed when computing χ2). This ap-
proach can be considered as an application of Alcock-Paczynski
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effect (Alcock & Paczynski 1979). The rescaled theoretical corre-
lation function is computed from

T−1(ξth(σ, π)) = ξth

(
DA(z)

Dfid
A (z)

σ,
Hfid(z)

H(z)
π

)
, (18)

where ξth is the theoretical model described in Sec. 3.3, and χ2 can
be rewritten as

χ2 ≡
NX∑
i,j=1

{
T−1Xth,i −Xfid

obs,i

}
C−1
ij ·

·
{
T−1Xth,j −Xfid

obs,j

}
; (19)

where T−1Xth is the vector computed from eq. (4) from the
rescaled theoretical correlation function, eq. (18). Xfid

obs is the vec-
tor from observed data measured with the fiducial model (see
Chuang & Wang 2012 for more details regarding the rescaling
method).

3.6 Markov Chain Monte-Carlo Likelihood Analysis

3.6.1 Basic procedure

We perform Markov Chain Monte-Carlo likelihood analyses us-
ing CosmoMC (Lewis & Bridle 2002). The parameter space that
we explore spans the parameter set of {H(z), DA(z), Ωmh

2,
β(z), bσ8(z), Ωbh

2, ns, b(z), a0, a1, a2}. The quantities Ωm and
Ωb are the matter and baryon density fractions, ns is the power-
law index of the primordial matter power spectrum, h is the di-
mensionless Hubble constant (H0 = 100h km s−1Mpc−1), and
σ8(z) is the normalization of the power spectrum. The linear red-
shift distortion parameter can be expressed as β(z) = f(z)/b.
Thus, one can derive f(z)σ8(z) from the measured β(z) and
bσ8(z). Among these parameters, only {H(z), DA(z), Ωmh

2,
β(z), bσ8(z)} are well constrained using the BOSS galaxy sample
alone in the scale range of interest. We marginalize over the other
six parameters, {Ωbh2, ns, b, a0, a1, a2}, assuming a flat prior
over the range {(0.01877, 0.02537), (0.8676, 1.0556), (1.5, 2.5),
(−0.003, 0.003), (−3, 3), (−20, 20)} respectively, where the flat
priors on Ωbh

2 and ns are centred on the Planck measurements
with a width of ±10σPlanck (σPlanck is taken from Ade et al.
2014b). These priors are sufficiently wide to ensure that CMB con-
straints are not double counted when our results are combined with
CMB data (Chuang et al. 2012).

3.6.2 Generate/calibrate Markov chains with fast/slow model

We first use the fast model (2D dewiggle model) to compute the
likelihood, Lfast and generate the Markov chains. This step will
make many trials (keep or throw away based on the MCMC algo-
rithm) and eventually provides the chains of parameter points de-
scribing the parameter constraints and exclude the low likelihood
regions of the parameter space.

Once we have the chains generated using the fast model, we
modify the weight of each point in the chains by

Wnew =Wold
Lslow
Lfast

, (20)

where Lslow and Lfast are the likelihoods for a given point of in-
put parameters in the chains and Wold is the original weight of
the given point. We save time by computing only the ”important”
points without computing the likelihood of a point which we will

not include eventually. The methodology is known as ”importance
sampling”. However, the typical application of the importance sam-
pling method is to add a likelihood from some additional data set
to a given set of chains, but in this study, we will use it to replace
the likelihood of a data set with a more accurate version.

It takes about 9 hours to find the best fit value using CosmoMC
(i.e. action=2) with the slow model and 30 minutes (18 times faster)
with the fast model. The whole importance sampling (including
both steps of using fast and slow models) to have the R-1 con-
vergence value (variance of chain means/mean of chain variances)
lower than 0.1 takes about 50 hours using one Intel node (16 cores)
of TeideHPC supercomputer.

On the scales we use for comparison with the BOSS galaxy
data, the theoretical correlation function only depends on cosmic
curvature and dark energy through the parameters H(z), DA(z),
β(z), and bσ8(z) assuming that dark energy perturbations are
unimportant (valid in the simplest dark energy models). Thus we
are able to extract constraints from clustering data that are inde-
pendent of dark energy.

4 RESULTS

4.1 Validate the Methodology using Mock Catalogues

In this section, we will test our methodology by applying it to the
mock catalogues. We first demonstrate that using the mean of the
correlation functions is equivalent to using individual correlation
functions from the mocks. We obtain the measurements from the
first 100 CMASS mock catalogues within 0.43 < z < 0.75. We
use the fast model only and do not include the polynomial mod-
elling of the systematics in these tests. The left panel of Fig. 3
shows the distribution of the measurements of H(zeff )rs/rs,fid
and DA(zeff )rs,fid/rs, where rs is the comoving sound horizon
at the drag epoch and rs,fid = 147.66 Mpc is the sound scale of the
fiducial cosmology used in this study. We also show the measure-
ments from the weighted mean (using inverse variance weighting)
of 100 correlation functions from these mocks. One can see that the
weighted mean of the 100 individual measurements (blue square) is
very close to the measurement from the mean correlation function
from 100 mocks (black circle). We conclude that one can use the
mean correlation function to represent the tests for multiple corre-
lation functions. The right panel of Fig. 3 shows the scatter of the
measurements of Ωmh

2 and fσ8(z) from the same analysis above.
Note that the computing time is still expensive even after

speeding up the analysis using the fast-slow model method de-
scribed in previous sections. Therefore, instead of applying the test
using the correlation function from an individual mock catalogue,
we use the mean of the correlation functions from all the mocks.
From these tests, we can see whether our methodology would in-
troduce some bias or not. A small bias can be better detected us-
ing 2000 rather than 100 mock correlation functions. Therefore,
we validate our methodology by applying our methodology on the
mean correlation functions from 2000 mocks for different redshift
bins and present the results in Table 1. One can see that for all the
parameters in all the redshift bins, we recover the input parameters
to within 0.3σ. We show the results using the calibrated dewig-
gle model in Appendix A which also recovers the input parame-
ters within reasonable precision, 0.6σ. However, given that they
are more realistic, we use the results from the Gaussian streaming
model as our fiducial results.
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Figure 3. Left panel: The small red crosses indicate the measurements of H(z)rs
rs,fid

and
DA(z)rs,fid

rs
from 100 individual CMASS mock catalogues. We show

their weighted mean (with inverse variance weighting; blue square) and the measurement from the mean correlation function of the 100 mock catalogues
(black circle); Right panel: The small red crosses indicate the measurements of Ωmh2 and fσ8 from 100 individual CMASS mock catalogues.

Ωmh2 fσ8(z)
H(z)rs
rs,fid

DA(z)rs,fid
rs

DV (z)rs,fid
rs

0.15 < z < 0.43 0.143± 0.016 0.465± 0.085 80.6± 4.7 989± 31 1267± 29
input values 0.14105 0.481 80.16 990.2 1269.19

deviation & uncertainty (%) 1.2 & 11.5 −3.3 & 17.6 0.5 & 5.8 −0.1 & 3.2 −0.2 & 2.3

0.43 < z < 0.75 0.139± 0.013 0.478± 0.061 94.2± 3.4 1416± 25 2119± 30
input values 0.14105 0.4786 94.09 1409.26 2113.37

deviation & uncertainty (%) −1.2 & 9.0 −0.2 & 12.8 0.1 & 3.7 0.5 & 1.7 0.3 & 1.4

0.15 < z < 0.30 0.139± 0.016 0.460± 0.105 80.0± 10.7 792± 69 957± 76
input values 0.14105 0.4751 76.63 807.25 979.874

deviation & uncertainty (%) −1.5 & 11.3 −3.3 & 22.1 4.4 & 14.0 −1.9 & 8.6 −2.3 & 7.8

0.30 < z < 0.43 0.142± 0.015 0.493± 0.111 83.6± 7.9 1090± 49 1438± 57

input values 0.14105 0.4829 82.52 1088.59 1440.62
deviation & uncertainty (%) 1.0 & 10.9 2.1 & 22.9 1.3 & 9.5 0.2 & 4.5 −0.2 & 4.0

0.43 < z < 0.55 0.140± 0.016 0.478± 0.084 88.1± 4.9 1286± 39 1830± 41

input values 0.14105 0.4827 88.59 1283.41 1823.53
deviation & uncertainty (%) −0.7 & 11.3 −1.0 & 17.4 −0.5 & 5.6 0.2 & 3.1 0.4 & 2.3

0.55 < z < 0.75 0.136± 0.015 0.490± 0.078 98.5± 5.8 1462± 42 2238± 43

input values 0.14105 0.4754 96.97 1461.99 2248.92
deviation & uncertainty (%) −0.7 & 10.4 1.7 & 16.4 1.6 & 6.0 0.0 & 2.9 −0.5 & 1.9

Table 1. Measurements of Ωmh2, f(z)σ8(z), H(z)rs
rs,fid

,
DA(z)rs,fid

rs
, and

DV (z)rs,fid
rs

from the mean of 2000 correlation functions, where the unit of

H(z) is km s−1 Mpc−1 and the units of DA(z) and DV (z) are Mpc. The effective redshifts are {0.32, 0.59, 0.24, 0.37, 0.49, 0.64}. We show the means
and standard deviations, input values, the differences between mean and input values (in percentage), and the standard deviations in percentage.

4.2 Measurements of Cosmological Parameters from BOSS
galaxy clustering

We now present the dark energy model independent measurements
of the parameters {H(z), DA(z), Ωmh

2, β(z), and bσ8(z)}, ob-
tained by using the method described in previous sections. We also
present derived parameters including H(z) rs

rs,fid
, DA(z)

rs,fid
rs

,

f(z)σ8(z), and DV (z)
rs,fid
rs

with

DV (z) ≡
[
(1 + z)2DA(z)2 cz

H(z)

] 1
3

, (21)

where rs is the comoving sound horizon at the drag epoch calcu-
lated by CAMB and rs,fid = 147.66Mpc is the rs of the fiducial
cosmology used in this study (same as the one used by the mock
catalogues). We use rs/rs,fid instead of rs since it is more insen-
sitive to the approximate formula used for computing rs. DV (z) is

the effective distance which can be measured from the spherical av-
eraged correlation function or power spectrum (e.g. see Eisenstein
et al. 2005).

Table 2 lists the mean and standard deviation obtained from
the MCMC likelihood analysis from the DR12 galaxy corre-
lation function. We measure {DA(z)rs,fid/rs, H(z)rs/rs,fid,
f(z)σ8(z), Ωmh

2}, DV rfids /rs, β, bσ8 (they are not indepen-
dent), using the range 40h−1Mpc < s < 180h−1Mpc, at the dif-
ferent redshift bins, i.e. 0.15 < z < 0.43, 0.43 < z < 0.75,
0.15 < z < 0.30, 0.30 < z < 0.43, 0.43 < z < 0.55,
0.55 < z < 0.75. The effective redshifts are {0.32, 0.59, 0.24,
0.37, 0.49, 0.64}. The covariance matrices for these measurements
can be found in the Appendix.

To conveniently compare with other measurements using
CMASS sample within 0.43 < z < 0.7 (we are using
0.43 < z < 0.75), we extrapolated our measurements at
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z = 0.57: H(0.57)rs/rs,fid = 95.5 ± 2.7 km s−1 Mpc−1,
DA(0.57)rs,fid/rs = 1404± 23Mpc, and DV (0.57)rs,fid/rs =
2050± 22Mpc (see Table 9 of Alam et al. 2016).

In the next section, we will describe how to use our results of
single-probe measurements combining with other data set to con-
strain the parameters of given dark energy models.

5 CONSTRAINING COSMOLOGICAL PARAMETERS
OF GIVEN DARK ENERGY MODELS

5.1 Likelihood derivation

In this section, we describe the steps to combine our results with
other data sets assuming some dark energy models. Here, we use
the results from two redshift bins, 0.15 < z < 0.43 (LOWZ)
and 0.43 < z < 0.75 (CMASS), as an example. For a given
model and cosmological parameters, one can computeH(z) rs

rs,fid
,

DA(z)
rs,fid
rs

, f(z)σ8(z), and Ωmh
2. From Tables B1 and B2 in

Appendix B and the standard deviations in Table 2, one can com-
pute the covariance matrices, Mij,CMASS and Mij,LOWZ, of these
four parameters. Then, χ2

CMASS and χ2
LOWZ can be computed by

χ2
CMASS = ∆CMASSM

−1
ij,CMASS∆CMASS, (22)

and

χ2
LOWZ = ∆LOWZM

−1
ij,LOWZ∆LOWZ, (23)

where

∆CMASS =


DA(z)

rs,fid
rs

−1421

H(z) rs
rs,fid

−96.7

f(z)σ8(z)−0.497

Ωmh
2−0.137

 , (24)

∆LOWZ =


DA(z)

rs,fid
rs

−956

H(z) rs
rs,fid

−75.0

f(z)σ8(z)−0.397

Ωmh
2−0.143

 , (25)

Mij,CMASS =
0.53559E+03 0.27875E+02 0.70092E+00 −0.29507E−01

0.27875E+02 0.74866E+01 0.85855E−01 −0.92898E−02

0.70092E+00 0.85855E−01 0.33643E−02 −0.51341E−03

−0.29507E−01 −0.92898E−02 −0.51341E−03 0.22673E−03

 ,

and

Mij,LOWZ =
0.77636E+03 0.43792E+02 0.11413E+01 0.86090E−01

0.43792E+02 0.16253E+02 0.19856E+00 0.21477E−01

0.11413E+01 0.19856E+00 0.53875E−02 0.69008E−04

0.86090E−01 0.21477E−01 0.69008E−04 0.29001E−03

 .

One can include the cosmological constraints from the
SDSS/BOSS galaxy clustering by adding χ2

LOWZ + χ2
CMASS in the

MCMC analysis, due to the negligible correlation of these samples.

5.2 Constraining Dark Energy Parameters combining with
external data sets

In this section, we present examples of combining our galaxy clus-
tering results with the Planck CMB data assuming specific dark
energy models. The Planck data set we use is the Planck 2015
measurements (Adam et al. 2016; Ade et al. 2016a). The reference
likelihood code (Aghanim et al. 2015) was downloaded from the

Planck Legacy Archive5. Here we combine the Plik baseline like-
lihood for high multipoles (30 6 ` 6 2500) using the TT, TE
and EE power spectra, and the Planck low-` multipole likelihood
in the range 2 6 ` 6 29 (hereafter lowTEB). We also include
the Planck 2015 lensing likelihood (Ade et al. 2016b), constructed
from the measurements of the power spectrum of the lensing poten-
tial (hereafter referred as ”lensing”). When using the Planck lens-
ing likelihood, the Alens parameter is always set to 1 (Ade et al.
2016a).

Table 3 shows the cosmological constraints assuming flat
ΛCDM, oΛCDM (non-flat ΛCDM), wCDM (constant equation
of state of dark energy), owCDM (non-flat wCDM), w0waCDM
( time-dependent equation of state) and ow0waCDM (non-flat
w0waCDM). In addition to using 2 redshift bins, we use 4 redshift
bins but we do not find any improvement in terms of constraining
cosmological parameters. It should indicate that the the models we
are testing are still simple and do not benefit from higher redshift
sensitivity. In addition, some information (pair counts) would be
lost when we slice the sample into more bins. In Fig. 4, 5, and 6, we
show 2D marginalized contours for 68% and 95% confidence lev-
els for Ωm andH0 (ΛCDM model assumed); Ωm and Ωk (oΛCDM
model assumed); Ωm and w (wCDM model assumed); Ωk and
w (owCDM model assumed); w0 and wa (w0waCDM model as-
sumed); Ωk and w0 (ow0waCDM model assumed). One can see
that all the constraints are consistent with flat ΛCDM.

6 COMPARISON WITH OTHER WORKS

We compile the measurements of f(z)σ8(z),DA(z)/rs,H(z)∗rs,
and DV (z)/rs from various galaxy surveys in Tables C1, C2, and
C3 in the Appendix C. We have included the measurements from
VIMOS-VLT Deep Survey (VVDS; Guzzo et al. 2008), 2dFGRS
(Percival et al. 2004), Six-degree-Field Galaxy Survey (6dFGS;
Beutler et al. 2011, 2012), WiggleZ (Blake et al. 2011a,b, 2012;
Contreras et al. 2013), SDSS-II/DR7 (Percival et al. 2010; Chuang
et al. 2012; Samushia et al. 2012; Chuang & Wang 2012, 2013b,a;
Ross et al. 2015; Padmanabhan et al. 2012; Xu et al. 2013; Seo
et al. 2012; Hemantha et al. 2014) SDSS-III/BOSS (Anderson et al.
2013; Reid et al. 2012; Anderson et al. 2014b; Chuang et al. 2013;
Kazin et al. 2013; Wang 2014; Anderson et al. 2014a; Beutler et al.
2014; Samushia et al. 2014; Sanchez et al. 2014; Tojeiro et al.
2014; Reid et al. 2014; Alam et al. 2015; Gil-Marı́n et al. 2016a,b;
Cuesta et al. 2016), Alam et al. (2016) (BOSS collaboration paper
for final data release) and its companion papers including this paper
and Ross et al. (2017); Vargas-Magaña et al. (2016); Beutler et al.
(2016); Satpathy et al. (2016); Beutler et al. (2017); Sanchez et al.
(2017b); Grieb et al. (2016); Pellejero-Ibanez et al. (2016).

To be able to include more measurements, we quote
DV (z)/rs instead of DV (z)rs,fid/rs since rs,fid was not pro-
vided in some references. In Figs. 7, 8, 9, and 10, we compare the
constraints of f(z)σ8(z),DV (z)/rs,DA(z)/rs, andH(z)rs from
CMB data (Planck assuming ΛCDM) with the measurements from
galaxy clustering analyses compiled in Tables C1, C2, and C3.

In these figures, when there are many measurements that cor-
respond to the same redshift, we show the mean and error bar for
only one of them (as indicated in the caption) and show only the
mean values indicated with triangles for the rest of the measure-
ments. We also slightly shift the redshift to make the figures more

5 PLA: http://pla.esac.esa.int/
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0.15 < z < 0.43 0.43 < z < 0.75 0.15 < z < 0.30 0.30 < z < 0.43 0.43 < z < 0.55 0.55 < z < 0.75

DAr
fid
s /rs 956± 28 1421± 23 826± 45 993± 65 1288± 31 1444± 41

Hrs/r
fid
s 75.0± 4.0 96.7± 2.7 78.8± 5.6 74.8± 6.3 87.5± 4.8 98.4± 3.7

fσ8 0.397± 0.073 0.497± 0.058 0.493± 0.105 0.378± 0.076 0.456± 0.068 0.454± 0.064

Ωmh2 0.143± 0.017 0.137± 0.015 0.136± 0.017 0.147± 0.014 0.144± 0.016 0.140± 0.017

DV r
fid
s /rs 1268± 26 2106± 23 987± 40 1402± 69 1837± 36 2220± 39
β 0.301± 0.066 0.435± 0.070 0.389± 0.096 0.287± 0.067 0.367± 0.072 0.410± 0.077

bσ8 1.332± 0.099 1.154± 0.090 1.287± 0.129 1.332± 0.137 1.256± 0.112 1.120± 0.094

Table 2. Our measurements of {DA(z)rs,fid/rs, H(z)rs/rs,fid, f(z)σ8(z), Ωmh2}, DV rs,fid/rs, β, bσ8, from BOSS DR12 data at the different
redshift bins stated, using the range 40h−1Mpc < s < 180h−1Mpc; rs,fid is 147.66 Mpc in this study; the unit of H(z) is km s−1 Mpc−1 and the units
of DA(z) and DV (z) are Mpc. The effective redshifts of these redshift bins are {0.32, 0.59, 0.24, 0.37, 0.49, 0.64}.

Ωm H0 σ8 Ωk w or w0 wa
Planck+2bins (ΛCDM) 0.307± 0.008 67.9± 0.6 0.815± 0.009 0 −1 0
Planck+4bins (ΛCDM) 0.306± 0.009 67.9± 0.7 0.815± 0.009 0 −1 0

Planck+2bins (oΛCDM) 0.307± 0.008 67.8± 0.8 0.815± 0.009 0.000± 0.003 −1 0

Planck+4bins (oΛCDM) 0.306± 0.010 68.0± 1.0 0.815± 0.010 0.000± 0.003 −1 0
Planck+2bins (wCDM) 0.304± 0.013 68.3± 1.5 0.819± 0.015 0 −1.02± 0.06 0

Planck+4bins (wCDM) 0.304± 0.016 68.3± 1.7 0.818± 0.017 0 −1.01± 0.06 0
Planck+2bins (owCDM) 0.305± 0.015 68.2± 1.5 0.819± 0.017 0.000± 0.003 −1.02± 0.08 0

Planck+4bins (owCDM) 0.304± 0.017 68.2± 1.8 0.817± 0.017 0.000± 0.004 −1.02± 0.08 0

Planck+2bins (w0waCDM) 0.310± 0.021 67.8± 2.2 0.815± 0.019 0 −0.95± 0.22 −0.22± 0.63
Planck+4bins (w0waCDM) 0.314± 0.021 67.2± 2.2 0.810± 0.019 0 −0.86± 0.22 −0.50± 0.67

Planck+2bins (ow0waCDM) 0.312± 0.020 67.4± 2.2 0.813± 0.018 −0.002± 0.004 −0.90± 0.23 −0.49± 0.75

Planck+4bins (ow0waCDM) 0.316± 0.022 66.9± 2.3 0.809± 0.019 −0.002± 0.004 −0.82± 0.22 −0.73± 0.73

Table 3. The cosmological constraints from 2 redshift bins and 4 redshift bins combined with Planck data assuming ΛCDM, non-flat ΛCDM (oΛCDM),
wCDM, w0waCDM, and ow0waCDM. The units of H0 are km s−1 Mpc−1.
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Figure 4. Left panel: 2D marginalized contours for 68% and 95% confidence levels for Ωm and H0 (ΛCDM model assumed) from Planck-only (green),
Planck+CMASS (1 bin)+LOWZ (1 bin) (blue), and Planck+CMASS (2 bins)+LOWZ (2 bins) (red); right panel: 2D marginalized contours for 68% and 95%

confidence level for Ωm and Ωk (oΛCDM model assumed). One can see that Ωk is consistent with 0 which corresponds to the flat universe.
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clear. Since we are using the CMASS galaxy sample with an ex-
tended redshift range (0.43 < z < 0.75) compared to other studies
using the CMASS galaxy sample (0.43 < z < 0.7), the com-
parison cannot be done directly. However, our measurements agree
very well with the prediction from Planck data assuming ΛCDM,

and so do the measurements from previous works. One can see
that the measurements of DV (z)/rs from different analyses but
at the same redshift agree with each other. However, the measure-
ments of H(z)rs/rs,fid and DA(z)rs,fid/rs have larger scatter.
This is expected since DV (z)/rs is driven by the BAO feature in

c© 0000 RAS, MNRAS 000, 000–000
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the monopole. But, H(z)rs and DA(z)/rs is correlated with the
shape of BAO feature which has larger uncertainties among differ-
ent models.

There seems to be a slight deviation between our f(z)σ8(z)
measurements and Planck ΛCDM prediction, e.g. in our measure-
ment at z = 0.32 (Fig. 7). In fact, the measurements are consistent
with Planck result within 1σ if one looks at the 2-dimensional con-
tours of f(z)σ8(z) and Ωmh

2 shown in Fig. 11. One can see that
there is some correlation between f(z)σ8(z) and Ωmh

2.

7 SUMMARY

We present measurements of the anisotropic galaxy clustering from
the CMASS and LOWZ samples of the final date release (DR12) of
the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS) and
obtain constraints on the Hubble expansion rate H(z), the angular-
diameter distance DA(z), the normalized growth rate f(z)σ8(z),
and the physical matter density Ωmh

2. We analyse the broad-
range shape of quasi-linear scales of the monopole and quadrupole
correlation functions to obtain cosmological constraints at differ-
ent redshift bins. In addition to the two redshift bins, i.e. LOWZ
(zLOWZ = 0.32) and CMASS (zCMASS = 0.59), we split each
galaxy sample into 2 bins (for a total of 4 redshift bins) and obtain
the measurements at z = {0.24, 0.37, 0.49, 0.64} to increase the
sensitivity of redshift evolution. However, we do not find improve-
ment in terms of constraining different dark energy model param-
eters. It might indicate that the dark energy component is stable in
the redshift range considered.

We adopt wide and flat priors on all model parameters in or-
der to ensure the results are those of a ‘single-probe’ galaxy clus-
tering analysis. We also marginalize over three nuisance terms that
account for potential observational systematics affecting the mea-
sured monopole. The Monte Carlo Markov Chain analysis with
such wide priors and additional polynomial functions is compu-
tationally expensive for advanced theoretical models. We have de-
veloped and validated a new methodology to speed this up by scan-
ning the parameter space using a fast model first and then applying
importance sampling using a slower but more accurate model.

Our measurements for DR12 galaxy sample, using the
range 40h−1Mpc < s < 180h−1Mpc, are {DA(z)rs,fid/rs,
H(z)rs/rs,fid, f(z)σ8(z), Ωmh

2} = {956± 28 Mpc, 75.0± 4.0
km s−1 Mpc−1, 0.397 ± 0.073, 0.143 ± 0.017} at z = 0.32 and
{1421 ± 23 Mpc, 96.7 ± 2.7 km s−1 Mpc−1, 0.497 ± 0.058,
0.137 ± 0.015} at z = 0.59 where rs is the comoving sound
horizon at the drag epoch and rs,fid = 147.66 Mpc is the sound
scale of the fiducial cosmology used in this study. Combining our
measurements with Planck data, we obtain Ωm = 0.306 ± 0.009,
H0 = 67.9 ± 0.7 km s−1 Mpc−1, and σ8 = 0.815 ± 0.009 as-
suming ΛCDM; Ωk = 0.000 ± 0.003 assuming oCDM; w =
−1.01 ± 0.06 assuming wCDM; and w0 = −0.95 ± 0.22 and
wa = −0.22 ± 0.63 assuming w0waCDM. The results show no
tension with the flat ΛCDM cosmological paradigm.
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APPENDIX A: PERFORMANCE OF CALIBRATED
DEWIGGLE MODEL

We present the results using the calibrated dewiggle model in Table
A which also recovers the input parameters with reasonable preci-
sion (0.6σ). It shows that our methodology does not bias signifi-
cantly our results.
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Figure 10. We compare the constraints of H(z)rs (km/s) from CMB data (Planck) with our measurements (red squares), and other measurements (black
circles and blue triangles; Chuang & Wang 2012, 2013b,a; Xu et al. 2013; Hemantha et al. 2014; Anderson et al. 2014b; Chuang et al. 2013; Kazin et al. 2013;
Wang 2014; Anderson et al. 2014a; Beutler et al. 2014; Gil-Marı́n et al. 2016a,b; Cuesta et al. 2016, Alam et al. (2016) (BOSS collaboration paper for final
data release) and its companion papers including this paper and Ross et al. (2017); Vargas-Magaña et al. (2016); Beutler et al. (2016); Satpathy et al. (2016);
Beutler et al. (2017); Sanchez et al. (2017b); Grieb et al. (2016); Pellejero-Ibanez et al. (2016)). The consensus values from Alam et al. (2016) are shown with
brown diamond points. When there are more than one measurement at the same redshift, we mark one of the measurements using a black circle with error bar
(i.e., the measurement from Chuang & Wang 2012 at z = 0.35 and the consensus values from Cuesta et al. 2016 at z = 0.57) and mark the others with blue
triangles with a slight shift in redshift to make the plot more clear. The constraints from CMB are obtained assuming a ΛCDM model.

Ωmh2 fσ8(z)
H(z)rs
rs,fid

DA(z)rs,fid
rs

DV (z)rs,fid
rs

0.15 < z < 0.43 0.150± 0.015 0.464± 0.086 79.9± 5.2 991± 33 1272± 30
input values 0.14105 0.481 80.16 990.2 1269.19

deviation & uncertainty (%) 6.3 & 10.6 −3.6 & 18.0 −0.4 & 6.5 0.0 & 3.3 0.2 & 2.3

0.43 < z < 0.75 0.150± 0.014 0.490± 0.055 93.6± 3.5 1416± 27 2124± 30

input values 0.14105 0.4786 94.09 1409.26 2113.37
deviation & uncertainty (%) 6.2 & 9.8 2.3 & 11.5 −0.5 & 3.7 0.5 & 1.9 0.5 & 1.4

0.15 < z < 0.30 0.143± 0.016 0.469± 0.111 77.6± 8.8 802± 58 973± 56

input values 0.14105 0.4751 76.63 807.25 979.874
deviation & uncertainty (%) 1.7 & 11.6 −1.3 & 23.3 1.2 & 11.4 −0.7 & 7.2 −0.7 & 5.7

0.30 < z < 0.43 0.147± 0.016 0.489± 0.099 82.4± 7.1 1090± 45 1444± 46

input values 0.14105 0.4829 82.52 1088.59 1440.62
deviation & uncertainty (%) 3.9 & 11.2 1.3 & 20.6 −0.1 & 8.6 0.1 & 4.2 0.2 & 3.2

0.43 < z < 0.55 0.147± 0.016 0.494± 0.077 88.0± 5.6 1287± 37 1832± 43

input values 0.14105 0.4827 88.59 1283.41 1823.53
deviation & uncertainty (%) 4.1 & 11.0 2.3 & 15.9 −0.6 & 6.4 0.3 & 2.9 0.5 & 2.3

0.55 < z < 0.75 0.145± 0.015 0.495± 0.071 97.0± 5.1 1468± 37 2255± 44

input values 0.14105 0.4754 96.97 1461.99 2248.92
deviation & uncertainty (%) 3.0 & 10.5 4.1 & 14.9 0.0 & 5.3 0.4 & 2.5 0.3 & 1.9

Table A1. Measurements from the mean of 2000 correlation functions using dewiggle model, where the unit of H(z) is km s−1 Mpc−1 and the units of
DA(z) and DV (z) are Mpc.
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Figure 11. 2D marginalized contours for 68% and 95% confidence level for the measurement of f(z)σ8(z) and Ωmh2 from the LOWZ sample comparing
with the Planck prediction at the same redshift (left panel for z = 0.32 and right panel for z = 0.59 ; assuming ΛCDM).

APPENDIX B: MEASURED COVARIANCE MATRIX

We show the normalized covariance matrices (also called ”correla-
tion matrices”) of our measurements in Table B1 to B6. A normal-
ized covariance matrix is defined by

Nij =
Cij√
CiiCjj

, (B1)

where Cij is the covariance matrix.

APPENDIX C: COMPILATIONS OF MEASUREMENTS
FROM OTHER WORKS AND THIS STUDY

We compile the measurements of f(z)σ8(z),DA(z)/rs,H(z)∗rs,
and DV (z)/rs from various galaxy surveys in Table C1, C2,
and C3. We have included the measurements from VIMOS-VLT
Deep Survey (VVDS; Guzzo et al. 2008), 2dFGRS (Percival et al.
2004), Six-degree-Field Galaxy Survey (6dFGS; Beutler et al.
2011, 2012), WiggleZ (Blake et al. 2011a,b, 2012; Contreras et al.
2013), SDSS-II/DR7 (Percival et al. 2010; Chuang et al. 2012;
Samushia et al. 2012; Chuang & Wang 2012, 2013b,a; Ross et al.
2015; Padmanabhan et al. 2012; Xu et al. 2013; Seo et al. 2012; He-
mantha et al. 2014) SDSS-III/BOSS (Anderson et al. 2013; Reid
et al. 2012; Anderson et al. 2014b; Chuang et al. 2013; Kazin
et al. 2013; Wang 2014; Anderson et al. 2014a; Beutler et al. 2014;
Samushia et al. 2014; Sanchez et al. 2014; Tojeiro et al. 2014; Reid
et al. 2014; Alam et al. 2015; Gil-Marı́n et al. 2016a,b; Cuesta
et al. 2016), Alam et al. (2016) (BOSS collaboration paper for
final data release) and its companion papers including this paper
and Ross et al. (2017); Vargas-Magaña et al. (2016); Beutler et al.
(2016); Satpathy et al. (2016); Beutler et al. (2017); Sanchez et al.
(2017b); Grieb et al. (2016); Pellejero-Ibanez et al. (2016). To be
able to include more measurements, we quoteDV (z)/rs instead of
DV (z)rs,fid/rs since rs,fid was not provided in some references.
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DA(z)
rs,fid
rs

H(z) rs
rs,fid

fσ8(z) Ωmh2 DV (z)
rs,fid
rs

β(z) bσ8(z)

DA(z)
rs,fid
rs

1.0000 0.3899 0.5581 0.1814 0.6045 0.4718 0.0160
H(z) rs

rs,fid
0.3899 1.0000 0.6710 0.3128 -0.4973 0.6559 -0.2362

fσ8(z) 0.5581 0.6710 1.0000 0.0552 -0.0562 0.9476 -0.2714
Ωmh2 0.1814 0.3128 0.0552 1.0000 -0.1057 0.0364 0.0756

DV (z)
rs,fid
rs

0.6045 -0.4973 -0.0562 -0.1057 1.0000 -0.1237 0.2183
β(z) 0.4718 0.6559 0.9476 0.0364 -0.1237 1.0000 -0.5544
bσ8(z) 0.0160 -0.2362 -0.2714 0.0756 0.2183 -0.5544 1.0000

Table B1. Normalized covariance matrix of the measurements from DR12 galaxy sample of 0.15 < z < 0.43. the units of DA(z) and DV (z) are Mpc.

DA(z)
rs,fid
rs

H(z) rs
rs,fid

fσ8(z) Ωmh2 DV (z)
rs,fid
rs

β(z) bσ8(z)

DA(z)
rs,fid
rs

1.0000 0.4402 0.5222 -0.0847 0.6206 0.4513 -0.1722
H(z) rs

rs,fid
0.4402 1.0000 0.5410 -0.2255 -0.4306 0.4293 -0.0799

fσ8(z) 0.5222 0.5410 1.0000 -0.5879 0.0509 0.8951 -0.3739
Ωmh2 -0.0847 -0.2255 -0.5879 1.0000 0.1152 -0.5034 0.1335

DV (z)
rs,fid
rs

0.6206 -0.4306 0.0509 0.1152 1.0000 0.0769 -0.1022
β(z) 0.4513 0.4293 0.8951 -0.5034 0.0769 1.0000 -0.7402
bσ8(z) -0.1722 -0.0799 -0.3739 0.1335 -0.1022 -0.7402 1.0000

Table B2. Normalized covariance matrix of the measurements from DR12 galaxy sample of 0.43 < z < 0.75. the units of DA(z) and DV (z) are Mpc.

DA(z)
rs,fid
rs

H(z) rs
rs,fid

fσ8(z) Ωmh2 DV (z)
rs,fid
rs

β(z) bσ8(z)

DA(z)
rs,fid
rs

1.0000 0.1492 0.5334 0.0738 0.8167 0.3523 0.2295
H(z) rs

rs,fid
0.1492 1.0000 0.4036 0.1066 -0.4465 0.4294 -0.2197

fσ8(z) 0.5334 0.4036 1.0000 -0.1680 0.2417 0.9096 -0.1677
Ωmh2 0.0738 0.1066 -0.1680 1.0000 0.0131 -0.1872 0.0796

DV (z)
rs,fid
rs

0.8167 -0.4465 0.2417 0.0131 1.0000 0.0625 0.3418
β(z) 0.3523 0.4294 0.9096 -0.1872 0.0625 1.0000 -0.5489
bσ8(z) 0.2295 -0.2197 -0.1677 0.0796 0.3418 -0.5489 1.0000

Table B3. Normalized covariance matrix of the measurements from DR12 galaxy sample of 0.15 < z < 0.30. the units of DA(z) and DV (z) are Mpc.

DA(z)
rs,fid
rs

H(z) rs
rs,fid

fσ8(z) Ωmh2 DV (z)
rs,fid
rs

β(z) bσ8(z)

DA(z)
rs,fid
rs

1.0000 0.1042 0.5015 0.1169 0.8364 0.1788 0.5662
H(z) rs

rs,fid
0.1042 1.0000 0.4615 -0.1769 -0.4533 0.5100 -0.1488

fσ8(z) 0.5015 0.4615 1.0000 -0.2777 0.1991 0.8736 0.0567
Ωmh2 0.1169 -0.1769 -0.2777 1.0000 0.2003 -0.2214 -0.0643

DV (z)
rs,fid
rs

0.8364 -0.4533 0.1991 0.2003 1.0000 -0.1108 0.5839
β(z) 0.1788 0.5100 0.8736 -0.2214 -0.1108 1.0000 -0.4223
bσ8(z) 0.5662 -0.1488 0.0567 -0.0643 0.5839 -0.4223 1.0000

Table B4. Normalized covariance matrix of the measurements from DR12 galaxy sample of 0.30 < z < 0.43. the units of DA(z) and DV (z) are Mpc.
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DA(z)
rs,fid
rs

H(z) rs
rs,fid

fσ8(z) Ωmh2 DV (z)
rs,fid
rs

β(z) bσ8(z)

DA(z)
rs,fid
rs

1.0000 0.3189 0.4258 0.0776 0.5088 0.2947 0.0573
H(z) rs

rs,fid
0.3189 1.0000 0.5740 0.0618 -0.6525 0.5351 -0.2326

fσ8(z) 0.4258 0.5740 1.0000 -0.2981 -0.1848 0.9001 -0.3283
Ωmh2 0.0776 0.0618 -0.2981 1.0000 0.0109 -0.1441 -0.1903

DV (z)
rs,fid
rs

0.5088 -0.6525 -0.1848 0.0109 1.0000 -0.2533 0.2576
β(z) 0.2947 0.5351 0.9001 -0.1441 -0.2533 1.0000 -0.6958
bσ8(z) 0.0573 -0.2326 -0.3283 -0.1903 0.2576 -0.6958 1.0000

Table B5. Normalized covariance matrix of the measurements from DR12 galaxy sample of 0.43 < z < 0.55. the units of DA(z) and DV (z) are Mpc.

DA(z)
rs,fid
rs

H(z) rs
rs,fid

fσ8(z) Ωmh2 DV (z)
rs,fid
rs

β(z) bσ8(z)

DA(z)
rs,fid
rs

1.0000 0.4299 0.4490 0.0544 0.7736 0.3330 0.0055
H(z) rs

rs,fid
0.4299 1.0000 0.4408 -0.0347 -0.2390 0.3523 -0.0624

fσ8(z) 0.4490 0.4408 1.0000 -0.4533 0.1753 0.8950 -0.3339
Ωmh2 0.0544 -0.0347 -0.4533 1.0000 0.0815 -0.3508 0.0318

DV (z)
rs,fid
rs

0.7736 -0.2390 0.1753 0.0815 1.0000 0.1114 0.0513
β(z) 0.3330 0.3523 0.8950 -0.3508 0.1114 1.0000 -0.7106
bσ8(z) 0.0055 -0.0624 -0.3339 0.0318 0.0513 -0.7106 1.0000

Table B6. Normalized covariance matrix of the measurements from DR12 galaxy sample of 0.55 < z < 0.75. the units of DA(z) and DV (z) are Mpc.
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Redshift f(z)σ8(z) Data Reference
0.64 0.454± 0.064 DR12 This study
0.59 0.497± 0.058 DR12
0.49 0.456± 0.068 DR12
0.37 0.378± 0.076 DR12
0.32 0.397± 0.073 DR12
0.24 0.493± 0.105 DR12
0.59 0.51± 0.047 DR12 Pellejero-Ibanez et al. (2016)
0.32 0.431± 0.063 DR12
0.61 0.436± 0.034 DR12 Alam et al. (2016)
0.51 0.458± 0.035 DR12 (BOSS consensus results)
0.38 0.497± 0.039 DR12
0.61 0.456± 0.052 DR12 Satpathy et al. (2016)
0.51 0.452± 0.058 DR12
0.38 0.43± 0.054 DR12
0.61 0.409± 0.044 DR12 Beutler et al. (2016)
0.51 0.454± 0.051 DR12
0.38 0.479± 0.054 DR12
0.61 0.409± 0.041 DR12 Grieb et al. (2016)
0.51 0.448± 0.038 DR12
0.38 0.498± 0.045 DR12
0.61 0.44± 0.039 DR12 Sanchez et al. (2017b)
0.51 0.47± 0.042 DR12
0.38 0.468± 0.053 DR12
0.59 0.488± 0.06 DR12 Chuang et al. (2016)
0.57 0.444± 0.038 DR12 Gil-Marı́n et al. (2016b)
0.32 0.394± 0.062 DR12
0.57 0.417± 0.045 DR11 Sanchez et al. (2014)
0.32 0.48± 0.10 DR11
0.57 0.441± 0.044 DR11 Samushia et al. (2014)
0.57 0.419± 0.044 DR11 Beutler et al. (2014)
0.57 0.462± 0.041 DR11 Alam et al. (2015)
0.57 0.45± 0.011 DR10 Reid et al. (2014)
0.57 0.428± 0.069 DR9 Chuang et al. (2013)
0.57 0.415± 0.034 DR9 Reid et al. (2012)
0.57 0.474± 0.075 DR9 Wang (2014)
0.3 0.49± 0.08 DR7 Oka et al. (2014)

0.37 0.46± 0.04 DR7 Samushia et al. (2012)
0.25 0.35± 0.06 DR7
0.35 0.429± 0.089 DR7 Chuang & Wang (2013a)
0.067 0.423± 0.055 6dFGS Beutler et al. (2012)
0.44 0.413± 0.08 WiggleZ Blake et al. (2012)
0.6 0.39± 0.063 WiggleZ

0.73 0.437± 0.072 WiggleZ
0.22 0.42± 0.07 WiggleZ Blake et al. (2011b)
0.41 0.45± 0.04 WiggleZ
0.6 0.43± 0.04 WiggleZ

0.78 0.38± 0.04 WiggleZ
0.17 0.51± 0.06 2dFGRS Percival et al. (2004)
0.77 0.49± 0.18 VVDS Guzzo et al. (2008)

Table C1. Measurements of f(z)σ8(z) from different galaxy surveys, including SDSS-II (DR7), SDSS-III (DR9,DR11,DR12), 6dFGS, WiggleZ, 2dFGRS,
and VVDS.
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Redshift DV (z)/rs rs,fid Data Reference
0.64 15.03± 0.26 147.66 DR12 This study
0.59 14.26± 0.16 147.66 DR12
0.49 12.44± 0.24 147.66 DR12
0.37 9.49± 0.47 147.66 DR12
0.32 8.59± 0.18 147.66 DR12
0.24 6.68± 0.27 147.66 DR12
0.61 14.48± 0.15 147.78 DR12 Alam et al. (2016)
0.51 12.70± 0.13 147.78 DR12 (BOSS consensus results)
0.38 9.99± 0.11 147.78 DR12
0.59 14.27± 0.18 147.66 DR12 Chuang et al. (2016)
0.57 13.79± 0.14 147.1 DR12 Cuesta et al. (2016)
0.32 8.59± 0.15 147.1 DR12
0.57 13.70± 0.12 DR12 Gil-Marı́n et al. (2016a)
0.32 8.62± 0.15 DR12
0.57 13.85± 0.17 DR11 Samushia et al. (2014)
0.57 13.89± 0.18 147.36 DR11 Beutler et al. (2014)
0.57 13.77± 0.13 149.28 DR11 Anderson et al. (2014a)
0.32 8.47± 0.17 149.28 DR11
0.32 8.47± 0.17 149.28 DR11 Tojeiro et al. (2014)
0.57 14.04± 0.23 149.16 DR9 Anderson et al. (2013)
0.57 13.91± 0.30 DR9 Chuang et al. (2013)
0.35 9.12± 0.17 DR7 Padmanabhan et al. (2012)
0.35 8.85± 0.26 DR7 Chuang & Wang (2012)
0.35 8.99± 0.24 DR7 Chuang et al. (2012)
0.35 9.37± 0.31 DR7+2dFGRS Percival et al. (2010)
0.2 5.39± 0.17 DR7+2dFGRS
0.15 4.47± 0.17 148.69 DR7 Ross et al. (2015)

0.106 3.06± 0.13 6dFGS Beutler et al. (2011)
0.44 11.50± 0.56 149.28 WiggleZ Kazin et al. (2014)
0.6 14.88± 0.68 149.28 WiggleZ
0.73 16.85± 0.58 149.28 WiggleZ
0.44 11.20± 0.87 WiggleZ Blake et al. (2011a)
0.6 14.14± 0.67 WiggleZ
0.73 17.35± 0.93 WiggleZ

Table C2. Measurements of DV (z)/rs from different galaxy surveys, including SDSS-II (DR7), SDSS-III (DR9,DR11,DR12), 2dFGRS, 6dFGS, and Wig-
gleZ. To be able to include more measurements, we use DV (z)/rs instead of DV (z)rs,fid/rs since rs,fid (Mpc) was not provided in some literatures. In
addition, we have included an approximation rs,EH/rs,CAMB = 1.027 to correct the different ways of estimating the sound horizon in different analyses.
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Redshift H(z)rs DA(z)/rs rs,fid Data Reference
0.64 14530± 546 9.78± 0.28 147.66 DR12 This study
0.59 14279± 399 9.62± 0.16 147.66 DR12
0.49 12920± 709 8.72± 0.21 147.66 DR12
0.37 11045± 930 6.72± 0.44 147.66 DR12
0.32 11075± 591 6.47± 0.19 147.66 DR12
0.24 11636± 827 5.59± 0.30 147.66 DR12
0.59 14456± 458 9.63± 0.17 147.66 DR12 Pellejero-Ibanez et al. (2016)
0.32 11680± 487 6.47± 0.18 147.66 DR12
0.61 14379± 266 9.60± 0.13 147.78 DR12 Alam et al. (2016)
0.51 13374± 251 8.86± 0.12 147.78 DR12 (BOSS consensus results)
0.38 12044± 281 7.44± 0.11 147.78 DR12
0.61 14601± 340 9.70± 0.17 147.78 DR12 Beutler et al. (2016)
0.51 13418± 325 8.86± 0.14 147.78 DR12
0.38 11926± 355 7.39± 0.12 147.78 DR12
0.61 14675± 369 9.63± 0.18 147.78 DR12 Vargas-Magaña et al. (2016)
0.51 13448± 310 8.85± 0.13 147.78 DR12
0.38 11882± 355 7.39± 0.11 147.78 DR12
0.61 14689± 325 9.65± 0.18 147.78 DR12 Ross et al. (2017)
0.51 13463± 310 8.83± 0.13 147.78 DR12
0.38 11985± 325 7.41± 0.11 147.78 DR12
0.61 14704± 649 9.61± 0.26 147.78 DR12 Satpathy et al. (2016)
0.51 13053± 607 8.89± 0.20 147.78 DR12
0.38 11716± 480 7.24± 0.16 147.78 DR12
0.61 14330± 591 9.54± 0.28 147.78 DR12 Beutler et al. (2017)
0.51 13064± 599 9.03± 0.26 147.78 DR12
0.38 12193± 474 7.59± 0.20 147.78 DR12
0.61 14021± 375 9.59± 0.21 147.78 DR12 Grieb et al. (2016)
0.51 12863± 349 8.92± 0.16 147.78 DR12
0.38 11995± 337 7.48± 0.12 147.78 DR12
0.61 14378± 400 9.61± 0.18 147.78 DR12 Sanchez et al. (2017b)
0.51 13334± 364 9.01± 0.15 147.78 DR12
0.38 12186± 352 7.36± 0.13 147.78 DR12
0.59 14367± 487 9.66± 0.18 147.66 DR12 Chuang et al. (2016)
0.57 14754± 544 9.52± 0.14 147.1 DR12 Cuesta et al. (2016)
0.32 11650± 824 6.67± 0.14 147.1 DR12
0.57 13920± 440 9.42± 0.15 DR12 Gil-Marı́n et al. (2016b)
0.32 11410± 560 6.35± 0.19 DR12
0.57 14560± 370 9.42± 0.13 DR12 Gil-Marı́n et al. (2016a)
0.32 11600± 600 6.66± 0.16 DR12
0.57 13719± 486 9.42± 0.15 147.36 DR11 Beutler et al. (2014)
0.57 13960± 448 9.26± 0.17 DR11 Sanchez et al. (2014)
0.32 12199± 627 6.46± 0.28 DR11
0.57 14450± 508 9.52± 0.13 149.28 DR11 Anderson et al. (2014a)
0.57 13857± 1163 9.44± 0.30 149.16 DR9 Anderson et al. (2014b)
0.57 13564± 906 9.29± 0.28 DR9 Kazin et al. (2013)
0.57 13262± 906 9.19± 0.28 DR9 Chuang et al. (2013)
0.57 12970± 555 9.25± 0.24 DR9 Wang (2014)
0.35 12590± 526 6.65± 0.26 DR7 Hemantha et al. (2014)
0.35 12556± 1042 7.07± 0.26 DR7 Xu et al. (2013)
0.35 12648± 1227 6.77± 0.47 DR7 Chuang & Wang (2013a)
0.35 12765± 1227 6.65± 0.45 DR7 Chuang & Wang (2013b)
0.35 12678± 526 6.78± 0.27 DR7 Chuang & Wang (2012)

Table C3. Measurements ofH(z)rs (km/s) andDA(z)/rs from different galaxy surveys, including SDSS-II (DR7) and SDSS-III (DR9,DR11,DR12). To be
able to include more measurements, we use DA(z)/rs and H(z)rs instead of DA(z)rs,fid/rs and H(z)rs/rs,fid since rs,fid (Mpc) was not provided
in some literatures. In addition, we have included an approximation rs,EH/rs,CAMB = 1.027 to correct the different ways of estimating the sound horizon
in different analyses.
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