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1 Introduction

The recent high precision data is in very good agreement with the six parameter base ΛCDM
cosmology [1, 2]. However, we still cannot consider it as the final cosmological model. It may
represent, rather, a very good approximation or a limiting case of a more general theory,
which does not necessarily reduce to vacuum energy in terms of a cosmological constant
Λ and may deviate from Λ considerably in the far future and/or past. Two well known
problems related with the Λ assumption, the so called coincidence and fine-tuning problems,
may be signs for a dynamical nature of dark energy [3–8]. Some tensions between the Λ
assumption and high precision data could be resolved in case of evolving dark energy (DE)
(see for instance [9–11] and references therein).

Using the one parameter extension to the ΛCDM, wCDM adopts a spatially flat universe
and constant equation of state (EoS) parameter w for DE, Planck collaboration [2] gives w =
−1.13+0.23

−0.25 from combined Planck+WP+highL+BAO data and BOSS collaboration [10] gives
w = −0.97 ± 0.05 from the most recent combined Planck+BAO+CMB data. Constraining
the possible evolution of w on the other hand is difficult even with the powerful BAO, SN and
CMB data that range at different redshift values. Hence, probing the possible DE evolution
usually involves the introduction of a phenomenological parametrization for its EoS parameter
involving a couple of free parameters. The most widely used parametrization for constraining
evolving DE is the linear expansion in scale factor a which is known as CPL (Chevallier-
Polarski-Linder [12, 13]) parametrization: w(a) = w0 +wa(1− a), where w0 and wa are real
constants. It has been first proposed as an alternative to the linear redshift parametrization
of DE: w(z) = w0 +wzz, which in contrast to CPL grows increasingly unsuitable at redshifts
z � 1 and hence cannot be used with high-redshift data, e.g., CMB. However, even the
tightest constraints on the parameters of CPL from combined Planck+BAO+SN allow a quite
flexible range for the evolution of the EoS parameter for DE [10]. Besides this, compared to
ΛCDM, the improvement in the success of fit to the data using this parametrization is not
significant [2, 10, 11]. These might be signaling for that CPL is not an adequate choice for
describing the possible evolution of dark energy. It is already mentioned in many studies that
the divergent behavior of CPL not only prevents one to make plausible predictions on the
future of the universe but also shows that it cannot genuinely cover theoretical models of dark

– 1 –



J
C
A
P
0
6
(
2
0
1
5
)
0
4
9

energy. Throughout the literature there have been various DE parametrizations introduced
by considering different reasoning and strategies for obtaining mathematically well behaving
and physically acceptable models to obtain tighter constraints on DE and make plausible
predictions on the future of the universe [14–27].

In this paper we shall use a new parametrization for describing the DE source that
may be taken as a natural extension of the same idea that give rise to linear redshift and
CPL parametrizations that correspond to the first two terms of Taylor expansion in z and
a, respectively. We start by introducing a fluid with an EoS parameter linear in time t̃.
Then, we write its EoS parameter in terms of the scale factor ã by considering general
relativity and utilize the obtained w(ã) for describing the DE component of the universe in
our observational analyses. We carry out successive observational analyses by decreasing the
number of degrees of freedom (DoF) until we end up with a dynamical DE model having no
additional parameters compared to ΛCDM.

2 Dark energy parametrization

In this section we first derive an EoS parameter in terms of scale factor ã, which yields
linear EoS parameter in time t̃ when the universe is filled only with this fluid (here tilde
denotes a universe contains only the fluid described by the EoS linear in time t̃). We then
in section 2.2 make use of this form of w(ã) for describing the DE source in the physical
universe that contains sources other than DE also, by adopting ã → a, where a represents
the scale factor of the physical universe.

2.1 Equation of state parameter linear in time

Let us consider a fluid described by an EoS parameter expressed as a first order Taylor
expansion in time t̃, that is:

w = w0 + w1(1− t̃), (2.1)

where w0 and w1 are real constants and t̃ > 0 is the normalized time. It should be noted here
that w would not diverge provided that the time is restricted as in the big rip1 cosmologies.
We construct a relation between the fluid described by the EoS parameter linear in time (2.1)
and the scale factor by considering the general theory of relativity. Accordingly, we consider
the Friedmann equations for spatially flat RW spacetime in the presence of a single fluid

written as follows: 3
˙̃a2

ã2
= κρ and

˙̃a2

ã2
+ 2

¨̃a
ã = −κp = −κρw, where a dot denotes derivative

with respect to time t̃. Eliminating ρ between these two equations and then using (2.1) we
get the corresponding deceleration parameter2

q̃ ≡ −
¨̃aã
˙̃a2

=
1

2
+

3

2

[
w0 + w1(1− t̃)

]
, (2.2)

whose solution, for w1 6= 0, reads

ã = ã1 exp

4

3

arctanh

(
w1 t̃−(w0+w1+1)√
(w0+w1+1)2−c1w1

)
√

(w0 + w1 + 1)2 − c1w1

 , (2.3)

1See [28] for big rip cosmology.
2It may be noteworthy that a deceleration parameter linear in time for the observed universe was obtained

from a higher dimensional cosmological model in dilaton gravity in [29], where its value at t̃ = 0 is depending
on the number of extra dimensions.
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where ã1 and c1 are integration constants. For the case w1 = 0, we would get the standard
power law solution as ã ∝ t̃2/3(1+w0) with ρ ∝ ã−3(1+w0). We demand a big bang ã = 0
at t̃ = 0, and expanding universe ˙̃a ≥ 0 for t̃ ≥ 0 and ã → +∞ at a finite time, say, as
t̃→ t̃BR where t̃BR is the big rip time, so the EoS parameter never diverges. One may check
that the first condition is satisfied by choosing c1 = 0, and in addition to this the latter two
conditions imply the following relations 2 + 2w0 + 2w1 > w1 > 0. Accordingly, substituting
c1 = 0 in (2.3), our solution reduces to

ã = ã1 exp

4

3

arctanh
(

w1 t̃
w0+w1+1 − 1

)
w0 + w1 + 1

 , (2.4)

with 2 + 2w0 + 2w1 > w1 > 0. Isolating t̃ in this solution by setting ã(t̃ = 1) = 1 we obtain

t̃(ã) =
2(1 + w0 + w1)

w1 + (2 + 2w0 + w1)ã
−3(1+w0+w1)

2

. (2.5)

Finally using t̃(ã) in (2.1) we obtain the following EoS in scale factor ã

w(ã) = w0 + w1

[
1− 2(1 + w0 + w1)

w1 + (2 + 2w0 + w1)ã
−3(1+w0+w1)

2

]
(2.6)

with 2 + 2w0 + 2w1 > w1 > 0. Next, using the energy-momentum conservation equation we
obtain the energy density ρ:

ρ = ρ0ã
−3(w0+w1+1)

(
1 + w1

ã
3
2

(w0+w1+1) − 1

2w0 + 2w1 + 2

)4

, (2.7)

where ρ0 = ρ(ã = 1). We notice that w → −3(w0+1) ln(ã)−4w0

3(w0+1) ln(ã)−4 and ρ→ ρ0

[
−1+ 3(w0+1)

4 ln(ã)
]4

as w1 → −1− w0.
The EoS parameter (2.6) is bounded both as ã→ 0 and ã→∞, namely, w → w0 +w1

as ã → 0 and w → −w0 − w1 − 1 as ã → ∞. We note that ã → 0 as t̃ → 0 and ã → ∞ as
t̃→ 2(1 +w0 +w1)/w1, hence the time could not take arbitrarily large values unless w1 = 0,
which also explains why EoS parameter linear in t̃ does not diverge in future in this case.

The recent high precision data is in very good agreement with Λ as the DE source in
the universe. However, it may represent, rather, a very good approximation or a limiting
case of a more general theory, which does not reduce necessarily to vacuum energy in terms
of a cosmological constant. In this regard, being wde ∼ −1 is in very good agreement with
precision data, it seems physically more acceptable to consider an approximate description
of possibly dynamical DE with a parametrization that is mathematically well behaved and
may never depart from wde ∼ −1 a lot. We note that the EoS parameter we derived has
these properties and hence may be adopted for parametrizing the EoS of the DE source in
the universe containing other sources also.

2.2 Parametrization of dark energy source

The EoS derived above was first given in [30] starting from the linear deceleration parameter
in time using general theory of relativity and then utilized in [31, 32] for describing the
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effective EoS parameter averaging all the ingredients of the universe to constrain particularly
the kinematical properties of the expansion of the universe. In this work, on the other hand,
we follow a quite different method and adopt the EoS written in terms of ã for describing
only the DE component of the universe, rather than the average ingredient of the universe.
The cost of this is that (2.6) will not correspond to the linear EoS in physical time t in the
actual universe anymore, unless the universe is dominated by this fluid. The reason being
is that including the other sources such as cold dark matter (CDM) in addition to DE the
evolution of the scale factor will deviate from the one given in (2.4), i.e., the relation between
the scale factor a and time t will be different, until the DE source becomes dominant over
all other sources in the universe.

Let us now adopt the EoS parameter given in (2.6) for describing DE source by setting
ã→ a and then write it in a more useful form by defining wi = w0 + w1:

wde = wi −
2(wi − w0)(1 + wi)

(wi − w0) + (2 + wi + w0) a−
3
2

(1+wi)
, (2.8)

which also recasts the energy density (2.7) as

ρde = ρ
(0)
de

[
wi − w0

2wi + 2
a

3
4

(wi+1) +
wi + w0 + 2

2wi + 2
a−

3
4

(wi+1)

]4

, (2.9)

where a is the physical scale factor, and the conditions on the parameters are now given by
−2 − wi < w0 < wi. Our parametrization has the same number of degrees of freedom with
the CPL but while the variation of the EoS of DE with respect the scale factor is constant
in scale factor w′CPL = −wa in CPL, here it is a dynamical quantity:

w′de =
3(wi + 1)2[(w0 + 1)2 − (wi + 1)2]a

3
2
wi+

1
2[

(w0 − wi)a
3
2
wi+

3
2 − (w0 + wi + 2)

]2 , (2.10)

where a prime denotes derivative with respect to the scale factor a.
We note that the form of the energy density (2.9) we obtained by the reasoning we

followed in the previous section has a symmetry for wi + 1→ −wi− 1 and hence it is enough
if we consider the cases wi > −1 only. In accordance with this, we see from (2.8) that
wde → wi as a → 0 (z → ∞) and hence wi denotes the initial value of the EoS parameter
of DE. Similarly wde → −wi − 2 as a → ∞ (z → −1), and hence we can write the final
value of the EoS parameter as wf = −wi − 2. We also note that w′de can take only negative
values as long as we stick to the range −wi − 2 < w0 < wi for the parameters, but take
positive values if this condition could be violated. The radiation and pressure-less matter
components of the universe enforce universe to expand as a ∝ t

1
2 and a ∝ t

2
3 , respectively.

The DE source described by (2.9), on the other hand, enforces universe to expand according
to the kinematics we discussed in the previous section. In the physical universe, say, in the
presence of all these components, the expansion of the universe will be much complicated as it
will be determined by the joint effect of these components. We also note that the conditions
on the parameters of the hypothetical fluid, we are now utilizing for describing DE, were
initially considered to obtain a physically reasonable expansion history for the universe filled
by this fluid only. However the presence of radiation and pressure-less matter in addition to
a DE source described by (2.9) can lead to viable expansion histories for the universe even
if the parameters wi and w0 take values out of the range −wi − 2 < w0 < wi and hence

– 4 –
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provides us freedom to violate this condition. Accordingly, in the next section we will carry
out observational analyses without taking this condition into account, so that our analyses
will not be restricted to the cases w′de < 0. However we will see below that the concluding
values for wi and w0 upon the three successive observational analyses, where we decrease the
number of degrees of freedom systematically, satisfy the condition −wi − 2 < w0 < wi.

3 Observational constraints

We consider a spatially flat RW spacetime and the Hubble parameter H in the presence
of radiation Ωr, pressure-less fluid/(CDM+matter) Ωm and the dark energy Ωde described
by (2.9) is given by

H2

H2
0

= Ω(0)
r (1+z)4+Ω(0)

m (1+z)3+Ω
(0)
de

[
wi−w0

2wi+2
(1+z)−

3
4

(wi+1)+
wi+w0+2

2wi+2
(1+z)

3
4

(wi+1)

]4

,

(3.1)

where the density parameter of the DE Ω
(0)
de = 1 − Ω

(0)
m − Ω

(0)
r and wi > −1. Here sub-

script/superscript 0 indicates the values of the parameters today. The density parameter

of radiation is Ω
(0)
r = 2.469 × 10−5h−2(1 + 0.2271Neff), where h = H0/100kms−1Mpc−1 [1].

We consider a model with standard matter and radiation content, including three neutrino
species with minimum allowed mass

∑
mν = 0.06 eV. Throughout the analysis we assume

flat priors over our sampling parameters: w0 = [−2.0,−0.5], wi = [−1.0, 2.0] for the dark

energy EoS parameters, Ω
(0)
m = [0.05, 1] for the pressure-less matter density parameter today,

Ω
(0)
b h2 = [0.02, 0.025] for the baryon density today and h = [0.4, 1.0] for the reduced Hubble

constant. It might be noteworthy to note that the radiation energy density ρ
(0)
r = Ω

(0)
r H2

0

today is not subject to our analysis since it is well constrained, such that it has a simple
ρr = π2

15T
4
CMB relation with the CMB monopole temperature (see [33] for further details),

which today is very precisely measured to be T
(0)
CMB = 2.7255± 0.0006 K [34].

In order to perform the parameter space exploration, we make use of a modified version
of a simple and fast Markov Chain Monte Carlo (MCMC) code that computes expansion rates
and distances from the Friedmann equation, named SimpleMC. This code already contains a
compressed version of the Planck data, a recent reanalysis of Type Ia supernova (SN) data,
and high-precision BAO measurements at different redshifts up to z < 2.36 [10].

In three successive subsections we carry out observational analyses: i) w0 and wi are
both free parameters: DoF are the same with CPL, ii) w0 is free but wi is fixed to certain
values, so that DoF are the same with wCDM, and iii) both w0 and wi are fixed to certain
values so that DoF are the same with ΛCDM.

3.1 General case: free w0 and wi

We first constrain the cosmological parameters by taking both w0 and wi as free parameters
so that we have the same number of DoF with the CPL parametrization. We summarize
the results for the data sets Planck+BAO, Planck+SN and Planck+BAO+SN in table 1.
In figure 1 we show 1-D and 2-D posterior distributions of w0 and wi for the following data
sets Planck+BAO, Planck+SN and Planck+BAO+SN. In figure 2 we give 2-D posterior

distributions for w0 − h and w0 − Ω
(0)
m .
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Data set Ω
(0)
m h w0 −1 < wi

Planck+BAO 0.306+0.014
−0.015 0.673+0.020

−0.018 −0.97± 0.10 < −0.30

Planck+SN 0.304+0.021
−0.019 0.677± 0.019 −1.02+0.07

−0.08 < −0.27

Planck+BAO+SN 0.304± 0.009 0.677± 0.011 −0.99± 0.06 < −0.42

Table 1. Parameter constraints. SN data cannot constraint wi as good as w0 while it is the other
way around for BAO data. For two-tailed distributions the results are given in 1σ and for one-tailed
distributions given in 2σ.

1.4 1.2 1.0 0.8 0.6
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0.0

0.2
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m
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Figure 1. 1-D and 2-D posterior distributions for the parameters w0 and wi; data combinations are
indicated in the legends.

Figure 2. 2-D posterior distributions for w0 − h and w0 − Ω
(0)
m ; data combinations are indicated in

the legends.

We observe that the matter density parameter Ω
(0)
m and the reduced Hubble constant h

are obtained almost the same in three combinations of data sets and Planck+BAO+SN data
set leads to the tightest constraints; Ω

(0)
m = 0.304± 0.009 and h = 0.677± 0.011.

In all cases the best-fit parameters are consistent with ΛCDM model, i.e., (w0, wi) =
(−1,−1). We observe that Planck+SN data leads to a tighter constraint on w0 while
Planck+BAO data leads a tighter constraint on wi. The central value of w0 is almost
equal to −1 from both Planck+BAO, Planck+SN and Planck+BAO+SN and its value from
the different data combinations changes by less than 1σ. Using three data sets at the
same time we obtain w0 = −0.99 ± 0.06 (Planck+BAO+SN) with 1σ having the tight-
est constraint on w0 with a central value almost exactly equal to −1. Using CPL, on
the other hand, w0 is not constrained very well and the central value of w0 is obtained
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Ω
(0)
m h w0 wi χ2

0.289± 0.008 0.688± 0.010 −1.180+0.028
−0.025 0 54.04

0.298± 0.008 0.680± 0.010 −1.065+0.037
−0.035 −1

3 48.44

0.303± 0.009 0.677+0.009
−0.011 −0.995+0.046

−0.042 −2
3 46.90

0.305± 0.009 0.676+0.010
−0.011 −0.966± 0.053 −1 46.64

Table 2. Mean values with 1σ errors of the parameters of the model for the particular values wi = 0,
wi = − 1

3 , wi = − 2
3 and wi = −1 from Planck+BAO+SN data.

not only quite higher than −1 but also significantly different from three different data
combinations; w0 = −0.58 ± 0.24 (Planck+BAO), w0 = −0.90 ± 0.16 (Planck+SN) and
w0 = −0.93±0.11 (Planck+BAO+SN) [10]. Constraint on wi from Planck+SN is quite loose
such that −1 < wi < −0.27 (2σ); so that the DE could either behave like cosmic strings or
a cosmological constant at very high red-shift values. Planck+BAO data constrain wi better
and constrict the allowed range to −1 < wi < −0.30 (2σ). The tightest constraint is ob-
tained from Planck+BAO+SN data; −1 < wi < −0.42 (2σ). According to this initially dark
matter and cosmic strings like DE scenarios are not viable. Considering the constraints on
w0 and wi together we observe that Λ as the DE source is doing great but even considerably
large deviations from Λ are still allowed, for instance, (w0, wi) = (−1,−2

3) is also perfectly
allowed in this picture. The best fitting model to Planck+BAO+SN data has χ2 = 46.63,
representing an improvement of ∆χ2 = 0.37 compared to ΛCDM for which χ2

ΛCDM = 47.00,
for the addition of two extra parameters. This is an improvement almost the same with the
one in the CPL model ∆χ2

CPL = 0.42 [10]. Accordingly in terms of information criteria the
improvement is not sufficient enough to justify the addition of two extra degrees of freedom
either in our parametrization or CPL parametrization and additionally there is no reason to
prefer one over the other among these two parametrizations.

3.2 Free w0 and fixed wi

We may try to get more information using our parametrization by reducing its DoF to the
that of the wCDM parametrization by fixing wi. We now carry out the observational analyses
using Planck+BAO+SN data by setting either wi = 0 (DE starts like pressure-less matter),
wi = −1

3 (DE starts like cosmic strings) or wi = −2
3 (DE starts like cosmic domain walls). In

table 2, we summarize the results, including the minimum χ2 values, from Planck+BAO+SN
data. For a comparison, the constraint on wCDM parametrization from Planck+BAO+SN
data is w0 = −0.97 ± 0.08 (1σ) [10]. We give the 1-D probability distributions of w0 in our
model in figure 3. We note that the central value of w0 shifts from the values less than −1 to
the values higher than −1 and the χ2 improves as wi goes from 0 to −1. Given that the case
wi = 0 yields very large χ2 relative to other three, it can be rejected. The most interesting
point in table 2 is that w0 takes the closest value to −1 in the case wi = −2

3 rather than in
the case wi = −1 and these two cases have almost the same χ2 values that are considerably
lower than the cases wi = 0 and wi = −1

3 . This may be interpreted as a signal for a DE with
a dynamical EoS parameter starting from values ∼ −2

3 at earlier times and then approaching
a cosmological constant as the universe expands, as noted also by [35].
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Figure 3. 1-D posterior distributions for w0 for the particular values wi = 0 (blue), wi = − 1
3 (green),

wi = − 2
3 (red) and wi = −1 (black) from Planck+BAO+SN data.

Ω
(0)
m h w0 wi χ2

0.316+0.006
−0.005 0.605± 0.002 −1 0 173.34

0.305+0.007
−0.008 0.664± 0.005 −1 −1

3 51.80

0.302+0.007
−0.008 0.678± 0.006 −1 −2

3 46.88

0.302± 0.008 0.682± 0.006 −1 −1 47.00

Table 3. Mean values with 1σ errors of the parameters of the model with w0 = −1 for the particular
values wi = 0, wi = − 1

3 and wi = − 2
3 and χ2 values from Planck+BAO+SN data. The case wi = −1

corresponds to ΛCDM.

3.3 Fixed w0 and fixed wi

We observe from table 2 that w0 persists on yielding values around −1 in spite of the large
differences between the fixed values of wi. Hence we now fix also w0 = −1 along with wi = 0,
wi = −1

3 , wi = −2
3 or wi = −1. Doing so our model now yields the same number of DoF

with the ΛCDM model and the latter case (w0, wi) = (−1,−1) corresponds to Λ while the
former three cases correspond to dynamical DE models. We summarize the constraints from
Planck+BAO+SN data set with their minimum χ2 values in table 3. We note that the
case (w0, wi) = (−1, 0) and (w0, wi) = (−1,−1

3) should be ruled out due to their very large
χ2 values. We note on the other hand that the cases (w0, wi) = (−1,−2

3) and (w0, wi) =
(−1,−1), i.e. ΛCDM, have almost the same low χ2 values; χ2

(−1,−2/3) = 46.88 and χ2
ΛCDM =

47.00, respectively. However, it is noteworthy to note the case (w0, wi) = (−1,−2
3) has the

lowest χ2 value with a difference over the ΛCDM given χ2
ΛCDM−χ2

(−1,−2/3) = 0.12 , although

not statistically significant. In this case we find from (2.10) that w′de < 0 through the history
of universe and w′de(z = 0) = − 1

12 today, while w′ is always null in the case of Λ. According
to this we have a dynamical DE model that fits to data equally better than Λ but yet does
never cover/mimic Λ. We plot wde and dwde/dz = −w′de/(1+z)2 versus redshift z in figure 4
for demonstrating how the dynamics of DE in case (w0, wi) = (−1,−2

3) deviate from Λ.

Two key parameters in cosmology are the deceleration and jerk parameters that are
defined as q = − ä

aH2 = (1+z)dH
Hdz − 1 and j =

...
a

aH3 = q + 2q2 + (1 + z)dq
dz , respectively.

The negative values of deceleration parameter imply that the universe is expanding with an
accelerating rate and values less than −1 indicate a super-exponential expansion. The jerk

– 8 –
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Figure 4. wde and dwde/dz in terms of redshift z for the case (w0, wi) = (−1,− 2
3 ) (solid lines). The

dotted lines correspond to the case cosmological constant.

Figure 5. Deceleration parameter q and jerk parameter j versus redshift z for the case (w0, wi) =
(−1,− 2

3 ) (solid lines) and ΛCDM (dotted lines).

parameter on the other hand is a very useful parameter for investigating the deviation of a
cosmological model from ΛCDM since its value stays pegged to unity in ΛCDM (ignoring
the contributions other than Λ and pressure-less matter), while it is in general a dynamical
quantity in our model. In the case (w0, wi) = (−1,−2

3) the deceleration parameter evolves
from 0.5 as in the ΛCDM and goes ever monotonically to −3

2 which indicates a big rip
end of the universe while the universe approaches asymptotically de Sitter universe with a
deceleration parameter equal to −1 in ΛCDM model. We depict the evolution of q and j in
redshift z for (w0, wi) = (−1,−2

3) and ΛCDM in figure 5 using the values with 1σ errors from
table 3. We find that the current value of the deceleration parameter is q0 = −0.545± 0.014
(1σ) and the universe starts its accelerating expansion at redshift value ztr = 0.647+0.021

−0.018 (1σ)
while these values are q0 = −0.547±0.012 (1σ) and ztr = 0.665±0.021 (1σ) in ΛCDM model.
We observe that the jerk parameter exhibits a non-monotonic behavior but stays at values
very close to unity, and find its current value is j(z = 0) = 1.087± 0.001 (1σ). Although the
expansion history of the universe is almost the same in both models, they predict completely
different futures. In the case (w0, wi) = (−1,−2

3) the universe enters into a super-acceleration
regime (q < −1) at redshift zs = −0.487−0.003

+0.004 (1σ) and ends with a big rip.

4 Concluding remarks

The new parametrization of DE we introduced in this paper allowed us to carry out successive
observational analyses by decreasing its degrees of freedom systematically until ending up
with a dynamical dark energy model having no additional parameters compared to ΛCDM.
We first fixed the initial value of the EoS to some particular values and found some indications
in favor of an evolving DE. We then additionally fixed the EoS parameter to−1 for the present
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epoch of the universe and found that EoS parameter that equals −2
3 at high redshifts and

−1 at the present epoch gives a slightly better fit to the combined Planck+BAO+SN data
than Λ. The variation of the EoS parameter in scale factor, on the other hand, is dynamical
but always less than zero, which means that even today, when its EoS parameter is equal
to −1, the DE does not genuinely mimic Λ. Thus we gave a cosmological model that can
compete with ΛCDM but involving a dynamical DE. We also note that DE in this model
passes below the phantom divide line in the future, hence leading to a big rip end of the
universe. Accordingly, because the universe lives for finite time and the EoS parameter of
DE evolves around −1, hence the energy density of DE is also dynamical, throughout the
history of universe, our model relieves also the problems related with cosmological constant
assumption of ΛCDM model.
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