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1 Introduction

Among the many models proposed to implement the inflationary paradigm [1–6], Natural

Inflation (NI) [7–10] is particularly appealing because its origins lie in well motivated

physics. In this scheme the inflaton potential has the form

VI(φ) = ∆4

(
1 + cos

(
φ

f

))
, (1.1)

where the inflaton, φ, is a pseudo-Goldstone boson associated with a spontaneously bro-

ken global symmetry and is thus protected from large radiative corrections to its mass.

– 1 –



J
H
E
P
0
5
(
2
0
1
6
)
0
1
0

Unfortunately, the predictions of NI are now only marginally consistent with the recent

measurements [11]. In addition it requires the symmetry breaking scale, f , to be larger

than the Planck scale M = 2.44× 1018 GeV,1 raising doubts about the stability of the po-

tential against higher dimensional terms.2 However it is possible to construct generalised

“Hybrid Natural Inflation” models [16]–[19], that maintain the symmetry protection for

the inflaton mass, are perfectly consistent with all current measurements and can avoid

the need for a super-Planckian symmetry breaking scale. The inflaton potential relevant

to the inflationary era now has the general form

VI(φ) = ∆4

(
1 + a cos

(
φ

f

))
, (1.2)

where 0 ≤ a < 1. The change in the structure is because inflation ends due to a new

hybrid “waterfall” field [20–23], χ, that couples to the inflaton and ends inflation when

this coupling triggers χ to develop a vacuum expectation value (vev). The appearance of

the new parameter, a, allows for more general inflationary phenomena that can readily

accommodate the Planck results and even allow for a low-scale of inflation. The waterfall

field is important in the era after inflation and can lead to efficient reheating of the universe.

Our paper is organized as follows: in section 2, we construct the effective field theory

(EFT) of HNI that includes the waterfall field and is valid below the scale, Λ, corresponding

to the scale of the ultra-violet (UV) completion of the model. This may be the scale

at which the theory becomes supersymmetric or the composite scale or even the Planck

scale. Although the inflaton is protected by the underlying Goldstone symmetry from large

corrections to its mass proportional to Λ, the same is not true of the waterfall field and

so there is a constraint on Λ following from the requirement that HNI should naturally

avoid fine tuning. As we discuss, there are essentially two classes of HNI depending on

the underlying symmetries of the EFT. In one class it is possible significantly to lower the

scale of inflation and we discuss the limits on this scale. We also discuss how the initial

conditions prior to inflation may occur and the constraints on the reheat temperature after

inflation. In section 3 we write the form slow-roll (SR) parameters and observables in terms

of a convenient notation. In section 4.1 we consider the phenomenological implications of

HNI in the sub-Planckian f limit that can be analysed analytically. We construct the slow

roll parameters and the associated results for both scalar and tensor density perturbations

and compare them to the Planck data. We show that there is an upper bound to r and

that in one class of HNI models the inflation scale may be as low as the electroweak scale.

In section 4.2 we perform a likelihood fit of HNI to the available data that allows us

to determine the range of observables consistent with HNI. In this we do not constrain

f to be sub-Planckian. Section 5 presents a discussion of constraints on HNI coming

from primordial black hole abundances bounds at the end of inflation. We also check

consistency of the hierarchy of SR parameters with the usual first order power spectrum

1In what follows the Planck scale will be taken equal to unity.
2Modified schemes have been constructed with additional fields and sub-Planckian scales of symmetry

breaking but where the resulting effective scale is super-Planckian [12, 13]; see however [14, 15].
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formula. Finally, we conclude in section 6 by discussing the main results obtained in the

paper coming from observational and theoretical constraints on the model.

2 The effective field theory description of Hybrid Natural Inflation

2.1 The simplest scheme

Natural inflation identifies the inflaton with a Pseudo-Goldstone boson, φ. The field theo-

retic origin of the pseudo-Goldstone mode is the phase of a complex scalar field, Φ, such that

Φ = (ρ+ f̃)e
iφ
f̃ , (2.1)

where f̃ the scale of the Goldstone symmetry breaking and ρ is the radial field that acquires

a mass of O(f̃). To obtain an hybrid version of NI it is necessary to have at least an

additional field that in the simplest implementation can be taken as a real field, χ. Then

the scalar potential can be written in the form

V (Φ, χ) = V0 (|Φ| , χ) + V1 (Φ, χ) + V2 (Φ) . (2.2)

The first term is invariant under the global U(1) symmetry, Φ → eiαΦ, and has the general

structure3

V0 = −m2
φ|Φ|2 + λ|Φ|4 +m2

χχ
2 + h1χ

4 + h2|Φ|2χ2 + ∆̄4, (2.3)

where we have allowed for a constant term, ∆̄4, to be present that may come from other

terms in the UV completion of the model. For positive m2
φ, Φ triggers spontaneous breaking

of the U(1) symmetry. In this case Φ is better parameterised by eq. (2.1) with

f̃ =

√
m2
φ

2λ
, m2

ρ = 2m2
φ, (2.4)

where f̃ is the vev of Φ and φ is the massless Goldstone boson associated with this breaking.

The remaining terms in eq. (2.2) explicitly break the U(1) symmetry and generate a mass

for the Goldstone mode. This mass is governed by the magnitude of the couplings in these

breaking terms and for small couplings the mass will be small allowing for a flat inflationary

potential. The potential V1(Φ, χ) is responsible for ending inflation because it generates

a mass term for χ that depends on the φ vev. As the mass squared becomes negative it

triggers a vev for χ, reducing V and ending the slow roll. The form of V1 may be limited by

discrete symmetries and we choose to implement a Z2 symmetry, Φ → −Φ† that restricts

V1 to the form

V1 =
1

2
δ(Φ2 + Φ†2)χ2 = δ (ρ+ f̃)2 cos

(
2φ

f̃

)
χ2. (2.5)

We see that the U(1) symmetry is broken by this term to a discrete Z2 subgroup cor-

responding to α = π. Since ρ acquires an unsuppressed mass it plays no role in ending

3For simplicity we assume V0 is invariant under χ → −χ but this can be relaxed without significantly

changing the model.
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inflation and we will ignore it from now on. Finally we should include the most general

potential, V2(Φ), that is consistent with the Z2 symmetry. It is given by

V2(Φ) =
1

2
m2
φ′(Φ

2 + Φ†2) +
1

2
λ(Φ4 + Φ†4)

→ m2
φ′ f̃

2 cos

(
2φ

f̃

)
+ λf̃4 cos

(
4φ

f̃

)
. (2.6)

Note that there is a minimum value for mφ′ and λ that can be taken without imposing

unnatural fine tuning. This is because such terms are generated by radiative corrections

and we must include them if we claim to have a natural inflationary theory. In the absence

of fine tuning these radiative terms require that4

m2
φ′ ≥

δΛ2

16π2
,

λ ≥ δ2

16π2
. (2.7)

Finally there are potentially large radiative corrections to the waterfall field, χ, that limit

how small we can take mχ. In this case we must take m2
χ > αΛ2, where α is a radia-

tive factor, α = O(h1/16π2) + · · · and Λ is the cutoff scale for the radiative corrections

mentioned above.

2.1.1 The inflationary era

During inflation the waterfall field plays no roll. The explicit U(1) breaking term is given

by V2. Taking the radiative corrections as indicative of the magnitude of the terms, a light

inflaton requires small δ and the dominant radiative correction will be to mφ′ with the first

term of eq. (2.6) giving a scalar potential of the HNI form, eq. (1.2), with

f =
f̃

2
,

a =
δf̃2Λ2

16π2∆4
,

∆4 = ∆̄4 −
m4
φ

4λ
. (2.8)

2.1.2 The post-inflationary era

The crucial point of HNI is that inflation ends when the change in the inflation vev triggers

a negative value for the mass squared of the waterfall field χ so that, once it exceeds the

square of the Hubble parameter, it runs to its minimum reducing the potential and thus

ending the slow-roll inflation of φ. The condition for this to happen is

−
(
m2
χ + 4h2f

2 + 4δf2 cos

(
φe
f

))
M2 ≥ ∆4, (2.9)

4Due to the non-renormalisation theorem, there is an additional suppression by the factor Λ2

m2
χ

of the

radiative corrections to λ for the case of a supersymmetric UV completion.
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thus it is necessary that

m̃2
χ ≡ m2

χ + 4h2f
2 +

∆4

M2
< 4δf2. (2.10)

Inflation ends when φ = φe where

cos

(
φe
f

)
≈ −

m̃2
χ

4δf2
. (2.11)

Note that to avoid fine tuning between unrelated parameters there is a limit on how close

φe/f can be to π. Thus, if the coefficient of the cosine term in eq. (2.9) is 10% greater

than the magnitude of the sum of the remaining terms, cos(φe/f) ∼ 0.9 corresponding to

φe/f = 0.86π and if the difference is only 1% φe/f = 0.95π. This will be important when

determining the number of e-folds of inflation below.

After inflation ends the waterfall field rolls to its minimum with cos( φf ) = −1 and

V = ∆4(1− a)−
m̄4
χ

4h1
, (2.12)

where

m̄2
χ = 4δf̃2 − 4h2f̃

2 −m2
χ. (2.13)

As is usually done in inflationary models we must fine-tune to get zero cosmological constant

after reheat so

m̄4
χ = 4h1∆4(1− a). (2.14)

Below we will discuss the limits on the scale of inflation that result from the constraints

on the parameters just discussed. However before doing this we construct another version

of the coupling of the waterfall field that exhibits another extreme of this class of models.

2.2 An alternative model

The model just constructed used a Z2 symmetry to restrict the couplings of the EFT. Here

we choose an alternative Z2×Z ′2 symmetry that generates a different structure for the wa-

terfall potential. These models illustrate two extremes while the more general model built

without imposing Z2 symmetries interpolates between the two models as its parameters

are varied.

To build this alternative model we first extend the model to incorporate a complex,

rather than a real, scalar field χ ≡ χR + iχI . In this case the first term in the potential

has the form

V0(|Φ|, |χ|) = −m2
φ|Φ|2 + λ|Φ|4 +m2

χ|χ|2 + h1|χ|4 + h2|Φ|2|χ|2 + ∆̄4, (2.15)

and is invariant under a U(1)Φ×U(1)χ symmetry. We assume that m2
φ and m2

χ are positive

so Φ acquires a vev as before but χ does not.

– 5 –
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The coupling between the inflaton and the waterfall field proceeds through the term

V1(Φ, χ) =
δ

8
(Φ2 − Φ†2)(χ2 − χ†2)

= −δ f̃2 sin(
2φ

f̃
)χRχI , (2.16)

which is the only such term allowed by a Z2 × Z ′2 symmetry defined by Φ → Φ†, χ → χ†

and Φ→ iΦ†, χ→ −χ. Clearly this term breaks the U(1)Φ symmetry.

Finally there are further terms allowed by this symmetry given by

V2 =
λ

2
(Φ4 + Φ†4) +

m2
χ′

2
(χ2 + χ†2) +

λχ
2

(χ4 + χ†4)

= λf̃4 cos

(
4φ

f̃

)
+m2

χ′(χ2
R − χ2

I) + λχ(χ4
R − 6χ2

Rχ
2
I + χ4

I). (2.17)

2.2.1 The inflationary era

One sees that there is again an inflation potential of the HNI form with

f =
f̃

4
,

a = λ
f̃4

∆4
,

∆4 = ∆̄4 −
m4
φ

4λ
. (2.18)

As before there are radiative corrections that limit how small the couplings can be. However

the symmetries of the theory mean that there is no correction to m′χ and so this term can

be arbitrarily small. The coupling λ does get a correction so that it has a natural lower

bound given by

λ ≥ δ2

16π2
, (2.19)

and, as above, there is an additional suppression factor Λ2

m2
χ

for the case of a supersymmetric

UV completion.

2.2.2 The post-inflationary era

For the case that m′2χ is positive the condition that the waterfall field ends inflation is

given by

m̃2
χ ≡ m2

χ + 16h2f
2 +

∆4

M2
< 8 δf2, (2.20)

because the waterfall vevs can develop along the direction < χR >=< χI > .

Note that the inflaton dependence of V2 is different from that in V1 whereas in the first

model the two terms have the same inflaton dependence. As a result the end of inflation

occurs when φ = φe where

sin

(
φe
2f

)
≈

m̃2
χ

8 δf2
. (2.21)

– 6 –



J
H
E
P
0
5
(
2
0
1
6
)
0
1
0

As in the previous model there is a similar fine tuning constraint on how close (φe/f)

can be to π as the numerator and denominator are unrelated parameters. Note however

that there is no fine tuning restriction on how small φe/f can be because it is possible

the denominator is arbitrarily larger than the numerator provided m̃χ is protected from

acquiring a large radiative mass by a symmetry (the low Λ case). As we will discuss

this leads to significant phenomenological implications, these two models representing two

extremes in the waterfall field behaviour.

In this model the condition the cosmological constant vanishes after inflation is given by

m̄4
χ = 16h1∆4(1− a), (2.22)

where

m̄2
χ = 16δf2 − 32h2f

2 − 2m2
χ. (2.23)

2.3 Initial conditions for inflation

For a slow-roll inflationary period to occur the common belief is that there must initially be

a horizon-size volume of space with a very uniform vev for the inflaton field. The problem

is much more severe in the case of low-scale inflation because of the growth of the horizon

size so that the constraint on homogeneity extends over a huge number of Planck scale

horizon volumes. There have been several suggestions to address this question, all of them

requiring some earlier period of, possibly eternal, inflation.

One possible explanation for this is that there was a previous inflationary era at, or

near to, the Planck scale so that one needs homogeneity over only a few Planck scale

horizon volumes but that these would be blown up by the initial inflationary era to be

larger than the low-scale Planck volume and generate the homogeneous initial conditions

necessary for low-scale inflation to occur [25]–[29]. Of course there remains the question

why the initial vev of the inflaton should be in the domain that allows for a subsequent

slow-roll inflationary period. For the first waterfall field model φ0

f = O(1) and so there is

no need for fine tuning of the initial vev. However for the second waterfall field model with

a low scale of inflation eq. (4.12) requires the initial value of φ0

f is very small. It is possible

that thermal effects could drive φH towards the origin but this in turn requires that the

effective temperature during the first stage of inflation should be less than mφ ∼ f so that

φ develops a vev in this era. One can also argue that there is no need for an explanation of

the initial value of φ0

f because, with random initial values, the ones leading to inflation will

dominate the late-time universe. This of course leads to the need to discuss the measure

determining relative probabilities but this takes us far beyond the scope of this paper.

Another possible explanation for the initial conditions again relies on an earlier period

of inflation but this time due to the universe being trapped in a false vaccuum state [30]–[35].

Tunnelling from this state can lead to a homogeneous bubble with the appropriate initial

conditions for HNI to occur.

Yet another possibility is topological inflation [36] in which an horizon volume fits in

a topologically stable structure (domain wall) with non-vanishing vacuum energy. As this

– 7 –
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volume inflates its extremities are no longer stable and may have the appropriate initial

conditions for HNI inflation to occur.5

However, recently the requirement of an horizon-size volume of space with a uniform

vev has been questioned. Numerical studies of a scalar field coupled to Einstein equations

in 3+1 dimensions suggest [24] that under certain circumstances an inflationary period

can result even from an initial inhomogeneous universe dominated by gradient and kinetic

energy instead of the usual potential energy dominating term. A possible understanding of

this phenomenon could be that the gradient and kinetic energy dilute due to the expansion

until the vacuum energy dominates starting inflation as usually understood.

2.4 Reheating

2.4.1 Model 1

In this model inflation ends at the critical point when the waterfall field rolls rapidly to

its minimum acquiring a non-zero symmetry breaking vev. In this case tachyonic, not

parametric, preheating dominates and rapidly changes the vacuum energy into topological

structures involving the waterfall field.6 One still has to convert this energy to SM states

and this happens through normal perturbative reheating [43]. The inflaton field also rolls to

its minimum with < φ >= πf and, in contrast to natural inflation, acquires an additional

contribution to its mass, δmφ =
√
δ/2h1 mχ, from its coupling to the waterfall field.

Both fields can couple to the SM Higgs, h, via the couplings allowed by the symmetries

of the model, kφ(Φ2 +Φ†2)h2 ⊃ kφφ2h2 and kχχ
2h2. However the reheating temperature is

strongly constrained by the fact the couplings kφ,χ must be small enough not to generate

an unacceptably large mass for the Higgs. Taking account of this the most important

couplings for reheating to the SM fields are to the top quark and are of the form k′φ(Φ2 +

Φ†2)mtt̄t/M
2 ⊃ k′φφ

2mtt̄t/M
2 and k′χχ

2h2mtt̄t/M
2 where M is a mediator mass coming

from the UV sector of the theory above the cut-off scale Λ. The maximum possible value

of the couplings corresponds to M2 ∼< φ >2, < χ >2 giving k′φ,χ ≤ O(1). For the case the

other mass scales in the theory are close, φ ∼ χ ∼ ∆, the couplings φt̄t and χt̄t governing

the decay rate to top quarks are suppressed by a factor x ≤ mt/∆. For this case it is easy

to determine the reheat temperature from the condition Γφ,χ > H(Trh). Before decay the

fields are non-relativistic so H(T )2 ∼ ∆4

M2
P

(
T
∆

)3
giving Trh ∼ mt

(
M2
Pmt
∆3

)1/3
. If we require

that the reheat temperature should be above the electroweak scale there is an upper limit

on the inflation scale given by ∆ < 1013 GeV.

Clearly this conclusion follows because the SM states to which the inflaton and waterfall

fields decay are light. The bound can be evaded if the principle decay is to heavy states.

An obvious possibility is that the decay is to heavy right-handed SM singlet neutrinos,

νR, that allow for small neutrino masses through the see-saw mechanism. If these states

are present the decay rate to them is enhanced over the decay to top quarks by the factor

5For a recent review on initial conditions for inflation obtained from scalar fields minimally coupled to

General Relativity see [37].
6This is the conclusion of [41, 42] for a similar waterfall field case.
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(mνR/mt)
2, provided that mνR < ∆ so that the decay can proceed. In this case it is clear

that heating is efficient with Trh ∼ ∆.

2.4.2 Model 2

The enlarged Z2 × Z ′2 symmetry of the second model restricts the allowed coupling be-

tween the fields φ and χ and SM states. The relevant coupling determining the reheat

temperature is that to the top quark and is given by the terms (Φ4 + Φ†4)mtt̄t/M
4 and

(χ2 + χ†2)mtt̄t/M
2. However if we allow for the minimum possible mediator scale, as we

did above, the suppression, x, of these couplings is the same as before so the bounds on the

reheat temperature are given as before. For the case ∆ < 107 GeV the reheating is efficient

with Trh ∼ ∆. For larger ∆, if we require that the reheat temperature should be above

the electroweak scale, there is an upper limit on the inflation scale given by ∆ < 1013 GeV.

Allowing for the decay to νR these bounds are evaded and efficient reheating is possible

over the full range ∆ ≤ 1016 GeV.

3 Slow-roll parameters and observables

Having shown how the EFT HNI potential can result from simple models we turn to

a discussion of the inflationary predictions of the model. Before doing so, however, we

gather a set of formulas for the SR parameters and observables of the model which are

discussed in the rest of the paper. We also write expressions for the number of e-folds N

which are useful for later sections.

The inflationary sector of HNI is given by the potential eq. (1.2). In the slow-roll

approximation the spectral indices are given in terms of the SR parameters of the model

which involve the potential V (φ) and its derivatives (see e.g. [44, 45])

ε ≡ M2

2

(
V ′

V

)2

, η ≡M2V
′′

V
, ξ2 ≡M4V

′V ′′′

V 2
, ξ3 ≡M6V

′2V ′′′′

V 3
. (3.1)

Here primes denote derivatives with respect to the inflaton φ and M = 2.44 × 1018 GeV

is the reduced Planck mass which, for convenience, we set M = 1. Defining cφ and sφ by

cos(φf ) and sin(φf ) respectively, we get

ε =
1

2

(
a

f

)2 s2
φ

(1 + a cφ)2 , (3.2)

η = −
(
a

f2

)
cφ

1 + acφ
, (3.3)

ξ2 = −
(
a

f2

)2 1− c2
φ

(1 + a cφ)2 , (3.4)

ξ3 = +

(
a

f2

)3 1− c2
φ

(1 + acφ)3 cφ. (3.5)

– 9 –
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In the SR approximation observables are given by (see e.g., [45])

nt = −2ε = −r
8
, (3.6)

ns = 1 + 2η − 6ε, (3.7)

nsk ≡
dns
d ln k

= 16εη − 24ε2 − 2ξ2, (3.8)

nskk ≡
d2ns
d ln k2

= −192ε3 + 192ε2η − 32εη2 − 24εξ2 + 2ηξ2 + 2ξ3, (3.9)

As(kH) =
1

24π2

∆4

εH
, (3.10)

where nsk denotes the running of the scalar index and nskk the running of the running,

in a self-explanatory notation. The density perturbation at wave number k is As(k) with

amplitude at horizon crossing given by As(kH) ≈ 2.2× 10−9 [46]. The scale of inflation is

∆ with ∆ ≈ V 1/4
H and r ≡ At/As the ratio of tensor to scalar perturbations. All quantities

with a subindex H are evaluated at the scale φH , at which observable perturbations are

produced, some 50–60 e-folds before the end of inflation.

We can now express the number of e-folds from φH to the end of inflation at φe as

follows

N ≡ −
∫ φe

φH

V (φ)

V ′(φ)
dφ =

f2

2a

(
(1 + a) ln

(
1− ce
1− cH

)
+ (1− a) ln

(
1 + cH
1 + ce

))
, (3.11)

where cH ≡ cos
(
φH
f

)
and ce ≡ cos

(
φe
f

)
. Eq. (3.11) can also be written as

N =
f2

a

[
ln

(
tan

(
φ

2f

))
+ a ln

(
sin

(
φ

f

))] ∣∣∣φe
φH
, (3.12)

which will be particularly convenient in subsection 4.1.

4 HNI phenomenology

Here we discuss in detail the phenomenological implications of HNI, comparing them to the

most recent Planck results. There are two regions of parameter space that require different

treatments depending on whether f
M is small or not. If it is, one can obtain accurate

analytical results for the observables; if not, it is necessary to perform a numerical study.

We consider these two cases in turn:

4.1 Approximate analytic solution

During inflation the SR parameters ε and η should satisfy ε� 1 and η � 1. If f
M � 1 this

requires that a� 1 and so we may expand eqs. (3.2)–(3.5) as a power series in a giving

εH ≈
1

2

(
a

f

)2

s2
H , (4.1)

ηH ≈ −
(
a

f2

)
cH , (4.2)

ξ2 = −2

(
1

f

)2

εH , (4.3)

ξ3 = ξ2ηH . (4.4)
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The number of observables possibly measureable are As(k), ns, r, nt, nsk, nskk and

N . The parameters of the effective field theory description of HNI models discussed are

∆, a, φH , f and φe that can conveniently be replaced by ∆, εH , ηH , f and φe. Thus

HNI gives are two relations between the observables. One follows immediately from the

slow-roll conditions and is given by [45]

nt = −2εH = −r
8
. (4.5)

To determine the second relation note that, since ε� η, we have

δns ≡ 1− ns ≈ −2ηH , (4.6)

ξ2 ≈ −
nsk
2
. (4.7)

Combining these two gives the second relation between observables

nskk ≈ 4ηξ2 = δnsnsk. (4.8)

The remaining observables are then given in terms of the parameters by

r = 16εH ,

ns = 1 + 2ηH ,

nsk =
r

4f2
. (4.9)

Note that nsk and nskk are positive. The remaining parameter, φe, determines the number

of-folds through eq. (3.12) which in this region gives

N ≈ f2

a

[
ln

(
tan

(
φe
2f

))
− ln

(
tan

(
φH
2f

))]
, (4.10)

where

cos(φH)2 =
η2
H

(2εH
f2 + η2

H)
. (4.11)

4.1.1 The upper bound of r

The requirement that uncorrelated parameters should not be taken to be arbitrarily close

in magnitude leads to a “fine-tuning” bound on r. To see how this works consider eq. (4.10)

for N . As we discussed above the “fine tuning” constraint leads to a bound on how closely

φe/f can approach π. At the 10% level this translates to a bound ln(tan(φe/2f)) ≤ 1.5

while at the 1% level ln(tan(φe/2f)) ≤ 2.6. As a result the constraint N = 60 implies

f2/a = 40 and 23 respectively. Then from eq. (4.2) we find r = 16εH < 5× 10−3f2/M2 at

the 10% fine tuning level and r = 16εH < 1.5 × 10−2f2/M2 at the 99% fine tuning level.

For sub-Planckian values of f this gives bounds on r far below the Planck limits.

– 11 –
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4.1.2 The inflationary scale

The most significant difference between the two models presented above is the lower limit

on the inflationary scale. From eq. (3.10) we see that εH ∝ ∆4 and so reducing ∆ implies

ε becomes negligible in determining δns.

For the first waterfall field model the fine-tuning constraint requires sin( φHf ) = O(1).

In this case the only way δns can be consistent with the measured value is if ( af )2 ∝ ∆4 with
a
f2 constant. As a result we require a ∝ ∆4 and f ∝ ∆2. For small ∆ the latter condition is

inconsistent because, cf. eq. (2.4), f̃ ∝ mφ which is not protected by a symmetry and so is

of O(
√
αΛ) in the absence of fine tuning. The best one can do is in a low-scale completion

where Λ = O(1 TeV) and in this case ∆ ∼
√

(α)(1 TeV)M ∼ 1011 GeV.

For the case of the second model the fine tuning constraint is consistent with small

sin(φHf ) and so it is possible for ε to be very small through the smallness of φH
f . For small

φH
f eqs. (3.2), (4.6), (3.7) and (3.10) imply

∆ = M

√
AHδns

2

(
φH
M

)
≈ 9× 1015

√
φH
M

GeV. (4.12)

In this case ∆ can be very small without limiting f and so a very low scale of inflation, even

down to the electroweak scale, is in principle possible. However the cosmological constant

condition requires ∆ ∼ mχ ∼
√
αΛ so the scale of UV completion cannot be much larger

than the inflation scale.

4.1.3 Comparison of the analytic solution with the Planck 2015 data

The most recent Planck analysis of inflationary models has produced an accurate measure-

ment of ns, an upper bound on r, and improved measurement of As(k). In addition it has

performed fits that provide limits on nsk and nskk. Given this it is of interest to compare

Planck’s results with HNI.

The HNI parameters ηH and φe can be chosen to fit the observed value of ns and N .

As mentioned above nsk and nskk are positive in HNI. The Planck fit, including nsk only,

indicates it is small with negative central value but consistent with zero at 1σ. At 3σ we

have nsk < 0.016 which, from eq. (4.9), requires r < 0.064, for sub-Planckian values of f ,

consistent with the Planck bound r < 0.11. From eq. (3.10) and the measured value of

As(k), this limit on r implies ∆ < 4× 10−16 GeV. These limits become much stronger for

smaller values of f/M . When both nsk and nskk are allowed the Planck fit gives positive

central values for nsk = 0.011± 0.014 and nskk = 0.029± 0.016, with ns = 0.9569± 0.0077.

Assuming the central Planck value for nsk the corresponding HNI prediction from eq. (4.8)

is nskk = 4.7× 10−4, consistent at 2 σ with the Planck fit.

Overall it is clear that an excellent fit to the data is possible in the sub-Planckian f

region but, due to the number of parameters of the model, the data does not provide a

stringent test of the model. For the case of model 1 we have cH ≈ 1 so the limit on r

provides the limit a
f < 0.089 but the data on ns cannot be used to determine a and f

separately because cH is not well determined. For the case of model 2 we have sH ≈ 1 so

– 12 –
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the measurement of ns gives a
f2 ≈ 0.02, but then the limit on r cannot be used to determine

a and f separately because now sH is not well determined.

4.2 Detailed numerical fit of HNI to the available inflationary data

Due to the correlation of the HNI predictions for the inflationary observables7 it is necessary

to perform a numerical fit to all available data in order to determine the range of observables

consistent with HNI and hence to map out the significant tests of the model.

To carry out the exploration of the parameter space, we incorporated the predictions

of HNI in the standard cosmological equations by performing minor modifications to the

CAMB code [47]. We then include it in the CosmoMC software [48] and this was used to fit

all available data. In particular, we provide constraints on HNI by using the temperature

(TT) and polarization (low P) measurements from the 2015 data release of the Planck

experiment along with the B-mode polarization constraints from a joint analysis of BICEP2,

Keck Array, and Planck (BKP) [49]. Throughout the analysis we consider purely Gaussian

adiabatic perturbations and, at the background level, assume the standard ΛCDM model

specified by the following sampling parameters: the physical baryon density Ωbh
2 and

CDM density ΩDMh
2, where h is the dimensionless Hubble parameter such that H0 = 100h

kms−1Mpc−1; θ, which is 100× the ratio of the sound horizon to angular diameter distance

at last scattering surface; the optical depth τ at reionisation; and parameters describing

the primordial power spectra: the amplitude As of the primordial perturbation spectrum,

the scale parameter f , a, the inflaton field when cosmological scales leave the horizon φH ,

and the tensor-to-scalar ratio r. The ranges of the uniform flat priors assumed on these

standard LCDM parameters are the following: Ωbh
2 = [0.01, 0.03], ΩDMh

2 = [0.05, 0.20],

θ = [1, 1.1], τ = [0.01, 0.3], ln[1010As] = [2.5, 4]; and two conservative cases (1) ln f =

[−5, 0], ln a = [−12, 0], lnφH = [−5, πf ], (2) f = [0, 6], ln a = [−4, 0], φH = [0, πf ].

For the case of sub-Plankian values of f , figure 1 displays 1D and 2D marginalised

posterior distributions on density parameters of the HNI model. The observables describing

the running of the scalar power spectrum nsk and nskk respectively, satisfy the following

relations [19]

nsk =
r

32

(
3r − 16δns +

8

f2

)
, (4.13)

nskk =
r

128

(
3r2 +

12

f2
r − 32

(
2δns −

1

f2

)
δns

)
. (4.14)

From here one can see that a scale parameter f < 1 does not allow for the possibility of

a negative nsk or nskk. Thus, a detection of a negative running would require the scale

f to be super-Planckian as occurs in natural inflation [50]. To allow for this we plot in

figure 2 the same quantities as in figure 1, dropping the constraint on f . Table 1 gives the

corresponding constraints of the fit for the two cases.

7For example we noted above that nsk and nskk are positive.
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Figure 1. 1D and 2D marginalised posterior distributions on density parameters of the HNI model

for CMB Planck-TT 2015 data, Polarization information (low P) and the B-mode polarization

constraints from a joint analysis of BICEP2, Keck Array, and Planck (BKP) data. Note that nsk
and nskk are always positive, this is determined by the fact that the symmetry breaking scale f takes

sub-Planckian values. Comparison with figure (22) of [46] shows that all values of r and ns above

are contained by the black contours of the ΛCDM + running + tensors model using Planck data.

1.5 3.0 4.5

f

3.2 2.4 1.6 0.8

lna

0.8 1.6 2.4 3.2
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0.930 0.945 0.960
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r

3.2 2.4 1.6 0.8
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0.8 1.6 2.4 3.2

φH
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nsk[10−3 ]

0.00 0.08 0.16

nskk[10−3 ]
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0.04

0.06

Planck TT+lowP+BKP

Figure 2. Same as figure 1 but with 0 < f . Negative values of nsk and nskk in HNI require

super-Planckian values of f [50].

f ln a φH ns nsk[10−3] nskk[10−3] r

unconstrained < −3.24 lnφH < −1.1 0.9467± 0.0055 < 3.1 < 0.16 < 0.017

< 4.67 unconstrained < 2.5 0.947± 0.005 0.17± 0.59 0.011± 0.036 < 0.03

Table 1. Constraints on HNI parameters. In the first row 0 < a < 1 and 0 < f < 1, in the second

0 < a < 1 and f > 0. For one-tailed distributions the upper limit 95% CL is given. For two-tailed

the 68% is shown.

5 Abundance of primordial black hole production and hierarchy of slow-

roll parameters

At first order in the SR parameters the scalar power spectrum is given by

Ps(k) =
1

24π2M4

V

ε
= As

(
k

kH

)(ns−1)+ 1
2
nsk ln

(
k
kH

)
+ · · ·

. (5.1)
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It has been shown [51] that there exists an additional constraint coming from the possible

over-production of primordial black holes (PBHs) at the end of inflation. Due to this

constraint the Taylor expansion of the power spectrum around its value at horizon crossing,

NH ≈ 60 is bounded by,8

ln

[
Ps(0)

Ps(NH)

]
= (ns − 1)NH +

1

2
nskN

2
H ≤ 14, (5.2)

where Ps(N = 0) ' 10−3 (see also refs. [52, 53]) evolves from the initial value Ps(NH) ≈
10−9. This gives the bound nsk < 10−2 that is readily satisfied by HNI (cf. table 1). Note

that the validity of the approximation, eq. (5.2), requires an hierarchy of SR parameters

to be satisfied [51], i.e., if ε� η the hierarchy of SR parameters required is
∣∣∣ξm+1

∣∣∣� ∣∣∣ξm∣∣∣
where (renaming the SR parameter η by ξ1)

ξ1 ≡M2V
′′

V
, ξ2 ≡M4V

′V ′′′

V 2
, ξ3 ≡M6V

′2V ′′′′

V 3
, ξ4 ≡M8V

′3V ′′′′′

V 4
· · · . (5.3)

For the HNI potential these can be written as

ξ1 = −
(
a

f2

)
cφ

1 + acφ
, (5.4)

ξ2 = −
(
a

f2

)2 s2
φ

(1 + a cφ)2 , (5.5)

ξ3 = +

(
a

f2

)3 cφs
2
φ

(1 + acφ)3 = ξ1ξ2, (5.6)

ξ4 = ξ2
2 , ξ5 = ξ1ξ

2
2 , ξ6 = ξ3

2 , · · · (5.7)

In HNI at φH , ε � η � 1 and
∣∣∣ξ2

∣∣∣� ∣∣∣ξ1

∣∣∣ follows from the fact that
∣∣∣ξ2

∣∣∣= 2ε/f2 ∼

(a/f2)2s2
φ ∼ η2s2

φ �
∣∣∣η∣∣∣= ∣∣∣ξ1

∣∣∣. From here we see that ξ3 = ξ1ξ2 � ξ2, ξ4 = ξ2
2 = ξ2ξ2 �

ξ1ξ2 = ξ3, ξ5 = ξ1ξ
2
2 � ξ2

2 = ξ4, and so on. Thus the required hierarchy of SR parameters

is guaranteed in HNI.

Further PBH production can occur when the roll of the waterfall field is “mild”, in

the sense that there is an appreciable number of e-folds of inflation generated after the

waterfall field starts to roll [54]–[58]. When large curvature perturbations are generated at

the end of the valley phase of inflation i.e., after the inflaton has reached the critical point,

φc, defined as the point where the waterfall starts, PBH are produced and it is important

to determine the constraints on the model parameters so that the PBH production does not

conflict with CMB constraints on its abundances. Particularly interesting is the suggestion

that PBH might be dark matter candidates [59]–[62] and this certainly deserves further

study. A first analysis of this possibility in a hybrid inflation model suggested it might

indeed produce PBH dark matter and act as seeds of galaxies [63]. However a more recent

non-perturbative numerical study [64] of the curvature perturbation produced during the

8To lowest order in slow-roll d/dN = −d/d ln k. The next order term in the expansion of eq. (5.2),

involving the parameter nskk, is subdominant.
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waterfall phase concluded that if there are more than 5 e-folds of inflation during the

waterfall stage, there will be an unacceptable rate of black hole production. Moreover the

mass scale of the produced PBH is of O(10)kg
(

Hinf
109 GeV

)−1
which evaporate soon after

production and so cannot make up dark matter.

In the hybrid models discussed here it is relatively easy to limit the number of e-folds

during the waterfall phase. In the first model the condition that there should be no more

than 5 e-folds of waterfall inflation follows from the constraint on the Π parameter [63, 64]

that, to a good approximation, determines the amount of waterfall inflation. Applying this

constraint we find

Π−2 =

(
Mp

∆

)4

aδ sin2

(
φc
f

)
>

1

10
. (5.8)

Using eq. (4.6) to eliminate a we get

x > 20
cos(φH/f)

sin2(φc/f)
, (5.9)

where 4δf2 = x(∆4/M2
P ), (cf. eq. (2.10)). The constraint on fine tuning discussed above

limits how small the denominator can be and at the 10% level shows that x > 100 is

sufficient condition to keep waterfall inflation at an acceptable level, although there are

regions of parameter space where x can be much closer to the original constraint, x > 1,

following from eq. (2.10).

In the second model the constraint is given by

x > 20
cos(φH/f)

sin(φc/f) cos(φc/2f)
. (5.10)

In this model it is possible for the sine term to be very small, corresponding to the low

inflation scale limit, so it is important to examine this limit in detail. Imposing a slightly

stronger limit on x we can guarantee the desired condition by

x >
20

sin(φH/f)
>

20

sin(φc/f)
. (5.11)

Now from eq. (4.12) we have

sin

(
φH
f

)
≈ φH

f
≈
(

M

9× 1015

)2(∆

M

)2 M

f
≈ 7× 104

(
∆

M

)2 M

f
, (5.12)

so x > 20
7×104

(
M
∆

)2 f
M . Thus 4δf2 = x

(
∆4

M2

)
> 3× 10−4 ∆2

M f , i.e.,

4δf > 3× 10−4 ∆2

M
. (5.13)

Finally we can combine this with the bound of eq. (2.22) in the form 2
√

2δ1/2f > ∆2/M

to obtain

4δf =
√

2δ1/22
√

2δ1/2f >
√

2δ1/2∆2/M. (5.14)

Thus the constraint of eq. (5.13) is satisfied if δ1/2 > 3√
2
× 10−4 ≈ 2× 10−4. In conclusion

the low inflation scale limit does not lead to an overproduction of PBH if the coupling

obeys the mild limit δ > 4× 10−8.

– 16 –



J
H
E
P
0
5
(
2
0
1
6
)
0
1
0

6 Summary and conclusions

We have shown that it is straightforward to construct hybrid versions of Natural Inflation

in which a waterfall field coupled to the Pseudo-Goldstone inflaton is responsible for ending

inflation. The models require a discrete symmetry to order the breaking of the underlying

continuous symmetry responsible for the mass of the would-be Goldstone mode. Two

models were constructed that demonstrate the range of possibilities, one with an extended

discrete symmetry allowing for very low scales of inflation.

In contrast to the original Natural Inflation model the hybrid models allow for an ac-

ceptable inflationary era even with a sub-Planckian spontaneous breaking of the Goldstone

symmetry. For the case that reheating proceeds through the coupling of the inflaton and

waterfall field to SM states there is an upper bound on the reheat temperature that in turn

provides a significant upper bound on the inflationary scale. This bound can be evaded if

the decay is to heavy states, such as heavy right-handed neutrinos.

In Hybrid Natural Inflation the slow-roll parameter ε is a non-monotonic function of

the inflaton field with a maximum where observables take universal values that determines

the maximum possible tensor to scalar ratio, r. A detailed analytic study of the model was

presented and compared to the Planck 2015 temperature and polarisation data, showing

excellent agreement for a wide range of the underlying parameters and inflationary scale

and satisfying the constraints coming from non-overproduction of Primordial Black Holes.

A full numerical fit to all available inflationary data was also presented, establishing the

possible range of observables consistent with HNI and thus mapping out the possible tests

of the model.
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[63] S. Clesse and J. Garćıa-Bellido, Massive Primordial Black Holes from Hybrid Inflation as

Dark Matter and the seeds of Galaxies, Phys. Rev. D 92 (2015) 023524 [arXiv:1501.07565]

[INSPIRE].

– 20 –

http://arxiv.org/abs/1502.01589
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.01589
http://dx.doi.org/10.1086/309179
http://arxiv.org/abs/astro-ph/9911177
http://inspirehep.net/search?p=find+EPRINT+astro-ph/9911177
http://dx.doi.org/10.1103/PhysRevD.66.103511
http://arxiv.org/abs/astro-ph/0205436
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0205436
http://dx.doi.org/10.1103/PhysRevLett.114.101301
http://arxiv.org/abs/1502.00612
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.00612
http://arxiv.org/abs/1512.03105
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.03105
http://dx.doi.org/10.1088/1475-7516/2008/04/038
http://dx.doi.org/10.1088/1475-7516/2008/04/038
http://arxiv.org/abs/0711.5006
http://inspirehep.net/search?p=find+EPRINT+arXiv:0711.5006
http://dx.doi.org/10.1103/PhysRevD.79.103520
http://arxiv.org/abs/0903.3184
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.3184
http://dx.doi.org/10.1103/PhysRevD.81.104019
http://arxiv.org/abs/0912.5297
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.5297
http://dx.doi.org/10.1103/PhysRevD.83.063518
http://arxiv.org/abs/1006.4522
http://inspirehep.net/search?p=find+EPRINT+arXiv:1006.4522
http://dx.doi.org/10.1103/PhysRevD.89.063519
http://arxiv.org/abs/1304.7042
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.7042
http://dx.doi.org/10.1143/PTP.126.331
http://dx.doi.org/10.1143/PTP.126.331
http://arxiv.org/abs/1102.5612
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.5612
http://dx.doi.org/10.1103/PhysRevD.86.023525
http://arxiv.org/abs/1204.3540
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.3540
http://dx.doi.org/10.1103/PhysRevD.84.123527
http://dx.doi.org/10.1103/PhysRevD.84.123527
http://arxiv.org/abs/1107.4739
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.4739
http://dx.doi.org/10.1093/mnras/168.2.399
http://dx.doi.org/10.1093/mnras/168.2.399
http://inspirehep.net/search?p=find+J+%22Mon.Not.Roy.Astron.Soc.,168,399%22
http://dx.doi.org/10.1088/1674-4527/10/6/001
http://arxiv.org/abs/0801.0116
http://inspirehep.net/search?p=find+EPRINT+arXiv:0801.0116
http://dx.doi.org/10.1088/1475-7516/2010/04/023
http://arxiv.org/abs/1001.2308
http://inspirehep.net/search?p=find+EPRINT+arXiv:1001.2308
http://dx.doi.org/10.1016/S0370-2693(02)01803-8
http://arxiv.org/abs/astro-ph/0203520
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0203520
http://dx.doi.org/10.1103/PhysRevD.92.023524
http://arxiv.org/abs/1501.07565
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.07565


J
H
E
P
0
5
(
2
0
1
6
)
0
1
0

[64] M. Kawasaki and Y. Tada, Can massive primordial black holes be produced in mild waterfall

hybrid inflation?, arXiv:1512.03515 [INSPIRE].

[65] D.H. Lyth, Contribution of the hybrid inflation waterfall to the primordial curvature

perturbation, JCAP 07 (2011) 035 [arXiv:1012.4617] [INSPIRE].

[66] D.H. Lyth, Primordial black hole formation and hybrid inflation, arXiv:1107.1681

[INSPIRE].

[67] D.H. Lyth, The hybrid inflation waterfall and the primordial curvature perturbation, JCAP

05 (2012) 022 [arXiv:1201.4312] [INSPIRE].

[68] E. Bugaev and P. Klimai, Curvature perturbation spectra from waterfall transition, black hole

constraints and non-Gaussianity, JCAP 11 (2011) 028 [arXiv:1107.3754] [INSPIRE].

[69] E. Bugaev and P. Klimai, Formation of primordial black holes from non-Gaussian

perturbations produced in a waterfall transition, Phys. Rev. D 85 (2012) 103504

[arXiv:1112.5601] [INSPIRE].

– 21 –

http://arxiv.org/abs/1512.03515
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.03515
http://dx.doi.org/10.1088/1475-7516/2011/07/035
http://arxiv.org/abs/1012.4617
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.4617
http://arxiv.org/abs/1107.1681
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.1681
http://dx.doi.org/10.1088/1475-7516/2012/05/022
http://dx.doi.org/10.1088/1475-7516/2012/05/022
http://arxiv.org/abs/1201.4312
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.4312
http://dx.doi.org/10.1088/1475-7516/2011/11/028
http://arxiv.org/abs/1107.3754
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.3754
http://dx.doi.org/10.1103/PhysRevD.85.103504
http://arxiv.org/abs/1112.5601
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.5601

	Introduction
	The effective field theory description of Hybrid Natural Inflation
	The simplest scheme
	The inflationary era
	The post-inflationary era

	An alternative model
	The inflationary era
	The post-inflationary era

	Initial conditions for inflation
	Reheating
	Model 1
	Model 2


	Slow-roll parameters and observables
	HNI phenomenology
	Approximate analytic solution
	The upper bound of r
	The inflationary scale
	Comparison of the analytic solution with the Planck 2015 data

	Detailed numerical fit of HNI to the available inflationary data

	Abundance of primordial black hole production and hierarchy of slow-roll parameters
	Summary and conclusions

