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Maestŕıa en Ciencias (F́ısica)

#523011369

c2. Datos del tutor (sinodal 1)
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ellos destacan Hugo, Rafa, Yusef, Luis E., Juan, Jimena y Donaldo, quienes siempre estuvieron

cuando más lo necesite y con algunos compart́ı noches estresantes de exámenes o interminables
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Resumen

En esta tesis, realizamos un estudio sobre el panorama actual de la enerǵıa oscura holográfica y

sus implicaciones al compararla con datos observacionales. La enerǵıa oscura es un misterioso

componente del universo que constituye aproximadamente el 68% de su contenido total, según

las observaciones astronómicas. La necesidad de introducir este componente se debe a la expli-

cación de la expansión acelerada de nuestro universo según las observaciones. A diferencia de la

materia oscura, que ejerce atracción gravitacional, la enerǵıa oscura parece tener un efecto repul-

sivo, actuando como una especie de fuerza antigravitatoria que causa la expansión acelerada del

espacio-tiempo. Por esta razón, en esta tesis se realizó una revisión de los aspectos básicos de

la cosmoloǵıa y los aspectos observacionales que dan lugar a la necesidad de la enerǵıa oscura.

De igual forma, se aborda la necesidad de introducir un término de constante cosmológica como

primer candidato de este ente. Sin embargo, este modelo presenta discrepancias o tensiones que

nos permiten imaginar su incompletitud y, por lo tanto, introducir modelos extendidos de enerǵıa

oscura. En este caso, la enerǵıa oscura holográfica.

Para introducir esta alternativa fundamental, se estudiaron las ideas que dieron lugar al princi-

pio holográfico a partir de la fórmula de Bekenstein-Hawking. Esta fórmula nos indica que la

información de la entroṕıa dentro de un volumen espećıfico en un espacio determinado puede ser

deducida a partir de la información que se puede codificar sobre la frontera de esa región. La

extrapolación de esta idea a la teoŕıa cuántica de campos, dio lugar a lo que hoy conocemos como

principio holográfico. Al utilizar este resultado en teoŕıa cuántica de campos para la densidad

de enerǵıa del vaćıo y compararlo con la enerǵıa oscura presente en nuestro universo, es posible

encontrar la ecuación que indica la evolución de la enerǵıa oscura.

Debido a que este modelo se caracteriza por la entroṕıa asociada, es posible construir nuevos mod-
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elos de enerǵıa oscura al usar entroṕıas más generales. En esta tesis, exploramos uno las versiones

generalizadas de este modelo, por medio de introducir nuevas entroṕıas, en este caso las de Tsallis,

Barrow y modelos de exponentes generalizados donde no necesariamente es constante, lo que da

lugar a densidades de enerǵıa con parámetros adicionales que, en el ĺımite adecuado, reproducen la

enerǵıa oscura estándar y ⇤CDM. Además, de esta extensión, estudiamos de forma breve algunos

otras posibilidades como lo son la interacción entre materia oscura y enerǵıa oscura holográfica,

la presencia de un universo con curvatura espacial, la teoŕıa de perturbaciones en el modelo de

enerǵıa oscura holográfica y la dependencia temporal de la constante de Newton en este modelo.

Finalmente, llevamos a cabo una inferencia de los parámetros cosmológicos y los parámetros adi-

cionales de cada modelo utilizando la inferencia bayesiana y datos observacionales de supernovas,

oscilaciones acústicas de bariones y cronómetros cósmicos, a través de la paqueteŕıa en Python,

Simplemc. Pudimos determinar qué modelo se ajusta mejor a los datos al comparar la evidencia

bayesiana y el término �2 , aśı como la información cosmológica adicional proporcionada por los

modelos holográficos en comparación con ⇤CDM.



Abstract

In this thesis, we studied the current landscape of holographic dark energy and its implications

compared to observational data. According to astronomical observations, dark energy is a mys-

terious component of the universe that constitutes approximately 68% of its total content. The

need to introduce this component arises from the explanation of the accelerated expansion of our

universe as observed. Unlike dark matter, which exerts gravitational attraction, dark energy seems

to have a repulsive e↵ect, acting as a sort of anti-gravitational force that drives the expansion of

spacetime. For this reason, this thesis undertook a review of the basic aspects of cosmology and

the observational aspects that give rise to the need for dark energy. Similarly, it addresses the

need to introduce a cosmological constant term as the first candidate for this entity. However, this

model presents discrepancies or tensions that allow us to imagine its incompleteness and, therefore,

introduce extended models of dark energy. In this case, holographic dark energy.

To introduce this fundamental alternative, we studied the ideas that gave rise to the holographic

principle from the Bekenstein-Hawking formula. This formula indicates that the entropy informa-

tion within a specific volume in a given space can be deduced from the information that can be

encoded on the boundary of that region. The extrapolation of this idea to quantum field theory

gave rise to what we know today as the holographic principle. By using this result in quantum

field theory for the energy density of the vacuum and comparing it with the dark energy present

in our universe, it is possible to find the equation indicating the evolution of dark energy.

Because this model is characterized by the associated entropy, it is possible to construct new

dark energy models by using more general entropies. In this thesis, we explore one of the general-

ized versions of this model, by introducing new entropies, in this case, those of Tsallis, Barrow, and

generalized exponent models where it is not necessarily constant, resulting in energy densities with
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additional parameters that, in the right limit, reproduce the energy of the dark energy and the

⇤CDM model. In addition to this extension, we briefly study some other possibilities such as the

interaction between dark matter and holographic dark energy, the presence of a spatially curved

universe, the perturbation theory in the holographic dark energy model and the time dependence

of Newton’s constant in this model.

Finally, we performed inference of the cosmological parameters and additional parameters of each

model using Bayesian inference and observational data from supernovae, baryon acoustic oscilla-

tions, and cosmic chronometers, via the Python package, SimpleMC. We were able to determine

which model best fits the data by comparing the Bayesian evidence and the �2 term, as well as

the additional cosmological information provided by the holographic models compared to ⇤CDM.
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Chapter 1

Introduction to Cosmology

1.1 General relativity

In 1915, Albert Einstein put forward an idea that would revolutionize, once and for all, how we

would think about gravity and the structure of the universe. He laid out a new theory of gravity

that, for the first time in centuries, moved beyond the work of Isaac Newton. This is a general

theory in which one can describe gravitational force, apart from the Newtonian paradigm that

preceded it. In such a way, Einstein’s field equations explain the relationship between matter and

energy and spacetime curvature. Solutions to such equations yield groundbreaking predictions

confirmed by vast experimental observations.

1.1.1 Equivalence principle

One of the most revolutionary principles in physics, allowing us to understand the connection

between the mass of a body and the force of gravity, is the principle of equivalence in general

relativity or the equivalence principle of Einstein. The first variant of this principle was called the

”weak equivalence principle,” postulated by Galileo and Newton. The original form of this makes

the statement that inertial mass ”m” is equal to gravitational mass ”M” [1]. These masses are the

ones that come into the expressions of the force.

1
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~f = m~a, (1.1)

~f = �Mr�, (1.2)

with � is the gravitational potential. However, all experiments have shown no distinction between

these masses, i.e. m = M . From these equations, notice that the direct consequence is

~a = ~̈x = �r�(~x), (1.3)

This indicates that the motion of particles in free fall is universal.

1.1.2 The metric

For a theory that can describe gravity in curved spaces, a general metric gµ⌫ is necessary, which, in

some limits, can reproduce the metric of a flat Minkowski space ⌘µ⌫ . Rather than conceptualizing

gravity as an external force and describing particles navigating a gravitational field, we can inte-

grate gravity into the metric [2]. This idea allows us to discuss particles moving unhindered in a

distorted or curved space-time, where the metric cannot be uniformly transformed into Euclidean

form throughout. In a four space-time dimensions the interval or the invariant for four-vectors

(x0, x1, x2, x3) is

ds2 = gµ⌫dx
µdx⌫ . (1.4)

Where the Greek indices µ and ⌫ range from 0 to 3, and we use Einstein’s summation convention.

Notice that the first component is the time-like coordinate (dx0 = dt) and the last three are

spatial coordinates. The metric gµ⌫ has four diagonal and six o↵-diagonal components and, thus,

is symmetric. In the special relativity case, the space is described by the Minkowski metric

⌘µ⌫ = Diag(1,�1,�1,�1). (1.5)

In the following sections, we will know the metric that describes de expansion of the Universe.
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1.1.3 Einstein Equations

The field equations of Einstein are the cornerstones of modern physics, these were formulated in

the early years of the 20th century. Starting from this, Einstein immediately began to develop a

theory that combined gravity with his work [3].

The most fundamental aspect of general relativity consists of the fact that this theory has encoded

in it a way to represent gravitation in terms of a metric. Another very important aspect of the

theory relates this metric to the matter and energy distributed in the universe. That aspect is

encoded in Einstein’s equations, which relate components of Einstein’s tensor describing geometry

to the energy-momentum tensor defining energy distribution, i.e.

Gµ⌫ ⌘ Rµ⌫ �
1

2
gµ⌫R =

8⇡G

c4
Tµ⌫ . (1.6)

In this equation, Gµ⌫ is the Einstein tensor, Rµ⌫ is the Ricci tensor given by

Rµ⌫ = �↵

µ⌫,↵
� �↵

µ↵,⌫
+ �↵

�↵
��

µ⌫
� �↵

�µ
��

↵⌫
, (1.7)

with �↵

µ⌫
are the Christo↵el symbols.

Also, in the Einstein equations is present the Ricci scalar is just given by R = gµ⌫Rµ⌫ , and the

energy-momentum for a perfect fluid is

T µ⌫ =

0

BBBB@

⇢c2 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

1

CCCCA
. (1.8)

Notice that the Einstein equation expresses the dynamic interplay between mass and energy and

space-time geometry.

But this is important not only for the aesthetic value of the Einstein equation but also for

its predictive power: From this theory, a perspective can be given from which many gravitational

phenomena can be understood, such as the motion of the planets and light bending by gravitational

fields. Most remarkably, it predicted gravitational wave ripples in the fabric of space-time. The
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detection of these gravitational waves in 2015 confirmed one of the last untested predictions of

Einstein’s theory and proof that black holes exist in our universe.

However, the implications of Einstein’s equation extend far beyond the fields of astrophysics

and cosmology: the truth is that it is supposed to give a kind of shock to mankind’s knowledge

concerning the origin, evolution, and ultimate fate of the universe. Cosmological models attempt

to describe the history of the universe from a primeval beginning to the present structure, such as

the Big Bang Theory. Einstein’s equation has been that from which modern theories of gravitation

are derived, and it has been a kind of wellspring for generations of physicists interested in pushing

the frontiers of both theoretical and experimental physics. From the mystery of black holes to the

search for a united theory of fundamental forces, the Einstein equation continues to be a powerful

driving force in scientific research and exploration.

In recent decades, cosmology has had an essential role in the scientific environment due to

increasingly precise observations that allow us to know the universe in which we live in an increas-

ingly detailed way. The observation that would start this revolution in contemporary cosmology,

besides paralyzing the world of science, occurred in 1998 when Riess from the High-redshift Su-

pernova Search Team and Perlmutter from the Supernova Cosmology Project Team independently

reported the accelerated expansion of the universe.

Since these results, many proposals have emerged to explain this phenomenon. However, using

observational data, two proposals can answer one of the most critical questions: what causes the

universe’s accelerated expansion? These proposals are Modified Gravity and Dark Energy.

1.2 Historical Context

The roots of cosmology stretch back to antiquity, where early civilizations crafted intricate cos-

mological narratives to explain the origin and nature of the universe. In Mesopotamia, the Baby-

lonians envisioned a cosmos governed by divine order, with celestial bodies serving as omens and

symbols of cosmic harmony. The Egyptians developed cosmological myths centered around the

sun god Ra, whose journey across the sky represented the cycle of life, death, and rebirth [4].

Pythagoras, Plato, and Aristotle sought to understand the universe through reason and observa-

tion. Pythagoras suggested that there existed a basic mathematical harmony in the universe, and
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Plato envisioned an independent, transcendental realm of ideal forms beyond the material world.

In Aristotle’s cosmology, the center was occupied by Earth, with celestial spheres rotating around

it thereby laying the foundation for centuries of cosmological thought based on anthropocentrism.

1.2.1 The Ptolemaic Universe

The Ptolemaic model of Claudius Ptolemy in the 2nd century CE was the climax of ancient cos-

mology. Elaborating on what Aristotle had previously laid down, Ptolemy described a geocentric

universe where Earth was at the center and the rest of the celestial bodies orbited it along perfect

circles, as shown 1.1 below. To explain the observed retrograde motion of the planets while still

holding on to perfection for the geocentric heaven, epicycles, and referents were incorporated into

the analysis.

Figure 1.1: A Ptolemaic map of the world, created by Andreas Cellarius in 1708.

1.2.2 Copernican principle

In the 16th century, Nicolaus Copernicus proposed one of the backbones of modern cosmology.

This idea is known as the Copernican Principle. This idea changed the perspective of humanity

about the relation to the cosmos and our role in it, instead, it asserts that the laws of physics and

the universe’s properties are uniform and independent of any particular vantage point [5]. In this
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way, Nicolaus Copernicus challenged the traditional geocentric model, which considers that the

Earth is the center of the universe, thus, the sun and other planets orbit around it. This paradigm

shift not only transformed our understanding of planetary motion but also laid the groundwork for

the Copernican Principle, which asserts the absence of privileged positions in the universe. This

principle can be summarized as follows [6]

“On the Earth or in the Solar System, are not privileged observers of the universe”.

Observations in astronomy throughout history, support the Copernican Principle. Surveys of dis-

tant galaxies, cosmic microwave background radiation, and the large-scale distribution of matter

all point to a vast, uniform universe devoid of privileged locations. The cosmic microwave back-

ground, in particular, serves as a relic of the early universe, o↵ering insights into its fundamental

properties and evolution [7].

1.3 Cosmology

1.3.1 Isotropy and homogeneity

The vast expanse of galaxies, stars, and cosmic structures within the universe has perpetually cap-

tivated humanity with its intricate beauty and complexity. The fundamental concepts of isotropy

and homogeneity are foundational in comprehending the universe’s structure. These concepts,

rooted in cosmology, provide crucial insights into the universe’s large-scale properties and evolu-

tion over time. This chapter explores the profound significance of isotropy and homogeneity (see

figure 1.2), delving into their definitions, implications, and the evidence supporting their validity

[8].
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Figure 1.2: Homogeneity and isotropy diagram [9]

Firstly, the isotropy refers to the uniformity of the universe’s properties in all directions. In

an isotropic universe, observational data should not exhibit preferential directions or orientations;

instead, they should appear statistically identical regardless of the observer’s location or perspec-

tive.

In the same way, the homogeneity denotes the uniform distribution of matter and energy

throughout the universe on large scales. When observed on su�ciently large scales, a homogeneous

universe exhibits a consistent density of cosmic structures, such as galaxies and galaxy clusters.

This uniformity implies that the universe looks the same from any vantage point, without distinct

regions of higher or lower density.

Figure 1.3: Anisotropies of the Cosmic Microwave Background, the colors represent temperature’s
di↵erence map [10].

The homogeneity and isotropy in the Cosmic Microwave Background (CMB) provide compelling

evidence for the cosmological principle, as shown in the figure 1.3. Observations of the CMB reveal
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a remarkably uniform temperature distribution across the sky, with temperature fluctuations at

the level of one part in a hundred thousand. This uniformity suggests that the universe possesses

a high degree of homogeneity on large scales, consistent with the predictions of the cosmological

principle.

1.4 Friedmann-Lemâıtre-Robertson- Walker

The Friedmann-Lemâıtre-Robertson- Walker (FLRW) metric is a solution to Einstein’s field equa-

tions of general relativity and describes the geometry of a homogeneous, isotropic, and expanding

universe [11]. It encompasses three key components: homogeneity, isotropy, and cosmic expansion.

The FLRW metric embodies the principles of the Cosmological Principle by providing a math-

ematical framework that describes a universe consistent with its assumptions. It allows cosmolo-

gists to model the universe’s evolution and predict its properties based on observations. One of

the remarkable implications of the FRW metric and the cosmological principle is the prediction

of phenomena such as the redshift of distant galaxies and the CMB. Observations of the CMB, in

particular, have provided compelling evidence for the isotropy and homogeneity of the universe,

consistent with the predictions of the FRW metric and the Cosmological Principle.

The invariant element in this universe is

ds2 = c2dt2 � a2(t)

✓
dr2

1� k (r/R0)
2 + r2

�
d✓2 + sin (✓)d�2

�◆
, (1.9)

where a(t) is the scale factor, R0 is the radius of the sphere and the constant k involves the

following cases

• for k = �1, is an open universe.

• for k = 0, is a flat universe.

• for k = 1, is a closed universe.
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The components of the Ricci tensor for a flat universe are (consider c = 1)

R00 = �3

✓
ä

a

◆
. (1.10)

Rij =

 
2

✓
ȧ

a

◆2

+
ä

a

!
gij. (1.11)

From these results, we can find the Ricci scalar, and then calculate the components of the Einstein

Equations, thus, taking the first component we get the first Friedmann equation in the form

✓
ȧ

a

◆2

=
8⇡G

3
⇢. (1.12)

We need to define the ratio of the rate of change of the scale factor to the current value of the

scale factor a(t) or the Hubble parameter and the critical density

H(t) ⌘
ȧ

a
, (1.13)

⇢c ⌘
3H2

8⇡G
. (1.14)

Where H0 is the present value of the Hubble parameter [12]

H0 = 100h kmsec�1Mpc�1 =
h

0.98⇥ 1010years
= 74.2± 3.6 kmsec�1 Mpc�1, (1.15)

and the value of the critical density at the present day is

⇢c,0 = 1.88h2
⇥ 10�29g cm3. (1.16)

The second Friedmann equation is obtained using the spatial components of the Einstein equa-

tions. This equation is
ä

a
= �

4⇡G

3
(⇢+ 3P ) . (1.17)

From these two equations, we can find the third equation deriving (1.12) with respect to cosmic
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time and replacing (1.17). The last of the equation is the continuity equation

⇢̇+ 3H (⇢+ p) = 0. (1.18)

In cosmology, the continuity equation is applied to various cosmic fluids to study their evolution

over cosmic time. For example, it can describe the evolution of dark matter, baryonic matter

(ordinary matter), and radiation in the expanding universe. By solving the continuity equation

alongside other relevant equations, cosmologists can model the behavior of these cosmic fluids,

predict their distributions, and understand their impact on the universe’s large-scale structure.

1.5 Components of the universe

To understand the universe’s evolution, it is necessary to know its components and dynamics. In

cosmology, this entails defining the connection between mass density and pressure, known as the

equation of state. Mathematically, this relation is p = !⇢, where ! is the equation of the state

parameter (EoS).

Currently, we will explore some potential scenarios [8].

• Matter: In the Cosmology’s context, the term matter is used for non-relativistic matter.

This kind of component is any material that has negligible pressure, i.e., p = 0.

In the case of a universe dominated by non-relativistic matter, from solving the continuity

equation (1.18) we get

⇢m = ⇢m0a
�3. (1.19)

The scale factor and the Hubble parameter are given by

a(t) =

✓
t

t0

◆ 2
3

, H(t) =
2

3t
, (1.20)

where t0 is the present time.

• Radiation: For this case the pressure is p = ⇢/3, in the same way, solving (1.18) for an
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universe dominated by radiation, we can note

⇢r = ⇢r0a
�4. (1.21)

The scale factor and the Hubble parameter are

a(t) =

✓
t

t0

◆ 1
2

, H(t) =
1

2t
. (1.22)

• Curvature: To keep the same notation in terms of the energy density, we can define the

component associated with the curvature as follows,

⇢k ⌘ �
3k

8⇡Ga2
. (1.23)

The EoS associated with the curvature is ! = �
1
3 . Therefore, for a universe dominated by

the curvature, the scale factor and the Hubble parameter are

a(t) =
t

t0
, H(t) =

1

t
. (1.24)

• Cosmological constant: As we will see in chapter 2 with more details, Einstein introduced

the cosmological constant ⇤ to obtain a static universe. In the same way that the curvature

case, it is possible to define the dark energy density for the cosmological constant

⇢⇤ =
⇤

8⇡G
. (1.25)

Furthermore, we can consider the cosmological constant associated with the vacuum energy,

thus, this is the case of a perfect fluid with negative pressure, i.e., ! = �1. Finally, in the

case of a universe dominated by the cosmological constant, we get

a(t) / e
p

⇤/3t, H(t) constant. (1.26)
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1.5.1 ⇤CDM model

The standard cosmological model or ⇤ Cold Dark Matter (⇤CDM) model is the simplest model

that can explain a lot of cosmological observations. Its name is due to some considerations which

conform to it. Some of these are,

• Einstein’s theory of general relativity is the correct theory to describe gravity on cosmological

scales.

• The cosmological principle is valid and establishes that the universe is statistically homoge-

neous and isotropic on su�ciently large scales.

• The universe is made up of ordinary matter (baryons and leptons), cold dark matter (non-

relativistic matter, which only interacts gravitationally), radiation (photons, neutrinos), and

the cosmological constant ⇤ as responsible for the accelerated expansion of the universe.

• In the early universe a primordial phase of inflation occurred, i.e. a period of very rapid

acceleration. This is usually assumed in this framework because it solves the flatness problem.

Particularly, in this model due to the cosmological principle, the spatial part of the FRW metric

is considered plane, i.e. k = 0.

Now, to visualize the evolution of the above quantities, it is convenient to define a new di-

mensionless density parameter for each component of the universe. The general form is given

by

⌦i(t) ⌘
⇢i(t)

⇢c(t)
, (1.27)

with ⇢c as the critical density previously defined. From this new definition, we can express the

Friedmann constrain in the form

⌦⇤ + ⌦k + ⌦m + ⌦r = 1. (1.28)

Another dimensionless quantity that is convenient to define in the context of cosmology is the

redshift z, in the form

1 + z =
a0

a(t1)
(1.29)
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Figure 1.4: Evolution of the dimensionless density parameters.

where a0 is the scalar factor at the present time (a0 = 1) and a(t1) is the scalar factor at an

arbitrary time t1.

The Friedmann equation in terms of the dimensionless density parameters and the redshift is

H2(z) = H2
0

�
⌦k,0(z + 1)2 + ⌦r,0(z + 1)4 + ⌦m,0(z + 1)3 + ⌦⇤,0

�
, (1.30)

where ⌦i,0 is the value of the dimensionless parameter at the present day for each component,

the evolution of these components is shown in figure 1.4, in this special case we consider ⌦k = 0,

due to the value measured by the Planck is ⌦k,0 = 0.0007± 0.0019 and it suggests a flat universe

approximately [13].
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Chapter 2

Dark Energy

In the early 20th century, Edwin Hubble reported one of the most important observations that

would change our understanding of the cosmos. The Hooker telescope at Mount Wilson Observa-

tory was used to measure the distance to Andromeda and other spiral nebulae; this showed that

such nebulae are outside and far beyond the Milky Way. Shortly after that, by measuring the

velocities of these galaxies and comparing them with their distances, he concluded that they were

all moving away from each other. From these results, Hubble concluded that the universe was

expanding. This chapter is about one of the proposals to explain this universe expansion, known

as dark energy.

15
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2.1 Observations

2.1.1 Cepheids

Because of their high luminosity compared to other stars, Cepheid variables are commonly used

to calculate distances to objects beyond the Milky Way. These stars take their name from Delta

Cephei, the first of this type discovered by John Goodricke in 1784, located in the constellation

Cepheus.

Cepheid variable stars are distinguished by their remarkable luminosity and brightness varia-

tions in a regular pattern (see Figure 2.1). In 1912, astronomer Henrietta Leavitt made a crucial

discovery while analyzing photographic plates: she observed that variable Cepheids in the Small

Magellanic Cloud exhibited a relationship between their apparent brightness and the period of

their luminous fluctuations. Although, at that time, the distance to the Magellanic Cloud was

unknown, the Cepheids were assumed to be at approximately the same distance. Therefore, Leav-

itt established a systematic connection between the absolute luminosity of these stars and their

period of oscillation: the brighter a Cepheid was, the longer its period of variation.

In 1923, Edwin Hubble and his team identified the presence of several Cepheid variable stars in

the Andromeda Galaxy (M31). Using Henrietta Leavitt’s calibration, Hubble could calculate the

distance to M31 and thus prove that it was a separate galaxy. Until then, M31 was believed to be

part of the Milky Way. After determining the distances to other galaxies using Cepheids, in 1929

Edwin Hubble discovered that the speed at which a galaxy moves away from us is proportional

to its distance, this is Hubble’s law and tells us that the farther a galaxy is from us, the faster it

moves away; this law can be interpreted as the result of the expansion of the Universe.

2.2 Supernova and the expansion of the universe

In 1998, two teams of researchers, the High-redshift Supernova Search Team (HSST) led by Riess

and the Supernova Cosmology Project (SCP) led by Perlmutter, made observations that changed

our understanding of the universe forever by discovering that the expansion of the universe is

accelerating.

The use of type Ia Supernova simplifies the determination of cosmological parameters since it
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Figure 2.1: Example light curves of Type II Cepheids in the Large Magellanic Cloud (LMC).
The left panel displays BL Her and W Vir stars, while the right panel features RV Tau stars,
phased using their ‘double’ (formal) periods. The rounded periods of the light curves, in days,
are indicated by small numbers on the right side of each pane [14]. Here, the phase represents a
specific point in the star’s repeating brightness cycle (its pulsation or variability cycle), while the
magnitude is the brightness of the star at a specific point in its phase.

is possible to depict the entire method within a single graph. The fundamental concept revolves

around identifying an object with a well-established brightness, often called a standard candle

(stars with a known intrinsic luminosity), and mapping it to a Hubble diagram. This diagram

illustrates the relationship between brightness (magnitude) and redshift (z) is shown in Figure 2.2

[15], where m is the apparent magnitude, i.e. this is how bright an object appears from the Earth,

while M is the absolute magnitude M , this is how the bright the object would appear if it were
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placed at a distance of 10 parsecs, thus in this figure, m�M is the modulus of distance and give

us a way to calculate the distance to the object.
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Figure 2.2: Type Ia supernova Hubble diagram, showing modulus of distance vs redshift [16]. The
bottom panel shows residuals in distance modulus relative to an open universe with ⌦m0 = 0.3
and ⌦⇤0 = 0

.
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As shown in Figure 2.3 the confidence regions for the 42 supernovae set show that the universe’s

expansion will continue indefinitely, and the universe is accelerating, which is model-dependent.

However, these findings do not provide insights into the universe’s curvature. The elongated

confidence region spans across the line, representing a flat universe, distinguishing between closed

and open curvature.

Figure 2.3: Confidence regions for matter and vacuum energy density, we consider only these two
quantities because only these are relevant to the redshift associated with the observational data.
[15].

Another significant inference drawn from the confidence region is that the data significantly

deviate from the most straightforward cosmological model, which assumes flatness and zero cosmo-
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logical constant. From these results, the universe’s accelerated expansion is a fact; however, a new

question, which to this day is one of the most important in cosmology, would arrive immediately:

what makes the universe expand in an accelerated way? Again, one of the strongest candidates to

explain this phenomenon is dark energy.

2.3 Cosmological Constant

In 1916, when Albert Einstein developed his general theory of relativity, the consensus of cosmology

was that the universe was static, i.e., it did not expand. However, Einstein realized that his field

equations describe a non-static universe. To reconcile his theory with this idea, introducing a new

term into his equations was necessary to help counteract the e↵ects of gravitational attraction.

This new term introduced is known as the cosmological constant ⇤. The new term is related to

the vacuum energy, i.e. an energy density intrinsic to the empty space. For a long time, the

cosmological constant term in Einstein’s equations was forgotten, due to Hubble’s observation of

the expanding universe, however, from the observations of Riess and Perlmutter, the cosmological

constant became relevant again, being the first candidate to explain the accelerated expansion of

the universe.

With the cosmological constant term, the Einstein field equations are

Rµ⌫ �
1

2
Rgµ⌫ + ⇤gµ⌫ = 8⇡GTµ⌫ , (2.1)

in the above equations, it has become common practice to shift this additional term to the right-

hand side and regard it as part of the energy-momentum tensor Tµ⌫ �! Tµ⌫ + T (⇤)
µ⌫ , then we can

define the quantity

T (⇤)
µ⌫

= �
⇤

8⇡G
gµ⌫ ⌘ �⇢⇤c

2gµ⌫ (2.2)

we notice if compare this quantity with the energy-momentum tensor of the perfect fluid, given as

[17]

Tµ⌫ = (⇢+ p)uµu⌫ + pgµ⌫ , (2.3)
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the cosmological constant is like a perfect fluid with a negative pressure, in this case

p⇤ = �⇢⇤.

This new term also has repercussions in Friedmann’s equations, so these can be expressed as,

H2 =
8⇡G

3
⇢+

⇤

3
, (2.4)

ä

a
= �

4⇡G

3
(⇢+ 3p) +

⇤

3
. (2.5)

Due to the pressure of the cosmological constant is negative, work is done in the associated fluid

as the universe expands, and then, this causes the density energy to remain constant even if the

Universe’s volume increases [8]. As we will see below, there is an important tension about the

value of the energy density associated with the cosmological constant and with the value of energy

density of the zero-point from QFT.

2.4 Cosmic distances

To understand the cosmological observations we will see below, it is necessary to introduce

the cosmological distances involved. From the Friedmann-Lemâıtre-Robertson-Walker metric,

we can rewrite the spatial part of the metric in a more practical way, for this, consider d� ⌘

dr/
p

1� kr2/R2
0, from this we can rewrite

ds2 = dt2 � a2(t)
⇥
d�2 + S2(�)

�
d✓2 + sin2(✓)d�2

�⇤
, (2.6)

where the S (�) is defined as

S (�) ⌘ R0

8
>>>>>><

>>>>>>:

sin(�/R0) if k = +1,

�/R0 if k = 0,

sinh(�/R0) if k = �1,

(2.7)
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or it can be rewritten in the form

Sk(�) =
1

p
�k

sinh(
p
�k�),

considering the 3 di↵erent cases for k recovers each spatial curvature.

2.4.1 Comoving distance

Consider the case of light traveling in the direction of � (✓ = � = constant ) the interval is

ds2 = dt2 � a2(t)d�2 = 0.

Now if we consider the case of a light beam emitted at time t1 at the point �1, and this light beam

this light beam arrives at an observer at time t0 with � = 0. Thus, from this interval, we can

define the comoving distance in the form

dc ⌘

Z
�1

0

d� = �

Z
t1

t0

dt

a(t)
, (2.8)

from the redshift’s definition, we can express the comoving distance as

dc =
1

a0H0

Z
z

0

dz0

E(z0)
, (2.9)

where E(z) = H(z)
H0

.

Notice that, it is possible to carry out an expansion of (2.9) around z = 0, thus the integral takes

the form Z
z

0

dz0

E(z0)
= z �

E 0(0)

2
z2 +

1

6
(2E 0(0)� E 00(0)) z3 +O(z4), (2.10)

from this expansion notice that the limit case when z ⌧ 1, the comoving distance is approximately

dc ⇡
z

a0H0
. (2.11)
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2.4.2 Luminous distance

In cosmology, the luminous distance is usually defined as

d2
L
⌘

Ls

4⇡F
, (2.12)

where Ls is the magnitude of the luminosity of a source and F is the observed flow. Likewise,

the flow is defined as F = L0
S
, with L0 at � = 0 (z = 0), also, the area of the sphere at z = 0 is

S = 4⇡(a0Sk(�))2.

Therefore, we can rewrite (2.12) in the form

d2
L
= (a0Sk(�))

2Ls

L0
. (2.13)

On the other hand, notice that

Ls

L0
=

�E1�t0
�E0�t1

= (1 + z)2,

where �E1 and �t1 is the energy emitted in a time interval. Therefore, the luminous distance

takes the form

dL = a0Sk(�)(1 + z), (2.14)

using the comoving distance (2.9), we get that the luminous distance is

dL =
c(1 + z)

H0

p
⌦k,0

sinh

✓p
⌦k,0

Z
z

0

dz0

E(z0)

◆
. (2.15)

From this result, we can now use the Taylor series in the form

sinh(x) = x+
x3

6
+O(x5) (2.16)

and using the equation (2.10), we find that around z = 0, the expression is

dL ⇡
c

H0


z +

✓
1�

E 0(0)

2

◆
z2
1

6

�
2E 0(0)2 � 3E 0(0)� E 00(0) + ⌦k,0

�
z3
�
. (2.17)
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2.4.3 Angular diameter distance

The angular diameter distance is defined as

dA ⌘
�x

�✓
, (2.18)

If we consider that the source is located on the surface of a sphere of radius � with an observer in

the center with size �x at t1, we get

�x = a(t1)Sk(�)�✓, (2.19)

thus, the diameter distance is

dA = a(t1)Sk(�) =
a0Sk(�)

1 + z
=

1

1 + z

c

H0

p
⌦k,0

sinh

✓p
⌦k,0

Z
z

0

dz0

E(z0)

◆
, (2.20)

comparing the above expression with (2.15), the relation is given by

dA =
dL

(1 + z)2
. (2.21)

2.5 Cosmological tensions

In the current cosmology scenario, there are many inconsistencies or cosmological tensions con-

cerning the standard cosmological model and the observations, many times people refer to these

as ⇤CDM tensions. Nevertheless, these inconsistencies are not specifics of this model, but these

are limitations of the standard cosmological model and each solution to these tensions represents

crucial knowledge about the universe. In this section, we study briefly some of these.

2.5.1 Old cosmological constant problem

One of the main discrepancies of the ⇤CDM model arises when we want to compare the value of

the energy density of the vacuum to the associated cosmological constant. The adjective ‘old’ is

due to there being more problems associated with the cosmological constant, and this has remained
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since decades ago.

To notice this, we must be sure that the order of the cosmological constant is that of H2
0 , this

is

⇤ ⇡ H2
0 =

�
2.133h⇥ 10�42 GeV

�2
, (2.22)

with h ⇡ 0.7. Notice that we can consider an energy density associated, as follows,

⇢⇤ s ⇤

8⇡
m2

pl
s 10�47 GeV4, (2.23)

and where the Planck’s mass is mpl ⇡ 1019 GeV .

As Weinberg mentioned in [18], the energy density of the vacuum or the zero-point and the

associated density energy to the cosmological constant are comparable, if we introduce the energy

tensor of the point-zero energy in Einstein’s field equation.

If we consider a flat space-time like Minkowski space-time, the only invariant tensor is ⌘µ⌫ ,

and since the vacuum state must be always the same for all observers [19], i.e. hTµ⌫i / ⌘µ⌫ , if we

extrapolate this in curved space-time, this means that

hTµ⌫i = �h⇢vac(t, ~x)igµ⌫ , (2.24)

where is ⇢vac is the vacuum energy density. Now, using the fact that the energy-momentum tensor

must be conserved, the ⇢vac must be constant, from this we can write

hTµ⌫i = �h⇢vacigµ⌫ . (2.25)

The value of this energy density is calculated by summing the zero-point energies of all normal

modes of some field of mass m up to a wave number cuto↵ ⇤ � m (it is not the cosmological

constant), yields a Vacuum energy density (~ = c = 1) [18]

h⇢vaci =

Z ⇤

0

4⇡k2dk

(2⇡)3

p
k2 +m2

2
'

⇤4

16⇡2
, (2.26)
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and considering the general relativity up to the Planck scale, the estimated value is

h⇢vaci ⇠ 1074 GeV4. (2.27)

From this, we can note the discrepancy between this estimated value and the observer value 2.22

is around 10121 times. Sometimes this discrepancy is interpreted as a kind of fine-tuning problem,

due to it is necessary fine-tuning to reconcile both values.

2.5.2 The coincidence problem

This other problem within the ⇤CDM framework is associated with the values of ⌦⇤ and ⌦m,

which are almost the same order of magnitude today. If we equal both density parameters and use

Friedmann’s constraint at present for a Universe dominated by matter and vacuum, it is possible

to find the redshift-associated

zequality =

✓
⌦⇤0

1� ⌦⇤0

◆1/3

� 1 ⇡ 0.3, (2.28)

for the vacuum’s density parameter at the present time ⌦⇤,0 ⇡ 0.7.

More specifically, during the universe’s expansion, the density of matter decreases with time due

to dilution caused by the increase in volume. In contrast, the density of dark energy remains

relatively constant or even increases. This means that matter density was dominant over dark

energy in earlier epochs. Still, in the present epoch, both densities are of the same order of

magnitude, giving rise to why this is happening just now in cosmic history.

The coincidence problem raises questions about whether this situation is a chance occurrence, or

whether some underlying principle or physical mechanism is explaining why these densities are

comparable in the present epoch. Resolving this problem could o↵er a deeper understanding of

the nature of dark energy and its relationship to the universe’s evolution.

2.5.3 Hubble tension

The Hubble tension refers to the discrepancy of Hubble’s parameter today, H0 for local measure-

ments and from the early universe. Remember, it represents the expansion rate of the universe
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measured today z = 0, thus its accuracy is fundamental due to many implications of its value,

such as the age of the universe.

One of the most accurate measurements of H0 from the early universe is by the cosmic mi-

crowave background (CMB) data. The nine-yearWilkinson Microwave Anisotropy Probe (WMAP)

project informed the measure of H0 using observations from CMB in 2013, the value in this

case is H0 = 70.00 ± 2.20 km/s/Mpc, while, the Planck space observatory informed the value

67.40 ± 0.50 km/s/Mpc in Planck2013 results and also if other observational data is added to

Planck results, this value is 67.36± 1.40 km/s/Mpc for Planck2018+lensing. Other predictions of

H0 by projects like the Atacama Cosmology Telescope (ACT) and South Pole Telescope (SPTPol)

agree with the estimated value by Planck2018 result [20].

On the other hand, the estimated value by ”local observations” such as Cepheid variables and

SNe Ia is 72± 8km/s/Mpc using a modified distance calibration. One of the latest local values is

given by SH0ES project, which is 73.04± 1.04 km/s/Mpc.

For the above reasons, there is a clear discrepancy between local observations and observations

from the early universe, currently, many people are working from di↵erent perspectives to alleviate

this obvious tension.

2.6 Beyond ⇤CDM model

The above tensions on the ⇤CDM model are the main motivation and justification for exploring

possible extensions or modifications of this model, such as the introduction of new physics (e.g.

dynamical dark energy or additional particle interactions) that in some way reproduces the ⇤CDM

model due to its great success with current observations. Usually, the extension of the ⇤CDM

model occurs using two types of modifications: the first is by introducing new degrees of freedom,

which are represented by variables, i.e., modifying the cosmology, and the second way is by directly

modifying the theory of gravity considered as the starting point, i.e., Einstein’s theory of relativity

by modifying the Einstein field equations or the Einstein-Hilbert action.

This section studies the most common extensions or alternatives to the ⇤ constant as the origin

of the dark energy.
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2.6.1 Parametrization

• Lineal parametrization: One of the simplest cases is to consider the EoS as a linear

function around z = 0 [21], i.e.

!(z) = !0 + !1z.

• Chevallier-Polarski-Linder parametrization (CPL): This parameterization has some

advantages compared to the previous parameterization, such as providing a reduction to the

old linear redshift behavior for high redshift, high accuracy in the reconstruction of many

scalar field equations of state and the resulting redshift-distance relationships, among others

[22]

!(z) = !0 +
!az

1 + z
.

• Barboza-Alcaniz parametrization (BA): This parameterization was proposed in 2008 by

E. M. Barboza and J. S. Alcaniz, who proposed the parameterization of EoS in the following

form [23]

!BA(z) = !0 + !1
z(1 + z)

1 + z2
.

Even though the previous parameterizations had great success in each of the applied problems,

they have a phenomenological basis, so that, because there are many observations, today we have

a large catalog of di↵erent parameterizations. This creates a problem because only through a

statistical analysis we can discard which of the parameterizations is better, which would take a

long time, for this reason, we are interested in fundamental models that give us a parameter of

the equation of state which is free of phenomenological arguments.

2.6.2 Scalar Field Models of Dark Energy

One of the most popular scalar fields to modulate the dark energy is known as Quintessence. This

is a dynamic scalar field, in this way the equations of the state may vary over time, for example.

The importance of this model lies in the possibility of linking the origin of the dark energy with

the quantum field theory through the scalar fields 1.

1In this section consider the high-energy convention such as the interval is given by ds2 = �dt2 + a(t)2d~x2.
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In this frame, the quintessence is given by a canonical scalar field � with the associated potential,

V (�) which interacts only gravitationally. The total action in this case is [24]

S =

Z
d4x

p
�g


M2

pl

2
R� L

�
+ Sm, (2.29)

whereM�1
pl

= 8⇡G the Planck mass, Sm is the matter action,R the Ricci tensor and the Lagrangian

L = �
1

2
gµ⌫@µ�@⌫�� V (�), (2.30)

Using this Lagrangian density, the energy density and the pressure in this model are given by

⇢� = �̇
2

2 + V (�) and p� = �̇
2

2 � V (�), where the doc represents a derivative with respect to the

cosmic time t. Thus the parameter of the equation of state is given by

!� =
�̇2

� 2V (�)

�̇2 + 2V (�)
. (2.31)

In the same way, we can find the associated continuity equation using the expression of the energy

density and the parameter of Eo. This equation is

�̈+ 3H�̇+ V,� = 0, (2.32)

where V,� = dV/d�. This is the Klein-Gordon equation and describes the evolution of the scalar

field. Notice that from (2.31), the slow roll limit is given by the �̇2 << V (�) condition, as

consequence, we obtain !� ⇡ �1, which is the case of an accelerated expanded universe.

There are more models of dynamic dark energy based on scalar fields (the Lagrangian is di↵erent

in each case) which include the K � essence scalar field, the Phanthom scalar field, the quintom

scalar field, and the scalar field model for the early dark energy case, as Axion-like Early Dark

Energy (axEDE), Rock ’n’ Roll Early Dark Energy ((RnR EDE)), Acoustic Early Dark Energy

(ADE) [25] and others.
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2.6.3 Interacting dark energy

This model considers the energy exchange through non-gravitational e↵ects between dark energy

and dark matter. This consideration becomes interesting if we remember that very close to us,

the matter and dark energy quantities in the universe, are comparable. The exchange of energy is

mediated by the interaction factor Q, this quantity is usually referred to just as interaction. The

new factor is introduced in the cosmology model by modifying the continuity equations for the

dark matter and dark energy, in the form [26]

˙⇢dm + 3H⇢dm = Q, (2.33)

˙⇢de + 3H(1 + !)⇢de = �Q. (2.34)

Some of the common choices of this interaction parameter Q are [27]

• Assume the interaction is proportional to the dark matter density and the Hubble parameter,

i.e. Q / ⇢dmH. It is the most simple approach and the most widely used one because it

agrees with energy conservation in a flat universe.

• Another frequently used model combines both dark matter and dark energy densities Q =

H (�a⇢dm + �b⇢de), where, in this case, �a and �b are phenomenological constants. This

choice for more flexible interactions that can help address cosmological tensions such as the

Hubble tension.

• A general choice is given by considering di↵erent power indices for dark matter and dark

energy densities Q / ⇢n
de
⇢m
dm

. This case is useful for exploring complex scenarios.

Notice that the continuity equations for baryonic matter, radiation, or curvature, are not

modified. Notice that from the modified continuity equation for the dark energy, the ! parameter

is not specified, in this way, we can combine this model with another model with ! not constant.

One important aspect of Q is the allowed sign, thus, the sign represents the convention of the

energy transferred. For this reason, consider the following convention

1. If Q < 0, the energy is transferred from dark matter to dark energy.

2. If Q > 0, the energy is transferred from dark energy to dark matter.
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3. If Q = 0, There isn’t energy exchange between these sectors.

In this model, the choice of interaction parameter and the exchange density direction play a

crucial role in solving some cosmological tension, such as the coincidence problem, Hubble tension,

and the �8 as is explored in [26], [28] and [29].

2.6.4 Dark Energy Radiation

As mentioned above, the possibility of introducing a scalar field in dark energy models could

give us a link between cosmology and high energy physics, however, it is necessary to take into

account other essential factors due to the nature of both scenarios. Slowly rolling scalar fields are

a minimalist model class that relates the properties of dark energy with particle physics, where

traditionally the kinetic energy of the rolling scalar field constitutes the Dynamical part of dark

energy. In this way, coupling scalar fields to light degrees of freedom, it is possible to modify

this scenario by giving rise to the dissipation of the scalar field’s energy into dark radiation, and

it can constitute the dominant dynamical component of the dark energy as is explored in [30]

for a minimal extension. In that work, the authors postulated the existence of a thermalized

component of dark radiation, which slowly grows as the universe expands, and they named it dark

energy radiation (DER).

To understand this model, consider a dynamical scalar field �, initially displaced from its equi-

librium value and slowly evolving towards it is often invoked to model dark energy and considering

the particle production due to the coupling ⇧int to a light sector, then, for a dynamical scalar field

�, and in this particular case, we can write the Lagrangian as L = ��⇧int. The direct consequence

of this idea is the possibility of modifying the dynamics and, then, the cosmological observable

parameters associated with the dark energy.

The particle production could result from various quantum phenomena, in the case of the produc-

tion given by thermal friction. The energy density will characterized by the associated temperature,

in the form [31]

⇢de =
⇡2g⇤
30

T 4
DER, (2.35)

where g⇤ are the degrees of freedom in the light sector. Some models have shown the linear and

cubic temperature dependencies of the friction coe�cients [32], thus, we can summarize these cases
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in the following definition

�(⇢DER) ⌘ cn⇢
n/4
DER

, n = 0 or 3, (2.36)

this thermal friction term could have two interesting implications in the evolution of the scalar

field and its accompanying dark radiation. First, for the linear friction case, the time-evolution of

the scalar field is modified, and second, the scalar field sources dark radiation that doesn’t redshift

as respected for radiation it gets replenished by the scalar field [33]. The dynamics of the scalar

field, in this case, is given by the following coupled

�̈ + (3H + �)�̇+
dV (�)

d�
= 0, (2.37)

⇢̇DER + 4H⇢DER = ��̇2, (2.38)

with V (�) as the associated potential to the scalar field. Notice the limit when V (�) � ⇢DER,

�̇2, the sum of the scalar field and dark radiation energy densities is compatible with the observed

properties of dark energy.

Similarly to the above models, there are di↵erent scenarios or submodels, in this case, we can

characterize all of them from the friction coe�cient. The first case is known as the minimal dark

energy radiation, and it is the case for n = 3, thus, friction factor is � = c3⇢
3/4
DER. Furthermore, for

the agreement with the dark energy behavior, the scalar field needs to evolve slowly, and the po-

tential should be in the form V (�) = �C�. There are other sub-scenarios, which include a friction

coe�cient constant, the possibility of using the Quintessence scalar field, or some parametrization

as mentioned at the beginning of this chapter.
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Chapter 3

Holographic Dark Energy

To better understand the holographic dark energy model, it is necessary to understand the ideas

related to the holographic principle and the Bekenstein-Hawking formula for black hole entropy.

For this reason, reviewing chapter 4 about the holographic principle from M-Theory and Quantum

Geometry book [34] is recommended.

In this chapter, we will review the holographic dark energy model, starting from the Bekenstein-

Hawking formula and the quantum field theory estimates for the vacuum energy density. In

addition, generalizations of this model using entropies associated with di↵erent physical systems

and generalizations of the exponent in the Barrow model.

35
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3.1 Standard holographic dark energy model

The holographic dark energy model is one of the many applications of the holographic principle

to solve the problem of dark energy in cosmology. This principle was proposed by Gerard’t Hooft

in 1993 when he studied black hole thermodynamics, and it establishes that all information in a

volume of space can be described by the boundary of that space, following the hologram’s idea. This

idea has greatly succeeded in high-energy physics, particularly the works by Juan Maldacena and

Leonard Susskind.

Keeping this line of thought, Bekenstein considers a box of size L with UV cut-o↵ ⇤c in

e↵ective field theory and applying the analogy from black hole thermodynamics, he postulated

that the maximum entropy behaves nonextensive, growing only as the area of the box. This is the

Bekenstein entropy bound given by

S  SBH ⌘ ⇡M2
p
L2. (3.1)

However, this nonextensive scaling implies that quantum field theory fails in large volumes. Con-

sequently, Cohen, Kaplan, and Nelson in 1999 [35] reconcile this issue with the success of local

quantum field theory in explaining observed particle behavior, by proposing a more constraining

bound, they considered that in the quantum field theory, a short distance (UV) cut-o↵ is associ-

ated to a long-distance (IR) cut-o↵ due to the limit set by forming a black hole. In this way, if

the quantum zero-point energy density ⇢de is relevant at some UV cut-o↵, the total energy of the

whole system with size L should not exceed the mass of a black hole of the same size, and using

the fact that ⇤4 is the maximum energy density in the e↵ective theory, this new constrain is given

by

L3⇤4 . LM2
p
. (3.2)

On the other hand, Miao Li considers (by a dimensional analysis) a general expression of the

dark energy density for a universe with a characteristic length scale L, it only depends on Mp and

the cosmological length scale L, thus [36]

⇢de = ↵1M
4
pl
+ ↵2M

2
p
L�2 + ↵3L

�4 + . . . (3.3)
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where each ↵ is a constant. Notice that, the first term has the same form of the vacuum energy

density of the fine-tuning problem and also if we compare the above expression to the result by

Cohen et al. the first term is not compatible with the holographic principle due to ⇢de ⇠ ↵1M4
pl
is

the traditional estimation from local quantum field theory and as Cohen et al. have stressed, the

local quantum field theory should not be a good description for a black hole or states at the scale

of its Schwarzschild radius. It is important due to the energy within a Schwarzschild l is given by

l3⇤4 and it should be less than the mass of a corresponding black hole, thus, we can despise the

first term.

One result from (3.2) is that the zero-point fluctuation estimated from this UV cut-o↵ is given

by

⇢de ⇠ ⇤4 . LM2
pl
, (3.4)

For these reasons, Miao argues that only the second term in 3.3 is relevant (the rest of the terms

have lower scales), and then, for the largest allowed value of L, the equality is satisfied as follows

⇢de = 3c2M2
p
L�2, (3.5)

with c a new constant parameter. An alternative expression to (3.2) can be found if we remember

that the Bekenstein-Hawking formula for the entropy of a black hole SBH / MplL2, the constraint

can be expressed as

⇢de . L�2SBH . (3.6)

3.1.1 Future event horizon as the characteristic length scale

If the maximum allowed value of L, can be taken as the current size, i.e., at the Hubble scale

(L = H�1), it is possible to consider this energy density as the one associated with dark energy

at present. If one considers a Universe that is dominated only by dark energy and matter, the

associated Friedmann equation in Planck units can be expressed, as

3M2
p
H2 = ⇢m + ⇢de. (3.7)
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Hsu showed in 2004 that this choice on the scale of L is incorrect because the resulting equation of

state for dark energy is !de = 0 [37]. Based on this result, Hsu points out there is the possibility

that entropy bounds may only apply to ⇤ on a cosmological scale. Thus, there is no apparent

reason why the concept of holography couldn’t be extended to smaller systems within our universe.

Nevertheless, Miao Li solved in 2004 this problem about the choice of the horizon using a new

horizon by a shrinking Hubble scale [38]. This is the future event horizon given by

Rh = a

Z 1

t

dt0

a(t0x)
= a

Z 1

a

da0

Ha02
, (3.8)

this new horizon can be interpreted as the boundary of some volume for a fixed observer may

eventually observe.

To find a general expression for the evolution of holographic dark energy, consider the derivative

respect to cosmic time of the dark energy density parameter and use its respective conservation

equation, then we get

⌦̇de = �3H⌦de � 3H⌦de

Pde

⇢de
� 2⌦de

Ḣ

H
, (3.9)

now, consider deriving the Hubble equation 3.7 with respect to cosmic time

2HḢ =
8⇡G

3
⇢̇tot , (3.10)

replacing the conservation equations and isolating the DE pressure:

Ḣ

H2
= �

4⇡G

H2
(⇢m + Pde + ⇢de) , (3.11)

or,
Ḣ

H2
= �

3

2
(⌦m + ⌦de)�

4⇡G

H2
Pde , (3.12)

then identifying the Friedmann constrain ⌦m + ⌦de = 1, and using the definition of the critic

density, we get the following expression for the dark energy pressure

Pde = �
Ḣ

H2

2

3
⇢crit � ⇢crit . (3.13)
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Finally, replacing this expression in 3.9, we get the general di↵erential equation for the holographic

dark energy density parameter

⌦̇de = 2
Ḣ

H
(1� ⌦de) + 3H (1� ⌦de) , (3.14)

now if we use the future event horizon as the scale L = R�1
h
, from (3.5), one can get

Z 1

a

da0

Ha02
=

c

aH
p
⌦de

. (3.15)

taking the derivative in the last expression and using the fundamental theorem of calculus, the

evolution of the Hubble parameter is

Ḣ

H
=

H
p
⌦de

c
�H �

⌦̇de

2⌦de

. (3.16)

Notice that, replacing this expression in the equation (3.14), the di↵erential equation as a function

of the redshift, is

1

⌦de

d⌦de

dz
=

⌦de � 1

z + 1

✓
1 +

2
p
⌦de

c

◆
(3.17)

From this, we can see that 0 < ⌦de < 1, thus the evolution of the dark energy density parameter

is always negative, and in precision, this always increases in the future (z �! �1).

The EoS parameter can be found using the derivative of density energy (3.5) again and the

conservation equation of the dark energy. This parameter is given by

!de = �
1

3

✓
1 +

2
p
⌦de

c

◆
. (3.18)

In the case of a universe dominated only by dark energy (⌦de = 1), the above parameter reproduces

the ⇤CDM case. Also, as you can see, this parameter only depends on the solution of the di↵erential

equation of the ⌦de.
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Now we can solve the above di↵erential equations and various values of the parameters in each

model using the odeint method in Python, and using these solutions we can plot the Hubble

parameter for di↵erent values of c, then in this way we can compare with the data points of H(z).

In addition, this is useful for later defining our parameter priors in each model.

Furthermore, notice that for plot the H(z), the dark energy density can be expressed as ⇢de =

⌦de⇢c = ⌦de3H2M2
p
, thus from the Friedmann equation, we get

H(z) = H0

✓
⌦m,0(1 + z)3

1� ⌦de(z)

◆1/2

. (3.19)

This is a general equation for the Hubble parameter, in this case, the dark energy parameter

density ⌦de(z), is the solution of the di↵erential equation for the holographic model. The solutions

of the equation (3.17) and H(z) for di↵erent values of the c parameter are shown in figure 3.1, as

you can see there are some values of c are further away from the data points than others, thus, we

consider exploring the region 0.5  c  1.5 in the parameter space.

(a) (b)

Figure 3.1: (a) Dark Energy density for the holographic dark energy model. (b) The variation of
H(z) with redshift z, in units when M2

p
= 1 and H0 = 70 km/s/Mpc. To be consistent with data,

we use the initial condition ⌦de(z = 0) = 0.7. The bars represent the 26 H(z) data points.
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For this case, we solve the di↵erential equation on an observational regime (from z = 0 to

z = 2), nevertheless, the evolution of the holographic dark energy in the future (z < 0) has been

studied by Eoin Ó Colgáin et al. in [39], where they analyzed the future scenarios and comment

the possibility of a turning point in the Hubble diagram H(z) at z⇤ i.e. H 0(z⇤) = 0. They found

that the turning point depends on the c value, particularly c < 1, which is necessary to get this

point in the future.

3.2 Beyond standard holographic dark energy

Due to the holographic dark energy depends entirely on entropy, we can use entropy expressions

from more general systems. In the following sections, we refer to the above holographic dark energy

model as the standard holographic dark energy model, and we will study the extensions to this

model.

3.2.1 Holographic dark energy with spatial curvature

Many times building a dark energy model, usually we consider a flat universe, i.e., k = 0, and

it is due to ⇤CDM and inflation models, that the spatial curvature is very small and negligible,

therefore. However, a dynamical dark energy’s existence for a general case is necessary to consider

a non-flat spatial curvature. From the definition of the future event horizon for a non-flat space

case, we get [40] Z
r(t)

0

dr
p
1� kr2

=

Z 1

t

dt

a
=

Rh

a
, (3.20)

in this case, the evolution of the dark energy parameter can be expressed as

⌦
0
de

⌦2
de

=

 
1

⌦de (1 + a⌦k,0/⌦de,0)
+

2

c
p
⌦de

cos

p
kRh

a

!
, (3.21)

considering the Friedmann constrain ⌦k + ⌦de + ⌦m + ⌦r = 1. As in the standard holographic

dark energy model, when c ⇠ 1, the energy density of the dark energy will be constant. Notice

that, the k constant can take negative values, as is the case of the open universe, thus, it is
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necessary to replace
p
k with

p
|k|. The viability of this model has been explored using data from

Supernovas and Cosmic Microwave Background. For the case of a closed universe, the favored

values are ⌦k,0 = �0.35+0.38
�0.17 and c = 1.0+0.1

�0.17 using supernova data only, and using both data sets,

the favored values are ⌦k,0 = �0.02± 0.1, c = 0.84+0.16
�0.03 [41]. For a non-constant spatial curvature,

the equation of the state is the same, but, notice that ⌦de evolves di↵erently in this case.

3.2.2 Time-Varying gravitational constant in holographic dark energy

Since the last century, the study of a varying gravitational constant has been carried out in the

modified gravity models as a generalization of Newton’s gravitational theory, this consideration

could be applied to holographic dark energy in [42]. For a ”gravitational constant” with time

variation, the evolution of the dark energy density is,

⌦
0
de

⌦de(1� ⌦de)
= 1 +

2
p
⌦de

c
�

G0

G
(1� ⌦de)⌦de. (3.22)

Notice that the solution of this equation depends on the explicit form of G. From astrophysical

observations, the constraint of Newton’s constant is [43]

4.10⇥ 10�11yr�1


�����
Ġ

G

����� , (3.23)

there is another constrain from the Big Bang nucleo-synthesis theory, which is [44]

�3.0�13


Ġ

G
 10�13yr�1. (3.24)

This model has been tested with data from Supernovas, Cosmic Microwave Background, and

baryon acoustic oscillation the values of the cosmological parameters are: c = 0.8+0.16
�0.13 and G0/G =

�0.0025+0.0080
�0.0050 1� (here the 0 represents the derivate respect ln a) at confidence level [42].
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3.2.3 Interacting holographic dark energy

As mentioned above, the possibility of interaction between dark energy and dark matter has been

studied in di↵erent scenarios, the holographic dark energy is not the exception. In the general

cases of a non-flat universe, the interaction is given by the parameter Q and it’s introduced in the

continuity equation of dark energy and dark matter in the same way of the subsection 2.6.3, where

we mentioned the most common form of the interaction factor, nevertheless, there are multiple

alternatives based on phenomenology as the following cases [36]

Q =
H⇢⇣1

dm
⇢⇣2
de

⇢⇣1+⇣2�1
c

, (3.25)

Q = H
�⇢de⇢dm
⇢de + ⇢de

, (3.26)

Q = � (⇢̇de + ⇢̇dm) . (3.27)

With the interaction and spatial curvature terms, the evolution of the holographic dark energy is

given by

d⌦de

dz
= �

2⌦de(1� ⌦)

1 + z

 r
⌦de

c2
+ ⌦k +

1

2
�

⌦k � ⌦r + ⌦I

2(1� ⌦de)

!
, (3.28)

where ⌦I ⌘
Q

H(z)⇢c
. In the case of a flat universe, the EoS parameter is

!de = �
⌦

0
de

3⌦de(1� ⌦de)
�

Q

3H(1� ⌦de)⇢de
. (3.29)

The possibility to modulate the energy exchange of dark energy and dark matter in the holo-

graphic dark energy scenarios. Furthermore, the alleviation of the coincidence problem is impossi-

ble in the standard version of the holographic dark energy, because we need a constant horizon and

this is not the case for the event’s future horizon, thus, it is necessary to explore more generalized

models of holographic dark energy. Furthermore, only about holographic dark energy, we can

find many di↵erent approaches so far, extending the standard holographic dark energy model by

incorporating other cosmological scenarios such as neutrino’s physics in holographic dark energy

model [45], considering that the fluctuations arise from the fluctuations in the size of the future
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event horizon [46], inflation [47], Brans-Dicke theory [48], scalar fields [49], [50] and other scenar-

ios. In this work, we study the generalized exponents approach in holographic dark energy as a

consequence of considering generalized entropies.

3.3 Entropy models in holographic dark energy

As we saw earlier, it is possible to describe the entropy of a black hole in a well-defined way.

However, as usual in physics, adding new parameters to the already known quantities is often nec-

essary to make a more complete system description. This is why many entropy models have been

proposed to describe systems like black holes better and, as expected, always in some limit, repro-

duce the already known Bekenstein-Hawking formula. The properties that we expect generalized

versions of the entropies have been [51]

• Bekenstein-Hawking limit:

All the above entropies reduce to the Bekenstein-Hawking entropy SBH in an appropriate

limit.

• Monotonically increasing functions:

All the above entropies are monotonically increasing functions of the SBH .

• Positivity:

All the above entropies are positive, as is the Bekenstein-Hawking entropy.

• Generalized third law:

In the third law of standard thermodynamics for closed systems in thermodynamic equilib-

rium, the quantity eSBH expresses the number of states or the volume of these states, and

therefore the entropy vanishes when the temperature does because the ground (vacuum)

state should be unique. By contrast, the Bekenstein-Hawking entropy diverges when the

temperature T vanishes, and it goes to zero at infinite temperature. However, requiring

any generalized entropy to vanish when the Bekenstein-Hawking entropy vanishes could be

a natural requirement.

As we will see, the following generalized entropy alternatives share these characteristics.
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3.4 Barrow holographic dark energy model

This model arose from the ideas of John D. Barrow in 2020 when he showed that the quantum-

gravitational e↵ects may introduce intricate fractal features on the black-hole structure [52].

Barrow proposed to model the horizon surface of a black hole as a fractal horizon surface. This

fractal is constructed by joining several small spheres so that they touch their outer surface, with

even smaller spheres touching the surfaces of those spheres, and so on consecutively. In this way,

the most general case is when the surface of the black hole is only the fractal surface, the surface

varies as R2+B with the constrain 0  B  1. Notice the case when B = 0, is the simplest horizon

structure and the case B = 1 is associated from an information perspective as if it possessed one

geometric dimension higher [53].For this reason, Barrow’s entropy is usually expressed as

SB =

✓
A

Ap

◆1+B/2

, (3.30)

From the above definition of entropy, as in the case of the Bekenstein-Hawking entropy, it is

possible to find expressions for the dark energy density using (3.6) and generalizing SBH ! SB,

we get for the case of the Barrow entropy

⇢B = 3c2M2
p
L2�B. (3.31)

Likewise, similarly in the standard holographic dark energy, in the Barrow’s frame, we get the

expression
Z 1

x

da

Ha2
=

1

a

✓
N

3M2
P
H2⌦de

◆ 1
2�B

, (3.32)

Notice that for the Universe dominated by matter and dark energy, the Friedmann constrain, we

can rewrite
1

Ha2
=

p
(1� ⌦DE)

H0

p
a⌦m0

,
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replacing this expression in the horizon (3.32)

Z 1

x

r
1� ⌦DE

a⌦m0

da

H0
=

1

a

✓
N

3M2
p
H2⌦DE

◆ 1
2�B

. (3.33)

Now di↵erentiating this expression on both sides with respect to a, using the fundamental theorem

of calculus and the variable change x = ln(a), the di↵erential equation for the evolution of the

Barrow holographic dark energy is

⌦0
de

⌦de (1� ⌦de)
= 1 + B +QB (1� ⌦DE)

B
2(B�2) ⌦

1
2�B
DE

e
3B

2(B�2)x, (3.34)

where

QB = (2� B)

✓
N

3M2
p

◆ 1
B�2 ⇣

H0

p
⌦m0

⌘ B
2�B

. (3.35)

and with N = 3M2
p
c2. By performing a procedure analogous to the one in the previous model, we

get the EoS parameter

!de = �
1 + B

3
�

QB

3
(⌦de)

1
2�B (1� ⌦de)

B
2(B�2) e

3B
2(2�B)x. (3.36)

As we said earlier when we introduced Barrow’s entropy, we recovered the standard holographic

dark energy model on the limit B �! 0, thus, from the equation (3.34), it leads to

⌦0
de

⌦de(1� ⌦de)
= 1 +

2
p
⌦de

c
, (3.37)

this is the di↵erential equation for the standard holographic dark energy.

Notice that from figure 3.2 we can see that the value B = 1.9 is far from the region of the other

solutions, thus, we can discard for B < 2.0 values. In addition, notice that the values in the region

0.5  B  1.5, look like the best fit to the data points, so it is ideal to explore this area during

parameter inference, for the case of B. In particular, we can see that for c = 1.0 looks like the best

fit among all the solutions, of course, when we realize the inference of the parameter, the value of
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c will be di↵erent.

Figure 3.2: The Hubble factor H(z) with redshift z, in units when M2
p
= 1 and H0 = 70. To be

consistent with data, we use the initial condition ⌦de(z = 0) = 0.7 km/s/Mpc.. The bars represent
the 26 H(z) data points.

3.4.1 About the second law of thermodynamics in the Barrow scenar-

ios

Previously in Section 3.3, we have mentioned some properties of the cosmological models, which

consider generalizations of the Bekenstein-Hawking entropy, however, an important aspect of these

generalized models is the validity of the generalized second law of thermodynamics. In this section,

we briefly review the application of the Barrow entropy and the implications in the associated

generalized second law to understand the importance of its validity.

Saridakis et al. have pointed out this in [54] using the Barrow entropy and considering the total

entropy as a sum of entropy enclosed by the apparent horizon and the entropy of the horizon itself

(since as the horizon varies as the accelerated expansion of the universe), i.e. Stotal = Sde+Sm+Sh.
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(a) (b)

(c)

Figure 3.3: (a) The evolution of the entropy time-variation as a function of z for ⇤CDM case.
Black-solid line represents the value B = 0,red-dashed line represents B = 0.3, blue-dotted line
represents B = 0.6 and green-dashed-dotted represents B = 1.0. (b) The evolution of the entropy
time-variation as a function of z for the power-law background case, the order of the lines is the
same as in the before case with n = 2/3 for all cases. (c) The evolution of the entropy time-
variation as a function of z for the power-law background case, the order of the lines is the same
as in the before cases but with n = 2 for all cases [54]. They imposed c = H0 = 1.

They show that when the associated entropy to the horizon is the Barrow entropy, for the

case B = 0 (Bekenstein-Hawking limit) the total entropy is always a non-decreasing function of

time, however, for the case B 6= 0 the quantum-gravitational corrections switch on this is not true

anymore, as is shown in figure 3.3. Thus, the generalized second law of thermodynamics can be
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conditionally violated depending on the evolution of the universe. First, they analyzed the case

⇤CDM background cosmological evolution, they found that the entropy time-variation is always

positive, and thus the generalized second law of thermodynamics is always valid. Nevertheless, in

the case of a general power-law cosmological evolution like Hpower = H0(1+z)1/n with H0 = na1/n1 ,

for power-law exponents larger than one and suitably large B values, the entropy variation over time

can be negative in the past, leading to a violation of the generalized second law. This highlights the

importance of examining the generalized second law of thermodynamics in a generalized model.

Note that the second generalized law studied in that work is about the horizon and not for the

background cosmology, as we intend to do in this work.

3.5 Tsallis holographic dark energy model

Tsallis entropy, named after Constantino Tsallis, who introduced it in the 1980s, is a generalization

of the classical Boltzmann-Gibbs entropy commonly used in statistical mechanics. Unlike the

Boltzmann-Gibbs entropy, which is based on the logarithmic function, Tsallis entropy is based on

a q � logarithmic function, where q 2 R is a parameter that characterizes the deviation from the

classical case [55].

Using the multifractal concepts and the probability pq
i
associated with an event, Tsallis postulated

its entropy to generalize the standard expression of the entropy S in the information theory

S = �k
WX

i=1

piln(pi), 8 W 2 N. (3.38)

where W represents the total number of possible configurations. The generalized version by Tsallis

is

Sq = k
1�

P
W

i=1 p
q

i

q � 1
, (3.39)

with k a conventional and
P

W

i=0 pi = 1.

In 1902, Gibbs highlighted a limitation of the Boltzmann-Gibbs theory, noting its inapplicability

to systems with divergent partition functions. We now understand that gravitational systems fall

into this category. Tsallis later demonstrated that in such instances, the conventional Boltzmann-
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Gibbs additive entropy, grounded in the assumption of weak probabilistic correlations and their

association with ergodicity, requires generalization. This leads to the concept of non-additive

entropy, where the entropy of the entire system may not necessarily equal the sum of the entropies

of its subsystems, this is the case of the Tsallis entropy [56]. For the case of a black hole, the

Tsallis entropy can be expressed as

ST =
A0

4G

✓
A

A0

◆�

, (3.40)

with A0 is area constant and � is a dimensionless parameter. Notice that for � = 1 the Bekenstein-

Hawking entropy is recovered.

From the above definitions of entropy, as in the case of the Bekenstein-Hawking entropy, it is

possible to find expressions for the dark energy density using the equation (3.5), we get for the

case of the Tsallis entropy

⇢T = KL2��4, (3.41)

where K = 3c2M2
p
for the standard holographic dark energy case. We can do the same procedure

for the other two remaining models, but using the horizon for the Tsallis model, given by

Z 1

x

dx

Ha
=

1

a

✓
K

3M2
p
H2⌦de

◆ 1
2(2��)

, (3.42)

where x = ln(a). The di↵erential equation associated is

⌦0
de

⌦de (1� ⌦)
= 2� � 1 +QT (1� ⌦de)

1��

2(2��) (⌦de)
1

2(2��) e
3(1��)
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where

QT = 2(2� �)
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◆ 1
2(��2) ⇣
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⌘ 1��

��2
.
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Figure 3.4: The Hubble factor H(z) with redshift z, in units when M2
p
= 1 and H0 = 70. To be

consistent with data, we use the initial condition ⌦de(z = 0) = 0.7 km/s/Mpc.. The bars represent
the 26 H(z) data points.

In this model, the EoS parameter is given by [55]

!de =
1� 2�

3
�

Q

3
(⌦de)

1
2(2��) (1� ⌦de)

��1
2(��2) e

3(1��)
2(��2)x. (3.44)

As you can note, the Barrow and Tsallis cases are very similar if we consider � �! 1 + B/2.

For the above reason, in Barrow’s case, Tsalli’s di↵erential equation can be reduced to standard

holographic dark energy.

For the case of the Tsallis Holographic Dark Energy Model, since we have two free parameters

at the beginning, we must set one (c = 1.0) and vary the other (�). As you can see in the figure

3.4, the value � = 0.5 is completely outside the data region of H(z), so we can consider �  0.5

disposable values. On the other hand, we can see that the values closest to ⇤CDM are � ⇡ 2.0,

so we can consider exploring the region 0.5  �  2.5.
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3.6 Generalized holographic model

As we saw earlier, the Tsallis and Barrow models share many similarities, so we can switch from

one model to another by choosing the parameters correctly. Similarly, we have seen how these

models recover HDE and LCDM in the appropriate limits. However, to find even more general

models that could better fit the observational data, we can consider that the exponent present in

the entropy may be a function of some of our cosmological parameters. This idea is inspired by

the recent work of Basilakos et al. [57] In this case, we consider generalizing the Tsallis model.

For this, consider the following entropy

SG = ⇤Af(x), (3.45)

where ⇤ is constant, and f(x) is a function that for some value x0 we will get f(x0) = 1, so in this

case SG ⇠ SBK . Also, the dark energy density in this case is

⇢de = �L2(f(x)�2), (3.46)

as we can see in the case for � = 3M2
p
c2 and f(x0) = 1, the expression (3.46) becomes in the

standard holographic dark energy case. In the same way, if f(x2) = 2 for some x2, is the case of

model ⇤CDM i.e. a dark energy density constant, and for all cases f(xc) constant, we will get the

Barrow and Tsallis models.

In this case, the horizon’s integral is

Z 1

x

dx

Ha
=

1

a

✓
�

3M2
p
H2⌦de

◆ 1
2(2�f(x))

, (3.47)

now if we derivate the expression (3.47), we can find an equation for the evolution of the generalized

holographic dark energy. This equation is

⌦0
de

⌦de(1� ⌦de)
=

2
p
⌦de

c

✓
QG(x)(1� ⌦de)

⌦de

◆ f(x)�1
2(f(x)�2)

(2� f(x)) + 2f(x)

� 1 + log

✓
QG(x)(1� ⌦de)

⌦de

◆ f
0(x)

f(x)�2

,

(3.48)
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where

QG(x) =
c2e3x

H2
0⌦m,0

. (3.49)

In the same way, the equation-of-state parameter associated with this general case is

!de = �
2f(x)� 1

3
+

2(f(x)� 2)
p
⌦de
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⌦de

◆ 1
2(2�f(x))

,

(3.50)

from this expression, you can notice that in the case when f(x) �! 1, is the case of the standard

holographic dark energy, and in the case when f(x) = 2, is the ⇤ CDM case, i.e. !de = �1.

Likewise, notice that is convenient to rewrite this equation as a function of z, for this, consider

f(x) �! f(z) and f 0(x) = �(1 + z) df
dz
, thus the equation (3.48) takes the form

�
(1 + z)
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,

(3.51)

where in this case

QG(z) =
c2

H2
0⌦m,0(1 + z)3

. (3.52)

3.6.1 Linear dependence on the exponent

Notice that f(z) is an unspecific function so far, thus, we have ”more freedom” to choose the

exponent expression (any chosen function should satisfy the entropy properties mentioned above),

and due to one of the most important properties of the entropy is the monotonically increasing

behavior, we can guarantee that considering the exponent as a linear function in a general way

such as fl(z) = a + bz (with a and b constants), we can see that for the case f(0) = a, is the

Barrow and Tsallis cases, i.e. when the exponent is constant. Using the linear function in the
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expression, (3.51) the evolution of the dark energy parameter density is given by

�
(1 + z)

⌦de(1� ⌦de)

d⌦de
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2
p
⌦de

c

✓
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✓
QG(z)(1� ⌦de)

⌦de
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,

(3.53)

From this equation, we can see that the values a = 1 and b = 0 take the form of the standard

holographic dark energy case. From the figure 3.5, we can see the e↵ect of the dependence on z

in our exponent, for this plot, we fixed a = 0.4 and c = 1. Notice that the e↵ect of the linear

dependence is indivisible at z = 0.5, but at z = 2 the solutions are considerably di↵erent from

each other, so at high redshift, the contribution by the linear parameter is relevant, for example, if

we want to use data sets from Microwave Cosmic Background, these contributions are significant.

Figure 3.5: Hubble parameter for the linear case

3.6.2 Trigonometric dependence on the exponent

As we mentioned before, there are many reasons to generalize our standard holographic model of

dark energy. In this case, the proposed exponent in our general expression of entropy is motivated
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from an observational aspect, since recently through reconstruction processes of the equation of

state of dark energy only through observational data (free from models), it seems to present an

oscillation (see figure 3.6). Likewise, from the equation of state (3.50), we have a fundamental

model where, if the general function f(x) or f(z) is the appropriate, !de can oscillate. For these

reasons, consider the function f(z) = k + rsin(z), thus, the evolution of the dark energy in this

case is given by

�
(1 + z)

⌦de(1� ⌦de)

d⌦de

dz
=

2
p
⌦de

c

✓
QG(z)(1� ⌦de)

⌦de

◆ k+rsin(z)�1
2(k+rsin(z)�2)

(2� k � rsin(z))

+ 2(k + rsin(z))� 2 + log

✓
QG(z)(1� ⌦de)

⌦de

◆�(1+z)rcos(z)
k+rsin(z)�2

(3.54)

Figure 3.6: The reconstructed equation of state for dark energy by Escamilla, L. A. et al. Oscil-
lations in the Dark? [58]

.
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Chapter 4

Bayesian statistics

Bayesian statistics is an approach that relies on the Bayesian interpretation of probability, where

probability is conceived as a measure of uncertainty or degree of belief regarding the occurrence

of an event. Unlike frequentist statistics, which focuses on the relative frequency of long-term

events, Bayesian statistics integrates prior information (called a priori information) with observed

evidence to update beliefs and make inferences about model parameters or predictions.

4.1 Theorem of Bayes

For two events A and B, the theorem of Bayes establishes the relation

P (B|A) =
P (A|B)P (B)

P (A)
, (4.1)

where P (A|B) is the probability of event A occurring given that event B has occurred, known as

the posterior probability. P (B|A) is the probability of the event B ocurring given that event A has

occurred, it is know as likelihood. P (A) is the a priori probability of event A i.e., the probability

that A occurs before B is observed and the analogous form for P (B).

In the Bayesian framework, the data and the model are in the same space. For this reason, for a

given model H (hypothesis), we consider D as A, i.e., a set of data. In the same way, we consider
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✓ as B i.e. the parameter vector of said hypothesis. The theorem of Bayes takes the form

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
, (4.2)

where

• Is usually express the likelihood as L(D|✓, H) = P (D|✓, H).

• The prior as ⇡(✓) = P (✓|H), is the knowledge about the model.

• And Z = P (D|H) is the evidence of the model, usually know as Bayesian Evidence.

The Bayesian Evidence can be calculated from the formula

Z =

Z
dN✓P (D|✓, H)P (✓|H). (4.3)

In this espression we consider a parameter space with dimension N . The Bayesian evidence is

crucial in determining the model that most accurately represents the data, a process commonly

referred to as model selection. For this reason, is useful to define the ratio of the two evidence

K ⌘
P (D|H1)

P (D|H2)
=

Z1

Z2
. (4.4)

From this definition, we can define another quantity known as Bayes factor

B1,2 = ln(K) = ln(Z1/Z2), (4.5)

This factor provides an insight into the extent to which Model 1 might adequately explain the data

in comparison to Model 2, for example. The significance of Bayes’ theorem in statistical inference

is immense. In conventional practice, we often gather data and interpret it using a predefined

model. However, the inverse is often true: we initially possess a dataset and then assess various

models’ suitability based on the probability of fitting the data. Bayes’ theorem o↵ers a mechanism

to bridge these two approaches. By leveraging Bayes’ theorem, we can e↵ectively determine the
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model that most accurately aligns with the observed data. For a better interpretation of the Bayes

factor, the Je↵reys guideline scale is used to measure the comparative evidence supporting one

model over another (see Table 4.1). This criterion can be summarized as follows

Je↵reys guideline scale
|B1,2| Odds Probability Strength
> 5.0 > 150 : 1 > 0.993 Decisive
2.5 � 5.0 ⇠ 150 : 1 0.993 Strong
1.0 � 2.5 ⇠ 12 : 1 0.923 Significant
< 1.0 < 3 : 1 0.750 Inconclusive

Table 4.1: Je↵reys guideline scale.

For our purposes, this criterion is of utmost importance, as we can directly compare a reference

model in cosmology like ⇤CDM with one of our holographic models and see how well it fits the

data.

4.2 Likelihood

As mentioned earlier, when we are only interested in analyzing a single model, Bayesian evidence

is not very relevant, as it can be absorbed in the normalization of the posterior. This is why the

likelihood plays an important role in comparing our models with observational data.

In this way, if we maximize the likelihood, we can find the most probable parameter’s set, because

P (✓|D,H) / L(D|✓, H) and with P (D|H) = 1. Based on the above, we are interested in under-

standing the e↵ects of maximum likelihood when compared to the likelihood at a particular point

in parameter space, we define the likelihood ratio as follows

R = �2 ln

✓
L(D|✓, H)

Lmax

◆
, (4.6)

From this definition, we can consider that some parameters are acceptable if this ratio exceeds the

given value.
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Now, consider a Taylor expansion around the maximum

lnL(D|✓) = lnL(D|✓0)�
1

2
(✓i � ✓0i)Hij(✓j � ✓0j) + . . . (4.7)

or

L(D|✓) = L(D|✓0) exp (�1/2(✓i � ✓0i)Hij(✓j � ✓0j)) (4.8)

where for the mean of the distribution ✓̂, due to our models are well-specified, the expectation

value is the real value, i.e. h✓̂i = ✓0, and Hij is known as Hessian matrix, defined as

Hij = �
@2 lnL

@✓i@✓j
.

From this matrix, we can know if the parameters ✓i and ✓j are correlated, because if this matrix

is diagonal (Hij = 0 for i 6= j), the parameters are uncorrelated. Notice, in this case, we use

the Hessian language due to around the maximum posterior, the posterior distribution can be

approximated through a Gaussian distribution, thus, the inverse of the Hessian at this point

performs as an estimation of the covariance matrix of parameters. This means, that even the

Hessian and the covariance matrix are related, the first is more useful during the optimization and

approximation processes.

4.3 Chi-square

If we decide to use the Gaussian approximation (4.8), we will get the maximum likelihood when

the quantity 1

�2 = (✓i � ✓0i)Hij(✓j � ✓0j), (4.9)

is minimum, this quantity is known as chi-square and is one of the most important criteria to test

a model with data sets. Is important to notice that not always the likelihood can be described by

Gaussian distribution, so in this case, the likelihood and the �2 are not equivalent.

1When we have many observations or data, the central limit theorem ensures that, under certain conditions, the
distribution of the estimators (i.e., the posterior distribution of the parameters) will approach a normal (Gaussian)
distribution, regardless the form of the original distribution.
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4.3.1 Confidence regions

After obtaining the best-fit parameters (minimum chi-square), we aim to identify confidence regions

where values can be deemed suitable candidates for our model. The most reasonable approach is

to select values within a compact region around the best-fit value.

Consider the interval from the best fit (bf) to another value of the chi-square, i.e.

��2 = �2
� �2

bf
,

so usually the confidence regions from this variation to the minimum Chi-square are categorized

by the sigma-notation. For Gaussian distributions, the 1�, 2�, and 3� cases the confidence levels

as a function of the number of parameters M are 68.3%, 95.4% and 99.73% respectively.

4.4 Markov Chain Monte Carlo

Monte Carlo simulation is a computational technique used to estimate outcomes by generating

multiple random samples from a probability distribution and then analyzing those samples to

obtain information about the system under study. The fundamental idea behind Monte Carlo

simulation is to use the principle that, if enough random samples are generated from a given prob-

ability distribution, the distribution of the results of those samples will converge to the underlying

probability distribution. This allows for estimating quantities of interest, such as the expected

value, variance, percentiles, among others. In addition, a Markov Chain is a stochastic process

that moves between di↵erent states in discrete time steps. Transition probabilities determine these

state changes, relying solely on the current state and not on the past sequence of states. In essence,

it’s a memoryless random process governed by the Markov property, indicating that the system’s

future behavior is solely dependent on its current state, regardless of its history.

Combining these two important ideas, the basic idea behind Markov Chain Monte Carlo (MCMC)

is to generate a sequence of samples from a given probability distribution, such that the distri-

bution of the samples converges to the desired distribution. This is achieved by constructing a

Markov chain whose stationary probabilities match the target distribution. Through an iterative

process, the Markov chain moves through the parameter space, generating samples that eventually
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converge to the distribution of interest.

For these reasons, if we consider a target density, it can be approximated by delta functions [59]

p(✓|D,H) '
1

N

NX

i=1

�(✓ � ✓i), (4.10)

from this approximation, we can estimate some integral in the way

hf(✓)i '
1

N

NX

i=1

f(✓i) (4.11)

Since in this process to generate a new point in our parameter space, it is necessary to know the

previous one (and only this one), we must have a rule that allows us to know if the next step is

better than the previous one, (otherwise we will never optimize our process), for this reason, the

acceptance criteria are very necessary. In MCMC the algorithm that provides this criterion, which

is the simplest, and therefore, the most used, is known as the Metropolis-Hastings algorithm [60].

The steps of this algorithm are usually the following:

1. Compute the posterior distribution for a random point in the parameter space ✓0.

2. From a proposal distribution in the parameter space, generate a new point ✓n and calculate

its posterior distribution.

3. Reject or accept the new point using

p(acceptance) = min


1,

pn
p0

�
,

where pi and pn are the posterior probabilities of the initial point ✓0 and ✓n, respectively.

4. If the point is rejected, revert to the previous point in the chain and repeat the process.

5. Repeat the process of steps 2 to 4 to have a large enough chain.

The MCMC algorithm and its variants have been extensively studied and applied across a

wide range of problems. Its e↵ectiveness and versatility make it an invaluable tool for statistical
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inference and data analysis in situations where direct computation of probability distributions is

di�cult or impossible.

4.5 Nested Sampling

The Nested Sampling algorithm is a type of Monte Carlo to calculate an integral over a given

parameter space given a model. The desired function to be integrated is the Likelihood function

L(D|✓, H) which is ”marginalized” on our parameter space, according to our prior ⇡(✓)d✓. This

integral over the total parameter space is given as,

Z =

Z
L(D|✓, H)⇡(✓)d✓, (4.12)

which is known as the marginalized likelihood or Bayesian evidence. Similarly, recall that the

Bayes factor is the radius of the Bayesian likelihoods of two di↵erent models.

The Nested Sampling algorithm is mainly composed of the following sections, [61]:

1. Initialization: In this first step of the algorithm, we perform a random sampling from our

prior N live points and evaluate the likelihood for each point.

2. Shrinkage: During this stage, the live point with the worst likelihood L1 is removed, i.e. the

worst fit. This removed point becomes the first dead point. Note that each point sampled

represents a fraction of the total volume (1/N), thus by eliminating the dead point, our

volume is reduced by a factor of �V ⇠ 1/N approximately. This volume variation estimator

can change according to the needs and is an area of interest in itself.

3. Likelihood-restricted prior sampling (LRPS): Since the dead point was removed, it is

necessary to add a new live point, to do this, it is necessary to sample a new point from our

prior and also impose the condition that our new live point has a higher associated likelihood

compared to L1.

4. Iterations: Once the first steps have been established, it is necessary to repeat the same

process numerous times, so after a certain number i of iterations the volume removed is
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exponentially small, i.e, Vi =
�
1� 1

N

�i
, during this process the likelihood of the removed

points tends to be flat.

5. Integration: Since removing a point in turn reduces the volume as mentioned above, the

volume di↵erence can be estimated using

�Vi = Vi � Vi�1 =

✓
1�

1

N

◆i

⇥
1

N
, (4.13)

Because for each dead point, we will have a non-normalized weight �Vi⇥Li associated with

it. It is thus possible to estimate the Bayesian evidence integral in the form

Z ⇡

X

i

�Vi ⇥ Li, (4.14)

Note that weighted dead points can be sampled approximately from the posterior and for

convenience resampled proportionally to �Vi ⇥ Li, in subsequent unweighed samples.

Figure 4.1: Graphic representation of the steps described, as you can see that the likelihood of the
dead points tends to be flatter as the volume is reduced [62].

As we can see from the Figure 4.1, the likelihood function is defined over a two-dimensional

parameter space. Following the steps mentioned above, the Nested Sampling algorithm starts by
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evaluating the random points in the parameter space, in this case, N = 5, each live point is shown

in turn defines a likelihood contour which is marked with circles, thus the point with the lowest

likelihood (red cross) becomes the first dead point. This point is replaced by a new live point (blue

point) which is sampled using the prior. Following the process, a certain number of iterations are

performed, in which a dead point is replaced with a new live point whose likelihood is higher and

higher. This ensures that the likelihood of the new point is increasing until it reaches a maximum

value, where regardless of the number of iterations the value does not change. This likelihood

maximization in turn is reflected in the reduction of the volume of our parameter space as we can

see, making the points tend to cluster in regions where the likelihood is higher, so this algorithm

is called Nested Sampling.
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Chapter 5

Results

5.1 Observational data sets

5.1.1 Cosmic chronometers

The first data set used in this analysis is the cosmic chronometers, which relies on the di↵erential

age of galaxies. In this frame, the expansion rate is given by

H(z) =
ȧ

a
= �

1

1 + z

dz

dt
, (5.1)

notice that the term dz is derived from highly accurate spectroscopic surveys, requiring only the

measurement of the di↵erential age evolution of the Universe, i.e. dt for some redshift interval. As

we can see, a direct cosmology-independent measurement of the Hubble parameter, is given by a

measure of dt.

In this project, we used a total set of 31 measurements of the Hubble parameter by the cosmic

chronometers approach; 8 measures in the redshift range 0.15 < z < 1.1 from the di↵erential

spectroscopic evolution of early-type galaxies as a function of redshift with a precision of the

5� 12% mapping homogeneously the redshift range up to z ⇠ 1 [63], 8 values of the H(z) in the

redshift range 0.1 < z < 1.8 using observations of passively evolving galaxies and supernova data

[64], 2 measures at z ⇡ 0.5 and z ⇡ 0.8 [65] and 5 measures in the range 0.3 < z < 0.5 [66]. These

points are shown in figure 5.1 and the Hubble parameter described by the ⇤CDM model.

67



68 CHAPTER 5. RESULTS

Figure 5.1: 31 data points of the Hubble parameter with its errors and Hubble parameter by
⇤CDM model.

5.1.2 Supernovas

Another sample used in this analysis consists of SN Ia light curves, which include data from the

complete three-year span of the SDSS survey, and the remainder of our sample is the “C11 com-

pilation”. This compilation contains SNe from SNLS, HST, and several nearby experiments. This

extended sample of 740 SNe Ia is known as the JLA sample, and we just used 31 binned points

from JLA[67].

The SDSS-II (Sloan Digital Sky Survey II) Supernova Survey was a key project aimed at discov-

ering and studying Type Ia supernovae (SNe Ia) to better understand the nature of dark energy

and the expansion of the universe. The SDSS-II survey, which operated from 2005 to 2008, fo-

cused on intermediate redshift supernovae (0.05 < z < 0.4), bridging the gap between nearby and

high-redshift supernovae. This survey served as an e↵ective low-redshift anchor for the Hubble

diagram, which plots the distance versus redshift of supernovae. Furthermore, this anchoring is

crucial for reducing systematic errors from calibration systematics in the low-redshift SN sample

and improving the overall accuracy of cosmological measurements. The JLA sample includes a

selection of 374 SNe Ia from this spectroscopic sample. On another hand, the C11 compilation,
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includes supernovae data from multiple sources: the Supernova Legacy Survey (SNLS), the Hub-

ble Space Telescope (HST), and several nearby experiments. The C11 compilation is considered

integral to the analysis because it provides a robust and extensive dataset that enhances the

statistical power and accuracy of cosmological parameter estimation. This compilation is about

242 spectroscopically confirmed SNe Ia from the first three seasons of the five-year SNLS survey

(0.2 < z < 1.0).

5.1.3 Barionic acustic oscilations

The last data set used is baryon acoustic oscillations (BAO). The BAO scale is defined by the

radius of the sound horizon from the drag epoch zd, which is when the photons and baryons

decouple. This radius is given by

Dd =

Z 1

zd

cs(z)

H(z)
dz,

where

cz(z) =
cq

3
�
1 + 3

4⇢b(z)/⇢�(z)
� .

Notice that in a measurement of ↵? (the ratio perpendicular to the line of sight) from clustering

at z constraints, the ratio of the comoving angular diameter distance to the sound horizon is given

by
DM(z)

rd
= ↵?

DM,fid(z)

rd,fid
, (5.2)

where DM,fid(z) is the fiducial comoving angular diameter distance, i.e. the comoving angular

diameter distance in a specific cosmological model (fiducial cosmology). In the same way, a mea-

surement of ↵k (the ratio parallel to the line of sight) constrains the Hubble parameter H(z), which

we convert to an analogous quantity

DH(z) =
c

H(z)
, (5.3)

with
DH(z)

rd
= ↵k

DH,fid(z)

rd,fid
. (5.4)
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Now notice that an isotropic BAO analysis measures an e↵ective combination of these two dis-

tances. When redshift-space distortions are weak (a reasonable approximation for luminous galaxy

surveys after reconstruction though not for the LyaF), the constrained quantity is the volume-

averaged distance, i.e.

DV =
�
zDH(z)D

2
M
(z)
�1/3

,

where
DV (z)

rd
= ↵

DV,fid(z)

rd,fid
(5.5)

The data set for BAO used in this work comes from galaxy clustering measurements and the

Lyman-↵ forest (LyaF) obtained by the Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-

III (Sloan Digital Sky Survey). These measurements are made using measuring the BAO distance

scale with one-percent precision from a redshift survey of 1.5 million luminous galaxies at z = 0.2

to 0.7 and making the first BAO measurement at z > 2 by 3-dimensional structure in the Ly↵

forest absorption towards a dense grid of 160,000 high-redshift quasars [68]. These constrain values

are shown in table 5.1

Data DV /rd DM/rd DH/rd z
6dFGS
MGS

3.047± 0.137
4.480± 0.168

- -
0.106
0.15

BOSS LOWZ Sample
BOSS CMASS Sample

8.467± 0.167
�

�

14.945± 0.210
�

20.75± 0.73
0.32
0.57

LyaF auto-correlation
LyaF-QSO cross correlation

Combined LyaF

�

�

�

37.675± 2.171
36.288± 1.344
36.489± 1.152

9.18± 0.28
9.00± 0.30
9.145± 0.204

2.34
2.36
2.34

Table 5.1: BAO constraints: These values are from [68].

5.2 Results

From the priors studied in Chapter 3, for each parameter in the di↵erent models, we realize

parameter inference using data sets from Baryonic acoustic oscillations, cosmic chronometers,

and Supernovas, described above. For the parameter’s inference, we used the Nested Sampling
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algorithm above described in the Python library SimpleMC. The values of the new parameters in

the holographic dark energy models are shown in the table 5.2 the triangle plots for each model

with the posterior distributions are in Appendix A.

Models Parameters Value
HDE c 0.8877± 0.1004

BHDE
c
B

1.5387± 0.2580
0.2566± 0.0786

T HDE
c
�

1.2405± 0.4551
1.1287± 0.0555

LHDE
c
a
b

1.2295± 0.4537
�0.1272± 0.2653
�0.0657± 0.2481

SHDE
c
k
r

0.8955± 0.1693
0.1079± 0.0561
0.1125± 0.0539

Table 5.2: Holographic parameters

As you can see, the holographic parameter values are proximally the theoretically expected

values, except for the linear holographic model, where, as we can notice, the values of the exponents

are negative, this is an important result because theoretically, the exponents should be positive to

have an increasing entropy function, however, the observational data used prefer negative values.

Notice that for each holographic case, we performed tests with extended priors that could include

negative values to confirm the exponent’s positivity, however, for all cases the exponent’s best-fit

values were found positive except the linear-exponent case.

In figure 5.2 are shown the confidence regions for the holographic models and ⇤CDM, as

you can see, the areas for the cosmological values agreed with the cosmological standard model,

however, it is noteworthy that the LHDE model seems to contain the ⇤CDM confidence regions

more completely than the other models, as we can see in Figures (a), (b) and (c). I used the

Python package GetDist for analyzing and plotting Monte Carlo (or other) samples [69]. On the

other hand, the standard holographic model seems slightly more distant from the ⇤CDM regions in

the 3 figures above, which is to be expected, since it is a non-generalized holographic dark energy

model with a fixed exponent value.
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Figure 5.2: Confidence regions and probability distributions of the holographic models and ⇤CDM
model.

The case of the c parameter, from the table is the 5.2, all values are around 1, in figure 2.2 (d),

we can see that just two confidence regions are well constrained, the SHDE and HDE cases, while,

there are constriction problems with the other models, possibly due to the correlation between the

parameters or the types of data used. It is important to note that the SHDE and HDE regions

are very poorly related to BHDE since these models prefer values less than 1 and the other one

greater than 1. For all the holographic models, the same prior was used for parameter c, which

was 0.5  c  2.0.

Table 5.3 shows the cosmological parameters and statistical criteria for ⇤CDM and holographic

dark energy models. We can notice that compared to ⇤CDM the values of h (H0/100) are smaller

than expected, this could be because the observational data used are local. This result indicates
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that the holographic dark energy models do not relieve the strain of H0 compared to ⇤CDM.

Models ⌦m,0 ⌦b,0h2 h �AIC �2
|B|

⇤CDM 0.2991± 0.0152 0.0221± 0.0005 0.6746± 0.0107 - 61.31 -
HDE 0.2979± 0.0161 0.0221± 0.0005 0.6551± 0.0196 3.33 62.55 1.54
BHDE 0.2833± 0.0160 0.0221± 0.0004 0.6488± 0.0217 4.63 61.88 1.81
T HDE 0.2841± 0.0145 0.0221± 0.0004 0.6511± 0.0200 4.31 61.87 2.69
LHDE 0.2948± 0.0160 0.0221± 0.0004 0.6599± 0.0203 2.87 58.12 2.2
SHDE 0.2895± 0.0148 0.0221± 0.0004 0.6527± 0.0197 2.73 59.16 1.24

Table 5.3: Cosmological parameter values and statistical criterions.

On the other hand, concerning the statistical criteria, there are holographic dark energy models

that fit better with the observational data used. As we note, the case of the generalized exponent

models presents a lower �2 than ⇤CDM, in particular, the linear LHDE model has the lowest chi

compared to the other models. Note that the importance of which linear model is the best fit to

the data is greater when we remember that the values of the inferred parameters of the generalized

exponent f(z) = �0.1272 ± 0.2653 + (�0.0657 ± 0.2481)z are negative, which is something that

is theoretically ruled out in the Barrow model. Similarly, compared to the ⇤CDM model, using

Je↵rey’s guideline from table 4.1, we can note that the strength is significant, i.e., the observational

data used significantly or slightly favors ⇤CDM, as in all holographic models except for the Tsallis

model.

In figures 5.3 and 5.4, we present the regions of 1� and 2� for the ⌦de(z), !de(z) and q(z)

parameters were calculated using the fgivenx package [70] for plotting posteriors of functions,

using our chains for each holographic model.

First, we can note that the dark energy density parameter has a similar behavior for all holo-

graphic models. However, in the special case of the linear model represented in Figure 2.4 (d), this

parameter density decays faster than the rest of the models. On the other hand, in the !de(z) case,

we can note a clear di↵erence in the plots for some models, as is the case of the generalized expo-

nent cases, this is due to the general expression for these models is proportional to the function of

the generalized exponent, thus, if we choose an oscillating function, that oscillation will be present

in the !(z), we introduced this idea in the chapter 3 to explain the oscillations presents in the

reconstruction of the dark energy density, in this case, we just get one oscillation for some period
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 5.3: 1� and 2� regions for the ⌦de, !de(z), and q(z) for standard holographic dark energy
(HDE), Barrow holographic dark energy (BHDE) and Tsalis holographic dark energy T HDE.
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(a) (b) (c)

(d) (e) (f)

Figure 5.4: 1� and 2� regions for the ⌦de, !de(z), and q(z) for linear-exponent holographic dark
energy (LHDE) and trigonometric-exponent holographic dark energy SHDE.

on the redshift, but we can fit the oscillation’s numbers that we need by modify the argument in

the sin function, for example in the most general case f(z) = k+ rsin(nz), where n is the number

of the oscillations that we need, or we can also perform an inference on this extra parameter.

Finally, the acceleration parameter given as q(z) = �1 � Ḣ

H2 , which for our purposes is of great

importance due to provides us with information about the nature of the accelerating expansion

of our universe. As you remember, the case when q > 0 is about the decelerating universe case,

suggesting that the gravitational pull of matter is decelerating the expansion of the universe. An-

other case is �1 < q < 0, in which the universe is in accelerating expansion, indicating that there

is some kind of repulsive force driving the accelerated expansion, for us, it is the dark energy. The

last case is for q = 0, this indicates a constant expansion of the universe.

The red plots are about the acceleration parameter, notice that at z = 0, all cases are q < 0, i.e.,

all holographic dark energy models reproduce a universe in accelerating expansion, however, only
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the first three cases shown in Figure 5.3 (c), 5.3 (f) and 5.3 (i), are in the �1 < q < 0 region, thus,

these models indicate a ”moderate” accelerated expansion in cooperation with the generalized

exponent holographic models, notice that for these last models, q < �1 in the 2� regions, thus, is

the case of super-exponential expansion, indicating a rapid acceleration that exceeds the de Sitter

expansion rate.

A relevant aspect in these models, according to the plots, the models that present a greater ac-

celeration in the sense that their phase change from an accelerated universe to an accelerated

universe to a decelerated universe are the Tsallis and LHDE models, however, the linear model

has two maximal points in di↵erent regions of the a and b parameters, which does not allow this

acceleration to be seen, so the Tsallis model provides a clearer view of this higher acceleration at

the phase transition at z ⇠ 0.5.

Finally, be aware that the first three models, which do not have an exponential acceleration around

z ⇠ 0, will eventually have a phase change as q �! �1 at z �! �1.
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Conclusion

In this thesis, we studied the impact and importance of the holographic dark energy model as a

fundamental alternative and its viability through comparing observational data. Throughout the

history of the expansion of the universe, there is a need for the existence of dark energy to explain

the accelerated expansion of the universe. However, there are currently many dark energy models

that generalize the ⇤CDM model and suggest that the nature of this entity must be dynamic.

One of the main contributions of this thesis has been the inference of the holographic parameters of

each model using data from observations of type Ia supernovae, the cosmic microwave background,

and cosmic chronometers since the redshift associated with these observations is where dark energy

is dominant.

Firstly, the results obtained confirm that holographic dark energy models are fundamental

generalizations of the ⇤CDM model, i.e., in the appropriate parameter limits of the models and

the quantities that make up our Universe, they can perfectly reproduce this model (the equation

of state parameter is recovered). For this reason, the holographic dark energy models provide

additional information or corrections by introducing new parameters in each model, for example,

the parameter c in all holographic dark energy models, � in the Tsallis model B in the Barrow

model, a and b in the linear case, k and r in the trigonometric model, all values inferred by Bayesian

inference are in agreement with what is theoretically expected in each model.

By understanding how a holographic dark energy model can be constructed through the en-

tropy bound and its relation to the energy density of the dark energy, it was possible to propose
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new generalizations using the exponents as a function of the redshift f(z). That was done by using

the Barrow model as a starting point, which are themselves generalization of the first holographic

model.

These new proposals o↵er considerable flexibility by including new entropies that can provide a

more dynamic nature to the equation of state. For example, one of the proposals is an oscilla-

tory case to appropriate redshift regions, as suggested by the reconstructions based on the afore-

mentioned observational data. However, the research has also identified several challenges and

limitations in the implementation of generalizations of holographic dark energy models. Among

these, the need for an entropy that meets the necessary properties to be a fundamental model,

as described in Chapter 3, stands out. Through the results of Chapter 5, we can see those holo-

graphic dark energy models present a better fit to the observational data from Supernovae, Cosmic

Chronometers, and Baryon Acoustic Oscillations in comparison with the ⇤CDM model, indicated

by the information criterion and the Bayes factor, the Tsallis model presents a better fit, allowing

us to consider it a more comprehensive model compared to the ⇤CDM model. The case of the holo-

graphic dark energy with the linear exponent is the model that possesses the minimum chi-square

(58.12) among all the models studied, another important result of this model is that the values of

the generalized exponent are negative, which is a theoretical impediment, but observational data

prefer these values.

In conclusion, the implementation of holographic models in cosmology presents significant chal-

lenges, but their potential benefits are equally notable, as demonstrated in this work. To maximize

these benefits, it is crucial to continue exploring these models, as they provide a very comprehen-

sive and interesting alternative, and according to observational data, they o↵er a better fit. Future

work plans to extend these models to scalar field formalisms, introduce interaction between matter

and dark energy, and incorporate perturbations to obtain power spectra.
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Appendix A

This appendix contains the triangular plots of the cosmological parameters h (H0/100), ⌦b,0h2,

⌦m,0 and the holographic parameters c, B and �, for the Standard, Barrow and Tsallis holographic

dark energy models, also a, b, k and r for linear and trigonometric generalized exponent models,

mentioned in Chapter 5, furthermore, each case is compared with the ⇤CDM model. The ex-

ploration regime for the cosmological parameters are ⌦m,0 2 [0.1, 0.5], ⌦b,0h2
2 [0.02, 0.025] and

h 2 [0.4, 0.9].

A.1 Triangular plots

A.1.1 Standard holographic dark energy

In the case of the standard holographic dark energy model, we used the prior of the holographic

parameter c 2 [0.5, 2.0], which is based on the parameter’s variation process described in Chapter

3. The posterior distributions are shown in figure A.1, and we can see a clear anticorrelation

between c and h parameters, also the distributions of the cosmological parameters in both models

are agreed.
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Figure A.1: Confidence regions for the holographic dark energy model.

A.1.2 Barrow’s holographic dark energy

In this case, we used the same prior as in the above case for the c parameter and the prior of

Barrow holographic parameter implemented was B 2 [0, 1.5] using the fact that it should be a

positive parameter in the similar parameter’s variation process. In the same way as the standard

holographic dark energy model, the distributions of the cosmological parameters are agreed with

the distribution of the ⇤CDM model as shown in figure A.2. Nevertheless, we can appreciate an

anticorrelation between c and B holographic parameters in this case.
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Figure A.2: Confidence regions for the Barrow’s holographic dark energy model.

A.1.3 Tsallis’ holographic dark energy

In the case of Tsallis holographic dark energy, we used the same prior as in the above case for the

c parameter and the prior of Tsallis holographic parameter implemented was B 2 [0.5, 2.0] using

the fact that it should be a positive parameter in the similar parameter’s variation process. In the

same way as the standard holographic dark energy model, the distributions of the cosmological

parameters are agreed with the distribution of the ⇤CDM model as shown in figure A.3. Never-

theless, we can appreciate an anticorrelation between c and � holographic parameters in this case,
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which is agreed with the similar result in the Barrow holographic dark energy due to both cases

are constant exponent models and in precision � ⇠ B.

Figure A.3: Confidence regions for the Tsallis holographic dark energy model.

A.1.4 Holographic dark energy with trigonometric exponent

In the case of holographic dark energy with trigonometric exponent, we used the same prior as

in the above case for the c parameter. The prior of these particular holographic parameters

implemented were a 2 [0.0, 1.0] and b 2 [0.0, 1.0] using the similar parameter’s variation process.
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In this process, we had more liberty, and we considered the negative values of these holographic

parameters, however, the associated values to negative values did not agree with data points from

some observations like cosmic chronometers, thus, we discarded these values. In the same way as

the standard holographic dark energy model, the distributions of the cosmological parameters are

agreed with the distribution of the ⇤CDM model as shown in figure A.4. Nevertheless, we can

appreciate the correlation and anticorrelation behavior of the exponent’s parameters with respect

to the c parameter.

Figure A.4: Confidence regions for the holographic dark energy model with a trigonometric expo-
nent.



86 APPENDIX A. APPENDIX A

A.1.5 Holographic dark energy with a linear exponent

Figure A.5: Confidence regions for the holographic dark energy model with linear exponent.

Finally, in the case of holographic dark energy with linear exponent, we used the same prior as

in the above case for the c parameter. The priors of these particular holographic parameters

implemented were a 2 [�0.5, 0.5] and b 2 [�0.5, 0.5] using the similar parameter’s variation

process. In this process, we had more liberty, and we considered the negative values of these

holographic parameters, however, the associated values to negative values agree with data points

from some observations like cosmic chronometers, thus, we consider the negative possibility of
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negative values. In the same way as the standard holographic dark energy model, the distributions

of the cosmological parameters are agreed with the distribution of the ⇤CDM model, as shown

in figure A.5. Nevertheless, we can not distinguish a correlation or anticorrelation behavior of

the exponent’s parameters with respect to the c parameter. Also, we can see that there are two

maximums in di↵erent regions of the b parameter, and in precision, the highest peak is in the

negative regime of this parameter.
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