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por sus útiles comentarios al revisar esta tesis.

• Al CONACyT, por la beca de doctorado que me otorgó.
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Resumen

Actualmente, la cosmoloǵıa está pasando por una etapa de alta precisión; existen diver-

sos expermientos a diferentes escalas que nos permiten entender cada vez más los diferentes

constituyentes de nuestro Universo, aśı como el papel espećıfico que cada uno de estos debe

tomar en la descripción de nuestro Cosmos. En los últimos años, ha sido de particular im-

portancia el constituyente responsable de formar la estructura a gran escala que podemos

observar hoy en d́ıa. A este misterioso elemento se le suele denominar como “materia os-

cura”. Se han estudiado ampliamente diversos candidatos o extensiones a las teoŕıas f́ısicas

que podŕıan actuar como este constituyente, resultando beneficiado de muchas maneras el

modelo más simple — denominado el modelo estándar de la cosmoloǵıa —, el cual asume

que la materia oscura podŕıa estar bien representada por una particula no relativista y ma-

siva, que interactúa débilmente con el resto de la materia. A pesar de los grandes aciertos

que este modelo ha tenido, existen ciertas observaciones a escalas galácticas que sugieren,

o por lo menos permiten, postular otros posibles escenarios. En este contexto, en esta tesis

nos enfocamos en estudiar otro candidato que ha sido bastante popular en los últimos años;

estudiamos la posibilidad de que la materia oscura en el Universo podŕıa estar conformada

de un campo escalar ultra-ligero que podŕıa o no tener un término de auto-interacción. Este

modelo ha mostrado ser bastante competitivo al poder ajustarse con muchas de las observa-

ciones que se encuentran a nuestra disposición, aśı como poder resolver de manera natural

muchas de las dificultades que el modelo estándar de la cosmoloǵıa posee. Por tal motivo,

es indispensable seguir estudiando y extendiendo la historia del modelo y aśı constreñir

cada vez más los parámetros libres que este posee, con la finalidad de apoyar cada vez más

su postulación como la materia oscura en el Universo, o en el caso opuesto, mostrar las

inconsistencias que éste podŕıa tener.

Siendo un poco más espećıficos en algunos de los problemas que enfrenta el modelo

estándar de la cosmoloǵıa, nos encontramos con las diversas observaciones de galaxias ya

formadas a tiempos muy tempranos, mucho antes que lo predicho por la teoŕıa. Más aún,

en algunas de estas galaxias, se ha mostrado evidencia de que cuentan con agujeros negros

súpermasivos en su núcleo galáctico. Estas últimas observaciones suponen un verdadero reto

para el modelo tradicional.

En esta tesis revisamos diferentes estudios que se han hecho para el modelo de campo

escalar, tanto en el caso de que éste cuente con un término de auto-interacción, aśı como

en el caso libre. Extenderemos el estudio del modelo al considerar diferentes escenarios,

como es la posibilidad de que este pudiera haber estado presente en el peŕıodo inflacionario,

o el estudio de campos escalares alrededor de agujeros negros súpermasivos para simular

nucleos galácticos. Finalmente, para culminar con nuestro estudio, en esta tesis también

propondremos un mecanismo de generación de agujeros negros súpermasivos por el colapso

gravitacional de configuraciones de estos bosones de materia oscura.
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Abstract
Currently, cosmology is going through a stage of high precision; there are several experi-

ments at di↵erent scales that allow us to understand more and more the di↵erent constituents

of our Universe, as well as the specific role that each of them take in the description of the

cosmos. In recent years, the constituent responsible for the formation of the large-scale

structure that we can observe today has been of particular importance. This mysterious el-

ement is often referred to as “Dark Matter”. There have been a great number of candidates

and extensions to the standard physics theory that could act as said Dark Matter, where

the simpler one — referred as the standard cosmological model —, assumes a Dark Matter

represented by a non-relativistic and massive particle which interacts weakly with the rest

of “normal” matter, has been favored by observational data. Despite the great successes

that this model has, there are certain observations at galactic scales that suggest (or at least

allow us) to postulate other possible scenarios. In this thesis, we focus on studying another

candidate that has been quite popular in recent years; we study the possibility that the dark

matter in the Universe could be made up of an ultra-light scalar field that could have a self-

interaction term. This model has shown to be quite competitive in being able to fit many

of the observations that are available to us, as well as solving in a natural manner many of

the di�culties that the standard cosmological model has. For this reason, it is essential to

continue studying and extending the history of this model and, thus, constrain more and

more the free parameters that it has with the purpose of supporting its postulation as the

true dark matter model for the Universe or, in the opposite case, to show the inconsistencies

that it could have.

Being more specific in some of the problems faced by the standard cosmological model,

we have several observations of galaxies already formed at very early times, much earlier

than predicted by the theory. Moreover, in some of these galaxies, there is evidence that

supports the existence of supermassive black holes in their galactic nuclei. The latter are a

real challenge for the standard model.

In this thesis, we review di↵erent studies that have been done for the scalar field dark

matter model, both in the case that it has a term of self-interaction, as well as in its free

field limit. We will extend the story line of the model by considering di↵erent scenarios, such

as the possibility that it could have been present during the inflationary era, or by studying

scalar fields around supermassive black holes, simulating galactic nuclei. Finally, to conclude

our study, in this thesis we also propose a mechanism for the generation of supermassive

black holes by the gravitational collapse of configurations of these dark matter bosons.
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1. Introduction

The beginning of the standard cosmology as it is known today emerged after 1920, when

the Shapley-Curtis debate was carried out (Hetherington, 1970). It was held between the

astronomers Harlow Shapley and Heber Curtis, resulting in a revolution for astronomy at

that time by reaching an important conclusion: “Our Universe had a larger scale than the

Milky Way”. Several observations at that epoch established that the size and dynamics of

the cosmos could be explained by Einstein’s General Theory of Relativity. In its childhood,

cosmology was a speculative science based only on a few data sets, and it was characterized

by a dispute between two cosmological models: the steady state model and the Standard

Big Bang (SBB) theory. It was not until 1990 when the amount of data increased enough

to discriminate and rule out compelling theories, being the SBB model awarded as the most

accepted one.

The SBB cosmology continues to be the best model used to describe the central features

of the observed Universe. The Big Bang model, with the addition of an inflationary era

and dark matter (DM), assumed to be non-relativistic, and dark energy, assumed to be a

cosmological constant – known as the ⇤ Cold Dark Matter (⇤CDM) model or the Standard

Cosmological model –, has been successfully proved at cosmological levels. For instance,

theoretical estimations of the abundance of primordial elements and numerical simulations of

structure formation of galaxies and galaxy clusters are in good agreement with astronomical

observations (Kolb and Turner, 1994, Springel et al., 2005, Tegmark et al., 2001). Also,

the ⇤CDM model predicts the temperature fluctuations observed in the Cosmic Microwave

Background radiation (CMB) with a high degree of accuracy: inhomogeneities of about one

part in one hundred thousand (Ade et al., 2016a, Komatsu et al., 2011). These results,

amongst many others, are the great success of the ⇤CDM cosmology. Nevertheless, when we

have a closer look at di↵erent scales observations seem to present certain inconsistencies or

unexplained features in contrast with expected by the model. Some of these unsatisfactory

aspects led to the emergence of di↵erent possible extentions of the theory or modifications

to it that try to solve these inconsistencies. For example, two of these problems and that

nowadays are considered as two of the greatest mysteries in cosmology and fundamental

physics are:

1. The nature and origin of cosmic DM.

2. The mechanism for generating supermassive black holes (SMBHs) in the central region

of most massive galaxies.
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Regarding the first point, it is well established that the dark matter component must

be non-interacting and have only gravitational e↵ects on the ordinary matter. The standard

model proposed to describe this new content of the Universe, named ⇤CDM, suggests that

DM is comprised of a nonrelativistic, collisionless gas – Cold Dark Matter (CDM) – and

usually assumed to be a weakly-interacting massive particle (WIMP) which was originated

as a thermal relic of the Big Bang (Peebles, 1982, White et al., 1987). Although this WIMP

describes observations so well at cosmological levels, it is in apparent conflict with some

observations on small-scales within galaxies (e.g. cuspy-halo density profiles, overproduction

of satellite dwarfs within the Local Group, among some others, see section 3.2.2 and (Bullock

and Boylan-Kolchin, 2017, Clowe et al., 2006, Klypin et al., 1999, Moore et al., 1999a,

Penny et al., 2009)). In addition, all attempts to detect WIMPs directly in the laboratory

or indirectly by astronomical signals from their decay or annihilation in distant objects

(Gaskins, 2016) have so far failed, and a large range of the particle parameters originally

predicted to be detectable have thereby been ruled out. For this reason, it seems necessary

to explore alternative models to the standard ⇤CDM which could help us to solve all these

problems.

Now, turning to the second point, there is a host of observations that indicate the

existence of SMBHs – with masses ranging between (106 � 1010) M� – placed in the center

of most massive galaxies (Cappellari, 2011, Lynden-Bell, 1969, McConnell et al., 2011), al-

though some observations for SMBH in dwarf spheroidal galaxies (dSph) have been detected

as well (see for example (Ahn et al., 2017)). In fact, recently there was a very impressive

work where astronomers obtained for the first time an image of the accretion disk around

the horizon of a SMBH using a world-wide network of radio observatories called the Event

Horizon Telescope (EHT) (Akiyama et al., 2019). Although many researchers are trying to

understand how these objects have formed, their origin is still mysterious, given their huge

masses at the large redshifts (z > 5.6), where they have been observed (Bañados et al.,

2014, Fan et al., 2003, Jiang et al., 2008, 2007, Matsuoka et al., 2018a, 2017, 2016, 2019,

2018b, Mortlock et al., 2011, Venemans et al., 2013, Willott et al., 2007, 2010, Wu et al.,

2015). In order for stellar black holes (BHs) to become super-massive, they would need

to accrete large amounts of baryonic material and DM over a long time, even if accretion

happens at maximum Eddington rate. In addition to this puzzle of high-z SMBHs, there

is also a problem in understanding why there seem to be no medium-sized black holes with

masses ⇠ (102 � 105)M�. Some standard scenarios of the formation of SMBHs consider the

following: like stellar BHs which result from the collapse of massive stars, SMBHs could be

produced by the collapse of massive clouds of gas during the early stages of formation of a

galaxy (Silk and Rees, 1998). Another suggestion considers the formation of a cluster of stel-

lar BHs, which eventually merge into a SMBH (Menou et al., 2001). However, so far under

these standard scenarios, there is not a fully satisfactory explanation for the formation and

evolution of such SMBHs at high redshifts, even taking into account e↵ects from baryonic

physics. Additionally, there exist some observations that appear to indicate that the masses
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MSMBH of the central SMBHs are correlated with various global properties of their host

galaxies. The most important relationship concerns the mass of the SMBH and the bulge

mass, and an even tighter correlation with the stellar velocity dispersion of the host galaxy

bulge, first reported by (Merritt and Ferrarese, 2001) and (Gebhardt et al., 2000). As a

result, it has been also suggested that the central SMBH mass is correlated with the total

mass of its host galaxy (Bandara et al., 2009, Ferrarese, 2002). In this way, observations

might thus indicate that the formation and growth of SMBHs over time could be related to

the DM-dominated galactic halos1, being a complication for the standard ⇤CDM model.

1.1. Some comments regarding this thesis

This thesis is based in the di↵erent academic works that I have produced with more collabo-

rators during my PhD. For example, this introductory chapter is strongly based in (Vázquez

et al., 2018).

We also consider that the reader is familiar with Einstein’s theory of general relativity,

and then, throughout this thesis we will obviate many things about the formalism for gravity.

However, if that is the case, we added an appendix A for that reader that requires an

introduction of general relativity.

In this thesis, Greek letters ↵, �, ..., will rank from 0 to 3 and denote space-time

coordinates, while roman letters i, j, ... rank from 1 to 3 and will be used only for space

coordinates, unless otherwise specified.

The main subject of study in this thesis is the possibility that a scalar field could be

used as a dark matter candidate. We will focus in a self-interacting potential of the form

V (') =
µ2

2
|'|2 +

⌫

4
|'|4, (1-1)

where

µ2 =
m2c2

~2 , ⌫ =
�

~c, .

And then the scalar field will possesses two free parameters: a mass term m (or µ) and a

self-interacting term � (or ⌫). Observe that in natural units (~, c = 1) we will obtain that

µ = m and � = ⌫. In this thesis, although we will work commonly in natural units, we

decided to use m and � always than we refer to the numerical values of both parameters.

In fact, and taking advantage of the typical parameters that appears in the model, we will

commonly refer to m22 ⌘ m/(10�22eV/c2) and �90 ⌘ �/10�90.

1Indeed, there is another proposal to explain SMBHs from the DM side, namely so-called supermassive
”dark stars”, primordial stars of supermassive size which are powered by DM self-annihilation in models
of WIMP and related dark matter, (Freese et al., 2010, Rindler-Daller et al., 2015). Once dark stars
collapse, they could form seed black holes of about 105M�.



4 1 Introduction

In most of the thesis we will work in units where ~ = 1 = c, except in section 4.4

and chapter 7, where we decided to work in units ~ 6= 1 6= c, in order to be consistent with

common literature.

1.2. The standard cosmological model

1.2.1. The homogeneous Universe and the standard Big Bang theory

In its early years, the Big Bang model used to be known as the model of dynamical evolution.

It was not until March 28th, 1948, that Fred Hoyle, one of its principal detractors, coined

it with such a name during a BBC broadcast. One has to be aware that there exist many

versions of this Big Bang model and that it tremendously evolved in the past century. In

this section, we shall review the SBB model, which is the final description obtained after all

these modifications took place. In the typical vocabulary of cosmologists the SBB already

considers the inflationary mechanism for its description. However, in this section we shall

not contemplate this era since in next section we will concentrate on it.

Before starting with the theoretical description, let us remember some assumptions

about which the SBB model is built on (Coles and Lucchin, 2003):

1) The physical laws at the present time can be extrapolated further back in time and

be considered as valid in the early Universe. In this context, gravity is described by the

theory of General Relativity up to the Plank era.

2) The cosmological principle holds: “There do not exist preferred places in the Uni-

verse”. That is, the geometrical properties of the Universe over su�ciently large-scales are

based on the homogeneity and isotropy, both of them encoded on the Friedmann-Lemaitre-

Robertson-Walker (FLRW) metric

ds2 = �dt2 + a2(t)


dr2

1� kr2
+ r2

�
d✓2 + sin2✓ d�2

��
, (1-2)

where (t, r, ✓,�) describe the time-polar coordinates; the spatial curvature is given by the

constant k, and the cosmic scale-factor a(t) parameterises the relative expansion of the Uni-

verse, commonly normalized to today’s value a(t0) = 1. Hereafter we use the criteria for the

scale factor normalization and natural units c = ~ = 1 unless otherwise specified, where the

Planck mass mpl is related to the gravitational constant G through G ⌘ m�2
pl
.

3) On small scales, the anisotropic Universe is well described by a linear expansion of

the metric around the FLRW background:

gµ⌫(r, t) = gFLRW

µ⌫
(r, t) + �gµ⌫(r, t). (1-3)
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To describe the general properties of the Universe, we assume its dynamics is governed

by a source treated as a perfect fluid with pressure p(t) and energy density ⇢(t). Both

quantities are often related via an equation-of-state with the form of p = p(⇢). Some of the

well studied cases are

p =
⇢

3
Radiation,

p = 0 Dust, (1-4)

p = �⇢ Cosmological constant ⇤.

The metric (1-2) and these kind of constituents can be used to describe the observed ex-

panding Universe along with the Einstein equations:

Gµ⌫ ⌘ Rµ⌫ � 1
1

2
gµ⌫R = 8⇡GTµ⌫ � gµ⌫⇤, (1-5)

where Rµ⌫ (R) is the Ricci tensor (scalar), gµ⌫ is the metric tensor, ⇤ is the cosmological

constant, and Tµ⌫ is the energy-momentum tensor, which satisfies

r⌫T
µ⌫ = 0, (1-6)

i.e. the energy-momentum tensor is conserved. In the context of general relativity, a perfect

fluid can be described by the energy-momentum tensor

Tµ⌫ = (⇢+ p)uµu⌫ + pgµ⌫ , (1-7)

where uµ is the four-velocity of the fluid, satisfying

gµ⌫uµu⌫ = �1. (1-8)

In a FLRW Universe, the Einstein equations are reduced to the Friedmann equation

H2
⌘

✓
ȧ

a

◆2

=
8⇡

3m2
pl

⇢�
k

a2
+
⇤

3
, (1-9)

the acceleration equation
ä

a
= �

4⇡

3m2
pl

(⇢+ 3p) +
⇤

3
, (1-10)

and the energy conservation described by the fluid equation

⇢̇+ 3H(⇢+ p) = 0, (1-11)

where here and for the rest of this thesis overdots indicate time derivative, and H defines the

Hubble parameter. Additionally ⇢ corresponds to the total energy density ⇢ =
P

i
⇢i, where

⇢i is the density energy associated to each constituent in the Universe. Notice that we could

get the acceleration equation by time-deriving (1-9) and using (1-11), therefore only two of
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Table 1-1.: Evolution of the parameters of the Universe: ⇢(a), a(t) and H(t) when it is dominated by
radiation, matter or a cosmological constant.

component ⇢i(a) a(t) H(t)

radiation / a�4
/ t1/2 1/(2t)

matter / a�3
/ t2/3 2/(3t)

cosmological constant / a0 / exp(
q

⇤
3 t) const

them are independent equations. Table 1-1 displays the solutions for the Friedmann and

fluid equations for a flat geometry when it is considered that di↵erent components of the

Universe dominate. It also shows the way the scale factor and the Hubble parameter evolve

in each epoch.

From Eqn. (1-9), we can see that, for a particular Hubble parameter, there exists an

energy density for which the Universe may be spatially flat (k = 0). This is known as the

critical density ⇢c and is given by

⇢c(t) =
3m2

pl
H2

8⇡
, (1-12)

where ⇢c is a function of time due to the presence of H. In particular, its current value is

denoted by ⇢c,0 = 1.87840h2
⇥ 10�26 kg m�3, or in terms of more convenient units, taking

into account large scales in the Universe, ⇢c,0 = 2.775h�1
⇥ 1011M�/(h�1Mpc)3 (Ade et al.,

2016c), with the solar mass denoted by M� = 1.988⇥1033g and h parameterising the present

value of the Hubble parameter

H0 = 100h km s�1Mpc�1. (1-13)

The latest value of the Hubble parameter measured by the Planck experiment, and consid-

ering the standard cosmological model, is quoted to be (Aghanim et al., 2018):

H0 = 67.4± 0.5 kms�1Mpc�1. (1-14)

Unless otherwise stated, the subscript 0 refers to quantities evaluated at present time.

At the largest scales, an useful quantity to measure is the ratio of the energy density

to the critical density defining the density parameter ⌦i ⌘ ⇢i/⇢c. The Friedmann equation

(1-9) can then be written in such a way to relate the total density parameter ⌦ =
P

i
⌦i and

the curvature of the Universe as

⌦� 1 =
k

a2H2
. (1-15)

Thus, the correspondence between the total density content ⌦ and the space-time curvature

for di↵erent k values is:
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• Open Universe : 0 < ⌦ < 1 : k < 0 : ⇢ < ⇢c.

• Flat Universe : ⌦ = 1 : k = 0 : ⇢ = ⇢c.

• Closed Universe: ⌦ > 1 : k > 0 : ⇢ > ⇢c.

Current cosmological observations, based on the standard cosmological model, suggest the

present value of ⌦ is (McCoy, 2015)

⌦0 = 1.00± 0.002, (1-16)

that is, the present Universe is nearly flat.

1.2.2. Content of the Universe

Once the equations that define the dynamics of the Universe are known, it is necessary to

specify the content of it. The ⇤CDM model assumes such a content is provided by:

• Dust: It has no pressure. Dust is conformed by baryons (ordinary matter).

• Dark Matter: It is proposed to explain several astrophysical observations, like the

dynamics of galaxies in the Coma cluster or the rotation curves of galaxies (see chapter

3 for a more accurate explanation). This type of matter only interacts gravitationally

with the rest of the Universe and its energy density evolves in the same fashion than

dust. The ⇤CDM model assumes dark matter is conformed by WIMPs.

• Radiation: It considers photons ⇢� and massless neutrinos ⇢⌫ , so the total radiation

energy density in the Universe is given by

⇢r = ⇢� + ⇢⌫ . (1-17)

• Dark Energy: It is introduced to explain the current accelerated expansion of the

Universe. In the ⇤CDM model, dark energy is given by the cosmological constant ⇤.

Table 1-1 gives the epoch at which each of the aforementioned components dominates

during the evolution of the Universe. The most resent measurements from Planck (Aghanim

et al., 2018) favor the value of ⌦b = 0.0444+0.0042
�0.0035, ⌦M ⌘ ⌦b + ⌦DM = 0.266+0.025

�0.040, and

0.732+0.040
�0.025 for the density parameters at preset time. In Figure 1-1 we can see the background

evolution for the density parameters. Such plot can be obtained by solving the Friedmann

equation 1-15, considering the time evolution described in table 1-1, and using the last

measurements from Planck.
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Figure 1-1.: Background evolution in terms of scale factor for the ⇤CDM model.

1.2.3. Thermal history of the Universe

1.2.3.1. Review of thermodynamic equilibrium

In this section, we review the theory necessary to understand thermodynamic equilibrium.

For such purpose, we follow (Rosa, 1999).

A system of particles in kinetic equilibrium has a phase space occupancy f , in units

where the Boltzmann constant kb = 1, given by

f(~p) =
1

e(E�µQ)/T ± 1
, (1-18)

where E = ~p2 + µ2 is the energy of the particles, ~p its momentum, µ its mass, µQ the

chemical potential, and the sign + (�) corresponds to fermions (bosons). Commonly, the

chemical potential contribution can be ignored for all particles, since all evidence indicates

that this is a good approximation (Kolb and Turner, 1990). The above quantity allows to

compute the associate number density n, energy density ⇢, and pressure p for a dilute and

weakly-interacting gas of particles with g internal degrees of freedom2 as

n = g

Z
d3~p

(2⇡)3
f(~p), (1-19a)

⇢ = g

Z
d3~p

(2⇡)3
E(~p)f(~p), (1-19b)

2The number of internal degrees of freedom g corresponds to the number of internal degrees of freedom of
the particle. For example, an electron has two spin states ±1/2, and similarly a photon has two possible
polarizations, so that ge = g� = 2.
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p = g

Z
d3~p

(2⇡)3
|~p|2

3E(~p)
f(~p). (1-19c)

Two well known limits for the above quantities are

• Relativistic species: This limit is obtained when T � µ, and then the Bose-Einstein

and Fermi-Dirac distributions reduce to

f(~p) =
1

e|~p|/T ± 1
. (1-20)

In such limit the di↵erent quantities defined in (1-19) can be solved, obtaining

nbose =
g

⇡2
⇣(3)T 3, ⇢bose =

⇡2

30
gT 4, pbose =

⇢bose
3

, (1-21)

for bosons, and

nfermi =
3

4

g

⇡2
⇣(3)T 3, ⇢fermi =

7

8

⇡2

30
gT 4, pfermi =

⇢fermi

3
, (1-22)

for fermions; where ⇣(z) is the Riemman Zeta-function. Observe that in both cases,

we have p = ⇢/3, as expected.

• Non-relativistic species: This limit is obtained when T ⌧ µ, and then the expo-

nential factor dominates both the Bose-Einstein and the Fermi-Dirac distributions in

(1-18), so that the bosonic or fermionic nature of the particles becomes indistinguish-

able. Furthermore, we have

E ' µ

✓
1 +

|~p|2

µ2

◆1/2

' µ+
|~p|

2µ
. (1-23)

In this limit, it is also possible to solve the di↵erent quantities defined in (1-19)

n = g

✓
µT

2⇡

◆3/2

e�µ/T , p = nT, (1-24)

where it is not di�cult to realize that the value obtained for p corresponds to a non-relativistic

perfect gas. Additionally, since T ⌧ µ, we have p ⌧ ⇢ and the pressure may be ignored for

a gas of non-relativistic particles, as we had anticipated.

1.2.3.2. Energy and entropy density

As we saw in a previous section, and is easy to see from Figure 1-1, the early Universe should

be dominated by a radiation-like fluid. Let T denotes the temperature of the bath of photons

in the early Universe. If there are other relativistic species during the early Universe, being

the total energy of radiation given by

⇢r =
⇡2

30
g⇤(T )T

4, (1-25)
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where g⇤(T ) corresponds to the e↵ective number of relativistic degrees of freedom presented

in the Early Universe at the temperature T , including both bosons and fermions. This

quantity should receive contributions from two types of species:

1. Thermal bath: relativistic species in thermal equilibrium with the photons Ti = T �

µi:

gth⇤ (T ) =
X

bosons

gi +
7

8

X

fermions

gi. (1-26)

2. Decoupled species: relativistic species that are not in thermal equilibrium with the

photons, T 6= Ti � µi:

gD⇤ =
X

bosons

gi

✓
Ti

T

◆4

+
7

8

X

fermions

gi

✓
Ti

T

◆4

. (1-27)

The full number of relativistic degrees of freedom for relativistic species is then given by

g⇤(T ) = gth⇤ (T ) + gD⇤ (T ).

On the other hand, the fundamental relation of thermodynamics for a system in equi-

librium with negligible chemical potential is

dE = TdS � pdV. (1-28)

In a cosmological volume V , we have E = ⇢V . Since V / a3, the energy conservation

equation is
d⇢

dt
= �3H(⇢+ p) = �

1

V

dV

dt
(⇢+ p), (1-29)

and then, by substituting the above expression into equation (1-28), we obtain

dS

dt
= 0, (1-30)

i.e., the total entropy in a comoving volume is a conserved quantity.

It is also useful to consider the entropy density s ⌘ S/V , which from equation (1-28)

follows the relation

d⇢� T = (Ts� ⇢� p)
dV

V
. (1-31)

For a system in equilibrium, we can write ⇢ = ⇢(T ), s = s(T ), and p = p(T ), and then the

above quantity depends only on the di↵erential quantities dV and dT . Now, it is necessary

that in the above expression the quantities that accompany each di↵erential vanish, which

implies from dV

s =
1

T
(⇢+ p), (1-32)

whereas the dT coe�cient is zero by the ⇢̇ energy conservation. Particularly, for a relativistic

species we have

si =
4

3

⇢i
Ti

. (1-33)
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The total entropy density of radiation in the early Universe is given by a sum over all

relativistic species:

s =
2⇡2

45
g⇤s(T )T

3, (1-34)

where g⇤s(T ) = gth⇤s+gD⇤s is the e↵ective number of relativistic degrees of freedom contributing

to the entropy, gth⇤s = gth⇤ and

gD⇤s(T ) =
X

gi

✓
Ti

T

◆3

+
7

8

X

fermions

gi

✓
Ti

T

◆3

. (1-35)

Finally, entropy conservation implies that S = a3s = Constant. This implies:

g⇤sT
3a3 = Constant ) T / g�1/3

⇤s a�1. (1-36)

As long as g⇤s remains constant, then the T of the thermal bath decreases as the inverse of

the scale factor, T / a�1, and s / T 3
/ a�3.

1.2.3.3. History of the Universe

In the very early Universe, all of its content were in an homogeneous gas in thermal equi-

librium. As it expanded and cooled, di↵erent species decoupled from the gas, giving rise to

di↵erent epochs each of them with very particular properties. In this section we review a

summary of these epochs by following (Liddle and Lyth, 2000):

• Very early Universe: This period is considered when the cosmic time was 10�42 s <

t < 10�14 s, and the energy density of the Universe was above 10 TeV. This energy

scales have not been reached by particle accelerators and it is not well understood the

way physical interactions were carried out. Then, all processes that could occur during

this period of time (like the Big Bang, inflation, etc) are considered only as speculative.

• Early Universe: It happened at a cosmic time t ⇠ 10�5
� 1 s. At this epoch, the

energy density of the Universe was around 200 MeV, and then, there was a phase

transition for the quark-gluon: free quarks and gluons where confined in baryons and

mesons. At this epoch the Universe was a hot plasma where all species (electrons, pho-

tons, neutrinos, baryons, etc) were in thermal equilibrium. As the Universe expanded,

its temperature and energy decreased, and the interaction rate for a given species was

reduced, cooled and decoupled from the plasma. Once decoupled, that species con-

tinued its evolution as a thermal relic. When the energy of the Universe was around

⇠ 0.5 MeV, the only species that remain coupled in the plasma were photons, electrons,

protons and neutrons.

• Nucleosynthesis: It happened when tnuc ⇠ 3� 5 min and the energy of the Universe

was ⇠ 0.05 MeV. At this epoch, nuclear reactions started to be e�cient, and free

neutrons and protons started to form light elements like helium, lithium and deuterium.
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Figure 1-2.: Temperature fluctuations observed in the CMB using COBE-WMAP-Planck data (Ade et al.,
2016a, Aghanim et al., 2016, Gold et al., 2011)

• Matter-radiation equality: This epoch accur at teq ⇠ 6⇥104 years, when the mean

density in the Universe was ⇠ 1 eV. At this time, the energy density for matter and

radiation were equal; before matter-radiation equality the Universe was dominated by

radiation, while after this moment it was dominated by matter. CMB observations

prefer this epoch to occur at redishift z ' 3100.

• Recombination: It happened at t ⇠ 380, 000 years. Before this epoch, photons

and electrons were coupled via Compton dispersion, while electrons and protons via

Coulumb dispersion. When the energy of the Universe decreased to ⇠ 0.3 eV, photons

were decoupled from ordinary matter. Then, free electrons recombined with protons

and neutrons, producing in this way atoms. From this time on, photons streamed freely

and travelled basically uninterrupted until they reached us, giving rise to the region

known as the Observable Universe. This spherical surface, at which decoupling process

occurred, is called surface of last scattering. The primordial photons are responsible

for the CMB radiation observed today, then looking at its fluctuations is analogous

of taking a picture of the Universe at that time (tdec ⇡ 380, 000 yrs old). In Figure

1-2, we present the CMB data measured by di↵erent experiments. It presents small

anisotropies compared to the background temperature �T/T ⇠ 10�5.

• Structure formation: It happened at t ⇠ 0.1� 13.7 Giga-years, when matter domi-

nated the energy density in the Universe. During this period – at redshift z ⇠ 1089

– small perturbations in the DM distribution grew because of the gravitational force,

giving rise to the gravitational wells necessary to attract the baryonic matter that
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constitute the galaxies we can observe today.

• Accelerated expansion: Observations of type Ia supernovae have strongly supported

that the Universe is currently in an stage of accelerated expansion. These observations,

together with the ones from CMB, suggest that there exists a dominant exotic energy

component in the cosmos whose functionality is to produce this acceleration.

1.2.4. Distances and horizons

The particle horizon is the distance that light could have traveled since the origin of the

Universe; distances larger than the horizon are said to be causally disconnected. Massless

particles travel along null geodesics (ds2 = 0). Assuming the trajectory to be radial, and a

FLRW spacetime (1-2) in a flat geometry, the speed of light at a given time t is simple given

by dr = dt/a(t). Thus, the total comoving distance travelled since the Big Bang corresponds

to

⌘ ⌘

Z
t

0

dt

a(t)
=

Z
a

0

da

a2H(a)
=

Z 1

z

dz

H(z)
(1-37)

where 1 + z ⌘ 1/a is defined as the redshift34. No information could be propagated further

than ⌘ since the beginning of time (Dodelson, 2003), hence ⌘ is called the comoving horizon.

The above quantity can be used as a temporal coordinate, called as conformal time, where

the FLRW metric is rewritten as

ds2 = a2(⌘)


d⌘2 �

dr2

1� kr2
+ r2(d✓2 + sin2 ✓d�2)

�
. (1-38)

In a similar way, we can define the comoving distance or event horizon

dc =

Z
t0

ti

dt

a(t)
, (1-39)

defined as the distance that a light ray emitted at time ti has traveled at the instant t0.

Notice that this quantity corresponds to the radius of the region that, at time t0, is causally

connected with the point r0, at which the light ray was emitted, at time ti. For simplicity

in the above expressions we considered r0 = 0.

On the other hand, the Hubble radius or Hubble distance is defined by

dH(t) = H�1(t). (1-40)

3Redshift is used to refer to the time at which the scale factor was a fraction 1/(1+ z) of its present value.
It is also used to refer to the distance that light has travelled since that time.

4The equation dr = 1/a(t) tell us that subsequent emissions of light from the source that are separated
certain period of time �t can be related by �t1/a(t1) = �t2/a(t2). If this subsequent emissions are the
wave crests of light, �t has a frequency associate ⌫ = 2/�t and then 1 + z ⌘ ⌫0/⌫ = a(t). As a increases,
the frequency ⌫ decreases, which is a redshift by definition.
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This expression, usually referred simply as horizon, corresponds to the typical length-scale

over which physical processes in the Universe operate coherently. It is also the length-scale

at which general-relativity e↵ects become important; on scales smaller than the horizon

(whithin the horizon), Newtonian gravity is usually enough to describe the properties of the

Universe.

Finally, the comoving Hubble distance is defined as

�H =
1

aH
. (1-41)

1.3. Cosmological inflation

Even though the SBB model possesses a strong observational support, there are still several

inconsistencies or unexplained features to deal with. The inflationary model o↵ers the most

elegant way so far proposed to solve these problems, and therefore to understand why the

Universe is so remarkably in agreement with the standard cosmology. It does not replace

the Big Bang model, but rather, it is considered as an ‘auxiliary patch’ which occurred

at the earliest stages without disturbing any of its successes. It was proposed by Guth

(1981), followed by Linde (Linde, 1982). In this section we review the most relevant concepts

necessary to understand this process.

1.3.1. Shortcomings of the SBB model

This section presents some of the shortcomings the SBB faced. We have to stress out that

in this section we only consider the problems which are presented in the SBB model and

not in the ones presented in the complete ⇤CDM model since we shall concentrate on them

later in this thesis.

Flatness problem

Notice that ⌦ = 1 is a special case of equation (1-15). If the Universe was perfectly flat

at the earliest epochs, then it remained so for all time. Nevertheless, a flat geometry is an

unstable critical situation; that is, even a tiny deviation from it would cause that ⌦ evolved

quite di↵erently, and very quickly the Universe would have become more curved. This can

be seen as a consequence due to aH is a decreasing function of time during a radiation or

matter domination epoch, as it can be observed in Table 1-1, then

| ⌦� 1 | / t during radiation domination,

| ⌦� 1 | / t2/3 during dust domination.

Since the present age of the Universe is estimated to be t0 ' 13.787 Gyrs (Aghanim et al.,

2018), from the above equation, we can deduce the required value of | ⌦� 1 |= |⌦0 � 1|t/t0
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at di↵erent times to obtain the correct spatial-geometry at the present time | ⌦0 � 1 |. For

instance, let us consider some particular epochs in a nearly flat Universe:

• At Decoupling time (t ' 1013 sec), we need that | ⌦� 1 |  10�3.

• At Nucleosynthesis time (t ' 1 sec), we need that | ⌦� 1 |  10�16.

• At the Planck epoch (t ' 10�43 sec), we need that | ⌦� 1 |  10�64.

Because there is no reason to prefer a Universe with critical density, hence | ⌦� 1 | should

not necessarily be exactly zero. Consequently, at early times | ⌦ � 1 | has to be fine-tuned

extremely close to zero to reach its actual observed value.

Horizon problem

The horizon problem is one of the most important problems in the SBB model, as it

refers to the communication between di↵erent regions of the Universe. Bearing in mind the

existence of the Big Bang, the age of the Universe is a finite quantity and hence even light

should have only traveled a finite distance by all this time.

As we already mentioned, Figure 1-2 shows light seen in all directions of the sky.

These photons randomly distributed have nearly the same temperature T0 = 2.725 K plus

small fluctuations (about one part in one hundred thousand) (Ade et al., 2016c, Groom and

Scott, 2017), being at the same temperature a property of thermal equilibrium. Observations

are therefore easily explained if di↵erent regions of the sky had been able to interact and

moved towards thermal equilibrium. In other words, the isotropy observed in the CMB

might imply that the radiation was homogeneous and isotropic within regions located on

the last scattering surface. Oddly, the comoving horizon right before photons decoupled

was significantly smaller than the corresponding horizon observed today. This means that

photons coming from regions of the sky separated by more than the horizon scale at last

scattering, typically about 2�, and would not had been able to interact and established

thermal equilibrium before decoupling. A simple calculation displays that at decoupling the

comoving horizon was 90 h�1 Mpc, and would be stretched up to 2998 h�1 Mpc at present

time. Then, the volume ratio provides that the microwave background should have consisted

of about ⇠ 105 causally disconnected regions (McCoy, 2015). Therefore, the Big Bang model,

by itself, does not o↵er an explanation on why temperatures seen in opposite directions of the

sky are so accurately the same; the homogeneity must had been part of the initial conditions?

On the other hand, the microwave background is not perfectly isotropic, but instead exhibits

small fluctuations as detected initially by the Cosmic Background Explorer satellite (COBE)

(Smoot et al., 1992), and then, with improved measurements, by the Wilkinson Microwave

Anisotropy Probe (WMAP) (Hinshaw et al., 2009, Larson et al., 2011), and nowadays with

the Planck satellite (Collaboration et al., 2006). These tiny irregularities are thought to be

the ‘seeds’ that grew up until becoming the observed structure in the Universe.
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Monopole problem

Following the line to find out the simplest theory to describe the Universe, several

models in particle physics were suggested in order to unify three of the four forces present in

the Standard Model of Particle Physics (SM): strong force, described by the group SU(3),

weak and electro-magnetic force, with an associated group SU(2) ⌦ U(1). These classes

of theories are called Grand Unified Theories (GUT) (Georgi and Glashow, 1974). An

important point to mention in favour of GUT is that they are the only ones that predict the

equality electron-proton charge magnitude. Also, there are good reasons to believe the origin

of baryon asymmetry might have been generated on the GUTs (Kolb and Turner, 1983).

Basically, these kind of theories assert that in the early stages of the Universe (t ⇠

10�43 sec), at highly extreme temperatures (TGUT ⇠ 1032 K), existed a unified or symmetric

phase described by a group G. As the Universe temperature dropped o↵, it went through

di↵erent phase transitions until reach the symmetries associated to the standard model

of particle physics, generating hence the matter particles such as electrons, protons, and

neutrons. When a phase transition happens, its symmetry is broken, and thus the symmetry

group changes by itself, for instance:

• GUT transition:

G ! SU(3) ⌦ SU(2) ⌦ U(1).

• Electroweak transition:

SU(3) ⌦ SU(2) ⌦ U(1) ! SU(3) ⌦ U(1).

The phase transitions have plenty of implications. One of the most important is the topo-

logical defects production, which depends on the type of symmetry breaking and the spatial

dimension (Vilenkin and Shellard, 2000), some of them are:

• Monopoles (zero dimensional).

• Strings (one dimensional).

• Domain Walls (two dimensional).

• Textures (three dimensional).

Monopoles are therefore expected to emerge as a consequence of unification models. Be-

sides that, from particle physics models, there are not theoretical constraints on the mass a

monopole should carry out. However, from LHC constrictions and grand unification theories,

the mass of the monopole could be 4 ⇥ 103 � 1016 GeV (Mermod, 2013). Hence, based on

their non-relativitic character, a crude calculation predicts an extremely high abundance at

present time (Ambrosio et al., 2002, Coles and Lucchin, 2003):

⌦M ' 1016.
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Figure 1-3.: Left: Schematic behaviour of the comoving Hubble radius during the inflationary period.
Right: Physical evolution of the observable universe during the inflationary period (Figure
taken from (Vázquez et al., 2018)).

According to this prediction, the Universe would be dominated by magnetic monopoles in

contrast with current observations; no one has found anyone yet!

1.3.2. What is inflation?

Inflation is defined as the epoch in the early Universe in which the scale factor is exponentially

expanded in just a fraction of a second:

INFLATION () ä > 0 (1-42)

()
d

dt

✓
1

aH

◆
< 0. (1-43)

The factor 1/(aH) corresponds to the comoving Hubble length (1-41), which is interpreted as

the observable Universe becoming smaller during inflation. This process allows our observ-

able region to lay down within a region that was inside the Hubble radius at the beginning

of inflation. In (Liddle, 1999) words: “is something similar to zooming in on a small region

of the initial Universe”, see Figure 1-3.

From the acceleration equation (1-10), the condition for inflation, in terms of the

material required to drive the expansion, is

ä > 0 () (⇢+ 3p) < 0. (1-44)

Because in standard physics it is always postulated ⇢ as a positive quantity, and hence in

order to satisfy the acceleration condition it is necessary for the overall pressure to have

INFLATION () p < �⇢/3. (1-45)
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Figure 1-4.: Evolution of the density parameter ⌦ during the inflationary period. ⌦ is driven towards
unity, rather than away from it (Figure taken from (Vázquez et al., 2018)).

Nonetheless, neither a radiation nor a matter component satisfies such condition. Let us

postpone for a bit the problem of finding a candidate which may satisfy this inflationary

condition and just concentrate in seeing how this stage can help us to solve the problems

mentioned in section 1.3.1.

1.3.3. Solution for the SBB problems

Flatness problem

A typical solution is a Universe with a cosmological constant ⇤, which can be inter-

preted as a perfect fluid with equation-of-state p = �⇢. Having this condition, we observe

from Table 1-1 that the Universe is exponentially expanded and the Hubble parameter H

constant, then, the condition (1-43) is naturally fulfilled. This epoch is called de Sitter stage.

However, postulating a cosmological constant as a candidate to drive inflation might create

more problems than solutions by itself, i.e., reheating process (Carroll, 2001).

Let us look at what happens when a general solution is considered. If somehow there

was an accelerated expansion, 1/(aH) tends to be smaller on time and hence, by the ex-

pression (1-15), ⌦ is driven towards the unity rather than away from it. Then, we may ask

ourselves by how much should 1/(aH) decrease. If the inflationary period started at time

t = ti and ended up approximately at the beginning of the radiation dominated era (t = tf ),

then

| ⌦� 1 |t=tf
⇠ 10�60,

and
| ⌦� 1 |t=tf

| ⌦� 1 |t=ti

=

✓
ai
af

◆2

⌘ e�2N . (1-46)
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So, the required condition to reproduce the value of ⌦0 measured today is that inflation

lasted for at least N ⌘ ln a & 60, then ⌦ must be extraordinarily close to one that we still

observe such quantity today. In this sense, inflation magnifies the curvature radius of the

Universe, so locally the Universe seems to be flat with great precision (see Figure 1-4).

Horizon problem

As we have already seen, during inflation, the universe expanded drastically, and there

was a reduction in the comoving Hubble length. This allowed a tiny region located inside the

Hubble radius to evolve and constitute our present observable Universe. Fluctuations were

hence stretched outside of the horizon during inflation and re-entered the horizon in the late

Universe, see Figure 1-3. Scales that were outside the horizon at CMB-decoupling were, in

fact, inside the horizon before inflation. The region of space corresponding to the observable

universe, therefore, was in thermal equilibrium before inflation, and the uniformity of the

CMB is essentially explained.

Monopole problem

The monopole problem was initially the motivation to develop the inflationary cosmol-

ogy (Guth, 1997). During the inflationary epoch, the Universe led to a dramatic expansion

over which the density of the unwanted particles were diluted away. Generating enough

expansion, the dilution made sure the particles stayed completely out of the observable

Universe, making pretty di�cult to localise even a single monopole.

1.3.4. Single Field Inflation

Throughout the literature, there exists a broad diversity of models that have been suggested

to carry out the inflationary process (Liddle and Lyth, 2000, Lyth and Riotto, 1999, Olive,

1990). In this section, we review the model of scalar fields (SFs) as the responsible for this

process. We only describe the necessary concepts to understand this mechanism. However,

in the next chapter, we shall concentrate a little more in the theory for SFs in general

relativity. Then, if there are some details in this description that could appear to the reader

di�cult to understand, we encourage to review this section together with the next chapter in

parallel. In this section, we also explain how to relate theoretical predictions to observable

quantities. Here, we limit ourselve to models based on general gravity, i.e., derived from

the Einstein-Hilbert action, and single-field models described by a homogeneous slow-rolling

scalar field �. Nevertheless, in section 1.5.1.2 we provide a very brief introduction to several

scalar fields and the concept of spectator SFs during inflation.

Inflation relies on the existence of an early epoch in the Universe dominated by a very

di↵erent form of energy; remember the requirement of the unusual property of a negative

pressure. Such condition can be satisfied by a single real SF. The SF which drives the
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Universe to an inflationary epoch is often termed as the inflaton field.

Consider a SF minimally coupled to gravity with an arbitrary potential V (�). The

energy-momentum tensor corresponding to this field is given by

T (�)
µ⌫

= @µ�@⌫�� gµ⌫ L�. (1-47)

where

L� =
1

2
@µ�@

µ�� V (�), (1-48)

In the same way as the perfect fluid treatment, the energy density ⇢� and pressure density

p� in the FLRW metric (1-2) are found to be

T (�)
00 = ⇢� =

1

2
�̇2 + V (�) +

(r�)2

2a2
, (1-49)

T (�)
ii

= p� =
1

2
�̇2

� V (�)�
(r�)2

6a2
. (1-50)

Considering a homogeneous field, its corresponding equation-of-state is

w� =
p�
⇢�

=
1
2 �̇

2
� V (�)

1
2 �̇

2 + V (�)
. (1-51)

Usually it is splited the inflaton field as

�(x, t) = �0(t) + ��(x, t), (1-52)

where �0 is considered a classical field, that is, the mean value of the inflaton on the ho-

mogeneous and isotropic state, whereas ��(x, t) describes the quantum fluctuations around

�0.

The evolution equation for the background field �0 is given by

�̈0 + 3H�̇0 = �V 0(�0), (1-53)

and moreover, the Friedmann equation (1-9) with negligible curvature becomes

H2 =
8⇡

3m2
pl


1

2
�̇2
0 + V (�0)

�
, (1-54)

where we have used primes as derivatives with respect to the scalar field �0.

From the structure of the e↵ective energy density and pressure, the acceleration equa-

tion (1-10) becomes,

ä

a
= �

8⇡

3m2
pl

⇣
�̇2
0 � V (�0)

⌘
. (1-55)

Therefore, the inflationary condition to be satisfied is �̇2
0 < V (�0), which is easily fulfilled

with a suitably flat potential. Now on in this section, we shall omit the subscript ‘0’ by

convenience.
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1.3.5. Slow-roll approximation

As we have noted, a period of accelerated expansion can be generated by the cosmological

constant (⇤) and hence solve the aforementioned problems. After a brief period of time,

inflation must end up, and its energy being converted into conventional matter/radiation;

this process is called reheating. In a Universe dominated by a cosmological constant, the

reheating process is seen as ⇤ decaying into conventional particles, however claiming that ⇤

is able to decay is still a naive way to face the problem. On the other hand, scalar fields

have the property to behave like a dynamical cosmological constant. Based on this approach,

it is useful to suggest a scalar field model starting with a nearly flat potential, i.e., initially

satisfies the first slow-roll condition �̇2
⌧ V (�). This condition may not necessarily be

fulfilled for a long time, but to avoid this problem, a second slow-roll condition is defined

as |�̈| ⌧ |V,� |, or equivalently |�̈| ⌧ 3H|�̇|. In this case, the scalar field is slowly rolling

down its potential and, by obvious reasons, such approximation is called slow-roll (Liddle

and Lyth, 1992, Liddle and Turner, 1994). The equations of motion (1-53) and (1-54), for

slow-roll inflation, then become

3H�̇ ' �V 0(�), (1-56)

H2
'

8⇡

3m2
pl

V (�). (1-57)

It is easily verifiable that the slow-roll approximation requires the slope and curvature of the

potential to be small: V 0, V 00
⌧ V .

The inflationary process happens when the kinetic part of the inflaton field is sub-

dominant over the potential field V (�). When both quantities become comparable, the

inflationary period ends up giving rise finally to the reheating process, see Fig. 1-5.

It is now useful to introduce the potential slow-roll parameters ✏v and ⌘v in the following

way (Liddle and Lyth, 1992, Riotto, 2003):

✏v(�) ⌘
m2

pl

16⇡

✓
V 0 (�)

V (�)

◆2

, (1-58)

⌘v (�) ⌘
m2

pl

8⇡

V 00 (�)

V (�)
. (1-59)

Equations (1-56) and (1-57) are in agreement with the slow-roll approximation when the

following conditions hold:

✏v(�) ⌧ 1, | ⌘v(�) |⌧ 1.

These conditions are su�cient, but not necessary, because the validity of the slow-roll ap-

proximations was a requirement in its derivation. The physical meaning of ✏v(�) can be

explicitly seen by expressing equation (1-42) in terms of �, then, the inflationary condition

is equivalent to
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reheating

Figure 1-5.: Schematic inflationary process (Baumann, 2009).

ä

a
> 0 =) ✏v(�) < 1. (1-60)

Hence, inflation concludes when the value ✏v(�end) = 1 is approached.

Within these approximations, it is straightforward to find out the scale factor a between

the beginning and the end of inflation. Because the size of the expansion is an enormous

quantity, it is useful to compute it in terms of the e-fold number N , defined by

N ⌘ ln
a(tend)

a(t)
=

Z
te

t

H dt '
8⇡

m2
pl

Z
�

�e

V

V 0d�. (1-61)

To give an estimate of the number of e-folds, let us suppose that the evolution of the Universe

can be split up into di↵erent epochs and concentrate on a particular scale k (at this point

we only consider a generic scale, however, in a next section, we shall explain that such

scales can be associated to perturbations in a Fourier space) which was inside the horizon at

the beginning of inflation and that, at certain time, during the inflationary epoch, left the

horizon. If we consider particularly the moment when the size of such scale was equal to the

horizon, i.e. k = aH, then we can assume the following cosmological history:

• Inflationary era: horizon crossing (k = aH) ! end of inflation aend.

• Radiation era: reheating areh ! matter-radiation equality aeq.

• Matter era: aeq ! present a0.
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Assuming the transition between one era to another is instantaneous, then N(k) = ln(ak/a0)

can be easily computed with:

k

a0H0
=

akHk

a0H0
=

ak
aend

aend
areh

areh
aeq

aeq
a0

Hk

H0
,

where ah(Hk) refers to the scale factor (Hubble parameter) measured at the momment when

k equals the horizon. Then, one has (Liddle and Lyth, 2000)

N(k) = 62� ln
k

a0H0
� ln

1016GeV

V 1/4
k

+ ln
V 1/4
k

Vend

�
1

3
ln

V 1/4
end

⇢1/4
reh

.

The last three terms are small quantities related with energy scales during the inflationary

process and usually can be ignored. The precise value for the second quantity depends on

the model as well as the Planck normalisation; however, it does not present any significant

change to the total amount of e-folds. Thus, the value of total e-foldings is ranged from

50-70 (Lyth and Riotto, 1999). Nevertheless, this value could change if a modification of the

full history of the Universe is considered. For instance, thermal inflation can alter N up to

a minimum value of N = 25 (Lyth and Stewart, 1995, 1996).

As we noted, the parameters to describe inflation can be presented as a function of

the scalar field potential. That is, specifying an inflationary model with a single scalar field

is just selecting an inflationary potential V (�). At this point, it is necessary to mention

that these potentials are not chosen arbitrarily, but in fact, there is a whole line of research

motivated by fundamental physics.

1.3.6. Multi-field inflation

Assuming a single scalar field is responsible for inflation might be only an approximation,

since the presence of multiple fields could also drive this process. In this section, we show how

the cosmological equations are modified when two scalar fields are responsible for driving

the inflationary process (Byrnes and Wands, 2006). The generalization to more than two

fields can be easily obtained and is described by (Gong, 2017).

Consider a two-field inflationary model with canonical kinetic terms, and dynamics

described by an arbitrary interaction potential V (�,'). As usual, it is assumed the classical

fields are real, homogeneous and evolve in a FLRW background. Thus, the background

equation of motion for each scalar field and the Hubble parameter are

�̈i + 3H�̇i +
dVi

d|�i|
2
�i = 0, (i = �,'), (1-62a)

H2 =
8⇡

3m2
pl


V +

1

2

⇣
�̇2 + '̇2

⌘�
, (1-62b)
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where Vi ⌘ @V/@�i. During inflation it is adopted the slow-roll approximation for each field.

This occurs as long as the condition ✏i, |⌘ij| ⌧ 1 is fulfilled; ✏i and ⌘ij are now a new set of

slow-roll parameters defined by

✏i =
m2

pl

16⇡

✓
Vi

V

◆2

, ⌘ij =
m2

pl

8⇡

✓
Vij

V

◆
. (1-63)

The set of equations (1-62) are re-written in the slow-roll approximation as

�̇i ' �
Vi

3H

✓
1 +

1

3
�H
i

◆
, H2

'
8⇡

3m2
pl

V

✓
1 +

1

3
✏H
◆
, (1-64)

with �H
i

and ✏H the new slow-roll parameters:

�H
i
= �

�̈i

H�̇i

, ✏H = ✏� + ✏'. (1-65)

1.4. Cosmological Perturbations

The homogeneous and isotropic model provides an accurate description for the Universe at

large scales. However, in this description, there is no chance for structures to be formed.

At small scales, there exist several cosmological objects (as galaxies, clusters, etc) which are

overdensities of matter. Those objects emerged as a consequence of gravitational instabilities

su↵ered by small fluctuations of the matter content, i.e., inhomogeneities in the matter field.

As we will see later, such initial perturbations can be also related to the fluctuations found

in the CMB measurements. As we already mentioned, the CMB presents small anisotropies

�T/T = 10�5, which suggest to use the theory of liner perturbations for the description

of the perturbed Universe. This idea is straightforward: perturb the metric and energy-

momentum tensor in Einstein’s equations about the background and, to first order, drop

small quantities. Then solve the coupled system of equations

�Gµ⌫ = 8⇡G�Tµ⌫ . (1-66)

for a particular scale perturbation k5.

As we already commented in 1.2.4, the study of cosmological perturbations can be

divided in two scenarios depending on the wavelength of the perturbation � compared with

the Hubble horizon: when the scale perturbations are well within the Hubble horizon � ⌧

H�1, and when the wavelength is larger than the Hubble horizon �� H�1. Here, we present

the basic description for the cosmological perturbations theory. For our purpose we review

di↵erent references, which we recommend for the reader to review if he/she is interested in

a more detailed description of this formalism. These are: (Bardeen, 1980, Dodelson, 2003,

Hu and Dodelson, 2002, Kodama and Sasaki, 1984, Liddle and Lyth, 2000, Mukhanov, 2005,

Mukhanov et al., 1992).

5We don’t have to confuse between the scale perturbation and the curvature parameter. In this section,
always that appears letter k will represent the first of these two possibilities.
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1.4.1. Perturbing the background Universe

The first step that is necessary in the general relativistic description for small perturbations

is to perturb the metric and energy-momentum tensor in the following way

gµ⌫ ! ḡµ⌫ + a2hµ⌫ , Tµ⌫ ! T̄µ⌫ + �Tµ⌫ , (1-67)

where the bar refers to background quantities. Up to linear order in the perfect fluid de-

scription, the energy-momentum perturbations can be expressed as

T 0
0 = �⇢̄(1 + �), (1-68a)

T i

0 = (⇢̄+ p̄)�uii ⌘ qi, (1-68b)

T 0
i
= �(⇢̄+ p̄)(�ui +Bi), (1-68c)

T i

j
= p̄

⇥
(1 + ⇡L)�

i

j
+ ⇧i

j

⇤
, (1-68d)

where �uµ is the perturbation of the four-velocity uµ, � ⌘ �⇢/⇢̄ is the total density contrast,

�⇢ is the perturbation in the energy density, qi is defined as the 3-momentum density, ⇧ is

the anisotropic-stress tensor with traceless part ⇡i

j
= p̄⇧i

j
, ⇧0

0 = ⇧
0
i
= ⇧i

0 = 0, and p̄⇡L ⌘ �p,

being �p the total perturbation in pressure.

Due to the background homogeneity and isotropy in the Universe, we can decompose

the perturbation of the metric hµ⌫ as

hµ⌫dx
µdx⌫ = �2Ad⌘2 � 2Bidx

id⌘ + 2Hijdx
idxj (1-69)

where A(⌘,x) is a scalar perturbation, Bi is a vector perturbation, and Hij is a symmetric

trace-free tensor perturbation. Particularly these quantities can be also decomposed as

Bi = @iB +B(V )
i

, (1-70a)

Hij = HL�ij + @hi@jiHT + @(i@j)H
(V ) +H(T )

ij
(1-70b)

where

@hi@jiHT ⌘ @i@jHT �
1

3
�ijr

2HT ,

@(i@j)H
(V ) = @i@jH +

1

3
�ijr

2H(V ), (1-71)

B, HL and HT are new scalar perturbations, B(V )
i

and H(V )
j

are vector perturbations and

H(T )
ij

is a new tensor perturbation. Additionally these quantities have the properties that

HT is trace-free, H(V )
i

is transverse, and H(T )
ij

is symmetric, trace-free and transverse. Then,

the most general scalar perturbation of the metric has therefore ten separate degrees-of-

freedom: 1 from A, 3 from Bi and 6 from Hij. This represents a problem given that in the

Einstein field equations there are 6 independent equations and then the system is not closed.

However, we shall see that this problem can be avoided always that we fix completely the

gauge in our theory.
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1.4.2. Fixing the gauge

The theory of General Relativity is invariant under general coordinate transformations. This

implies that a generic field Q = Q̄+ ✏Q(1) obeys a gauge transformation law

Q(1)
! Q(1) + LXQ̄, (1-72)

where LX is the Lie derivative in direction of the vector field X. Observe that we have a

limitation from the above description given that we have seen that the general perturbed

metric gµ⌫ can be described in terms of a homogeneous and isotropic background spacetime

ḡµ⌫ , which we set to be the FLRW metric, and a small metric perturbation hµ⌫ . Then,

by demanding the theory to be invariant under general coordinate transformations, the

quantity hµ⌫ should have a particular transformation rule. This process is the well known

gauge transformation. From the above relation we have

hµ⌫ ! hµ⌫ + L�ḡµ⌫ , with �↵ = (T, Li), (1-73)

where T (⌘) is a scalar function and the vector Li(⌘) is discompose into its scalar and vector

part. It happens that at linear order the scalar, vector and tensor perturbations evolve

independently from each other, which allow us to analyse them separately. In particular

vector perturbations evolve as 1/a2 and then they are not relevant at cosmological levels.

On the other hand, in this thesis it will be important to study both scalar and tensor

perturbations since they are related to longitudinal density fluctuations and the production

of gravitational waves, respectively. However, in this section we will concentrate mostly in

the scalar sector and just quote tensor results at the end.

From (Durrer, 2001) the final gauge transformations for the scalar metric variables are:

A ! A�
a

0

a
T � T

0
, (1-74a)

B ! B + L
0
+ kT, (1-74b)

HL ! HL �
a

0

a
T �

k

3
L, (1-74c)

HT ! HT + kL, (1-74d)

while for energy-momentum perturbations:

� ! � + 3(1 + !)
a

0

a
T, (1-75a)

�u ! �u+ L
0

(1-75b)

⇡L ! ⇡L �
p̄
0

p
T = ⇡L + 3(1 + !)

c2
s

!

a
0

a
T, (1-75c)
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where superscript 0 means derivative with respect to conformal time (1-37) and c2
s
⌘ p̄

0
/⇢̄

0
is

defined as the sound speed.

In general, there is an infinite number of choices for the function T (⌘) and L(⌘), however

it is common to fix them in such a way that two of the variable perturbations vanish. A

popular choise is the longitudinal or Newtonian gauge. It is given when kL = �HT and

kT = �L
0
� B, so that HT = B = 0. With these conditions the scalar part of the metric

perturbation is rewritten as (Mukhanov and Chibisov, 1981)

h(S)
µ⌫

= �2 d⌘2 + 2��ijdx
idxj, (1-76)

where � and  are gauge invariant and are known as Bardeen potentials (Bardeen, 1980).

Usually � plays the role of the gravitational potential, however they are defined in a general

form as

 ⌘ A�
a

0

a
k�1� � k�1�

0
, (1-77a)

� ⌘ HL +
1

3
HT �

a
0

a
h�1�, (1-77b)

where � ⌘ k�1H
0
T
� B vanishes in the longitudinal gauge.

Although by choosing a particular gauge allow us to simplify the set of di↵erential

equations and help us to close the complete system, it is important to mention that by doing

such simplification we also introduce “gauge artifacts”, i.e. degrees of freedom which are not

physical.

1.4.3. The perturbed Einstein’s and conservation equations

After understanding how to perturb the geometry and the energy contents in the background

equations for the Universe, and then how we can close the system of equations by considering

a gauge transformation, it is time to understand how the Einstein’s and conservation equa-

tions are rewritten. For simplicity we shall derive the equation in the longitudinal Newtonian

gauge and quote the gauge-invariant quantities in Appedix B. However, along this thesis we

will also work in the well-known synchronous gauge of metric perturbations given by

ds2 = �dt2 + a2(�ij + hij)dx
idxj, (1-78)

where hij is the spatial perturbation in the metric.

The first-order Einstein’s equations for the scalar perturbations are given by (Mukhanov,

2005)

k2�+ 3
a

0

a

✓
�

0
�

a
0

a
 

◆
= 4⇡Ga2⇢̄�, (1-79a)

k

✓
a

0

a
 � �

0
◆

= 4⇡Ga2�u(⇢̄+ p̄), (1-79b)
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� k2 (�+ ) = 8⇡Ga2p̄⇧, (1-79c)

while the perturbed energy-momentum conservation equations are:

� �
0
= (1 + !)[k�u+ 3�

0
] + 3

a
0

a
!�+ 3

a
0

a
(c2

s
� !), (1-80a)

�u
0
=

a
0

a
(3c2

s
� 1)�u+ k +

kc2
s

1 + !
� +

k!

1 + !


��

2

3
⇧

�
, (1-80b)

where � ⌘ ⇡L � c2
s
�/! is the entropy production rate. Notice that in the case of perfect

fluids, where ⇧µ

⌫
= 0, we have  = �. We can also observe that perturbations vanish for a

cosmological constant since �
0
⇤ = 0.

Since it will be of special interest for this thesis, we shall show how the above equations

are reduced at scales deep inside the horizon (k ⌧ aH). At such scales we have that

k2

a2
|F | � H2

|F |, and |Ḟ | . |FH|. (1-81)

And then we finally obtain

k2� = 4⇡Ga2⇢̄�, (1-82a)

which is the classical Poisson equation, and

�
00
+

a
0

a
�
0
= �k2�. (1-82b)

1.4.4. The adiabatic and isocurvature initial conditions

First of all, let us consider the following quantity:

S↵� ⌘
�↵

1 + !↵
�

��
1 + !�

, (1-83)

where �↵ (!↵) is the density contrast (equation-of-state) for a particular matter specie ↵ =

b, dm, �, ⌫. S↵� measures the relative fluctuation between di↵erent components.

Adiabatic initial conditions are obtained when matter and radiation perturbations are

initially in thermodynamic equilibrium, and then S↵� = 0 for all components. This implies

that their velocity field agree

�u(�) = �u(⌫) = �u(b) = �u(dm), (1-84)

and the density contrast satisfy the relation

1

3
�b =

1

3
�dm =

1

4
�� =

1

4
�⌫ =

✓
1

4
�

◆
, (1-85)

The price to be paid in this scenario is that the curvature perturbation changes.
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Isocurvature initial conditions refer to those metric perturbations that initially disap-

pear, i.e.  = 0, and that satisfy S↵� 6= 0. This implies that the ratio between di↵erent

species should change. Typically, this entropy perturbations are written in terms of one of

the components, for example photons, and then

S↵ =
�↵

1 + !↵
�

1

4
��. (1-86)

The most general initial perturbations of the energy-density are described by a linear com-

bination between adiabatic and isocurvature perturbations.

1.5. Power spectra

The density contrast �, introduced in the previous section, can be considered statistically

as a random field with zero mean, h�(x)i = 0. The measure of the clustering degree in

the spatial direction r is determined by the correlation function ⇠, which is defined as the

product of the density contrast at two separate points x and x+ r:

⇠(r) ⌘ h�(x)�(x+ r)i. (1-87)

where in the above expression we have considered that the correlation function can only

depend on r = |r| thanks to the statistical homogeneity and isotropy of the random field. On

the other hand, the amplitude of fluctuations of di↵erent lengths are described by the power

spectrum P(k), which is simply the inverse Fourier transform of the correlation function ⇠:

h�̂(k)�̂(k)i =
2⇡2

k3
P(k)�D(k� k

0
), (1-88)

where �̂ is the Fourier transform of the density contrast �. The Dirac’s delta distribution

�D guarantees that modes relative to di↵erent wave-numbers are uncorrelated in order to

preserve homogeneity.

1.5.1. Primordial power spectrum

1.5.1.1. Linear perturbations during inflation: Single field model

Inflationary models have the merit that they do not only explain the homogeneity of the Uni-

verse on large-scales, but also provide a theory for explaining the observed level of anisotropy.

During the inflationary period, quantum fluctuations of the field were driven to scales much

larger than the Hubble horizon. Then, in this process, the fluctuations were frozen and

turned into metric perturbations. As we mentioned in section 1.4.2, metric perturbations

created during inflation can be described by two terms. The scalar, or curvature, pertur-

bations are coupled with matter in the Universe and form the initial “seeds” of structure
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observed in galaxies today. Although the tensor perturbations do not couple to matter, they

are associated to the generation of primordial gravitational waves. As we shall see, scalar

and tensor perturbations are seen as important components to the CMB anisotropy (Hu and

Dodelson, 2002).

As already mentioned, if inflation provides an exponential expansion, then the horizon

remains practically constant while all other scales grow up. In this way, we can focus on

the evolution of the quantum perturbations of the inflaton in a small region compared to

the horizon. In this region, it is possible to assume the space as locally flat and ignore the

metric perturbations. Thus, working in the fourier space, the classical equation of motion

for the perturbation part of �(x, t) in (1-52) is

(��k )̈ + 3H(��k)˙ +

✓
k

a

◆2

��k = 0, (1-89)

where it is assumed �� is linear and neglect higher orders. This basically means that pertur-

bations generated by vacuum fluctuations have uncorrelated Fourier modes, the signature of

Gaussian perturbations.

The above equation can be rewritten as a harmonic oscillator equation with a variable

frequency. If we now move to the quantum world and make the corresponding associations

of operators to classical variables, the quantum dynamics will be determined by (Lyth and

Liddle, 2009)

�̂k (⌘) =
�k (⌘) â (k) + �⇤

k
(⌘) â† (�k)

(2⇡)3
with �k (⌘) = �

e�ik⌘

p
2k

k⌘ � i

k⌘
, (1-90)

where â and â† are the typical particle creation and annihilation operators, ⌘ is the proper

time defined in (1-37), and � ⌘ a��. An important quantity above is the wave number k

which is related to the size of the perturbation as � / 1/k.

The inflationary process dilutes all possible particles existing before this period. Taking

this into account, the ground state of the system is given by the vacuum. We notice that

well after horizon exit, ⌘ ! 0, �k (⌘) approaches the value

�k (⌘) = �
i

p
2k

1

k⌘
, (1-91)

so that equation (1-90) is rewritten as

�̂k (⌘) = �k (⌘)
â (k)� â† (�k)

(2⇡)3
. (1-92)

The temporal dependence of �̂k is now trivial and implies that once �k (⌘) is measured after

horizon exit, it will continue having a definite value, becoming a classical perturbation. That

this quantum fluctuations become classical is of special interest, since, in this way, it can

be taken as the initial inhomogeneities that will later give rise to the structure formation.
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However these initial conditions will be slightly modified due to the amount of inflation

remaining, once the k-scale has left the horizon.

Defining the spectrum of perturbations as

h�k�
⇤
k0i =

2⇡2

k3
P�(k)�D(~k � ~k0) =

2⇡2

k3
a2P�(k)�D(~k � ~k0),

where the quantities P� (P�) are the spectra generated by field � (�). Evaluating the left

hand side of the equation by a few Hubble times after the horizon exit, ⌘ = (1/aH)|k=aH , with

the Hubble constant value evaluated at the time the scale k has left the horizon (k = aH)

yields to the spectrum

P�(k) =

✓
H

2⇡

◆2

k=aH

. (1-93)

In this scenario it is introduced the primordial curvature perturbation Rk(t), which has

the property to be constant within few Hubble times after the horizon exit. This value is

called the primordial value, and is related to the scalar field perturbation �� by

Rk = �


H

�̇
��k

�

k=aH

. (1-94)

From the two above equations, the primordial curvature power spectrum PR(k), computed

in terms of the scalar field spectrum P�(k), is given by

PR(k) =

"✓
H

�̇

◆2

P�(k)

#

k=aH

=

✓
H

�̇

◆✓
H

2⇡

◆�2

k=aH

. (1-95)

On the other hand, the creation of primordial gravitational waves corresponds to the

tensor part of the metric perturbation hµ⌫ in (1-3) or (1-67). In Fourier space, tensor

perturbations hij can be expressed as the superposition of two polarisation modes

hij = h+e
+
ij
+ h⇥e

⇥
ij
, (1-96)

where +, ⇥ represent the longitudinal and transverse modes. From Einstein equations, it is

found that each amplitude h+ and h⇥ behaves as a free scalar field in the sense that

�+,⇥ ⌘
mpl
p
8
h+,⇥. (1-97)

Therefore, taking the results of the scalar perturbations, each h+,⇥ has a spectrum PT given

by

PT (k) =
8

m2
pl

✓
H

2⇡

◆2

k=aH

. (1-98)
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The canonical normalisation of the field �+,⇥ was chosen such that the tensor-to-scalar ratio

of the spectra is

r ⌘
PT

PR
= 16✏v. (1-99)

During the horizon exit, H and �̇ have tiny variations during few Hubble times. In this

case, the scalar and tensor spectra are nearly scale invariant, and therefore well approximated

to a power law

PR(k) = PR(k0)

✓
k

k0

◆ns�1

, PT (k) = PT (k0)

✓
k

k0

◆nT

. (1-100)

where the spectral indices are defined as

ns � 1 ⌘
d lnPR(k)

d ln k
, nT ⌘

d lnPT (k)

d ln k
. (1-101)

A scale-invariant spectrum, called Harrison-Zel’dovich, has constant variance on all length

scales and it is characterised by ns = 1; small deviations from scale-invariance are also

considered as a typical signature of the inflationary models. Then, the spectral indices ns

and nT can be expressed in terms of the slow-roll parameters ✏v and ⌘v, to lowest order, as:

ns � 1 ' �6 ✏v(�) + 2 ⌘v(�),

nT ' �2 ✏v(�). (1-102)

These parameters are not completely independent each other, but the tensor spectral index is

proportional to the tensor-to-scalar ratio r = �8nT . This expression is the first consistency

relation for slow-roll inflation. Hence, any inflationary model, to the lowest order in slow-

roll, can be described in terms of three independent parameters: the amplitude of density

perturbations Ar ⇠ PR(k0)1/2 (⇡ 5⇥ 10�5 initially measured by COBE satellite), the scalar

spectral index ns, and the tensor-to-scalar ratio r. If we require a more accurate description,

we should consider higher-order e↵ects, and then include parameters for describing the run-

ning of scalar (nsrun
⌘ dns/d ln k) and tensor (nTrun

⌘ dnT/d ln k) index and higher order

corrections.

An important point to emphasise is that Ar, r and ns are parameters that nowadays

are tested from several observations. This allows us to compare theoretical predictions

with observational data, for instance, those provided by the Cosmic Microwave Background

radiation. In other words, future measurements of these parameters may probe or at least

constrain the inflationary models and therefore the shape of the inflaton’s potential V (�).

1.5.1.2. Cosmological perturbations in multi-field inflation: The adiabatic and
isocurvature perturbations

The equation of motion for the perturbed fields is described by
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�̈�
i
+ 3H ˙��

i
+
X

j

"
Vij �

8⇡

a3m2
pl

d

dt

✓
a3

H
�̇i�̇j

◆#
��j = 0. (1-103)

On the largest scales (k ⌧ aH) it is better to work on a rotating basis of the fields, defined

by the relation: ✓
��

�s

◆
= S

†
✓
��

�'

◆
, (1-104a)

where

S =

✓
cos ✓ � sin ✓

sin ✓ cos ✓

◆
, tan ✓ =

'̇

�̇
' ±

r
✏'
✏�
. (1-104b)

The field � is parallel to the trajectory on the field space, and it is usually called adiabatic

field, whereas the field s is perpendicular, and named the entropy field. If the background

trajectory is curved, then �� and �s are correlated at Hubble exit, and therefore, at this

point, the power spectrum and cross-correlation are described by the expressions:

P�(k)|k=aH
'

✓
H

2⇡

◆2

k=aH

(1 + (�2 + 6C)✏� 2C⌘��), (1-105a)

C�s(k)|k=aH
' �2C⌘�s

✓
H⇤

2⇡

◆2

k=aH

, (1-105b)

Ps(k)k=aH '

✓
H

2⇡

◆2

k=aH

(1 + (�2 + 2C)✏� 2C⌘ss), (1-105c)

where C ' 0.7296, ✏ ⌘ ✏� + ✏s, and ⌘ij (i, j = �, s) are slow-roll parameters defined in a

similar way than equation (1-63), but now in terms of the new fields � and s.

Final power spectrum and spectral index

The curvature and isocurvature perturbations are usually defined as

R ⌘
H

�̇
��, S =

H

�̇
�s. (1-106)

In the slow-roll limit, on large scales, the evolution of curvature and isocurvature perturba-

tions can be written using the formalism of tranfer matrix:

✓
R

S

◆
=

✓
1 TRS

0 TSS

◆✓
R

S

◆

k=aH

, (1-107)

where

TSS(t
⇤, t) = exp

✓Z
t

t⇤
�Hdt0

◆
, TRS(t

⇤, t) = exp

✓Z
t

t⇤
↵TSSHdt0

◆
, (1-108)
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being t⇤ the time measured at horizon crossing and at linear order in slow-roll parameters

↵ ' �2⌘�s, � ' �2✏+ ⌘�� � ⌘ss. (1-109)

On the other hand, the primordial curvature perturbation during a radiation-dominated era

(some time after inflation ended) is given, on large scales, by

R = �+
H�⇢

⇢
, (1-110)

where � is the gravitational potential (see section 1.4), while the conventional definition of

the isocurvature perturbation for an i-specie is given by (1-86). Then, at the beginning of

the radiation-domination era, we get the final power spectra

PR ' P|k=aH(1 + cot2�), (1-111a)

PS = T 2
SS
P|k=aH , (1-111b)

CRS = TRSTSSPR|k=aH , (1-111c)

where at linear order in slow-roll parameters P|k=aH is

P|k=aH =
1

2✏

✓
2H

mpl

◆2

k=aH

, (1-112)

with � the observable correlation angle defined at lower order as

cos� =
TRSp
1 + T 2

RS

. (1-113)

The final spectral index for each contribution, defined as nx � 1 = d lnPx/d ln k, at

linear order in slow-roll parameters, are

ns � 1 ' �(6� 4 cos2�)✏+ 2 sin2�⌘��,

+4 sin� cos�⌘�s + 2 cos2�⌘ss, (1-114a)

nS � 1 ' �2✏+ 2⌘ss, (1-114b)

nC � 1 ' �2✏+ 2 tan�⌘�s + 2⌘ss. (1-114c)

Notice that we have left the subindex s in order to be consistent with the scalar spectral

index defined in the single inflationary scenario.

Sometimes, it is also common to parameterised the primordial adiabatic and entropy

perturbations on super-horizon scales as power laws

PR = A2
r

✓
k

k0

◆nad1�1

+ A2
s

✓
k

k0

◆nad2�1

, (1-115a)
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CRS = AsB

✓
k

k0

◆ncor�1

, (1-115b)

Ps = B2

✓
k

k0

◆niso�1

, (1-115c)

where at linear order nad1 = �6✏ + 2⌘��, nad2 = 2nC � nS, ncor = nC , niso = nS. The

amplitude values A2
r
, A2

s
and B can be written in terms of the correlation angle as

A2
r
= [PR sin2�]k0 , A2

s
= [PR cos2�]k0 , (1-116a)

B2 = [T 2
SS
PR|⇤]k0 . (1-116b)

A2
r
and A2

s
are the contributions of the adiabatic and entropy fields to the amplitude of the

primordial adiabatic spectrum.

Primordial gravitational waves

Given the fact that scalar and tensor perturbations are decoupled at linear order,

gravitational waves at horizon crossing are the same than in the single-field case. Also, their

amplitude should remain frozen on large scales after Hubble exit. Therefore, the tensor

power spectrum and the spectral index are finally

PT = PT |k=aH ' 8

✓
H

2⇡mpl

◆2

k=aH

(1 + 2(�1 + C)✏), (1-117)

nT ' �2✏


1 +

✓
4

3
+ 4C

◆
✏+

✓
2

3
+ 2C

◆
⌘��

�
, (1-118)

The tensor-to-scalar ratio at Hubble exit is the same than in the single field case.

However, at super-horizon scales, the curvature perturbations continue evolving as (1-111a).

In this way, the value of r some time after the end of inflation is

r ' 16✏ sin2�


1�

✓
4

3
+ 4C

◆
✏+

✓
2

3
+ 2C

◆
⌘��

�
. (1-119)

Observe from (1-99) that the single scalar field case works as an upper constraint on r.

1.5.1.3. The spectator scenario

The simplest extension to the single field model – referred as the inflaton scenario – is to con-

sider that only one SF was dynamically important during inflation and the extra SF observer

contributed to the primordial spectrum just by generating isocurvature fluctuations. Even

tough the idea of adding an extra spectator that does not contributed for the inflationary
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process could be considered as not necessary, there are several well motivated theoretical

aspects where more than one SF could exist during this era.

The inflaton scenario is obtained when considering that the trajectory in field space

evolved in the inflaton direction �, whereas the direction perpendicular to the trajectory

corresponded to an spectator field '. Notice that it is necessary to have ⌘�s = ⌘'� = 0 and

that the spectator field evolves much slower than the inflaton. Then, we can see that the

last conditions demand that the potential should be written as V (�,') = V (�) + V (') and

✏' ⌧ ✏�.

During the inflationary scenario, the entropy and adiabatic perturbations are uncorre-

lated, which leads to TRS = 0 (and CRS = 0) as can be seen from (1-108), imposing initial

conditions at horizon crossing. In this way, we have that cos� = 0. On the other hand, as

it is expected from (1-115a) and (1-116), in the inflationary scenario the primordial power

spectrum for the adiabatic perturbations is produced purely by the inflaton, while quantum

fluctuations of the spectator give entry to the generation of uncorrelated isocurvature per-

turbations. In this way, the primordial power spectrum of adiabatic, isocurvature and tensor

perturbations are

PR = PR|k=aH , PS = T 2
SS
PR|k=aH , and PT =

8

M2
pl

✓
H

2⇡

◆2

k=aH

. (1-120)

From (1-114) and (1-118) the tilts at linear order are

nR ' �6✏+ 2⌘��, ns ' �2✏+ 2⌘'', and nT ' �2✏. (1-121)

Finally the tensor-to-scalar ratio in this scenario is the same than in the single-inflaton

scenario (1-99), which implies that the spectator field does not contribute to r.

1.5.2. CMB power spectrum

Although we will not work directly with CMB in this thesis, we cosider instructive and

complementary to review a little this kind of measurements. In addition, we believe that

this review will help us to understand di↵erent concepts that will appear later. In this section,

we review the main properties of the CMB. It is important to mention that until now we have

only considered the background evolution in the ⇤CDM, while for the CMB it is necessary

to take into account the perturbed Universe, i.e., the evolution for the small perturbations

of the ⇤CDM constituents over the background. In particular, in order to understand the

CMB, we need to concentrate on the perturbations associated to photons and the di↵erent

processes that could a↵ect to it. For simplicity, we shall consider only adiabatic initial

conditions. To provide an accurate description of these processes it is necessary to consider

dynamics that occurs at microscopic levels. In particular, this description is necessary to

describe some stages (such as recombination) where the Universe is expected to be out of

equilibrium.
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1.5.2.1. General description

As we already commented in the previous section, depending on the scale of energy, di↵erent

interactions between photons and ordinary matter can take place. At high energy, such

interactions can be, for example: creation of particle-antiparticle pairs by photons in presence

of heavy neutral particles, annihilation of particle-antiparticle pairs that generate photos,

production of a photon due to the interaction between two charged particles, Compton

scattering or production of photons due to radiative (double) Compton scattering. While the

average energy of the Universe decreases, all these interactions become less and less frequent

until they reach the point where the least energetic of them, the Compton scattering, stop

to accur (at an energy scale of around 0.3 eV), and then the Universe left to be invisible to

us. It is at this moment when the CMB is created and is usually referred to as the time of

last scattering or, as we already mentioned, the surface of last scattering.

When the energy of the Universe was above 0.5 keV all previous mentioned processes,

except for Compton scattering, continue being very e�cient, and then, such interactions

ensure thermal equilibrium. In this regime, the photon can be well described by a blackbody

spectrum, and any perturbation that may distort it is expected to be quickly smoothed

by the interactions. At energy scales below 0.5 keV, it is not expected that the above

description continue being true, and then, if some perturbations are introduced, they may

not be e�ciently smoothed and should leave an observable signature in the spectrum. An

accurate measurement of the CMB spectrum can be seen in Figure (1-6) as was obtained

by the FIRAS instrument onboard the COBE satellite (Mather et al., 1990). As can be

seen, CMB looks to be a pure blackbody spectrum, obtaining deviations of order 10�5 that

were measured by COBE (Smoot et al., 1992). The origin and the distribution of these

fluctuations are of great interest give that they may give accurate information about our

Universe at high energy scales. For example, the inflationary process provides an elegant

mechanism to explain the presence of these fluctuations (see chapter 1.3). For such reason,

since COBE results, there have been several CMB experiments which try to measure these

fluctuations with increasing precision.

1.5.2.2. Angular power spectrum

When we refer to CMB, we usually think in the temperature two-point correlation function

defined as

C(~n1,~n2) ⌘ h�(~n1)�(~n2)i , (1-122)

which is the di↵erence in temperature for photons received by two anttenas pointing in

two di↵erent directions of the sky. Here ~n1, ~n2 are the direction of the two antennas,

�(~ni) ⌘ �T (~ni)/T̄ , T̄ is the mean temperature measured by the CMB and �T (~ni) is

the di↵erence of temperature measured with respect to T̄ , and h·i means average over all

possible statistical realization of the Universe. Thanks to the Universe being isotropic, the

above quantity should only depend on the angle ✓ between ~n1 and ~n2, i.e. ~n1 · ~n2 = cos ✓.
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Figure 1-6.: CMB blackbody spectrum (Figure taken from (Mather et al., 1990))

For such reason a convenient basis to rewrite �(~ni) are the spherical harmonics Y m

l
(~ni) in

the form

�(~ni) =
1X

l=1

lX

m=�l

aT
lm
Y m

l
(~ni), (1-123)

where i = 1, 2. On the other hand C(~n1,~n2) can be rewritten also in terms of spherical

harmonic functions as

C(~n1,~n2) =
1X

l=0

Cl

m=lX

m=�l

Y m⇤
l

(~n1)Y
m

l
(~n2) =

X

l

2l + 1

4⇡
ClPl(cos ✓). (1-124)

Using (1-123) and (1-124) in (1-122) we finally obtain

Cl = haT
lm
a⇤T
lm
i. (1-125)

Coe�cients Cl are referred to as angular power spectrum and l is referred to as multipole.

Given the fact that for each value l there are 2l + 1 values of m, the azimuthal angle is

divided into 2l parts and then the multipole l is associated to an angle ✓ = 180�/l.

Now, we consider initial conditions in terms of the cornformal Newtonian gauge �ini =

R. Thanks to the evolution equation being � independent of the direction ~k, we can write

�l(⌘0,~k,~n) = �ini�l(⌘0, k,~n). (1-126)

Therefore the Cl

0
s are found to be

CXY

l
=

4⇡

(2l + 1)2

Z
d3k

(2⇡)3
PR(k)�

X

l
(k)�Y

l
(k), (1-127)
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where X and Y represents the temperature T and polarization (E or B); quantity PR is

the initial scalar power spectrum (1-100). The moments obtained from the line of sight

integration method (Seljak and Zaldarriaga, 1996), in terms of the spherical Bessel functions

jl are given by

�T

l
= (2l + 1)

Z
d⌘jl(k[⌘ � ⌘0])ST (k, ⌘), (1-128)

�E

l
= (2l + 1)

s
(l � 2)!

(l + 2)!

Z
d⌘SE(k, ⌘)jj(k[⌘ � ⌘0]), (1-129)

where SE and ST are sourced terms. On the other hand, for the tensor contribution we have

Ctens

XY,l
=

4⇡

(2l + 1)2

Z
d3k

(2⇡)3
PT�

tens

X,l
(k)�tens

Y,l
(k), (1-130)

where PT is the primordial tensor power spectrum (1-100), and the moments:

�tens

T,l
=

s
(l + 2)!

(l � 2)!

Z
d⌘Stens

T
(k, ⌘)

jl(k[⌘ � ⌘0])

k2[⌘ � ⌘0]2
, (1-131)

�tens

E,B;l =

Z
d⌘Stens

E,B
(k, ⌘)jl(k[⌘ � ⌘0]), (1-132)

with Stens

T
, Stens

E
and Stens

B
sorces terms.

In Figure 1-7 it is shown the CMB spectra for all the di↵erent modes: temperature, E-

mode, B-mode and T�E cross-correlation. The left-hand side displays the modes associated

to the scalar perturbations whereas the right-hand side shows the ones associated to the

tensor perturbations.

Let us examine in more detail the temperature power spectrum CT

l
. It is determined

by (1-128) where ST is provided by (Seljak and Zaldarriaga, 1996):

ST = �
g

0

h
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� �

0
i
+ g

0

Vb

k
+

3

k2
C

0
�
+ g

00 3

2k2
C

+ g


1

4
D�

g
+

V
0
b

k
� (�� ) +

C

2
+

3

2k2
C

00
�
, (1-133)

where g ⌘ 
0
exp[(⌘) � (⌘0)]. The density contrast D�

g
is the main contribution, driving

the spectrum towards the oscillatory behaviour. It can be seen as an intrinsic temperature

variation over the background last-scattering surface �T/T / D�

g
/4. The Dopper shift, Vb-

term, describes the blueshift caused by last scattering electrons moving towards the observer.

The term involving time derivates of the potentials, (�
0
�  

0
), is known as the integrated

Sachs-Wolfe e↵ect. It describes the change of the CMB photon energy due to the evolution

of the potentials along the line of sight. The terms involving C and its derivatives describe

polarisation e↵ects and are far less important than the D�

g
term. Finally, the (� �  )
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Figure 1-7.: CMB spectra for all the constributions: temperature,E-modes, B-modes and T � E cross-
correlation. (left panel) shows the scalar perturbations, (right panel) shows the tensor per-
turbations (Figure taken from (Challinor and Peiris, 2009)).

Figure 1-8.: Total CMB temperature spectrum and its di↵erent contributions (Figure taken from (Challi-
nor and Peiris, 2009)).

term arises from the gravitational redshift when climbing out of the potential well at last

scattering. The combination D�

g
/4 � (� �  ) is known as the ordinary Sachs-Wolfe e↵ect.

This gives the main contribution on scales that at decopling well outside the horizon.

Nowadays, thanks to CMB observation experiments (see next section) we have an

extremely accurate measurement for the angular power spectrum. In Figure 1-9 we show

the CMB temperature-power spectrum data measured by Planck (Aghanim et al., 2018)

together with the best fit for the ⇤CDM model.
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Figure 1-9.: Planck 2018 temperature power spectrum. In the figure it is also showed the best fit for the
⇤CDM model. Here DTT

l ⌘ l(l + 1)Cl/(2⇡) (Figure taken from (Aghanim et al., 2018)).

1.5.3. Matter power spectrum

The matter power spectrum (MPS) Pm encodes the distribution of galaxies over the observed

Universe. It is defined by

h�m(~k)�m(~k
0
)i =

2⇡2

k3
Pm(k)�D(~k � ~k

0
), (1-134)

where the matter overdensity �m is related to the potential �(a,~k) via the poisson equation

(1-82a) as

�m(a,~k) =
2

3

✓
k

aH

◆
�(a,~k). (1-135)

On the other hand, the gravitational potential � can be written in terms of the primordial

value �ini, set up during inflation, as

�(a,~k) = T (k)g(a)�ini, (1-136)

where T (k) is a transfer function which describes the evolution of perturbations through

the epoch of horizon crossing and radiation/matter equality, while the growth factor g(a)

describes the wavelength-independent growth at late times.

The above quantity can be also associated to the comoving curvature perturbation

R
(m), which can be written in terms of the potentials, in comoving coordinates, as

R
(m) =

5 + 3!

3 + 3!
�, (1-137)
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and then the matter overdensity can be associated to the curvature perturbation via

�m(a, k) =
2

5

✓
k

aH

◆
R

(m). (1-138)

With this last expression, the matter power spectrum can be rewritten as

Pm(a, k) =
4

25

✓
k

aH

◆4

T 2(k)PR(k). (1-139)

An alternative definiting for the matter power spectrum is given by Pm ⌘ 2⇡2
Pm/k3. On

the other hand, it has been shown that the transfer function of a matter component follows

asymptotic behaviour

T (k) =

⇢
1 if keq/k � 1

(keq/k)2 if keq/k ⌧ 1,
(1-140)

where keq is the mode that enters the horizon at matter-radiation equality6. Then, the

matter power spectrum in its asymptotic form follows:

Pm(k) =

⇢
/ k large scales

k�3 small scales.
(1-141)

In Figure 1-10 we show the MPS at present time in the ⇤CDM model. Observe that the

figure presents the behavior described in the above relation.

1.6. CMB observations and Planck constraints for inflation

In this section, we show how the inflationary models can a↵ect the CMB power spectrum.

We already studied in the above section, the CMB power spectra depend on the primordial

power spectra via equations (1-127) and (1-130). In the single field scenario, the most com-

mon observables considered during inflation are the amplitude of adiabatic perturbations Ar,

the tensor-to-scalar ratio r, and the spectral index ns. During several years, many projects,

at di↵erent scales, have been carried out in order to look for observational data to constrain

cosmological models. That is, di↵erent models may imprint di↵erent behaviours over the

CMB spectra, see Figure 1-11. Amongst many projects, they are: Cosmic Background

Explorer (COBE), Wilkinson Microwave Anisotropy Probe (WMAP), Cosmic Background

Imager observations (CBI), Ballon Observations of Millimetric Extra-galactic Radiation and

Geophysics (BOOMERang), the Luminous Red Galaxy (LRG) subset DR7 of the Sloan

Digital Sky Survey (SDSS), Baryon Acoustic Oscillations (BAO), Supernovae (SNe) data,

Hubble Space Telescope (HST) and recently the South Pole Telescope (SPT), the Atacama

Cosmology Telescope (ACT) and the Planck Satellite. These di↵erent data measurements

6The precise form of the transfer function at all scales should be found by solving the general relativistic
Boltzmann equation.
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Figure 1-10.: Matter power spectrum Pm(k) at z = 0 (Figure taken from (Vázquez, 2013)).

have been extensively used together with Bayesian statistics to constraint the di↵erent pa-

rameters for inflationary models. The way it is commonly done such process is by confronting

the model parameters with the data with the help of Bayes theorem (see appendix C for

a review). Then, after obtaining a range for the more probable parameters, it is usually

reported confidence regions where parameters are more likely to match the observations. In

this section, we review some of the constraints obtained from inflationary parameter after

considering historical and current data. We stress that the results are given for the param-

eters ns and r, and therefore our interest is mainly focused on the case with no running,

dns/d ln k = 0. We encorage to the reader that is not familiarized with Bayesian parameter

inference to review appendix C in order to understand completely this section.

The results obtained from WMAP3 observations constrained the inflationary param-

eters to be 0.94 < ns < 1.04 and r < 0.60 (95% CL). Those models that present ns < 0.9

were therefore ruled out at high confidence level. The same was applied for models with

ns > 1.05. However, WMAP data by itself cannot lead to strong constraints because the

existence of parameter degeneracies, like the well known geometrical degeneracy involving

⌦m, ⌦⇤ and ⌦k. However, when it was combined with di↵erent types of datasets, together

they increased the constraining power and removed degeneracies. Once the SDSS data was

included, the limit of the gravitational wave amplitude and the spectral index constraints

were reduced, that is, for WMAP3+SDSS the constraints on ns and r were 0.93 < ns < 1.01

and r < 0.31. On the other hand, WMAP5 data alone constrained the tensor to scalar ratio

to be r < 0.43 (95% CL) while 0.964 < ns < 1.008. When BAO and SN data were added,

the limits improved significantly to r < 0.22 (95% CL) and 0.953 < ns < 0.983 (Komatsu

et al., 2009). Following the same history line for datasets, by consider WMAP seven year
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Figure 1-11.: Variations of the CMB scalar spectrum for di↵erent values of the spectral index ns (left),
and variations of the CMB tensor spectrum with respect to the tensor-to-scalar ratio r
(right) (Taked from (Vázquez et al., 2018)).

data, the spectral index was constrained to be in the range ns = 0.982+0.020
�0.019, whereas the

tensor-to-scalar ratio should fulfill the maximum value r < 0.37 (95% CL). When WMAP-7

was combined with di↵erent datasets, the constraints were tighten as it is shown by (Lar-

son et al., 2011). Finally, the most recent satellite that provides new constrictions for the

inflationary parameters is Planck satellite. It has yielded results 3 times: in 2013, 2015,

and 2018. At this point we shall only present the final results it obtains, i.e., the ones from

2018, which are, for now, the most recent constrictions for inflationary parameters. For

such purpose we decided to show, in Figure 1-12, 2D marginalised probability constraints

on ns and r, as it was resported in (Aghanim et al., 2018). Gray regions correspond to the

constrictions when considering the contribution of the temperature power spectrum (TT),

the temperature-polarization cross spectrum (TE), the polarisation power spectrum (EE),

lensing and the low-l temperature-only likelihood (lowE). In the red region it was also in-

cluded the BICEP2/Keck array BK15 data, whereas in the blue region it was included also

BAO observations. Given that we showed the figure as it was reported in the Planck results,

there are di↵erent inflationary models that were tested by such constrictions.

Finally, it is time to talk about the constrictions that comes when there are more

than one SF during the inflationary era. As we already mentioned, in that circumstance it

is possible to obtain isocurvature perturbations generated by those extra SFs in the early

Universe. Of special interest in this thesis are the isocurvature perturbations generated for

the DM for uncorrelate models. Parameterizing the isocurvature power spectrum for DM in

terms of the curvature power spectrum PR(k) (see equation (1-120)), we have

PDM(k) =
�iso(k)

1� �iso(k)
PR(k), (1-142)

where PDM = �⇢DM⇤/⇢DM , �⇢DM⇤ are the isocurvature perturbations for the DM gener-
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Figure 1-12.: 2D marginalised probability constraints on ns and r for the most resent results of (Ade
et al., 2016b). 2D constraints are plotted with 1� adn 2� confidence contours.

ated by extra scalar fields during inflation, ⇢DM is the initial condition of DM and �(k) ⌘

PDM/(PR + PDM). We could follow also in this case the story line for the constrictions that

have been done for these isocurvature perturbations. However, we do not want to divert

the reader too much by repeating the same procedure, so here we will only show the most

recent constraints there are for this kind of perturbations. The uncorrelated scale-invariant

DM isocurvature is constrained by Planck data (Akrami et al., 2018) at pivot scale k0 as

�iso(k0) < 0.038 at 95% CL. (1-143)



2. Theoretical background for scalar
fields in general relativity

2.1. First ideas for Scalar Fields

A very intuitive way to understand the concept of a SF is by thinking of the temperature

field in a room. The field is a scalar field in the sense that it is enough to associate a scalar

value to every point in the room to completely describe it, unlike, for example, a vector field

which requires a magnitude and a direction to be fully specified. It is expected that SFs vary

continuously across the space in such a way that it should be possible to plot their variation

in any chosen direction. In Figure 2-1 we show, for example, the temperature that should

be measured in a room to exemplify the idea.

Although this simple description is very convenient to introduce the concept of SFs

thanks to the simplicity associating it with a well-known situation, it is necessary to mention

that temperature is not a fundamental SF, given that it is a macroscopic property of the

space at each point, determined by other factors such as the proximity of heat sources. In

the usual vocabulary of a physicist, a field (scalar or otherwise) is usually understood as

something more abstract – a fundamental field of nature, which takes a determined value at

each point in a given space, and may couple with other fields –. In fact, in quantum field

theory, particles are localized fluctuations in these fundamental fields, and particle collisions

create new particles because they transfer energy to, and thus produce fluctuations on, other

coupled fields.

In general, SFs are ubiquitous in modern physics, either as a fundamental form of

matter, such as the recently discovered Higgs boson, or as an e↵ective description of some

aspect of nature. In the simplest scenario, their evolution is described by the Klein-Gordon

(KG) equation (Gordon, 1926, Klein, 1926, 1927)

(⇤+ µ2)' = 0, (2-1)

which can be considered as a relativistic generalization of the Schrödinger equation (SE)

being µ the mass of the SF particle in natural units, ' a complex/real scalar field, and

⇤ ⌘ d2/dt2 � r
2 the four-D’Alambert operator in a flat geometry and a metric signature

(+,-,-,-). It represented one of the first attempts to unify the ideas of quantum mechanics

and the Einstein’s theory of special relativity. Its derivation can be easily obtained from the
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Figure 2-1.: Example for a Scalar Field: temperature in a room (Figure taken from (N., 2019)).

relativistic equation for the energy of a free particle:

E2 = p2 + µ2. (2-2)

Then, by performing a canonical quantization and associating the corresponding Hermitian

operators in the Schrödinger picture (x̂ ! x̂, p̂ ! �ir and E ! i@/@t), it is easy to see

that we arrive to (2-1). The KG equation can be generalized to describe a field in some

potential V (') as

⇤'+
dV

d'⇤ = 0. (2-3)

It was called with such a name in honor of Oscar Klein and Walter Gordon, who in 1926 tried

to describe relativistic electrons with this formalism. Although they were not right in their

model given that modeling electron’s spin required the Dirac equation, the KG equation

correctly describes a spinless particle, as the Higgs boson.

The importance of studying SFs is due to the fact that they usually appear in most

of the extensions for the Standard Model for particle physics (super-symmetric theories,

GUTs, strings, etc). And, if that was not enough, those extensions have not only theoretical

motivation, but also cosmological and astrophysical. Particularly, SFs in cosmology have

been very useful as forms of DM, dark energy (DE), and inflationary candidates. Also, within

the astrophysical context, they have been considered in models describing compact objects

made of bosons with an appealing phenomenology (see (Dalfovo et al., 1999, Dodelson, 2003,

Zee, 2010)). For this reason, we have enough motivation to continue extending the studies

already done for SFs, being the main purpose in this thesis their application to DM.
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2.2. Scalar fields with gravity

The coupling between the KG equation and gravity through Einstein equations, leading to

the so called Einstein-Klein-Gordon (EKG) system, was first considered in the context of

boson stars, which were initially introduced as a proposal of a “gravitational atom”, that

corresponds to a macroscopic quantum state of a SF with an astronomical-sized wave-length.

More recent studies consider that those objects are not actual “gravitational atoms” but

rather Bose-Einstein condensates (BECs), made of excitations of a SF laying in the ground

state (Kaup, 1968, Ru�ni and Bonazzola, 1969). It was motivated by the axion field, a

pseudo-Nambu-Goldstone boson of the Peccei-Quinn phase transition, which was proposed

to solve the strong CP problem in QCD. Since then, the system continues being widely

studied by the scientific community given that, as we already mentioned, there are several

astrophysical objects where a SF could play an important role.

In this section, we review in a simple way the main equations used to describe a SF in

the context of general relativity, close following Suárez and Chavanis (2015).

2.2.1. The Lagrangian of the scalar field

The general form of the action that considers a SF coupled to gravity can be expressed as

S = Sv + S' + Sext, (2-4)

where Sv is the vacuum contribution which can be decomposed in a gravitational term SG

and a cosmological contribution S⇤, Sv = SG + S⇤, S' is the action that possesses all the

information about the SF, and Sext is an action associated to extra matter components in

the system. In this thesis, we shall consider only SFs minimally coupled to gravity, and no

coupled with other matter components. This kind of SFs can be described by the action:

S' =

Z
d4x

p
�gL', (2-5)

where g = det(gµ⌫) and the Lagrangian is

L' =
1

2
gµ⌫@µ'

⇤@⌫'� V ('). (2-6)

Here, as mentioned before, V (') is the SF potential, and @↵ is a partial derivative with

respect to ↵. Observe that in the particular case where the SF potential is of the form

V (|'|2), the Lagrangian is invariant under a global U(1) transformation

' ! 'ei✓̂. (2-7)

This symmetry implies that there is a Noether current density J↵ defined as

J↵ =
i

2

p
�g ['⇤@↵'� '@↵'

⇤] , (2-8)
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satisfying the conservation law r↵J↵ = 01, where in the above expression r↵ is the covariant

derivative.

2.2.2. The energy-momentum tensor for the scalar field

The energy-momentum tensor for the SF can be obtained by considering the variation of the

SF’s action with respect to the metric tensor, i.e.,

�S' =
1

2

Z
d4x

p
�gT (')

µ⌫
�gµ⌫ , (2-9)

where

T (')
µ⌫

⌘ 2
@L'
@gµ⌫

� gµ⌫L', (2-10)

or equivalentely

T (')
µ⌫

=
1

2
(@µ'

⇤@⌫'+ @⌫'
⇤@µ')� gµ⌫


1

2
g⇢�@⇢'

⇤@�'� V (')

�
. (2-11)

If we make the analogy with a perfect fluid, we could define a 4-velocity uµ, and then, from

the above equation,

⇢' =
1

2
@µ'@µ'+ V ('), (2-12a)

p' =
1

2
@µ'@µ'� V ('), (2-12b)

uµ =
@µ'p
@µ'@µ'

. (2-12c)

In the general relativistic context, equation (2-11) must be used as a source term in

the Einstein equations (1-5) :

Gµ⌫ ⌘ Rµ⌫ �
1

2
gµ⌫R = 4⇡GTµ⌫ � gµ⌫⇤, (2-13)

where Tµ⌫ contains, in general, all the energy constituents associated to the system, i.e.,

Tµ⌫ = T (')
µ⌫ + extra sources.

2.2.3. The generalized Klein-Gordon equation

The generalized KG equation can be obtained in two di↵erent ways. First, by considering

the conservation of the energy-momentum tensor (2-11) associated to the SF, r⌫T µ⌫ = 0,

or by considering the variation of the action S' with respect to the SF. In both cases we

obtain

⇤c'+
dV

d'⇤ = 0, (2-14)

1In the case the SF is charged, which for our purpose in this thesis it will be enough to consider it this way,
this conservation law is related with the conservation of the total number of boson particles.
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where ⇤c is the four-D’Alambert operator in a curved spacetime geometry. Particularly,

when we apply it to a scalar quantity

⇤c = rµ(g
µ⌫@⌫) =

1
p
�g

@µ(
p
�ggµ⌫@⌫). (2-15)

From now on we shall neglect subscript c in ⇤c in order to simplify the notation of this

thesis. Observe that this operator is reduced to the one used in (2-3) in a flat geometry.

Aditionally, notice that if the SF potential is of the form V (|'|2), the KG equation can be

rewriten as

⇤'+ 2
dV

d|'|2
' = 0. (2-16)

Then, the complete set of equations necessary to describe the SF is the Einstein-Klein-

Gordon system (2-13) and (2-14) or equivalently (2-16).

2.3. Scalar field potentials

Until now, we have studied in a general way the main equations used to describe a SF

minimally coupled to gravity. For this, we used the SF potential V (') without mentioning

so much about the nature of this quantity. The term V (') results, in general, in a non-linear

self-interaction of the field. That is, for a general SF potential, two plane waves in the field

should not only superpose, but also interact in a non trivial way. The form of V (') can be

considered as a property of the field. For example, in the simple case where V (') = 1
2µ

2'2,

being ' a real field, the potential represents a mass term for the SF. On the other hand,

in more complicated scenarios, the potential could represent more complicated interactions,

as it could be the case of couplings with some other quantities (as a temperature source or

couples with some other particles, for example).

The shape of the potential for a field must be obtained from some higher energy theory

in the case where the field is only an e↵ective description. In the case of the inflaton and

DM candidates – which we shall call as scalar field dark matter (SFDM) model –, that shape

is essential in determining its behaviour and properties. To exemplify what we mean let us

consider the KG equation (2-16) in a FLRW background (1-2)

'̈+ 3H'̇+ 2
dV

d|'|2
' = 0, (2-17)

where, for simplicity, we maintain the |'|2 dependence for the SF potential. In a similar

way, the energy density and pressure for the SF is given, from equation (2-12a) and (2-12b),

by

⇢̄' =
1

2
|'̇|2 + V (|'|2), and p̄' =

1

2
|'̇|2 � V (|'|2). (2-18)

If we decompose the SF as

' = |'|ei✓, (2-19)
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the KG equation can be rewritten as

|'̈| + 3H|'̇| +

✓
2
dV

d|'|2
� ⌦2

◆
|'| = 0, (2-20)

where

⌦ ⌘ ✓̇ = �
Q

|'|2a3
, (2-21)

is defined as the pulsation of the SF, and Q its conserved charge (Arbey et al., 2002a, Gu

and Hwang, 2001, Li et al., 2014, Suárez and Chavanis, 2015, 2017)2. As it is explained in

(Li et al., 2014, Suárez and Chavanis, 2017), the SF dynamics can be separated in a slow

(H � ⌦) and a fast (H ⌧ ⌦) oscillating regime. In the slow regime, at su�ciently early

times, the energy density and pressure (2-18) are both dominated by the first kinetic term,

and then the equation of state for such regime is given by

p̄' ' ⇢̄' '
1

2
|'̇|2, (2-22)

which represents a sti↵-like fluid. During that period, the energy density for the SF evolves

as

⇢̄' /
1

a6
. (2-23)

However, if the SF is real, the acceleration term (|'|)̈ will decrease by Hubble dragging until

it can be ignored in (2-20), and the slow-roll condition is fulfilled. In such circumstance, the

SF transits from the sti↵-like fluid to a cosmological constant-like behavior. Such transition

has been shown to be an attractor for the real SF in the slow oscillating regime (Belinsky

et al., 1985, Piran and Williams, 1985). By considering the above description and if we

consider that the energy density of the Universe is dominated by the one associated to

the SF, we should obtain that the SF should drive an inflationary era during its attractor

behavior (see chapter 1.3). On the other hand, in the fast oscillating regime, the SF oscillates

several occasions in a Hubble time, and then, an e↵ective equation of state can be obtained

by averaging over a time interval that is much longer than the field oscillation period ⌦�1,

but much shorter than the Hubble time H�1. In that circumstance, the equation of state

for the SF is given by

p̄' '
(dV (h|'|2i)/dh|'|2ih|'|2i)� V (h|'|2i)

(dV (h|'|2i)/dh|'|2ih|'|2i) + V (h|'|2i)
⇢̄'. (2-24)

For the SF as a DM candidate, what is expected is that it possesses a parabolic minimum

at some critical value 'c, around which it is possible to define a non-vanishing mass scale

µ through the general relation µ2
⌘ @2V/@|'|2. If that happens, and after the SFDM

2To obtain (2-20) it was necessary to decompose the KG equation into its real and imaginary parts. Then,
after solving the imaginary equation and substituting into the real one we finally arrive at equation
(2-20).



52 2 Theoretical background for scalar fields in general relativity

candidate evolves and perform small oscillations around such minimum, i.e. it starts to

evolve e↵ectively through the potential

V (|'|2) =
1

2
µ2
|'|2, (2-25)

where for simplicity we took 'c = 0 since the dynamical equations for the SF do not change,

we can see that from equation (2-24) we obtain

p̄' ' 0, (2-26)

which is the equation of state used to describe a dust-like fluid (see equation (1-4)), and

what is expected for a DM candidate (see next chapter). However, one can not discard, in

general, the presence of higher terms |'|4, |'|6, ..., which, at some scales or critical value,

could be important. For example, in the context of extensions of the Standard Model of

particle physics, there are several more complicated potentials that have been proposed for

a SF that, at their minima, behave e↵ectively as the above potential. Some examples are

the axion-like trigonometric potentials (Cedeño et al., 2017, Zhang et al., 2018)

V (') = µ2f 2[1� cos('/f)], (2-27)

where f is a decay constant, or its hyperbolic counterpart (Sahni and Wang, 2000, Tonatiuh

et al., 2000)

V (') = µ2f 2[cosh('/f)� 1]. (2-28)

Notice that in both cases, the potential is reduced to (2-25) when '/f ⌧ 1.

From potentials (2-27) and (2-28) it is suggested the minimum extension to (2-25) as

V (') =
1

2
µ2
|'|2 +

1

4
⌫|'|4, (2-29)

being ⌫ a constant. The above quantity represents a short-range self-interacting potential,

where ⌫ > 0 (⌫ < 0) is for repulsive (attractive) self-interaction. This extension results to be

very interesting given that, after adding this new degree of freedom, there is extra physics

emerging associated to the model. For instance, by using the above potential and (2-24), we

obtain

p̄' '
1

3

"
1

1 + 4µ2

3⌫h|'|2i

#
⇢̄'. (2-30)

Then, the equation of state of the SF turns out to be more complicated, so that the behav-

ior obtained in the case without self-interaction is not always fulfilled. Particularly, when

2µ2/(3|⌫|h|'|2i) � 1 we recover the dust-like behavior.

As we can see, the selection of the SF potential is not trivial and, in general, it should be

motivated by di↵erent arguments, as it is the case of justify them by extensions of standard

physics or from the nature of the problem we are dealing with. In a general scenario, what

should be expected for such a SF potential is that it should be well supported in all contexts,

i.e., from a theoretical point of view, observationally by its e↵ects in nature and, in the best

case, the particle subject to this potential being detected by some experiment.
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2.4. Gravitationally bound systems

The formation of gravitationally bound objects comprised by SF configurations has been

extensively studied in the literature (see eg. Jetzer, 1992, Lee and Pang, 1992, Liddle and

Madsen, 1992, Mielke, 2016, Schunck and Mielke, 2003, Seidel and Suen, 1990, Straumann,

1992, for some reviews). Depending on whether the field is complex or real, they are called

boson stars or oscillatons. The characteristic behavior for them is very similar in average,

although oscillatons are distinguished by being oscillatory solutions (as their name’s suggest),

whereas boson stars correspond to stationary distributions. In this section, we shall review

the main properties of boson stars following the above references, since for this thesis it will

be very important to understand them.

2.4.1. Boson stars

The simplest form to study a SF in nature is by considering it as the only source appearing in

the Einstein’s equations (2-13). Within this context, the concept of boson stars has been well

studied. For stars, we usually think of an object that entails a configuration which remains

localized. However, it is well known that no-regular, static and non-topological localized

SF solutions are stable in a three (spatial) dimensional flat space (see Derrick’s Theorem

(Derrick, 1964)). This constraint is avoided by adopting a harmonic decomposition for the

SF of the form

'(x, t) = '0(x)e
i�t, (2-31)

where '0 is a real scalar, and � is a real constant denoting the angular frequency of the

oscillations of the SF. Although the SF evolves in time harmonically, the spacetime remains

constant. Given the quantum nature of the KG equation, these configurations can be un-

derstood, in the simplest case of having a free field, as a result of the balance between the

attraction due to gravity, and the repulsion due to the Heisenberg uncertainty principle of

quantum mechanics.

The typical way to construct boson stars is just by considering spherical symmetry

and requiring the space-time to be static. In a 3 + 1 decomposition3, and Swarzschild-like

coordinates, the general metric that is used to describe the above description is given by

ds2 = �↵(x)2 + a(x)2 + x2(d✓2 + sin2 ✓�.
2), (2-32)

3A 3 + 1 decomposition usesis the total number of particles in the configuration, is equal to zero. This
binding energy is particularly important in the analysis of stability for this kind of objects. In all cases,
distributions corresponding to central densities 'c < '(b)

c,⇤, possesses an Eb < 0, while in the opposite

direction 'c > '(b)
c,⇤, we have Eb > 0. A positive bi

a succession of spacetime geometries to describe how an initial configuration evolves towards the
future, where the evolution of a given slice is given by the Einstein equations. For an introduction for
this formalism we encourage the reader to look at (Alcubierre, 2008, Baumgarte and Shapiro, 2010, Bona
et al., 2009).
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where ↵ and a4 are real metric functions, and r is usually called Areal radius. For this

reason the above coordinates are usually called polar-areal coordinates. After using the

above metric with the ansatz (2-31) in the EKG system (2-13) and (2-14) or equivalently

(2-16), we obtain that boson stars are described by the set of di↵erential equations:

@xa

a
=

1� a2

2x
+ 2⇡x


�2'2

0

a2

↵2
+ 2

0 + a2'2
0

✓
µ2 +

1

2
⌫'2

0

◆�
, (2-33a)

@x↵

↵
=

a2 � 1

x
+
@xa

a
� 4⇡xa2'2

0

✓
µ2 +

1

2
⌫'2

0

◆
, (2-33b)

@x'0 =  0, (2-33c)

@x 0 = � 0

✓
2

x
+
@x↵

↵
�
@xa

a

◆
� �'2

0

a2

↵2
+ a2

�
µ2 + ⌫'2

0

�
'0, (2-33d)

where for simplicity we have used in the above expressions the quartic potential (2-29), which

is the potential we mainly focused on in this thesis.

The above system of di↵erential equations has been solved numerically in the case of

a repulsive self-interaction, and in its free-field limit,5 by imposing regularity at the origin

'0(0) = 'c,  (0) = 0 and a(0) = 1, and asymptotic isolated flat space '0(x ! 1) = 0

and ↵(x ! 1) = a(x ! 1)�1 (see for example (Escorihuela-Tomàs et al., 2017)). With

such conditions, we make sure that the final configuration resulting from the above solution

is regular at all space. Depending on the central value of the SF 'c, there should exist

an infinite number of solutions which satisfy all the asymptotic conditions, each of them

di↵erentiating from each other by the number of nodes that they posses before decaying

asymptotically, and the numerical value for their parameter �. It happens that the solution

without nodes – considered as the ground state of the EKG system – possesses the smallest

numerical value for �, and the value of this parameter increases while the number of nodes

of each solution – referred as excited boson stars – increases.

Let us first talk about the ground state solution, which from now on we will refer to as

the “soliton” solution6. In Figure 2-2 we show a plot for the mass of each soliton, defined

as7

MBS(xmax) =
x

2

✓
1�

1

a2(xmax)

◆
, (2-34)

4We should not confused with the scale factor a. In this section we decided to reuse this letter to refer to
this new function so that we can be consistent with the usual notation of most authors working on this
subject.

5The attractive scenario has not been completely studied in the general relativistic regime. However, there
are some works where this case was studied in the weak-field limit. We shall review such results in the
next section.

6We decided to use this name in order to be consistent with the literature about scalar fields as the dark
matter.

7This way of calculating the mass of the boson star is by using the definition of the Misner-Sharp mass
function.
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where xmax is the radius at the boundary of the numerical grid well after the soliton profile

has decayed, vs the central values of the SF for di↵erent self-interactions

⇤ ⌘
⌫

4⇡Gµ2
. (2-35)

First at all, we can notice that as long as the value of the self-interaction ⇤ increases, the

final boson star generated allows more massive configurations. This is an expected behavior

given that a repulsive self-interaction indicates that there exist a repulsive force (aditional to

the one generated by the uncertainty principle) that opposes matter to agglomerate at the

center. On the other hand, observe that in the plot there are two important points for each

curve: a pink square (at 'c = '(max)
c,⇤ , where we decided to left explicitly the ⇤ dependence

of such point) which corresponds to the maximum mass allowed by a boson star for a given

⇤, and that divided a stable (for 'c 2 (0,'(max)
c,⇤ )) from an unstable ('c > '(max)

c,⇤ ) branch,

and a cyan triangle (at 'c = '(b)
c,⇤), which points to the value at which the binding energy of

the boson star, defined as

Eb = MBS �Nµ, (2-36)

where

N =

Z
g0↵J↵d

3x (2-37)

is the total number of particles in the configuration, is equal to zero. This binding energy

is particularly important in the analysis of stability for this kind of objects. In all cases,

distributions corresponding to central densities 'c < '(b)
c,⇤, possess an Eb < 0, while in the

opposite direction 'c > '(b)
c,⇤, we have Eb > 0. A positive binding energy implies that the

configuration possesses an excess of energy, enough to dissipate the soliton profile, while in

the opposite case, the configuration is confined and stable under perturbations if it is in the

stable branch, or unstable to collapse and form a BH if it is in the unstable branch.

Finally, regarding the soliton profile, we need to talk about the maximum mass allowed

for a SF configuration (the pink square). The first study that found a parameter dependence

for such quantity in the free field limit was obtained in (Ru�ni and Bonazzola, 1969). In

their studies, they found that the parameter dependence for such quantity is given by

Mcrit ⇠
m2

pl

µ
. (2-38)

Later, by means of numerical simulations assuming spherical symmetry, (Seidel and Suen,

1991, 1994) figured out a more precise relation for the critical mass of collapse of a system

of free bosonic particles, given by

Mcrit ' 0.633
m2

pl

µ
. (2-39)
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Figure 2-2.: Boson star mass as a function of the central value of the SF 'c for di↵erent values of ⇤.
For each value of ⇤ the pink square represents the maximum possible mass for a boson star,
separating the stable and unstable branches, while the inverted cyan triangles indicate the
point at which the binding energy is equal to zero (Figure taken from (Escorihuela-Tomàs
et al., 2017).

On the other hand, in the case of a self-interacting SF with a repulsive self-interaction, the

critical mass of collapse reads (Colpi et al., 1986)

Mcrit ' 0.22
p

⇤
mpl

µ
. (2-40)

Notice that the self-interaction allows much larger masses than in its free field counterpart

as long as ⌫/µ2
� 1.

In the case of SFDM configurations including excited states of a scalar field with a given

mass (Bernal et al., 2010, Hawley and Choptuik, 2003, Seidel and Suen, 1990, Ureña-López,

2009, Ureña-López and Bernal, 2010), it was found that the resulting configurations can have

larger masses. However, they have been found to be unstable and migrate by gravitational

cooling to the ground state solution.

2.4.2. Newtonian boson stars

In the weak-field limit, we can consider that the spacetime metric tensor can be approximated

as gµ⌫ = �µ⌫+ �gµ⌫ , where �µ⌫ is the Minkowski spacetime. Under such condition, the metric

functions a and ↵ can be re-expressed as

↵2
' 1 + 2� ' a2. (2-41)

Then, by assuming a decomposition of the SF given by

'(x, t) =
1
p
µ
 (x, t)eiµt, (2-42)
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the EKG system is rewritten as

r
2� = 4⇡Gµ| |2, (2-43a)

i ̇ = �
1

2µ
r

2 + µ� +
⌫

µ2
| |2 . (2-43b)

These equations are the so-called Gross-Pitaevskii-Poisson (GPP) system. The first equation

is the Poisson equation, used to describe Newtonian systems. This is the reason that boson

stars constructed in this limit are usually called Newtonian boson stars. The second equation

is the Gross-Pitaevsii equation, which is reduced to the Schrödinger equation in the free-field

limit. Then, when the self-interacting parameter is equal to zero, the above system is called

the Schrödinger-Poisson (SchP) system.

Two important quantities that are necessary to describe SF configurations, and that

are well defined in the Newtonian limit, are the total mass Mt and total energy Et associated

to the system:

Mt = µ

Z

V

| |2d3x, (2-44a)

Et =

Z

V


1

2µ
|r |2 +

µ

2
�| |2 +

⌫

2µ2
| |4

�
d3x. (2-44b)

Notice that the total energy can be written in a very instructive way:

Et = Kt +Wt + USI,t, (2-45)

where

Kt =

Z

V

1

2µ
|r |2d3x, (2-46a)

is the total kinetic energy,

Wt =

Z

V

µ

2
�| |2d3x, (2-46b)

is the total gravitational potential energy and

USI,t =

Z

V

⌫

2µ
| |4d3x, (2-46c)

is the total energy associated to the self-interaction. This last way of writing each energy

contribution is very convenient, because they also appear in the scalar Virial theorem of an

isolated mass distribution:

2Kt +Wt + 3USI,t = 0. (2-47)

By considering the following transformation

 ̂ =

s
4⇡G

µ
 , �̂ = �, x̂ = µx, t̂ = µt, (2-48)
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the GPP equations are rewritten in such a way that all the constants disappear:

r̂
2�̂ = | ̂|2, (2-49a)

i@
t̂
 ̂ = �

1

2
r̂

2 ̂ + �̂ ̂ + ⇤| ̂|2 ̂, (2-49b)

where in the above expression we used explicitly @
t̂
instead of an over-dot, since we are

deriving with respect to t̂ instead of t. The above expression results to be very interesting

given that it implies that the properties of the system are the same, independently of the

mass parameter of the boson particle, being important only the parameter ⇤, present when

there is a self-interaction. Additionally, there is a reescaling property for this GPP system

given by

{t̃, x̃,⇤,  ̃, �̃} ) {�2t̂, �x̂, �2⇤̂, ��2 ̂, ��2�̂}, (2-50)

which are traduced in a rescaling property for the energy quantities as

{M̃t, K̃t, W̃t, ŨSI,t} ) {��1M̂t, �
�3K̂t, �

�3Ŵt, �
�3ÛSI,t}̂. (2-51)

Newtonian boson stars are constructed similarly to their general relativistic counter-

part, this is, it is necessary to consider an harmonic ansatz for the SF of the form

 ̂(x̂, t̂) = �̂(x̂)e�iµ̂Q t̂, µ̂Q, �̂ 2 R, (2-52)

where x̂ is the dimensionless spherical radial coordinate, and µ̂Q, in analogy to the standard

physics of boson particles in a flat geometry, is the dimensionless GPP chemical potential

which should be fixed by the conservation of particle number. Then, it is necessary to

impose correct boundary conditions: regularity at the origin �̂(0) = �̂c and @x̂�̂(0) = 0, and

asymptotic isolated flat space �̂(x̂ ! 1) = 0 = �̂(x̂ ! 1). The final kind of configurations

obtained adopt the same properties of the boson stars in the general relativistic treatment:

there is a ground state without nodes – the soliton – that possesses the smallest value of

the µQ parameter, and excited Newtonian boson stars. Additionally, all of these boson stars

fulfill the virial condition (2-47). In Figure 2-3, we show, in the left plot, di↵erent soliton

configurations for the same initial value �̂c = 1, while in the right one, we show the total

number of particles given by

N =

Z
| |2d3x =

Z
 2d3x, (2-53)

vs the radius x95 that contains the 95% of the mass of the configuration. Observe that

the bigger the ⇤, the less compact the configuration is and then it is less dense. As we

discussed before, this property is expected by the nature of the force that is provided by the

self-interacting term: a repulsive self-interaction forbidens the matter to agglomerate at the

center of the configuration, and then the distribution should be more diluted.
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Figure 2-3.: (Left) Profiles �̂ of equilibrium configurations for di↵erent values of ⇤s. (Right) Mass-Radius
relation for di↵erent values of ⇤ (Figure taken from (Guzman and Urena-Lopez, 2006)).

Observe that from (2-50), it is possible to construct di↵erent solutions for the soliton

once one of them is known. In fact, as it is explained in Guzman and Urena-Lopez (2006), in

the free case, it is possible to construct all the ground state solutions for any central scalar

field value just by using the reescaling property given in (2-50). On the other hand, in the

self-interacting case, it occurs something similar: once a ground state solution is known for a

given value of ⇤̂, it is possible to construct all the ground state solutions for di↵erent central

values of the SF and the same value of ⇤̂, just by using the reescaling properties provided in

(2-50). However, if we were interested in finding a new soliton solution with a di↵erent ⇤̂, it

should be necessary to solve the di↵erential equations (2-49) for such ⇤̂ one more time.

Remark: Notice that thanks to the reescaling property of the GPP system, in the

Newtonian approximation it does not appear a maximum mass allowed for the configuration.

However, this result is not expected to happen given that, at some point, it should be nec-

essary to take into account the relativistic corrections. On the other hand, in the numerical

treatment when ⇤̂ < 0 it appears a maximum mass allowed for a Newtonian soliton given

by (Eby et al., 2016)

Mc,max ' 10.03
mplp
|⌫|

, (2-54)

where we have decided to use ⌫ instead of ⇤̂ for simplicity in the writing of the above

expression. However, the ⇤̂ dependence for the above critical mass can be easily obtained

from (2-48).
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In section 1.2.2 we have mentioned that one of the components necessary to describe the

Universe consists in a DM candidate. We did not notice the existence of DM up to the first

half of XX century. However, after obtaining more precise astrophysical and cosmological

data, it appeared necessary the incorporation of such ingredient into the cosmological model

to explain satisfactorily the di↵erent gravitational e↵ects that could not be explained with the

typical amount of baryonic matter of the studied systems. Such “missing matter” problem

has appeared at di↵erent scales (like galaxies, group of galaxies, clusters, super clusters, etc),

which has led to put under question the need to incorporate a dark component to the theory

to solve all these discrepancies.

In this chapter, we present the di↵erent observational evidences that have suggested

the incorporation of DM to the total matter-enery content of the Universe. Additionally, we

briefly review the ⇤CDM model. We will mention the di↵erent achevements and issues that

such description possesses after di↵erent observational data is considered, focusing particu-

larly in the problems coming from small scales, which allows the possibility of considering

new cosmological models which could help explaining in a more satisfactory way the nature

of DM. This last step is particularly interesting for us, given that, in the next section, we

shall consider an alternative model to ⇤CDM model.

3.1. Observational evidence for dark matter

3.1.1. Clusters of galaxies

In 1933, the Swiss-American astronomer Fritz Zwicky was one of the first researchers who

suggested the necessity of extra matter when studying the dynamics of the COMA cluster.

By using the Virial theorem

2hT i = qhUi, (3-1)

where in the above result it was considered a radial dependence of the potential of the form

U(r) / rq, being q a constant, T (U) is the kinetic (potential) energy, and h·i meaning

average over time, Zwicky (1933) On the other hand, Boylan-Kolchin et al. (2011) pointed

out that there still a problem with the most massive subhalos, the so-called too big to fail

problem, This aspect of satellites arises because the most
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calculated the mass of the COMA cluster as follows: Starting from the kinetic and

gravitational energy associated to the cluster

T =
1

2
Mv2, U = �

GM2

r
, (3-2)

where G is the Newton constant, M is the mass of the cluster, v is the velocity and r = ax

is the physical radius measured from the center of the cluster. Here and for the rest of this

thesis we decided not to use h·i in order to simplify the notation. However, in all cases it

shall be easy to understand when we refer to mean quantities or not. In the above relation

has been assumed point particle interactions between the elements of the cluster, and an

uniformly distributed matter content. Then, by using (3-2) in (3-1), and identifying q = �1,

the mass of the cluster can be estimated as

M =
v2

G/r
. (3-3)

Considering the mass measured by its luminosity distribution (M ⇠ 1011M�), he obtained

that the velocity of the cluster’s constituents should be around 400 times smaller than what

was being measured. With this result, Zwicky concluded that in order to be consistent with

his observations, it should be necessary that an invisible matter content, which he called

dark matter, should exist and a↵ect considerably the dynamics of the COMA cluster.

3.1.2. Rotation curves in spiral galaxies

Vera Rubin was one of the pioneers in measuring rotation curves in spiral galaxies with high

precision (Rubin et al., 1985, Rubin and Ford Jr, 1970). Since then, such measurements have

been one of the main observations that have justified the existence of an extra contributor

to the visible matter in galaxies.

Spiral galaxies are stable gravitationally bound systems in which visible matter is

composed of stars and interstellar gas. Most of the observable matter is on a relatively thin

disk, where stars and gas rotate around the galactic center in almost circular orbits. If the

circular speed of a star at radius r is v in a galaxy with mass M(r) within r, the stability

condition implies that the centrifugal acceleration v2/r must be equal to the gravitational

force GM(r)/r2, which results in a Keplerian law for the radial dependence of v:

v =

r
GM(r)

r
. (3-4)

Interestingly, the findings of Vera Rubin were completely di↵erent to the above consequence.

She found that orbital velocities remain constant as distance increases. In Figure (3-1), we

show such behavior for NGC 6503 galaxy, where each contributor to the velocity is shown.

Observe that with only the contribution of the baryonic matter (gas and disk), it is not
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Figure 3-1.: Rotational velocity for NGC 6503. The contribution of several constituents to the galaxy is
shown (Figure from (Pécontal et al., 2009)).

enough to reproduce the observational data. For such reason, it seems necessary the incor-

poration of a non-visible matter lying far from the center of galaxies, or in Vera Rubin words

“It appears that much of the matter in spiral galaxies emits no light. Moreover, it is

not concentrated near the center of the galaxies.”

This implies that a DM halo is necessary to be incorporated to the content of matter

to correctly reproduce the observational data.

In the same direction, (Ostriker, 85) found with numerical simulation that galactic

disks from spiral galaxies are unstable when there is only a baryonic component. Then, the

incorporation of a DM halo is necessary to explain not only rotation curves, but also the

stability of this kind of galaxies.

3.1.3. Gravitational lensing

Another insteresting idea used to measure the amount of matter in a given galaxy, is through

the deviation of light in the vicinity of such gravitational source. This e↵ect is the so-called

gravitational lensing, and is one of the predictions of Einstein’s General theory of Relativity.

It can be understood as the distortion of a source of light when it passes near a massive
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Figure 3-2.: Representation of gravitational lensing (figure taken from (Int., 2019)).

object before reaching an observer. A representation of this e↵ect is shown in Figure 3-2.

Such e↵ect is analogue to the case when light passes through an optical lense; that is the

reason for its name.

Although Einstein made some calculations in 1912 about this phenomenon (Sauer,

2008), it was Orest Khvolson and Frantisek Link (Bičák and Ledvinka, 2014) who first

discussed the e↵ect in print. Posteriorly, Fritz Swicky postulated in 1937 that the e↵ects

could allow galaxy clusters to act as gravitational lenses. However, it was not until 1979

that this e↵ect was confirmed by observation of the so-called Twin QSO SBS 0957+561.

Given that gravitational lensing occurs by the e↵ect of a gravitational potential of a

massive object, it is possible to reconstruct the mass distribution which causes such e↵ect.

This can be seen very easy in the so-called Bullet cluster, which consisted in two colliding

clusters of galaxies. In this event, it was possible to obtain an image of the baryonic compo-

nent of the system (determined by optical images in the case of stars, and by X-rays in the

case of the plasma), and the mass distribution of the gravitational potentials reconstructed

by lensing. The final result obtained can be appreciated in Figure 3-3, where in red is shown

the measurements obtained for the baryonic matter, while the main gravitational sources

are represented in blue. For such image, authors in (Clowe et al., 2006) concluded that

“The observed displacement between the bulk of the baryons and the gravitational po-

tential proves the presence of dark matter for the most general assumptions regarding the

behavior of gravity.”

Since then, gravitational lensing studies of the Bullet cluster are considered as the most

important observation that supports the existence of a DM component in the Universe. In
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Figure 3-3.: Observation of the Bullet cluster. In red is shown the measurements of the baryonic com-
ponent while the gravitational sources are represented in blue (figure taken from (Nanoqed,
2019)).

addition, there have been more observations for the collision of other clusters, supporting

this conclusion.

3.2. The ⇤CDM model

In the above section, we saw that there exit a host of observational evidence that supports

the introduction of a new mechanism for generating an extra gravitational contribution at

di↵erent scales in the Universe. For such reason, it has been proposed to introduce a new

substance in the Universe that should only interact gravitationally, or a modification of the

theory of gravity. Both of such possibilities have been extensively studied in the literature,

where, at the moment, the ⇤CDM model has been the preferred to describe our Cosmos.

In the introduction of this thesis 1, we have extensively talked about the ⇤CDM model.

We have also comment that it possesses several problems when it is tested with di↵erent

observational data. In this section, we shall review in more detail its description, paying

special attention on results coming from the structure formation process for this model, and

the problems that it possesses in its final results.

3.2.1. The CDM sector and structure formation

Of special interest in the ⇤CDM model is the result obtained in the structure formation pro-

cess (see (Bertschinger, 1998, Del Popolo, 2007, Primack, 2017) for a review). As we already
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mentioned, at very large scales, linear perturbation calculations from ⇤CDM allow accurate

predictions for the Universe. However, at scales where structure forms, the fluctuations have

grown enormously, and became highly non-linear. At such scales, it is necessary to make

use of numerical simulations that allow us to solve the system of nonlinear di↵erential equa-

tions that arises for this description. Particularly, CDM dynamics is described in comoving

coordinates by

~̇x =
1

a
~v, r

2� = �4⇡Ga [⇢(~x, t)� ⇢̄(t)] ,

⇢~̇v +
1

a2
⇢(~v ·r)~v = �⇢r�, ⇢̇+

1

a2
r · (⇢~v) = 0, (3-5)

where ~v is the peculiar velocity, � is the gravitational potential, ⇢ is the mass density, and ⇢̄

is the spatial mean density. The structure formation process considers regions that started

out with a density a little higher than the mean density of the Universe. Then, such regions

possessed a highly gravitational attraction than the homogeneous background, in such case

they expanded until reaching a maximum expansion radius, known as the turn-around radius,

and then collapsed to its geometrical center until relax and form a virialized structure.

From 2005 to 2010, the bench-mark simulations where Milenium I (Springel et al., 2005)

and Milenium II (Boylan-Kolchin et al., 2009), which where the basis for a large number of

scientific letters. However, the improvement of cosmological parameters, computer power,

and simulation codes have permitted increasingly more accurate simulations, for instance

(Klypin et al., 2016, 2011, Kuhlen et al., 2012, Prada et al., 2012, Riebe et al., 2013, Skill-

man et al., 2014). For example, in Figure 3-4, we show the schematic results obtained for

several simulations at large (cluster of galaxies) and small (single galaxies) scales, and consid-

ering or not the contribution of the baryonic component. As it is evident, high-resolutions

simulations permit detailed predictions of the distribution and properties of galaxies and

clusters, unfortunately, our understanding for structure at large scales remains far to be

satisfactory. The description for the evolution of structure from inhomogeneities, i.e., pri-

mordial density perturbations, is complicated since there exist several physical processes like

the gas dynamics, radiative cooling, photo-ionization or recombination. Additionally, for

whichever theoretical prediction, we have to compare it with the Universe structures, being

particularly di�cult the regions where there could exist several discipative e↵ects.

The universal shape found of these virialized dark matter density profiles can be well

described by the so called Navarro-Frenk-White (NFW)

⇢(r) = 4
⇢s

(r/rs)[1 + r/rs]2
, (3-6)

where r = ax is the radial coordinate in physical units, rs is known as the scale radius,

and ⇢s is the value of the density at radius r = rs. It is necessary to mention that the

above profile was obtained by numerical simulations that used CDM without considering a

baryonic contribution.
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Figure 3-4.: Schematic results for structure formation in the ⇤CDM model (Vogelsberger et al., 2020). It
is pressented the results obtained when baryons are considered and when they are not.
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3.2.2. Problems with the CDM sector

3.2.2.1. The satellite plane problem

Since the 1990s, there has been a large range of observations suggesting that the Milky

Way (MW) satellites are distributed on a planar structure, the so-called “Magellanic Plane”

(Kunkel and Demers, 1976, Lynden-Bell, 1976), the disc of satellites (Kroupa et al., 2005,

Metz et al., 2008), the MW “vast popular structure”, and the “great plane of Andromeda”

(Ibata et al., 2013, Pawlowski et al., 2014, 2015, Pawlowski and Kroupa, 2013). Recent

studies by Kroupa et al. (2005), Metz et al. (2006), Pawlowski and Kroupa (2013) described

the structure as a thin disc, having a height of 20 kpc, and 9 of the 11 classical dwarfs of the

MW (Metz et al., 2008) co-orbiting within the structure. In a similar way, in Conn et al.

(2013), Ibata et al. (2013), Koch and Grebel (2006), McConnachie and Irwin (2006), Metz

et al. (2006), it was shown a similar distribution around M31. In the local group (LG), there

have found similar alignments in isolated dwarf galaxies (Bellazzini et al., 2013, Pawlowski

and Kroupa, 2013, Pawlowski et al., 2013, Pawlowski and McGaugh, 2014), as well as in

more distant galaxies (Duc et al., 2014, Galianni et al., 2010, Karachentsev et al., 2014,

Paudel et al., 2013). According to several authors, all the above results should represent an

enormous challenge for the ⇤CDM model. This is because, in cosmological simulations of

DM sub-haloes, they are found to be isotropically distributed, and then, in disagreement with

the planar-like distributions. There have been several proposals to solve this disagreement,

however, at present time, there are not yet a fully satisfactory explanation to understand

these inconsistencies, and then the issue is still open. Additionally, it is highly improbable

that it would be connected to baryonic physics.

3.2.2.2. The cusp/core problem

Observe that close to the center, the NFW profile shows a density distribution described by

a power law ⇢ ⇠ r↵ with ↵ ' �1. Such behaviour is what is usually called as a “cusp”,

opposite to “cored” distributions, which are described by flat slopes with ↵ ' 0. Some other

⇤CDM simulations have shown di↵erent results for the value of ↵: going from even steeper

profile predictions with ↵ ' �1.5 (Fukushige and Makino, 2001, Moore et al., 1998) to a

minimum value ↵ ' 0.8 (Stadel et al., 2009), namely the Einasto profile (which seems to

give the best fit to simulations (Springel et al., 2008b)). Unfortunately for the model, in

general, the ⇤CDM should always possess a cusp-like inner density profile.

The cusp/core problem refers to the behaviour the DM density profile should have at

the innermost regions of galaxies. It lies in the fact that even the smallest values for ↵,

obtained by N-body simulations, are larger than the value obtained by several astronomical

observations. For example, Flores and Primack (Flores and Primack, 1994), and also Moore

(Moore, 1994), ruled out cuspy density profiles from rotation curves of DDO galaxies, and

showed them to be well approximated by cored (or pseudo-)isothermal density profiles. Ho-
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wever, this discrepancy has been fervently debated for two decades since several studies have

obtained di↵erent results, occasionally favoring cuspy central density profiles, while in other

occasions the cored distributions are preferable (see Diemand et al. (2007) for a review).

Particularly, the most confusing results are the ones in which di↵erent conclusions have even

been obtained using similar techniques for the same object. For example, the dark matter

profile inner slope of NGC2976 is obtained to be �0.17 < ↵ < �0.01, according to Simon

et al. (2003), while in Gnedin (2000) the authors obtained ↵ = �0.90 ± 0.15. In a similar

way, the fact that there seem to be some dwarf galaxies on which cuspy-like profiles at their

centers appear to match better with the observational data, complicates enormously the

correct description of this topic, and then, in general, the determination of the inner slope

of galaxies is not an easy task.

In the above discussion, we concentrated in several DM profiles that have been obtained

in the literature. Such profiles were obtained in DM-only simulations, i.e., without taking

into account the baryonic component, in such case they should be coherent and compare the

results with galaxies where baryons are not dominant. The suitable candidates that satisfy

this condition are dSphs and low surface brightness (LSB) galaxies. Then, since most of the

observations for such galaxies preferred a cored density profile, this represents an enormous

problem for the ⇤CDM model. Adding baryons may reduce the problem, but as we see

below, this is not the only issue that seems to require baryons to agree with observations.

3.2.2.3. The missing satellite problem

This problem relies in the discrepancy between the number of satellite galaxies found in

simulations around large galaxies, and the ones that have been observed. In the hierarchical

galaxy formation scenario, a large number of haloes are consumed by more massive ones;

however, there are still many dark matter substructures that are not disrupted, and that

remain orbiting a massive halo. The scale invariant CDM primordial fluctuations at small

scales leads to a large number of these subhaloes.

It was noticed by Klypin et al. (1999), Moore et al. (1999b) that N-body simulations

presented many more subhaloes than observed satellite galaxies. For example, the Milky Way

counts 9 bright dSphs, Saggitarius, the LMC and the SMC. In contrast, N-body simulations

predict that such kind of galaxies should possess around 500 satellites with larger circular

velocities than Draco and Ursa-Minor (i.e. bound masses > 108M� and tidally limited

sizes > kpc (Boylan-Kolchin et al., 2011, Boylan-Kolchin et al., 2012)). Such conclusion

was confirmed by several cosmological simulations (Aquarius, Via Lactea, and GHALO

simulations (Diemand et al., 2007, Springel et al., 2008b, Stadel et al., 2009)), where in

all cases they obtained that Milky Way-like galaxies should be surrounded with at least one

order of magnitude more small subhaloes (dwarf galaxies) than observed.

Some solutions of this problem lie in considering the distinction between visible satel-

lites and the entire population: if only a subset of the population is visible, the observed
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vs predicted satellites discrepancy can be reduced. This solution relies on the e�ciency of

star formation, which requires baryons to be included, and forcing the use of hydrodynamic

simulations. Some possible mechanisms to suppress the rate of star formation in these galax-

ies could be ionizing radiation photoevaporation (Alvarez et al., 2009, Gnedin, 2000, Simon

et al., 2003) or due to heating by cosmics rays. Photoionization is expected to suppress

star formation in haloes with masses under ⇠ 109 M�. In more massive halos, where gas

is retained and star formation can continue, there could be additional suppression due to

supernova feedback (Benson et al., 2002, Governato et al., 2007). It is also important to

consider the number of dim satellites that remain undetected due to incompletness in the

observations (Rashkov et al., 2012, Simon and Geha, 2007, Walsh et al., 2008).

3.2.2.4. The too big to fail problem

On the other hand, Boylan-Kolchin et al. (2011) pointed out that there still a problem with

the most massive subhalos, the so-called too big to fail problem. This aspect of satellites

arises because the most massive subhaloes in high-resolution simulations for Milky Way-like

galaxies, with only dark matter (Diemand et al., 2008, Springel et al., 2008a), are too dense

to host the satellites observed in the Milky Way. Simulations always contain a population

of subhalos that are more massive than any of the spheroidal dwarfs observed in the Milky

Way. In other words, while the abundance of low luminosity satellites can be consistent

with CDM predictions, the too big to fail problem is still unsatisfactory because simulations

predict too many massive satellites.
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4.1. Overview of the SFDM model

Among several candidates that have been proposed to be the DM in the Universe, a very

promising one is the possibility that an ultra-light SF could fulfill with such objective1. This

proposal is a consequence of the fact that, for a correct potential, the SF can behave as

a dust-like fluid, as we explained in 2.3. The main idea of this scenario was originated

about two decades ago (Arbey et al., 2001, 2002a, 2003, Hu et al., 2000, Matos and Arturo

Ureña-López, 2001, Matos et al., 2000, Matos and Urena-Lopez, 2000, Sahni and Wang,

2000), however, some hints can be traced further back in (Ji and Sin, 1994, Sin, 1994). Since

then the idea has been rediscovery by various authors with di↵erent names, for example:

SFDM (Matos et al., 2000), fuzzy DM (Hu et al., 2000), wave DM (Schive et al., 2014a),

Bose-Einstein condensate DM (Boehmer and Harko, 2007), or ultra-light axion DM (Marsh

and Ferreira, 2010) (see also (Membrado et al., 1989)). However, its first systematic study

was started in (Guzmán and Matos, 2000, Guzmán and Matos, 2000).

Before continuing, it is necessary to mention the following: In common literature of

SFDM models there have been people trying constraint the free parameters of the model.

Putting the values for c and ~ in our equations, the complete potential in the self-interacting

case is given by

V (|'|2) =
m2c2

2~2 |'|2 +
�

4~c |'|
4, (4-1)

and then, from (2-29)

µ =
mc

~ , and ⌫ =
�

~c. (4-2)

Observe that the units of the SFDM physical quantities are ['] = (energy/length)1/2, [µ] =

1/length and [⌫] = (energy ⇤ length)�1. If we choose to use natural units, the mass and the

self-interacting parameter becomes µ = m and ⌫ = �, and the units of the field quantities

will be ['] = [µ] = energy, whereas ⌫ becomes a dimensionless quantity. Although we will

continue using natural units in this chapter, except in the structure formation section, we will

refer in all the thesis to m and � when we consider the numerical value for the parameters of

the SFDM. In fact and because most of the values of such free parameters are very small, we

1This ultra-light particles (with masses as small as m ⇠ 10�33eV/c2) have been predicted by a variety of
unification theories, e.g., string theories and other multidimensional theories (Arkani-Hamed et al., 1999,
Arvanitaki et al., 2010, Kallosh et al., 2002, Sikivie, 2012).
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will refer to the parameters m22 ⌘ m/(10�22eV/c2) (or in natural units m22 ⌘ m/(10�22eV),

and �90 ⌘ �/10�90. It is important for the reader to remember this statement, given that in

future chapters we shall use the four quantities: µ, ⌫, m22 and �90.

Historically, the SFDM potential that has been more frequently used in literature is

just the massive free scenario (2-25), with ' as a real field. In such case, this simplest

model – considered as the fuzzy limit of the SFDM – has only one free parameter µ, or

equivalentely m22, typically in the range m22 ⇠ 100 � 1. With this value for the mass,

it was demonstrated that its cosmological regime matches to the ⇤CDM model (Chavanis,

2012, Magaña et al., 2012, Matos and Arturo Ureña-López, 2001, Schive et al., 2014a, Suárez

et al., 2014a)2, it is consistent with the acoustic peaks of the cosmic microwave background

radiation (Rodriguez-Montoya et al., 2010), and presents a cut-o↵ in the power spectrum

which suppresses the small-scale structure formation for halo masses M < 108M� (Bozek

et al., 2015, Hu et al., 2000, Marsh and Silk, 2013, Matos and Arturo Ureña-López, 2001) (for

a review of this SFDM see (Hui et al., 2017, Magana and Matos, 2012, Marsh, 2016, Suárez

et al., 2014b)). In addition, di↵erent numerical simulations (Levkov et al., 2018, Mocz et al.,

2017a, Schive et al., 2014a,b, Schwabe et al., 2016, Veltmaat and Niemeyer, 2016) have shown

that the SFDM forms core density profiles in the inner region of the galactic haloes (solving

naturally the cuspy-halo problem) with a size compared to its de Broglie wave length

xdB /
1

mv
, (4-3)

where v is the velocity associated to the SFDM particle. These cores, referred as “solitons” in

the literature (Chavanis, 2011, Chen et al., 2017, Levkov et al., 2018, Marsh and Pop, 2015),

are assumed to be surrounded by a NFW envelope3 generated by the quantum interference

provided by the SFDM and following the relation

Mc / M1/3
h

, (4-4)

where Mc (Mh) is the total core (halo) mass. This correlation between the central region of

the halo and its exterior o↵ers a unique opportunity to understand and extend the numerical

simulations by considering novel physical e↵ects that could also be important for the halo

that would form at the end. In fact, in a future chapter of this thesis we will focus on the

addition of self-interaction to the above result.

Although the free SFDM is considered a serious alternative candidate to standard

⇤CDM, it is necessary to recognize that the simplest model possesses some di�culties when

its mass parameter is fitted with astrophysical and cosmological observations. For example,

2However as it is shown in (Li et al., 2014) when the SFDM is complex there exists an early sti↵-like epoch
for the SFDM which represents a di↵erence between the SFDM and the ⇤CDM model at cosmological
levels.

3This NFW envelope has been obtained only under radial average. However, the real structure of the
SFDM results in a more complicated relation.
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constraining the model with galactic rotation velocity and velocity dispersion data (Arbey

et al., 2001, Calabrese and Spergel, 2016, Lesgourgues et al., 2002), the value of the mass for

SFDM which results, m22 . 0.1, is in tension with the constraints from the cut-o↵ necessary

to avoid small-scale structure formation, m22 ⇠ 1 (Bozek et al., 2015, Hu et al., 2000, Marsh

and Silk, 2013, Matos and Arturo Ureña-López, 2001). However, this discrepancy can be

understood by noticing that the analysis in (Arbey et al., 2001, Calabrese and Spergel, 2016,

Lesgourgues et al., 2002) assumed that the soliton comprises the entire DM halo, and then

from (4-3) the resulting value of m22 is underestimated. On the other hand, when the mass

parameter for SFDM is tested with the matter power spectrum inferred from Ly-↵ forest

analyses (Armengaud et al., 2017, Bozek et al., 2015, Iršič et al., 2017, Kobayashi et al.,

2017, Zhang et al., 2017), a bound of m22 & 10 is obtained, which is also in tension with the

two constraints mentioned above. However, the Ly-↵ analysis is subject to uncertainties in

our understanding of the intergalactic medium at high redshifts. Overall, we should caution

that a shallow comparison between di↵erent methods can be vulnerable to criticism.

Nevertheless, motivated by these discrepancies, some previous literature considered

extensions to the most basic SFDM models by adding a new parameter � related to the

self-interaction between particles4, where a positive (negative) self-interaction follows from

a repulsive (attractive) interaction. The most studied of these extensions has been the

repulsive scenario (Arbey et al., 2002b, Fernández-Hernández et al., 2018, Harko, 2011, Li

et al., 2014, 2017, Rindler-Daller and Shapiro, 2012, Robles and Matos, 2012), being most

of the academic works studied in the strong self-interacting regime where it is reached the

so-called Thomas-Fermi (TF) approximation (see later in this chapter). On the other hand,

for an attractive self-interaction, it has been motivated from a particle physics point of view,

considering that such ultra-light particles can be understood as axion-like particles – a pseudo

Nambu-Goldstone boson generated by a spontaneously broken global U(1) symmetry –. The

addition of this self-interacting parameter results to be very promising since it adds extra

physics to the SFDM that could help to discriminate between SFDMmodels. For this reason,

it is natural to ask what the consequences of such a self-interacting SFDM candidate should

entail when contemplating a more general region of parameters for the self-interaction, also

with regard to studies already done for the free case.

4.2. Cosmological evolution for SFDM models

In section 2.3 we have commented a little about the cosmological behavior for the SFDM by

following its equation of state. However, in the general formalism, the correct way to follow

its cosmological dynamics should be by solving the Friedmann equation (1-9) together with

the Klein-Gordon equation in a FLRW background (2-17) and the fluid conservation equation

4This extension would also result if we include the next-leading terms in a Taylor expansion of a more
general potential.
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(1-11) for each of the other constituents existing in the Universe. In general, after the SFDM

arrives at its fast oscillating regime, the KG equation starts to be so complicated when trying

to solve it numerically and then, for such reason, there have been several proposals which

try to simplify this task. For example, in (Suárez and Chavanis, 2017) the background

SFDM model was solved semi-analytically and considering that it is self-interacting. On the

other hand, in (Urena-Lopez and Gonzalez-Morales, 2016) the background dynamics was

also studied by considering a polar decomposition for the SFDM variables of the form

⌦1/2
'

sin(✓/2) ⌘

p
8⇡'̇

p
6mplH

, ⌦1/2
'

cos(✓/2) ⌘ �

p
8⇡µ'

p
6mplH

, y1 ⌘ 2
µ

H
, (4-5)

in such a way it was possible to avoid most of the oscillating behavior. With such new

variables the system of di↵erential equations necessary to describe the SFDM model are

rewriten as

✓ 0 = �3 sin ✓ + y1, (4-6a)

y
0

1 =
3

2
(1 + !tot)y1, (4-6b)

⌦
0

'
= 3(!tot � !')⌦', (4-6c)

where

!tot ⌘
ptot
⇢tot

=
X

i

⌦i!i + ⌦'!', (4-6d)

is the total equation of the state in the Universe and

!' ⌘ � cos ✓ (4-6e)

is the equation of state for the SFDM. For such study it was considered a real SFDM with

a cosmological constant-like initial condition at early times, i.e. considering the inflationary

attractor solution (see section 2.3). To solve the system of di↵erential equations a free

version of the numerical code Class was modified in order to replace the CDM sector. The

result can be seen in Figure 4-1. A similar study was done in (Magaña et al., 2012) where

they used the Adams-Bashforth-Moulton (ABM) method to solve the system of di↵erential

equations that could manage the oscillatory behavior for the SFDM model. In their work,

they obtained a similar result to that obtained by (Urena-Lopez and Gonzalez-Morales,

2016). On the other hand, in (Li et al., 2014) the background SFDM model was studied by

considering it as a complex field with a respulsive self-interaction. Then, at early times it

should behaved as a sti↵-like fluid (see Figure 4-2). The motivation for such new exploration

in the SFDM parameters was because they were trying to fulfill the constrictions coming from

the e↵ective number of extra-relativistic degrees of freedom during Big Bang Nucleosynthesis

(see section 4.5). In such case, they demonstrated that the complex self-interacting model is

preferable than its free field counterpart. The case when the SFDM possesses an attractive

self-interaction has not been studied in the same way the other models given that a negative
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Figure 4-1.: Background evolution for the SFDM model in the free limit. The label CDM in the plot
refers to the standard DM component, whereas r, b and ⇤ stand for radiation, baryons
and cosmological constant. In the figures (left) we show the cosmological evolution of the
density parameter ⌦ and (right) the evolution of the energy density ⇢ of the di↵erent matter
components (Figure taken from Urena-Lopez and Gonzalez-Morales (2016)).

Figure 4-2.: Background evolution for a complex self-interacting SFDM model with a repulsive self-
interaction. Observe that thanks to the complex nature of the field there exist an early
epoch where the SFDM dominates the mean density of the Universe (Figure taken from (Li
et al., 2014)).

self-interaction possesses more observational di�culties, as it is the case of the generation

of topological defects, and then the self-interacting parameter must be extremely small to

avoid such constrictions (Visinelli, 2017). This implies that the attractive self-interacting

parameter should not be important at cosmological scales.

As we saw in the above discussion and in section 2.3, we could have di↵erent dynamics
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for the SFDM model depending on the value of its free parameters. However if the SFDM

is consider to be the total DM in the Universe, a constriction that should be fulfilled for all

SFDM candidates is that at the radiation-matter equality it should behave as a dust-like

fluid. Such constrictions implies that the SFDM parameters should fulfill (Li et al., 2014)

|�90|  1.04m4
22. (4-7)

4.3. Linear grown in SFDM models

After knowing the background dynamics of the SFDM model, it is time to talk about the

evolution of its linear perturbations. Of course, at such scales, one of the main necessities

for whichever DM candidate is to verify that the perturbations for such candidate grow and

allow the formation of structure in the Universe. The most studied model is the one that

considers a real SF in the free-field limit, being the only one that has been tested with the help

of Boltzmann codes5, although some semianalytical studies have been done in the complex

self-interacting case in (Suárez and Chavanis, 2015). In this section we will review the basic

results obtained in both scenarios close following (Urena-Lopez and Gonzalez-Morales, 2016)

for the free case and (Suárez and Chavanis, 2015) for the self-interacting scenario. Then, if

the reader is interested in reviewing this topic a little more formal, we encourage him/her

to look at those references.

It is convenient to represent the perturbed KG equation in the synchronous gauge

(1-78). In such case and by considering a decomposition for the SFDM as '(t, k) = '̄(t) +

�'(t, k) in Fourier space, the equation of motion for the perturbed field �' for wavenumber

k reads

�'̈+ 3H�'̇+

✓
k2

a2
� µ2

◆
�' = �

1

2
˙̄' ˙̄h, (4-8)

where h̄ = hl

l
is the trace of the spatial perturbations in the metric. In the same way they

worked with the background equations, it is convenient to work in a set of new variables

�' ⌘ �⇢'/⇢' = �e↵ sin(✓/2� #/2), �1 = �e↵ cos(✓/2� #/2), (4-9)

in such a way it is possible to avoid the rapid oscillating behavior for the perturbations of

the SFDM. Under the above new set of dynamical variables the di↵erential equations that

describes the SFDM are

�
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2
h̄

0
sin ✓, (4-10b)

5There are some works with more complicated potentials that have been also tested with Boltzmann codes.
For example in (Cedeño et al., 2017) it was studied a SFDM candidate with an axion-like potential of
the form v(') = µ2f2[1 + cos('/f)].
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where k2
J
⌘ 2a2Hµ is the squared Jeans wavenumber that naturally arises because of the

wave nature of the SF.

Particularly, in the fast oscillating regime the above equations are reduced to

�
0

'
= �

k2

k2
J

�1 �
1

2
h̄

0
, �

0

1 =
k2

k2
J

�'. (4-11)

Observe then, that for length scales k ⌧ kJ the same expression as that for CDM, �
0
'
=

�(1/2)h̄
0
, is recovered, with the usual growing mode �' / a, whereas �1 remains approx-

imately constant. On the opposite regime k � kJ the above equations resemble that of

a harmonic oscillator, and then the density contrast oscillates. Given the fact that kJ is

a quantity that evolves on time, the evolution for a given scale k should transit from one

behavior to another, i.e. a typical SFDM perturbation should oscillate at early times until

the scale k ⇠ kJ and then grows as in the CDM case. This is a particular behavior for the

SFDM that di↵ers from CDM for scales below the Jeans scale.

The above system of di↵erential equations was also implemented in the Class code in

order to solve it together with the perturbations of the other constituents in the Universe (as

radiation and baryons). The idea, of course, was to use the SFDM as DM instead of CDM.

In Figure 4-3 we show the CMB (upper) calculated for di↵erent masses m22 = 10�4
� 100

as (Urena-Lopez and Gonzalez-Morales, 2016) obtained in their work together with the

calculation for the best fit of the ⇤CDM model. In the same figure (bottom) we also show

the relative deviation for each CMB with respect to the ⇤CDM. Observe that as long as the

value of the mass of the SFDM increases, the di↵erence with the ⇤CDM decreases, being

practically not noticeable for masses greater than (Hlozek et al., 2015)

m22 > 10�2. (4-12)

On the other hand, in Figure 4-4 we presented the MPS calculated by the same authors.

Observe that di↵erently to the ⇤CDM model, in the SFDM there exists a cut of for large

k (provoked by the Jeans scale). This implies that structure at small scales should not be

formed. This result is very important given that with such property it is possible to solve

naturally the missing satellite problem (see section 3.2.2.3). The preferred value needed for

such porpoise is

m22 ⇠ 1. (4-13)

On the other hand, in (Suárez and Chavanis, 2015) the evolution of the perturbations

during a matter dominated Universe for a complex SFDM candidate in the nonrelativistic

regime was studied. For such purpose, a Universe with only a SF as its constituent was

considered and then it does not represent a realistic scenario. However, some of their results

can be important to di↵erentiate between SFDM models so we will review them. They

worked in the Newtonian gauge (1-76) where the dynamical equations for the perturbations

of the SFDM in the nonrelativistic limit and for scales well inside the cosmological horizon
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Figure 4-3.: CMB power spectrum for di↵erent masses of the SFDM model calculated from Class (Figure
taken from (Urena-Lopez and Gonzalez-Morales, 2016)).

Figure 4-4.: MPS for di↵erent masses in the SFDM model. We also show the CDM result in a black curve
(Figure taken from (Urena-Lopez and Gonzalez-Morales, 2016)).
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where they defined J (SI) as the reduced quantum (self-interacting) Jeans wavenumbers

as
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As expected the CDM model is recovered by taking the limit J ,SI ! 1.

After solving the above equations from di↵erent limits (depending on what term inside

the parenthesis in equation (4-14) dominates) they obtained di↵erent behaviours depending

on the value of the SFDM self-interaction. We can see their results in Figure 4-5. In the

upper left figure what they showed is a comparison between the free field limit (dashed curve),

the repulsive self-interacting scenario when the self-interaction strongly dominates – known

as the TF limit, see later – (oscillatory solid curve) and the CDM (solid curve). Observe

that in all cases, SFDM perturbations oscillate at early times and then it starts to grow in

the same way than CDM. In particular, in the repulsive scenario, the SFDM evolution for its

perturbations can be understood as follows (right-upper figure): an early behavior where the

self-interaction dominates (k2/(2
SI
a2) � k4/(4

J
a) � 1), then transiting to a limit where

the self-interaction is not important anymore and the field behaves e↵ectively as a free field

(k2/(2
SI
a2) ⌧ k4/(4

J
a) � 1) and finally the SFDM transiting to a CDM-like behavior

(k2/(2
SI
a2) ⌧ k4/(4

J
a) ⌧ 1). On the other hand, in the attractive scenario they showed

that the perturbations for the SFDM grow faster than in the free and repulsive scenarios

thanks to the attraction provided by the self-interaction. In the figure (down figure) they

showed the evolution of the perturbations for di↵erent values of the self-interaction obtaining

that as long as the absolute value of it increases, the SFDM perturbations grow faster.

Remark: It is important to mention that in such studies they obtained that in all

cases the SFDM perturbations grow faster than its CDM counterpart, being the attractive

case where the perturbations grow even faster. In their work they mentioned that in this

last case it is necessary for the absolute value of the SFDM self-interaction not to be so large

in order to avoid the formation of structure in extremely early times. However, this rapid

growth of the perturbations is also a very important result for the model given that there are

some observations that indicate the existence of galaxies at very ealy times (see for example

(Lehnert et al., 2010)).

4.4. Galaxy formation in the SFDM scenario

Once the background and linear perturbations in the SFDM model have been understood, it

is time to consider the structure formation process. In the literature, there have been some

dedicated numerical simulations which have studied this mechanism. Most of them rely in

standard N-body simulations with modified initial conditions that reflect the properties of

SFDM at the level of linear density perturbations in the matter power spectrum, as obtained

from the amended Boltzmann codes (see Figure 4-4). However, there are other works that

solve directly the EKG system in the weak-field limit, i.e., the GPP system (Mocz et al.,

2017a, Schive et al., 2014a,b), which should be the most reliable ones, and also that take

advantage of a hydrodynamic formulation that exists for the SFDM model (Levkov et al.,

2018, Schwabe et al., 2016, Veltmaat and Niemeyer, 2016). In this section, we shall review the

most important results obtained for such works in order to understand the kind of structures
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Figure 4-5.: Evolution of the perturbations for the self-interacting SFDM model. (upper left) shows the
evolution of the free case (dashed curve), the repulsive case (oscillatory solid curve) and the
CDM evolution (solid curve). (upper right) shows the evolution of the repulsive scenario
distinguishing the moment when the self-interacting dominates the evolution of the SFDM
(TF-regime) and the moment when the mass term dominates over the self-interaction. It is
also shown the CDM evolution for the perturbations. (bottom) shows the evolution of the
self-interacting scenario in the case of an attractive self-interaction. The curves go from the
CDM limit (bottom line) to increase the value of the self-interaction (upper) (Taken from
(Suárez and Chavanis, 2015)).

that are generated in the SFDM model. For simplicity, and in order to be consistent with

most of the academic papers that works with galaxies formed in the SFDMmodel, we decided

to reintroduce ~ and c (see equation (4-2)) in the di↵erential equations that arises in the

formalism described in this chapter.

4.4.1. The field vs the hydrodynamic approach in the SFDM model

In order to study the clustering of SFDM particles, it is necessary to consider some approx-

imations. The structure formation process take place in regions well within the horizon and

where overdensities are not small anymore (�' � O(105)), and then, linear perturbation the-

ory can not be applied. Additionally, typical virial velocities in a galaxy are non-relativistic
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(vvir ⌧ c). Considering the above argument, it happens that the Newtonian limit for the

EKG system applies, and then the dynamics that describes the structure formation process

in the SFDM model is given by

i~ ̇ = �
~2

2ma2
r

2 +m� + g| |2 , (4-16a)

r
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a
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where g ⌘ �~3/(2m2c), ⇢̄ is the mean density in the simulation, and
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if ' is a real field.

In general, ⇢ (⇢̄) possesses the contribution of all the components in the Universe.

However, in simulations already done in the SFDM model, it is usually limited to the con-

tribution of the SFDM content6, in such case ⇢ = ⇢ = m| |2.

There is also a fluid equivalence of the GPP system that has been extensively used in

the literature. It can be obtained by considering the well known Madelung transformation

 (x, t) = | (x, t)|eiS(x,t) =

r
⇢(x, t)

m
eiS(x,t), (4-18)

and defining a velocity field as the phase gradient

~v =
~
m
rS. (4-19)

With such new variables, the GPP system is rewriten as

⇢~̇v +
1

a2
⇢(~v ·r)~v = �⇢rQ� ⇢r��rPSI , (4-20a)
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and PSI ⌘
g

2m2
⇢2. (4-21)

6In the structure formation process it is Dark Matter which plays the most important role on it and that
is the reason why in the simplest case it is usually considered only the DM contribution for simulation
of structure formation. However a most realistic scenario should be one where baryonic physics is also
taken into account, being no already completelly done for the SFDM model, altough some first works
have been studied by some authors (see for example (Veltmaat et al., 2019))
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Observe that the velocity is irrotational outside of vortex lines, i.e. it obeys r⇥ ~v = 0.

The system (4-20) corresponds to an Euler-like equation and a conservation equation

of fluid dynamics with a new term rQ, which is usually called the quantum force while Q is

the quantum potential. In a similar analogy PSI is a pressure term that is provoked by the

self-interaction between particles. Of course such names are given because of the analogy to

the classical Euler equation.

Remark: Observe that the above system is equivalent to the dynamical equations

necessary to describe the structure formation in the ⇤CDM model (see equations (3-5)) plus

the contributions for the quantum potential and the pressure due to self-interaction. Then,

the structure formation process for the SFDM model should be simmilar to the ⇤CDMmodel

as long as the scales for the structures are much larger than the scales where the Q and the

PSI terms are important. In the case when the self-interacting term can be ignored, such

scales corresponds to the de-Broglie wave-length associated to the SFDM particle, whereas in

the case the quantum pressure can be ignored, such scales should corresponds to the radius

obtained in the TF regime (see next subsection).

4.4.2. Cosmological simulations, galaxies and the core-halo mass

relation

The first realistic simulations from cosmological initial conditions in the SFDM model were

provided by (Schive et al., 2014a). In their work, they solved the GPP system (4-16) in the

free limit (g = 0), i.e., they solved the SchP system, and by considering the SFDM as the

only constituent of the Universe. One of their main results was that the final kind of galaxies

formed for this model can be well described by an inner soliton profile, which at some radius

transits to a NFW-like envelope (3-6) that is generated as a result of incoherent fluctuations

of the SFDM (see Figure 4-6 and 4-7). In their work, Schive et al. gave a numerical fit to

the soliton density profile, and given by

⇢c(r) ' ⇢c0[1 + 0.091(r/rc)
2]�8, (4-22)

where r is the physical radial coordinate r = ax, rc is the radius at witch the density drops

to one-half its peak value, and their central density value in their simulations is given by

⇢c0 ' 3.1⇥ 1015
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◆2 M�

Mpc3
. (4-23)

These solitons can be easily understood by considering the following simplification: At red-

shift z = 0, we can set a = 1, which results in x = r in equation (4-16). We can also consider

that ⇢ � ⇢̄7. Then, we can consider that the central soliton formed in the inner region of

7As in the numerical simulations performed by Schive et. al. we are considering that the only constituyent
in the Universe are the SFDM particles. Then ⇢ (⇢̄) must be taken as the total (background) SFDM
density profile.
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SFDM haloes can be tough as stationary solutions, in such case they should be represented

by an harmonic time dependence. But, by adopting such simplifications, we should have

that these configurations are represented by the same di↵erential equations than the New-

tonian boson stars described in section 2.4.2, and with similar boundary conditions. In this

way, soliton profiles in the free SFDM model are represented by boson stars in the Newto-

nian regime. In a similar way, in the hydrodynamic representation, these solutions arise by

demanding spherical symmetry, and from the conditions a = 1, ⇢(r, t) = ⇢(r) and ~v = 0.

After considering these simplifications, the conservation equation (4-20b) is identically sat-

isfied, whereas the Euler equation (4-20a) results in r� = �rQ (an equilibrium between

the quantum and the gravitational forces8). Using the Poisson equation, one finally arrives

at the expression

r
2

✓
r

2p⇢
p
⇢

◆
= 8⇡G⇢. (4-24)

Additionally, an important relation than the central soliton profile fulfills is the Mc � Rc

relation

Rc = 9.9
~2

GMcm2
, (4-25)

where Mc (Rc) is the total core (radius) of the soliton profile, i.e., Rc = R99. From here and

for the rest of this thesis subindex c will be used for total soliton quantities, until otherwise

is specified.

On the other hand, in (Schive et al., 2014b), they obtained a core-halo(envelope) mass

relation valid in the free field limit

Mc,7 ' 1.4⇥ 102M1/3
h,12m

�1
22 M�, (4-26)

where Mc,7 ⌘ Mc/(107M�)9, and Mh,12 ⌘ Mh/(1012M�). From here and for the rest of this

thesis subindex h should refer to total halo quantities, unless otherwise specified. Observe

that the above relation implies a maximum halo mass at which the soliton should be enough

for modeling the total halo of a galaxy, given by equating Mc = Mh. Usually these kind of

galaxies are assumed to model the well-known dSph galaxies.

The NFW-envelope structure has been confirmed by various groups that considered

simpler scenarios, as it is the case of merging many solitons nearly simultaneously (Levkov

et al., 2018, Mocz et al., 2017a, Schwabe et al., 2016, Veltmaat and Niemeyer, 2016), and by

considering the field description as well as the hydrodynamic representation (see previous

section). In all cases, they obtained the same kind of configurations (the inner soliton

and the NFW-like exterior), although each of such simulations have reported a di↵erent

8For this result we have neglected the self-interacting parameter given that until now we have only reviewed
the simulations already done in the free case by (Schive et al., 2014a,b).

9Observe that in (4-4) we referred to Mc as the total core mass which, as introduced by Schive et al.,
corresponds to a smaller mass given that it is the mass enclosed within radius rc. However, and because
for the rest of this thesis we shall only consider total soliton quantities, we decided to redefine this index.
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Figure 4-6.: Colision of soliton profiles at di↵erent stages. Panel a shows the initial condition in the
simulation while b and c shows intermediate distribution. Finally panel d shows a zoom-in
of the final configuration in the simulation (Taken from (Schive et al., 2014b)).

match between both structures (see Figure 4-7) which results in a di↵erent core-halo mass

relation. However, in (Bar et al., 2018), it was studied the physical meaning of each of the

di↵erent results obtained by numerical simulations, agreeing that the result from Schive et

al. represents a better physical consequence for galaxies in the SFDM model. In a more

recent work (Bar et al., 2019), it was suggested that the above relation can be understood

if the following relation
Kc

Mc

'
Kh

Mh

, (4-27)

is fulfilled by the model, where Ki is the kinetic energy defined in (2-46a). As discussed in

(Bar et al., 2019), the above rough equality ignores the e↵ect of the gravitational potential

of the halo envelope onto the central soliton. On the other hand, in the free case (the case

studied by (Schive et al., 2014a,b)), the above equation is equivalent to |Ec|/Mc ' |Eh|/Mh

(see equation (2-47)), which was the first relation proposed by the same authors in (Bar et al.,

2018). However, when they tried to extend the model by including a baryonic component

in (Bar et al., 2019), they demonstrated and agreed that (4-27) represents a more realistic

consequence of the core-halo relation.

There have been another porpoise to explain the core-halo mass relation, inspired by

physical arguments. Some other authors (Chavanis, 2019, Mocz et al., 2017b) consider that
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Figure 4-7.: Density profile of the SFDM model in the free limit reported by di↵erent authors (Taked from
(Bar et al., 2018)).

the Mc �Mh relation can be understood if the circular velocity for the core and halo are of

the same order, i.e., if it is fulfilled the relation

v2
c
⇠ v2

h
, or Mc ⇠

Rc

Rh

Mh. (4-28)

Whether or not a soliton forms in the first place under realistic conditions cannot,

however, be addressed by the previous simulations. Some earlier works that consider even

simpler scenarios – for example by considering a simple top-hat model at time of turn-

around – have been carried-out (see for example (Guzman and Urena-López, 2004)) and

showed that soliton profiles can be formed in considerably short time. In (Levkov et al.,

2018), they showed that by providing a non-vanishing initial velocity to the SFDM particles,

solitons are able to form in small galaxies, and the cusp-core problem can be solved in this

scenario always that the mass parameter fulfills the constriction:

m22 . 20. (4-29)

It is important to mention that the correct physical meaning of SFDM halo structures

continue being not well understood by researchers. For example, although central soliton

profiles are well understood that they are supported by the repulsive nature of the uncertainty

principle of quantum mechanics via the quantum potential term (4-21), the NWF exterior

is not clear under which mechanism it could be supported. In this context, in (Matos and

Ureña-López, 2007), it was proposed that the gravitational co-existence of di↵erent energy

eigenstates of the SFDM wavefunction, i.e., diferent (Newtonian) boson stars, could be the

responsible for this kind of configurations. In fact, in (Bernal et al., 2010, Urena-Lopez

and Bernal, 2010) it was shown that two-state solutions (the ground state and the first

excited state) are virialized and stable under perturbations for both the non-relativistic and
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relativistic regimes. These two state solutions have been also proposed in (Matos et al., 2019)

to solve the galactic satellite plane problem studied in section 3.2.2.1. Following this idea,

(Lin et al., 2018) constructed self-consistently haloes that follows relation (4-26) with these

multi-state solutions, where they obtained that a fermionic King model (Chavanis et al.,

2014) reproduce better SFDM haloes. In an even simpler description (Robles and Matos,

2013) (see also (Ureña-López et al., 2002)) it was proposed to model SFDM haloes in the free

field limit by considering a flat geometry, and then, by dealing only with the KG equation.

In such description, it was possible to obtain an analytic solution for the SFDM given by

⇢(r) =
X

j

⇢j(r) with ⇢j(r) = ⇢j0
sin2(r/rj

s
)

(r/rjs)2
, (4-30)

where ⇢j0 is the central density, rj
s
⌘ 1/kj

s
, being the dispersion relation kj

s
defined as

kj

s
⌘ !2

j
� µ2 = ⇡jR, R the radius of the SFDM halo, and !j a free constant parameter

that is related to the harmonic frequency of oscillation for the SFDM. They showed that the

value of each !j can be understood by meaning of finite temperature corrections. Then, the

above solutions are multi-state configurations in the sence that each ⇢j oscillates inside the

galactic halo. We shall understand a little more this parameter !j in chapter 6. Although

the above multi-state configuration is not a real solution for the complete EKG system, or

the SchP system, and it also does not possess a finite energy in all space, since it does not

decays faster than ⇠ r2, it has been shown that this approximation gives good estimations

for the mass parameter in the SFDM and then, for its simplicity, these configurations results

to be a good alternative to model the free SFDM at galactic scales.

My small contributions to the SFDM density profile (4-30):

• Observe that equation (4-30) was obtained by neglecting the self-gravitation of the

SFDM particles. That condition should be applicable always that the halo is diluted

enough, and then, from (4-22), (4-23) and (4-26), and by considering the Mc � Rc

relation (4-25), which follows easily from the reescaling property (2-50), it should apply

for the smallest galaxies, i.e. for dSph galaxies. Now, since typically dSphs are mostly

modeled by only the soliton profile, then R ' R99, where, as we saw in section 2.4, R99

is the radius that contains the 99% percent of the total soliton mass. In this way, it

should apply that ⇢j=0 represents the soliton in this approximation, whereas ⇢j 6=0 are

for excited configurations, i.e. excited boson stars. On the other hand, one of the first

studies that used the profile (4-30) to constrain the free SFDM model with dSphs was

provided by (Martinez-Medina et al., 2015). In their work, they obtained that in all

their fits, each dSph should be mostly modeled by ⇢j=0. Then, we could consider that

for this case, both descriptions (4-26) and (4-30) are equivalent. On the other hand,

if we attempt to model big galaxies with (4-30), we can observe that R 6= R99, which

implies that both models are not equivalent anymore. In this way, both SFDM models
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for galaxies are di↵erent. Either way, in this thesis we use both SFDM models for our

purposes.

• Observe that (4-30) represents a basis that, in principle, could map any positive func-

tion su�ciently well behaved. This would imply that, at the point where this model

is found, it still maintains too much freedom to confront it with galactic dynamics. In

this way, we consider that this model, although quite well founded, still lacks an extra

step in trying to make it a bit more restrictive. For example, by considering a similar

study than the one done in (Lin et al., 2018).

Finally, it is time to talk about the kind of structures that should be formed in the self-

interacting case. Unfortunately, in this scenario, there have not been carried-out numerical

simulations of structure formation. In the case of having an attractive self-interaction, this

has been justified by the fact that this self-interacting parameter must be very small in order

to avoid several problems that the model would have observationally, such as the generation

of topological defects (see for example (Visinelli, 2017)), whereas in the repulsive scenario,

such simulations have not been carried out since there is not a large group that study this

model, although several works have been done in the so-called TF regime. They have worked

with TF solitons that are found similarly than in the free case (see for example (Rindler-

Daller and Shapiro, 2012)), i.e., by demanding in (4-20) that a = 1, x = r, ⇢(r, t) = ⇢(r)

and ~v = 0, but now introducing the self-interacting parameter. In this way, the conservation

equation (4-20b) is identically satisfied, whereas from the Euler equation (4-20a) follows

r� = �rQ�rPSI . In the case when the quantum term can be ignored – the so-called TF

regime – we obtain r� = �rPSI (there is a balance between the gravitational attraction

and the repulsion provoked by the self-interaction). This last relation can be seen as a

Lane-Emden equation of motion, which solution gives

⇢TF

c
(r) = ⇢TF

0 sin

 s
2⇡G

Kp

r

!
/

 s
2⇡G

Kp

r

!
. (4-31)

A spherical TF soliton results in a (n=1)-polytrope with radius

R(TF ) = ⇡

r
Kp

2⇡G
= ⇡

r
g

(4⇡Gm2)
. (4-32)

Observe that this radius is constant for any galaxy mass. This scenario avoids small-scale

structure by matching the size of typical dSphs with R(TF ). In fact, commonly this TF

soliton profile is used to model only dSphs, and then, it remains to be understood how the

model should allow the introduction of larger galaxies.

4.5. Observational constrictions for the SFDM model

In this section, we complement this chapter by reviewing di↵erent constrictions that have

been carried out for the SFDM parameters. It is very likely that we are not contemplating
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all the constraints that exist for the model, since the literature for the SFDM is very large,

so we could easily missed some results. However, we trust that the constraints presented

here represent a good set of values that would largely summarize all those works that we

may not be mentioning in this section. Additionally, we do not introduce ourselves in trying

to explain how each of the constrictions were obtained, since this would make the reading of

this thesis very tedious. For this reason, we only comment on the results that were obtained

in each work, and we leave the reader to, if required, review the di↵erent references that

we mention on each constriction to better understand each of the processes to restrict the

parameters of the model.

The free case.- Considering the hydrodynamical representation of the SFDM model, in

(Paredes and Michinel, 2016) it was suggested the SFDM’s quantum pressure as the origin

of the o↵set between dark matter and ordinary matter in Abel 3827. For this purpose, they

required a mass m22 ' 2 ⇥ 10�2. When the model is tested with the dynamics of dSphs

– Fornax and Sculpture–, in reference (González-Morales et al., 2017) was obtained a mass

constriction of m22 < 0.4 at 97.5%. The constriction obtained when the survival of the cold

clump in Ursa and the distribution of globular clusters in Fornax is considered requires a

mass m22 ⇠ 0.3 � 1 (Lora et al., 2012). Explaining the half-light mass in the ultra-faint

dwarfs fits the mass term to be m22 ⇠ 3.7 � 5.6 (Calabrese and Spergel, 2016). The model

has also been constrained by observations of the reionization process. In (Sarkar et al.,

2016a), using N-body simulations and demanding an ionized fraction of HI of 50% by z = 8,

was obtained the result of m22 > .26. Finally, using the Lyman-↵ forest flux power spectrum

demands that the mass parameter fulfills m22 & 20�30 (Armengaud et al., 2017, Iršič et al.,

2017).

The repulsive scenario.- In the repulsive scenario, it is usually constrained the ratio of

the parameters m22/�
1/4
90 , or the parameter g/(c4m2). Observe that both quantities constrain

the free parameters in the same way, given that g/m2
/ (m22/�1/4)�4 (see line just after

equation (4-16)). In this section, we shall show the parameter constrictions in the way they

where reported by authors, considering that moving from one notation to another is easy,

since the relationship between both quantities is only multiplying by constants.

First, we comment in the works that constrain the ratio m22/�
1/4
90 . In (Diez-Tejedor

et al., 2014), it was studied the possibility that a SFDM candidate could be self-interacting.

In their work they constrain the ratio m22/�
1/4
90 to be m22/�

1/4
90 ⇠ 3.1623 by analyzing the

line-of-sight velocity dispersion for the eight dSphs satellites of the MW. This study was

complementary to the ones done in (Arbey et al., 2003, Böhmer and Harko, 2007, Harko,

2011, Robles and Matos, 2012) where the SFDM model was studied by using rotational

curves of the most Dark Matter dominated galaxies from di↵erent surveys, and where they

obtained the constriction m22/�
1/4
90 ⇠ 8.222 � 9.171. On the other hand, in (Arbey et al.,

2002b) the model was studied in a cosmological context by demanding that the SFDM
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candidate behaves as a dust-like component before the time of matter-radiation equality. In

such work they obtain the result m22/�
1/4
90 > 2.5298. Finally, it was also possible to test

the self-interacting scenario by considering the number of extra relativistic species at Big

Bang Nucleosynthesis (BBN). When such observations are confronted with the SFDM it is

obtained that it must be fulfilled that m22/�
1/4
90 & 12.649 (see (Arbey et al., 2003)).

Now, we comment in the constrictions that considers the ratio g/(m2c4). In (Li et al.,

2014), it was studied the SFDM as a complex field. In such work, they obtained the constric-

tion g/(m2c4)  4⇥ 10�17eV�1cm3 by considering again that the SFDM should behave as a

dust-like fluid at the time of radiation-matter equality. On the other hand, by considering

again the complex SFDM and studying the model more accurately for the consequences that

appears in its early sti↵-like era, it was also tested it by considering BBN constrictions and

considering measurements for the primordial gravitational waves. In (Li et al., 2017) it was

obtained the constriction 2.3⇥ 10�18eV�1cm3


g
m2c4  4.1⇥ 10�17eV�1cm3.

The attractive scenario.- Usually, the self-interacting parameter in the attractive sce-

nario is ignored, given that it should be extremely small. However, there have been some

works that consider its contribution. For example, if the SFDM is an ultra-light axion-like

particle (m22 ' 1), it was shown that it should be generated during inflation (Visinelli, 2017),

in such case its self-interacting parameter should fulfills �90 ⇠ �10�4. On the other hand,

from the string axiverse theory, the self-interacting parameter has been also constrained to

be (Cicoli et al., 2012) �90 ⇠ �104. Finally, by matching the more compact soliton profile

with Willman I, in (Chavanis, 2016) obtained the values m22 = 193 and �90 = �2.04⇥ 104.



5. Constraining spectator scalar field
dark matter from isocurvature
constrictions

As we already seen in the last chapter, the SFDM model appears to be a promising candidate

to account for the DM in the Universe. Despite several works about this model, it continues

being unclear the mechanism that generated this ultra-light SFDM particle and the time

it should have been produced. Some works in this direction consider the SFDM as an

axion-like particle, which in our context can be understood as a SFDM with an attractive

self-interaction. In such studies, the axion is understood as a particle that could be created

before or after the inflationary era by the misalignment mechanism (Visinelli, 2017). If it

is created after inflation, then the ultra-light SFDM particle could not account for the total

amount of the DM because of the production of topological defects, whereas if it is produced

during (or before) the inflationary era, then it is plausible that the SFDM accounts for

the total DM in the Universe. In that work, they obtained after considering isocurvature

constrictions for the SFDM that for an ultra-light SFDM particlem22 ⇠ 1, its self-interacting

parameter should follows the constriction �90 ⇠ �10�4 (see section 4.5), whereas the mass

parameter for the SFDM should follow the same constrictions that are obtained in the free

case.

Although now a days there exist a host of observations that support adiabatic initial

conditions in the Universe, and then a single field model for inflation, it is necessary to men-

tion that this mechanism is not completely well understood. This is because the physics that

occurs at such energies has not been reached by accelerators yet and then it continue being a

mystery for the scientific community the di↵erent processes or the di↵erent constituents that

should be presented during that epoch. In this way and by considering that the repulsive

scenario for the SFDM candidate is also a good alternative for DM in the Universe, it is

natural to question the consequences obtained if it was generated during the inflationary

era. In this chapter, we study such possibility strongly following our published work (Padilla

et al., 2019). For simplicity, we do not contemplate a mechanism of creation for this particle

and we only consider the possibility that it was presented during the inflationary period with

a free or repulsive self-interacting potential. We investigate this scenario as a complement

to the work done by (Visinelli, 2017) for the attractive case.
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5.1. Constraints on inflationary parameters

In section 1.6 we comment a little about the di↵erent constraints that exist for the inflatio-

nary parameters. However, since it will be important for this chapter to remember them,

let us summarize the main results in this section. In the standard approximation the infla-

tionary observables are given by the tensor-to-scalar ratio r, the spectral index for adiabatic

perturbations ns, and the amplitude for adiabatic perturbations A2
r
. The constraints of these

parameters are quoted at the pivot scale k0 = 0.05Mpc�1 by (Akrami et al., 2018)

A2
r
(k0) = (2.215+0.032

�0.079)⇥ 10�9, at 68% CL, (5-1a)

rk0 < 0.064 at 95% CL, (5-1b)

ns(k0) = 0.968± 0.006. (5-1c)

Using these measurements, we are able to compute the value of the Hubble expansion rate

during inflation as (Lyth, 1984, Lyth and Stewart, 1992)

r = 1.6⇥ 10�5

✓
H

1012GeV

◆2

k0=aH

. (5-2)

As we have noted before, if more than one SF is present during inflation we will obtain

isocurvature perturbations generated by extra scalar fields perpendicular to the trajectory

of the field-space. Of special interest is the isocurvature power spectrum for dark matter.

From (1-142) and (1-143) we obtain the constriction

�iso(k0) < 0.038 at 95% CL. where PDM(k) =
�iso(k)

1� �iso(k)
PR(k), (5-3)

where PDM ⌘ �⇢DM⇤/⇢DM , �⇢DM⇤ are the isocurvature perturbations for the DM generated

by extra scalar fields during inflation, ⇢DM are the DM initial conditions and PR is the pri-

mordial power spectrum for adiabatic perturbations. Notice that isocurvature perturbations

can be used to compute the inflationary scale, just by combining equations (5-1) to (5-3).

5.2. Constraining free and self-interacting ultra-light

SFDM models

In this section, we study the possibility that our SFDM candidate coexisted with the inflaton

during the inflationary epoch. For this, we require that the SFDM candidate be a stable

spectator field with negligible classical dynamics and energy density1. Such scenario is

1We need that the SFDM candidate dominates the energy of the Universe just after matter-radiation
equality and not before.
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reached by taking the inflaton scenario (see section 1.5.1.3), i.e., within the field space, the

evolution of the system is on the inflaton direction �, whereas the direction perpendicular

to the trajectory corresponds to the SFDM '. Notice that this requirement implies that our

dark matter candidate evolves much slower than the inflaton and its density is smaller than

the associated to the inflaton.

As we mentioned before, to constrain the free parameters of our model the isocurvature

perturbations have to be taken into account. For this reason, we review the cosmological

history that a free and a repulsive self-interacting scalar fields should have gone through

the evolution of the Universe, to then match the present value of the field with that during

the inflationary era and, therefore, use the isocurvature constrictions. We consider a semi-

analytic description for such dynamics, instead of the full treatment we reviewed in section

4.2, given that we want to have control of the free parameters in the model. We shall also

make use of di↵erent cosmological and astrophysical constraints for each SFDM model in

order to compare our results.

The dynamics of the SFDM candidate during the inflationary era can be well repre-

sented by the KG equation in a FLRW spacetime. In principle, such candidate could be

complex or real and then, the most general equation that must represents its dynamics

should be given by equation (2-20)

|'̈|+ 3H|'̇|+M2
eff

|'|�
Q2

|'|3a6
= 0, (5-4)

where, as we mentioned before, |'| is the absolute value of the SFDM, Q arises completely

from the complex nature of the SF and it can be interpreted as a charge of the SFDM

related to the conservation of the total number of particles, and M2
eff

⌘ 2(dV/d|'|2) is seen

as an e↵ective mass term of the SFDM. Particularly, as explained in (Li et al., 2014), this

mass term matches with the pulsation of the SFDM defined in (2-21) in the fast oscillating

regime. Notice that if we assume Q/(|'|3a6) ⌧ 1, by assuming the SFDM candidate fulfills

the slow-roll condition (1-63) during inflation, then the field |'| will remain frozen with value

|'|i until H ⇠ Meff . Here and for the rest of this chapter subindex i means values right

after inflation ends, unless otherwise specified. Then, when H ⇠ Meff the field will start

evolving depending on the e↵ective mass term. It is not di�cult to see that, in order to get

the slow-roll behavior of the SFDM, it is necessary that Q ' 0, as explained in (Suárez and

Chavanis, 2017)2. On the other hand, for the inflaton �, it is usually considered as a real

field.

In this chapter we consider only situations where the general potential can be decom-

posed as V (�,') = V̂ (�) + VSFDM(|'|2).

2In fact, as we already commented in a previous chapter in this thesis, the inflationary behavior is an
attractor solution of the KG equation for a real field in the limit when M2

eff ⌧ H2 (Belinsky et al., 1985,
Piran and Williams, 1985). In this limit the typical dynamics of a real SF is a sti↵-like epoch, followed
by an inflationary-like era.
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5.2.1. Real ultra-light SFDM candidate

5.2.1.1. Cosmological history

The possibility that an ultra-light SFDM candidate could coexist with the inflaton has been

studied in (Kobayashi et al., 2017) by considering a potential of the form

V (�, |'|2) = V̂ (�) +
1

2
µ2'2, (5-5)

and by fixing Q = 0 for the SFDM in equation (5-4). Such study was performed by assuming

the SFDM is an axion-like particle. However, their results can be extrapolated for almost

any free SFDM candidate. Then, in this section, we shall follow closely their main results

in order to understand how it is possible to constrain the free-field model with isocurvature

perturbations.

For the above particular potential, we observe that M2
eff

= µ2. Equivalentely to the

complex scenario 2.3, in the fast oscillating regime H � µ, the term with µ2 in equation

(5-4) can be neglected. Bearing in mind the field is slowly rolling during the inflationary

era, we can neglect second derivatives in (5-4), and thus the field ' remains frozen with its

initial value given by the Hubble dragging during the early universe (Harigaya et al., 2013).

On the other hand, when the µ ⇠ H condition is approached, the SFDM starts evolving and

oscillates as a free field. During this fast oscillating phase, we already saw that the free field

behaves e↵ectively as a dust component and then the dependence of ' with respect to the

scale factor a is ' ⇠ 1/a3/2, whereas its energy density behaves as ⇢' ⇠ 1/a3. So the energy

density of the SFDM can we written as

⇢' =

(
1
2µ

2'2
i

when H � µ,
1
2µ

2'2
i

�
aosc

a

�3
when H ⌧ µ.

(5-6)

with a smooth transition between both behaviours when H ' µ.

For typical masses of a SFDM candidate, m22 ⇠ 1, the field started its fast oscillating

regime during the radiation-dominated Universe. During this period, it is easy to see from

table 1-1 that the Hubble parameter evolves in terms of the scale factor as H / a�2, and

the KG equation (5-4) can be solved exactly in terms of a, giving

' = 'i�

✓
5

4

◆✓
4H

µ

◆1/4

J1/4
⇣ µ

2H

⌘
, (5-7)

where in the above expression it is fulfilled that '! 'i when µ/H ! 0, i.e., it is demanded

the slow-roll condition at early times. On the other hand, when µ/H ! 1, we have

lim
µ

H
!1

⇢' =
4

⇡


�

✓
5

4

◆�2
µ1/2'2

i
H3/2. (5-8)
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Observe that (5-7) is not valid for all redshifts in the fast oscillating regime given that, for

its derivation, we demanded a Universe that is dominated by a radiation-like fluid. Then,

and because we already know that the history of the Universe should start, after inflation,

with a radiation dominated era and transit at certain redshift zeq to an era dominated by a

dust-like fluid, we can assume that (5-7) should be valid for redshifts zi > z > zeq. On the

other hand, if we consider an ultra-light SFDM candidate with a mass m22 ⇠ 1, we obtain

that µ/Heq ⇠ 1010 and then we could consider that the above expression is valid for certain

values of the redshift parameter. If we concentrate in the time at which the above expression

is valid and we compare with (5-6), we obtain

1

2
µ2'2

i

⇣aosc
a

⌘3
=

1

2
µ2'2

i

✓
H

Hosc

◆3/2

, (5-9)

where the Hubble parameter Hosc at the time the SFDM starts its fast oscillating regime

was obtained to be
µ2

H2
osc

=

✓
8

⇡

◆4/3 
�

✓
5

4

◆�8/3
' 2.68 (5-10)

On the other hand, in section 1.2.3.2 we saw that, for a radiation-dominated Universe,

we can relate the temperature of the Universe at a given epoch with the energy density of

radiation as (see equation (1-25) and (1-9))

⇢r =
3m2

pl
H2

8⇡
=
⇡2

30
g⇤(T )T

4. (5-11)

Particularly, at the time the SFDM starts its fast oscillating regime we have

Tosc ' 0.5 keV
⇣g⇤osc
3.36

⌘�1/4

m1/2
22 . (5-12)

Using that the entropy of the Universe is conserved since the time the SFDM started

its fast oscillating regime to present, the SFDM density today can be expressed in terms of

the entropy density s as

⇢'0 =
1

2
µ2'2

i

s0
sosc

, (5-13)

where the subscript ”0” denotes quantities in the present Universe. However, from equation

(1-34) we can express sosc as

sosc =
2⇡2

45
gs⇤oscT

3
osc

=
2⇡2

45
gs⇤osc

✓
90

⇡2

m2
pl
H2

osc

8⇡g⇤osc

◆3/4

. (5-14)

Then, by combining equation (5-10), (5-13) and (5-14), and by considering that the total of

the DM is produced by the SFDM, it is finally obtained the initial condition for the SFDM

as

'2
i
'

1034 GeV2

0.6

⇣g⇤osc
3.36

⌘�3/4 ⇣gs⇤osc
3.91

⌘
m�1/2

22 . (5-15)
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As we explained in section 1.2.3.2, g⇤osc and gs⇤osc are the e↵ective degrees of freedom associ-

ated to the total particles and to the entropy at the moment when the SFDM starts its fast

oscillating regime. In particular, for an ultra-light SFDM that started its oscillations during

the radiation-dominated Universe, we have3 g⇤osc = 3.36 and gs⇤osc = 3.91. Notice also that

the above expression is not only fulfilled by an ultra-light SFDM, but in fact it is correct

for whichever SFDM that started its fast oscillating regime during the radiation-dominated

Universe, always that the correct value for g⇤osc and gs⇤osc is provided for such candidate.

5.2.1.2. Constraints from isocurvature perturbations

For this case we demand the energy density contribution of the SFDM being small during

inflation (DM dominates right after radiation-matter equality) and hence it is necessary

from the total Friedmann equation (1-9) and the dynamics during the inflationary era in the

inflaton scenario, which is equivalent to the dynamics of a single-field inflation (1-56), that

µ2

2
<

V̂ (�)

'2
i

⇠
H2

inf
m2

pl

'2
i

, (5-16)

where we have introduced the parameter Hinf , which is the constant value of the Hubble

parameter during inflation and we have considered that during this period our field remains

frozen at value 'i. Notice that for an ultra-light SFDM candidate (m22 ⇠ 1) the above

expression is fulfilled for most of the initial conditions given by 'i. On the other hand, we

can constrain isocurvature perturbations generated by a SFDM using equation (5-3). The

analysis was performed in (Kobayashi et al., 2017) by noticing that we can re-express the

primordial spectrum as �⇢'⇤/⇢' = 2�'/'i (since from equation (5-6) we have ⇢' / '2),

which implies that PSFDM = 4P'/'2
i
, where P' is given by equation (1-105c) (which can

be expressed in terms of the tensor to scalar ratio r using (5-2)) and 'i by equation (5-15),

and then equating it with PDM in equation (5-3). When such procedure is done, they finally

obtain from the inequality in (5-3) the result

m22 <

✓
2⇥ 10�4

r

◆2

. (5-17)

Then, the isocurvature restrictions allow us to constrain the mass parameter of the SFDM in

terms of the tensor-to-scalar ratio measurements. The above relation for the mass parameter

must be in agreement with cosmological and astrophysical observations. For such purpose we

considered the di↵erent constrictions reviewed in the last chapter, especially in section 4.5.

We need to stress out that we cannot use all the constrictions in the literature since some

3Although g⇤ and g⇤s are functions that depends on the temperature of the Universe, it remains constant
for temperatures below T = 511 keV with the value (Husdal, 2016) g⇤ = 3.36 and g⇤s = 3.91. On
the other hand, observe from (5-12) that for an ultra-light SFDM candidate with a mass m22 ⇠ 1, the
temperature at which it starts its fast oscillating regime is Tosc ⇠ O(1) keV.
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of them consider di↵erent cosmological evolutions for the SFDM. For example in (Li et al.,

2014) it was studied the CMB and the BBN by understanding the SFDM was generated right

after inflation with a sti↵-like equation of state (p' ' ⇢'). Then, these kind of restrictions

are not applicable to our model.

Fig. 5-1 displays the di↵erent constraints on a m22 � r plane. In order to simplify

the lecture of the figure we have only plotted the upper (lower) value for the constrictions

that fit the mass of the SFDM with an upper (lower) limit. We have also added arrows that

points out the region that remains valid for such constrictions. Firstly, the gray region is

fulfilled by isocurvature observations (5-17). The dot-dashed black line corresponds to the

equality values in equation (5-17). Then, the figure must be interpreted as follows: suppose

we have measured a value for r. Notice that such value will intersect with the dot-dashed

black line for a given mass m(max)
22 . Then, the masses allowed by the model must be those

lower than m(max)
22 .

The region that fulfills observations obtained by CMB is specified in green, while the

value provided by Abel 3827 is given by the dot-dashed red line. The region for dwarf

spheroidal galaxies is indicated in blue, Ursa with Fornax in light blue, ultra-faint dwarfs

in teal, reionization in purple and Lyman-↵ in orange. We notice that isocurvature per-

turbations cannot constrain observations of the dynamics of dSphs galaxies given that both

provide an upper limit for the mass of the SFDM. However, the detectability of gravita-

tional waves and the di↵erent constrictions by cosmological and astrophysical observations

can be used to test the free model. For example, if we ignore by the moment the dynamics

of dSphs galaxies and we would like to fulfill at least observations provided by CMB, we

should not detect gravitational waves until r ' 1.3 ⇥ 10�3 (fuchsia straight-line), while if

we are interested on the rest of observations we should not detect gravitational waves until

r . 2.33⇥ 10�5 (gold straight-line).

We also plotted the actual upper limit for r in a navy blue dashed-line. By the moment

this value is not very restrictive for the model since it represents an upper value for r.

Nevertheless the information it provides is that masses smaller than m(upper)
22 – the blue

dashed-line and black dot-dashed-line intersection – are allowed by the data. However,

masses bigger than m(upper)
22 cannot be discarded since the only possible way to do it is if r

would be detected.

5.2.2. Real self-interacting SFDM candidate with a repulsive

self-interaction

5.2.2.1. Cosmological history

Once we understood the way the real free-field model can be tested with isocurvature con-

strictions, it is time to consider the self-interacting scenario. In this section a self-interacting

SFDM with a positive interaction is considered. This scenario is described by the general
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Figure 5-1.: Isocurvature constraints for the SFDM candidate (Figure taken from (Padilla et al., 2019)).

potential

V (�, |'|2) = V̂ (�) +
1

2
µ2'2 +

1

4
⌫'4, (5-18)

and fixing again Q = 0 for the SFDM in equation (5-4). In what follows we omit the hat

in the potential V̂ (�) in order to make simpler the lecture of the article. Then, always that

appears V must be understood that we are referring to V̂ .

Notice that for this case M2
eff

= µ2+⌫'2. As we have previously discussed the e↵ective

mass of the field after inflation remains constant at M2
eff

= µ2+⌫'2
i
until Meff ⇠ H. Then,

depending of each contribution to M2
eff

, we can have two di↵erent dynamics:

Weakly self-interacting regime.- This limit is obtained when the constant term

µ2 dominates, that is when

µ2
� ⌫'2

i
. (5-19)

In this regime it is possible to ignore the self-interacting term in equation (5-4) when the fast

oscillating phase of the SFDM begins. However, by ignoring this term, the field behaves as

a free field and, from (5-6), the field value always decreases. Therefore, the self-interacting

term never dominates and all the cosmological history remains the same as in the pure free

SFDM scenario. In fact, thanks to the decreasing behavior of this scenario, we can consider

that this regime is fulfilled always that µ2
� ⌫'2

i
, or, equivalently, when ⌫  µ2/'2

i
. If the

SFDM oscillations start at the same time than in the free case (which is a good approximation

since the e↵ective mass of the SFDM is M2
eff

= µ2 + ⌫'2
i
 2µ2), we observe from (5-15)
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Figure 5-2.: Weakly self-interacting regime (Figure taken from (Padilla et al., 2019)).

that it should be satisfied that ✓
�90
10�6

◆
 0.6m5/2

22 . (5-20)

In Fig. 5-2 we plot the weak self-interacting limit obtained by our approximation. Ho-

wever this overestimates the maximum value of �90 since the dust-like behavior is obtained

when the �90 term is completely negligible.

Strong self-interacting regime.- This scenario is obtained when

µ2
⌧ ⌫'2

i
. (5-21)

Here, the SFDM follows the dynamical equation (see equation (D-5) of appendix D)

1

'2
�

1

'2
it

= 2⌫

Z
�it

�

d�

V,�

, (5-22)

where subindex it means quantities at the beginning of the inflationary period. Notice that

if the inflationary process does not last for long enough time – meaning that '�2
it

is much

smaller than the right hand side value of the above expression –, the SFDM remains frozen

with value 'it, while if it lasts long enough time, the SFDM reaches an attractor solution.

Attractor behavior of the SF during inflation.- In the strong self-interacting regime,
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and after enough time, the SFDM follows the attractor solution (D-6)4

'att =

✓
2⌫

Z
�it

�

V �1
,�

d�

◆�1/2

, (5-23)

where �it is the value of the inflaton at the beginning of inflation. As we can see from the

above expression, whether or not the SFDM reaches the attractor solutions depends entirely

on the inflationary process and the value of the self-interacting term of the SFDM. In the

above expression we can identify two possible branches:

• 'att < µ/
p
⌫

The SFDM follows the attractor solution until ' ' µ/
p
⌫. Then the field reaches

'i = µ/
p
⌫ for the rest of inflation. Notice that this value corresponds to the upper

limit that the weakly self-interacting regime allows. Then the field starts evolving

when H ⇠ Meff ' µ, behaving as a free SFDM. In this way, the constrictions given

in the non-interacting case apply and the initial conditions are also fixed by 'i. Using

both relations the �90 value is approximated

✓
�90
10�6

◆
' 0.6

⇣g⇤osc
3.36

⌘3/4 ⇣gs⇤osc
3.91

⌘�1

m5/2
22 . (5-24)

• 'att > µ/
p
⌫

In this scenario the dynamics of the inflaton, given by (5-23), implies that the initial

condition of the field after the inflationary period is

'i

att
=

✓
2⌫

Z
�it

�end

V �1
,�

d�

◆�1/2

, (5-25)

where �end is the value of the inflaton at the end of inflation. We need to stress out that

this is the value of the field until its oscillation period starts (i.e. when Meff ⇠ H).

In this scenario and for 'att > µ/
p
⌫ (regardless of whether the scalar field reached the

attractor behavior or not), we observe that at the time the SFDM starts its fast oscillating

regime, its e↵ective mass is linear in the field. In that regime, the scalar field evolves as

' ⇠ 1/a and its energy density as ⇢' ⇠ 1/a4, behaving as radiation. Then, when µ2
⇠ ⌫'2

t
,

4In (Harigaya et al., 2013) was obtained the attractor behavior for a curvaton-like scalar field in a chaotic-
like inflationary scenario. However their results can be used as well in this context were the attractor
behavior can be easily obtained for whichever inflationary potential.
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the e↵ective scalar field mass is now constant, obtaining the dust-like behavior already

analyzed. Therefore, the history of the scalar field density is

⇢' =

8
><

>:

1
4⌫'

4
i

when H2
� ⌫'2

i

1
4⌫'

4
i

�
aosc

a

�4
when H2

t
 ⌫'2

 H2

1
2µ

2'2
t

�
at

a

�3
when H2

 µ2 and ⌫'2 < µ2

(5-26)

Here sub-index t means quantities measured at transition between radiation-like to dust-like

behavior of the SFDM and

'2
i
=


2µ2

⌫
'2
t

�1/2✓ at
aosc

◆2

. (5-27)

Notice that, for simplicity, we have taken an instantaneous transition between radiation-like

to dust-like behaviors.

Since the self-interacting KG equation cannot be solved exactly, we work with approx-

imated solutions. By using a pure approximated description of the system, (Suárez and

Chavanis, 2017) obtained the relation (see its equation 80 and 86 and also (Li et al., 2014))5

✓
at
aosc

◆2

=
3

71/3f 2( as
rS
)
, (5-28a)

where

f(�) =
1

s1/3(1 + 4s)1/6
, (5-28b)

with

s =
4� � 1 +

p
(4� � 1)2 + 12�

6
. (5-28c)

where as/rS = ⌫/µ2. Rearranging the expression in a more convenient way we have

� ' 5.93⇥ 102m�2
22

✓
�90
10�6

◆
. (5-29)

Notice that when at/aosc ' 1, i.e. 3/(71/3f 2(�)) ⇠ 1, there is no radiation-like epoch.

This scenario should match with the non-interacting scenario that we present previously.

Inserting equation (5-28a) into (5-27) yields to

'2
i
=

3

71/3f 2(�)


2µ2

⌫
'2
t

�1/2
. (5-30)

The relation (5-30) matches the field at 't with its value right after inflation ends.

Then, if we obtain the value of 't by comparing with quantities at present, with the above

expressions we can also obtain the value of 'i. On the other hand, notice that at at, the

5The reference (Suárez and Chavanis, 2017) obtained this relation by considering a Universe with only
a SFDM content. However a similar analysis can be used in a Universe with several types of matter
contents.
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scalar field behaves as dust with an e↵ective mass M2
eff

= µ2 + �'2
t
. This implies that

dust-like oscillations of the SF began a little before than in the non-interacting case. If we

allow µ to start its dust-like behavior during the radiation-dominated Universe and using

the fact that µ2 is about the same order that ⌫'2
t
, we get that such oscillations start during

the same epoch than in the non-interacting case. In fact, because the decreasing behavior of

the SFDM during the dust-like period (' ⇠ 1/a3/2), the self-interacting term contribution

quickly vanishes, and then, the dynamics of the field is described only by the mass term

µ. Thus, once the dust-like behavior starts, the dynamics is described similarly to the non-

interacting case, in such case, the condition (5-15) is fulfilled by the SFDM as well, but

interchanging subindex i with t6.

5.2.2.2. Constraints from isocurvature perturbations

As we showed in the last section, we have two di↵erent scenarios for this model: a weak self-

interacting, and a strong self-interacting. In the weak limit, our SFDM behaves e↵ectively as

a free field without self-interaction, and in such case the constrictions for the free field apply

to this scenario as well. On the other hand, when the self-interacting term is big enough,

the SFDM will have a new period with a behavior similar to a radiation-like fluid. In this

way, the constrictions we obtained before will not apply to this model anymore.

In the strong self-interacting regime, during the inflationary era, the SFDM follows the

solution (5-22). The value the homogeneous field acquired after inflation depends on the

amount of time the inflationary process takes place, and the condition 'att 7 µ/
p
⌫ ⌘ 't –

if the inflationary period is short, then the field ' remains frozen at value 'i ' 'it, while if

it lasts long enough, the SFDM reaches the attractor behavior (5-23)–. If the SFDM reaches

the solution (5-23), and for 'att < 't, the field follows the attractor solution until ' ' 't.

Then, the SFDM is frozen at that value, and starts oscillating as a free field when µ ⇠ H.

We can constrain this scenario by noticing that it is the same case than the free one, but

with the initial condition 'i = 't. Matching equation (5-15) with 't, and making use of the

constriction (5-17), we obtain

✓
�90
10�6

◆
 0.6

✓
2⇥ 10�4

r

◆5

. (5-31)

In Fig. 5-3 we have plotted the above condition that is valid during the strong self-interacting

regime, when 'att < 't. The pink region corresponds to the region allowed by isocurvature

perturbations in this limit. As we observe, the self-interacting term for this model can be

constrained in a similar way than the mass parameter in the free case. This scenario must

fulfill the relation (5-17) as well, since its cosmological evolution, after inflation, is only like

a free SFDM.

6In fact, this is a lower limit for the strong self-interacting case.
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Figure 5-3.: Isocurvature constraints for the strong self-interacting regime with 'att < 't (Figure taken
from (Padilla et al., 2019)).

Additionally, in this scenario, the inflationary potential fulfills the condition

✓Z
�it

�

V �1
,�

d�

◆�1/2

<
p
2µ. (5-32)

We can see that it is very di�cult to obtain this relation for an ultra-light SFDM candidate.

For example, if we consider a chaotic-like inflationary potential, V (�) = 1
2M

2
inf
�2, the above

conditions imply that ✓
log

�it

�

◆�1/2

<
p
2

µ

Minf

. (5-33)

However, for this potential, the massMinf of the inflaton that best matches the observations7

is of order Minf ⇠ 1012GeV (Lyth and Liddle, 2009). If now, we assume an ultra-light SFDM

candidate with a mass m22 ⇠ 1, given that the cosmological and astrophysical constrictions

for this model are the same than in the free case and in this scenario it is necessary to obtain

an ultra-light SFDM, the above conditions imply that the logarithmic part of the expression

should be lower that ⇠ 10�43. The inflationary behavior for a chaotic-like inflaton ends when

�end ' mpl/
p
2⇡ (Harigaya et al., 2013, Lyth and Liddle, 2009). Moreover, as it is explained

in (Harigaya et al., 2013), the initial condition of the inflaton cannot be arbitrarily large

since the stochastic behavior is significant for �̇H�1 < H/2⇡. If the Universe started when

7This chaotic-like inflationary potential is ruled-out now for observations, however we use it as an example
in order to obtain general constraints for our models.
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the inflaton escapes from this behavior, we have that its initial condition should be

�it ⇠
105
p
8⇡

⇥mpl

✓
1013GeV

Minf

◆1/2

, (5-34)

where we can easily see that the condition given in (5-33) cannot be fulfilled. In fact, if we

insert the left part of (5-33) in equation (5-22), and by considering the above result, and

the fact that in this scenario the self-interacting term must be incredible small (see equation

(5-31)) in order to fulfil cosmological and astrophysical constrictions, we can observe that

the attractor behavior is not reached when it is assumed a chaotic-like inflationary potential.

This implies that, if a self-interacting SFDM candidate coexists with the inflaton, and that

during the begining of the inflationary period it starts in the strong-field scenario, it should

remain within the strong regime since their conditions are easier to satisfy.

If the SFDM reached the solution (5-23), and when 'att > 't, we have that the field

follows the attractor solution during all the inflationary period. Hence, the initial condition

for the SFDM is given by (5-25)

'i

att
=

✓
2⌫

Z
�it

�end

V �1
,�

d�

◆�1/2

. (5-35)

Then, the SFDM remains frozen at value 'i

att
until Meff ⇠ H, and starts oscillating with a

quartic potential. In this scenario, the SFDM density behaves as ⇢' / '4, and in such case

we can write �⇢'/⇢' = 4�'/'i. Therefore, the primordial isocurvature perturbations for a

strong self-interacting SFDM is given by

PSFDM(k) =

✓
2Hinf

⇡'i

◆2

. (5-36)

In the last section we showed the relation of the initial condition with the value of the

field today. Using equations (5-30) and (5-15), with g⇤osc = 3.36 and gs⇤osc = 3.91, and

appropriate units we obtain

r <
1.172⇥ 10�4

71/3f 2(�)

"
2m3/2

22�
�90
10�6

�
#1/2

. (5-37)

Notice that the above relation is independent of whether the SFDM followed the attractor

solution or not, and, therefore, the result is general always that the SFDM remains in the

strong self-interacting regime at the end of inflation, and its dust-like behavior started in

the radiation dominated Universe.

Similarly to the free case, the above relation must be compared with observations in

order to get constrictions for the strong self-interacting SFDM scenario. For such porpoise,

we use some of the di↵erent constrictions presented in section 4.5. The ones that we decided



5.2 Constraining free and self-interacting ultra-light SFDM models 103

not to use are constrictions that considers scenarios where our model is not applicable. For

example, such observations that consider an early sti↵-like behavior for the SFDM.

In Fig. 5-4 we have plotted contour levels of the numerical value of the right hand

side of the relation (5-37). The grey region corresponds to values larger than 0.064, which is

the actual upper constraint on tensor-to-scalar ratio. This means that, within that region,

we are certain that (5-37) is fulfilled and, by the moment, just this region is completely

allowed by observations. With this in mind, the plot should be understood as follows: let

us suppose that in the near future we measure a value for r. Such value will coincide with a

curve in Fig. 5-4. Then, the parameter space allowed by the data should be the one where

the contour levels are bigger than the detected value of r, while the one with smaller values

in the contour levels must be discarded. Similar to the free case, if r is not detected but

it continues with an upper limit, this implies that regions with contour levels bigger than

such upper value will be allowed by the data, however regions with smaller values can not

be discarded until r is detected.

The �90 value that satisfies observations of dSph’s line-of-sight is given by the dot-

dashed red line, while the region of parameters necessary for rotational curves is presented in

blue. Similar to the plot for the free case (fig. 5-1), we plotted the cosmological constrictions

in purple by drawing a curve that refers to the upper value of �90 and an arrow that points

out to the valid region from the constriction. We did the same for the observations for

BBN, but in color fuchsia. The white region corresponds to the weak limit. We can see

from Fig. 5-4 that it is possible to fulfill observations for whichever value for the mass,

as long as the self-interacting constant is large enough. In other words, for a given mass,

the measurement of r can only constrain the self-interacting constant with a lower limit.

Isocurvature observations (or equivalently observations on r) can also help to impose upper

values from other kind of constrictions. As an example, let us suppose that we want to be

completely sure that the measurements obtained by rotational curves are fulfilled. Then,

given the actual upper constraints in r, the only region of parameters that we can be sure

that fulfills observations are the ones in the blue region that are also inside the gray region.

Remark: This scenario is of special interest given that it is natural to avoid isocurvature

perturbations when the self-interacting parameter of the SFDM is big enough. Additionally,

if the SFDM reached the attractor solution, it is possible to justify the initial conditions for

the SFDM model.

Similarly to the above description, we can compute general constraints for the infla-

tionary potential that should generate inflation on these kind of scenarios. First, we have

that
✓Z

�it

�

V �1
,�

d�

◆�1/2

>
p
2µ, (5-38)

which is very easy to fulfill as we saw in the chaotic-like example. Using isocurvature
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Figure 5-4.: Isocurvature constraints for the strong self-interacting scenario with 'att > 't (Figure taken
from (Padilla et al., 2019)).

constriction we also have

r <
0.6⇥ 1040�
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10�6
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1
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�it

�end
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!
, (5-39)

that can be satisfied as far as the self-interacting term and the integral are small enough; for

example in the chaotic-like scenario by using (5-33) and (5-34) and taking Minf ⇠ 10�6mpl,

we can obtain the constriction
✓
�90
10�6

◆
<

0.3288⇥ 1084

r
. (5-40)

that is easily satisfied for whichever value of �90 of our interest. If now we compare (5-25)

and (5-30), we have

✓Z
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2µ2⌫'2
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. (5-41)

This relation is interpreted as follows: consider that the self-interacting SFDM candidate

coexists with the inflaton, and it reached the attractor solution (5-23), and suppose there

are several measurements constraining the mass parameter m22 as well as the self-interacting

parameter �90, therefore such constraints are translated into restrictions to the inflationary

potential. In order to use the above expression to constraint inflationary potentials, we need
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to be sure that the term '�2
it

can be ignored in (5-22), i.e., the right-hand side term in

equation (5-22) is big enough compared with '�2
it
.

It is also necessary to be careful that the SFDM does not come to dominate the

inflationary period. This is guarantee by demanding that

⌫
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, (5-42)

or in terms of (5-35)

⌫ >

 
2

⇡
H2

⇤m
2
pl
ç
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Taking the chaotic-like example and using Hinf = 1014GeV , we obtain the constriction

�90
10�6

> 1.444⇥ 1077. (5-44)

Notice that the above expression requires �90 > 1071, and then by considering the cosmolo-

gical and astrophysical constrictions we should have a mass parameter of order m22 ⇠ 1017.

We have to stress out that (5-44) is obtained for a chaotic-like potential, then, depending

on the inflationary potential we will have di↵erent limits allowed for the self-interacting sce-

nario. On the other hand if equation (5-43) is not fulfilled and we remain in the strong-self

interacting model, it should be necessary to consider a two-field inflationary scenario where

the SFDM could obtain a non-negligible dynamics during inflation.



6. SFDM configurations around
Super-massive Black Holes

As we already commented in the very beginning in this thesis, there exist a host of observa-

tions that indicate the existence of SMBHs placed in the center of most massive galaxies and

some observations of SMBHs in ultra-compact dSphs. The consequences that these SMBHs

entails in the SFDM model have not been considered in the results that we studied in the

above chapters and then they represent a very interesting topic for studying in the model, ei-

ther by considering the coexistence of these SMBHs with the soliton profile in galactic nuclei

or the possible formation of SMBHs in the SFDM scenario. In this chapter, we consider the

first of these possibilities. We focus in the simplest scenario, where in the free field limit we

include the extra physics obtained when considering a central SMBH in galaxies. Of course,

given the large di↵erence between the size of a total halo and the radius at which the central

SMBH a↵ects the SFDM distributions is very di↵erent, we decided to deal only with the

e↵ect of the SMBH in the central region of the SFDM profile. In the next chapter we shall

contemplate a mechanism of formation of SMBHs in the SFDM model through the collapse

of the SFDM soliton profile. For such purpose we shall consider to extend the results in the

above chapter by including a self-interacting parameter in the model.

It is necessary to mention that the correct way for modelling a central galactic soliton

in presence of a SMBH should be by solving the EKG system and contemplating an extra

gravitational term provided by the central SMBH. Given that for the range of parameters

needed for describing the SFDM model in the free limit it is usually enough to describe

these solitons in the weak field limit and the mass expected for the soliton profile is much

larger than the mass of its possible SMBH, it could be enough to solve the SchP system

with the addition of a central SMBH as a perturbative term. In fact, in a very recent work

(Davies and Mocz, 2019) it was studied this last scenario. However, this chapter will be

strongly based on an earlier work (Avilez et al., 2018), where we studied this possibility in

a simpler manner. For that purpose we considered the extension of the model proposed in

(Robles and Matos, 2013) (see chapter 4.4.2 and equation (4-30)) and then we contemplate

the possibility that the central SFDM halo in presence of a SMBH could be well described

by a Schwarzschild-like geometry and then we only deal with the KG equation. Of course,

this scenario is not very realistic (as we discussed in section 4.4.2) since we are ignoring the

e↵ects of self-gravitation of the SFDM particles. However, this analysis could help us to

understand a little more the consequences that arise when introducing these SMBHs to the
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model. It is worth to mention that in this approach the back-reaction either of the scalar

and visible matter onto the metric is neglected. Since the space-time is assumed to have

Schwarzschild geometry, the black hole is the only one that has a gravitational contribution

at the level of the field equations. Nonetheless, these simplifications are worth since we

derive an analytical approximation for the density profile of dark matter in the faraway

neighbourhood of a black hole instead of solving the highly-non-linear fully relativistic EKG

system. It must be mentioned that our analysis should be correct in the regions very close

to the SMBH (where the gravitational attraction of the SMBH dominates over the one

generated by the SFDM). In fact, in appendix E we show under which circumstances our

approximation is valid.

The way we decided to work in this chapter is by computing theoretical predictions of

the mean velocity dispersions corresponding to each solution for a fixed mass of the SMBH,

for di↵erent values of the characteristic length of the soliton profile. We achieve this by

solving the isotropic Jeans equation and modelling the density and mass distributions using

the phenomenological Plummer profile (Plummer, 1911) which is suitable to describe density

distributions of spherical stellar systems like bulges, dwarf and elliptical galaxies (Ahn et al.,

2017, Walker et al., 2009). Then, we can see that aditionally to consider the extra physics

due to the central SMBH in galaxies, we also contemplate the baryonic component.

In order to fully construct SFDM soliton profiles in a space-time surrounding a SMBH

which is compatible with observations, we determine values of the free parameters central

density and characteristic length of the SF configuration, using theoretical and observational

constraints. Firstly, by imposing boundary conditions on the classical solutions of the KG

equation, we derive an upper bound for the characteristic length of the SF configuration, as

performed in (Barranco et al., 2011). Secondly, we reduce the space of parameters of our

solutions, by establishing a relation between the central density of the SFDM profile and

its characteristic length by considering the universality of the maximum acceleration of DM

particles reported in (Ureña-López et al., 2017). This result was recently derived from the

mass-discrepancy-acceleration-relation (MDAR) coming from observations of a large set of

galaxies (Lelli et al., 2017, McGaugh et al., 2016). A complementary result of the present

chapter is a modification on the constraint over the central surface density found in (Ureña-

López et al., 2017), but introducing the e↵ect of a SMBH. We carry out their analysis for

the special sort of galaxies hosting SMBHs, and found a maximal relation between the DM

central surface density and the mass of the BH, which corresponds to an increasing function,

a result consistent with previous results (Barranco et al., 2011, 2012, Lee et al., 2015).

Finally, for each value in the considered range of masses of the SMBH, we fix the value of

the characteristic length of the SFDM profile such that the theoretical stellar velocity disper-

sion fits the corresponding value given by the M��⇤ correlation reported in (McConnell and

Ma, 2013). We carry out such procedure in two di↵erent cases: 1) Dark-Matter-Dominated

systems (DMD): In this idealized case the gravitational potential of DM dominates within

the Jeans equation. This scenario is potentially interesting observationally since it could
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be useful for studying ultra-compact dwarf (UCD) galaxies with a central SMBH, as the

ones that were observed in (Ahn et al., 2017). 2) Luminous-Galaxies (LGAL): we solved the

Jeans equation for a catalogue of six luminous galaxies housing SMBHs in their centres. In

contrast to DMD, in this case, the profiles for the visible matter are already known. Ad-

ditionally, the gravitational contributions of dark and visible matter are considered within

the Jeans equation. From the results from the fits in each case we can conclude: In the

DMD case we found that it is possible to predict the observed stellar velocity dispersion

for galaxies hosting SMBH with masses smaller than 108M�. In the LGAL, by considering

all the galactic matter contributions, it is possible to reproduce �⇤ for all galaxies in our

catalogue.

Now, we would like to point out that, in despite of the simplicity of this model (our

Scharzschild-like geometry assumption), it is worth to keep studying and improving it, since

it has been helpful to reproduce the observed values of velocity dispersion of stars in the

LGAL case (taking into account the importance of baryons) and it gives us an idea of the

power of predictability of the DMD case for modelling low-brightness galaxies with BHs

with masses up to 108M�. Observations of the deep-inner galactic region are very likely

to be improved in short time and this would bring up a new source of evidence of the

properties of the SMBH and its influence on stars laying in the galactic bulge. In addition,

from observations of the stellar evolution across this region, wealthy information of the DM

configurations would be inferred, which would be useful to discriminate between di↵erent

DM models. Either to test our hypothesis about SMBH formation and to compare di↵erent

DM models in the deep-inner galactic regions using these and upcoming direct observations

of SMBHs in a short future, is a compelling goal that we are after.

6.1. Black holes wigs as long-lasting dark matter solitons

The first question that arises in the model is: Once a SMBH is formed, independently of

the mechanism at which it was generated, does a self-gravitating and stable scalar galactic

soliton remain? Strictly speaking, no-hair theorems lead us to give a negative answer to

the question. However, for realistic circumstances and practical purposes, the answer is

surprisingly a�rmative. No-hair theorems condemn these solutions to pass away after some

time (Bekenstein, 1995, Gürlebeck, 2015); while that is true, it also has been demonstrated

that some solutions survive at least a cosmic time. That is, although BHs are condemn always

to be bald, nothing prevent them to wear quasi-stationary SF configurations along their whole

life. This kind of SF configurations are typically referred to as wigs in the literature. The

boson excitations making up the wigs are subject to gravity and also to their own dispersive

nature inherit by the KG equation, i.e. the equivalent to the quantum force defined in (4-21)

in the hydrodynamic representation. Although a perfect balance between these competing

e↵ects can not be achieved, at least the decay time can be controlled choosing a proper

mass for the configuration. (Barranco et al., 2011, 2012), and more recently (Sanchis-Gual
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et al., 2017), studied analytically and numerically configurations of a free SF embedded in a

Schwarzschild space-time, once the SMBH has been formed. They realized that it is possible

to find physically meaningful, long-lived SF multistate configurations. In particular, for

ultra-light SFs laying around SMBHs and axions around primordial BHs. They found that

for masses m22 < 1 and SMBHs of M < 5⇥1010M�, the configurations can survive for times

larger than 1010yrs. In this sense, their results strongly support the hypothesis that the DM

is a SF in the galaxies hosting SMBHs. Furthermore, the whole dynamics of the system,

including its formation and evolution along the cosmic history, arises from a single physical

framework without aid of baryonic physics.

Remark: The importance of survival of these solitons surrounding SMBHs is because

typically in dSph galaxies is where a core structure in the inner region of the galaxy is more

appreciable, and in fact, from the results presented in the last chapter about the galactic

profiles in the SFDM model, such dSph should be formed nearly by only the soliton profile.

Then, galaxies with a central SMBH as the ones found in (Ahn et al., 2017) should be

necessarily explained by these scalar wigs configurations.

6.2. The model: Ultra-light scalar field configurations in a

Schwarzschild space-time

As we already commented, we start studying the simplest model for a free SFDM central

density profile hosting a SMBH by assuming that the geometry of the space-time surrounding

a SMBH is described by the Schwarzschild metric which, in spherical coordinates, is given

by

ds2 = �

✓
1�

2M

r

◆
dt2 +

✓
1�

2M

r

◆�1

dr2 + r2d⌦2, (6-1)

where M is the mass of the SMBH in units of distance (for this chapter we use units where

G = 1 since it is clearer to write the di↵erent equations that arise in this description) and

d⌦2
⌘ d✓2 + sin2 ✓ d'2 is the solid angle square di↵erential. Observe also that we have used

r instead of x, and then in this chapter we shall work in physical coordinates instead of

comoving coordinates.

The dynamics of the SFDM described by the KG equation (2-14), or equivalentely

(2-16), written in a Schwarzschild background space-time is given by
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where we have assumed r 6= 2M to avoid singular points and we have introduced the following

definitions of the angular-momentum operator and the g function:
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g(r) ⌘

✓
1�

2M

r

◆
. (6-4)

It is easy to realize that equation (6-2) is a separable equation with respect to time

and space coordinates. Thus, it admits solutions of the form

'(t, r, ✓,') = �(r, ✓,') e�i�t, (6-5)

with an harmonic time dependence for an arbitrary frequency �. Observe here that this

harmonic dependence is equivalent to consider a stationary configuration, as we showed that

it is needed for finding boson stars (see equation (2-31)). After plugging equation (6-5)

into (6-2) we obtain
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The last equation is linear and admits solutions of the form

�(r, ✓,') = Rl(r) Y
n

l
(✓,'), (6-7)

where Rl is a function depending only on the radial coordinate r and the angular solu-

tion is given by the spherical harmonics Y n

l
for non-negative integers l � |n|. After using

equation (6-4), the radial equation is given by
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where �l is the corresponding frequency for the solution with the integer l. Notice that the

last term on the left-hand side in equation (6-8) becomes small far away from the SMBH’s

event horizon. In the case 2Mµ2/r ! 0, equation (6-8) turns into the free Schroedinger

equation. This last point is rather important in what follows. The length-scale 2Mµ2 shall

turn out to be a natural measure of the size of the configuration. Even though the scale

of the SMBH is very di↵erent to that at which the galactic dynamics occurs, masses M

for SMBHs give rise to 2Mµ2
⇠ kpc. Moreover, since we are interested in describing the

phenomenology occurring inside the central region of the SFDM halo, close to its edge at

scales of few kpc, solutions of equation (6-8) in the regime where r > 2Mµ2 are actually

what we are looking for. In the following sections we are going to handle equation (6-8) in

such a limit. Before doing so, we shall stop to analyse the spectrum of solutions arising for

the range of parameters relevant for SMBHs.

6.2.1. About the eigenvalue problem for the

Schwarzschild-Klein-Gordon system

For given masses of the SFDM and the SMBH, the spectrum of solutions has been determined

numerically and semi-analytically in (Barranco et al., 2011, 2012). In these works, the
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authors follow a standard procedure: they use convenient radial coordinates, so the KG

equation can be transformed into a Schroedinger-like equation with a corresponding e↵ective

potential. They demonstrate that the frequencies of the solution cannot be larger than the

depth of the well-potential (which is dubbed as ‘resonance band’). Besides, this is equivalent

to the standard procedure of solving the Schroedinger equation analytically and to use

boundary conditions to determine the full spectrum allowed at each physical setup. A

similar analysis can be done by analysing the KG equation with parameters in a range of

values corresponding to models for galactic soliton haloes. Here we follow such a procedure,

including realistic values of the parameter ↵ ⌘ Mµ, corresponding to realistic masses of

SMBHs and assuming a mass of the SF m22 = 1 (see Table 6-1).

For convenience, we can pick coordinates such that equation (6-8) takes a fully hy-

perbolic form; in the radial case we use the Regge-Wheeler tortoise coordinate defined as

r⇤ ⌘ r + 2M ln(r/2M � 1), such that (6-8) can be written as

�@2
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l
Ql, (6-9)

where Ql
⌘ rRl, and we have introduced an e↵ective potential given by

Veff (r; l, µ, rs) ⌘ g(r)
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By solving exactly the eigenvalue problem established by equation (6-9), we would be able

to determine the full spectrum of solutions allowed for this setup. However, in real galaxies,

the SFDM halo coexists with stars and gas that might modify considerably the features

of the system. For that reason, and for simplicity, we consider it is reasonable to set the

characteristic length rs of the solution as a free parameter, defined as the inverse of the

wave-number ks, i.e. rs ⌘ 1/ks (with k2
s
⌘ �2 � µ2), and to determine an upper cut-o↵ for

ks, denoted by kmax

s
(see Table 6-1). Let us now consider the spherically symmetric case

with l = 0. For m22 = 1, the potential wells for realistic cases are quite shallow (as shown in

Table 6-1 and Fig. 6-1). As a consequence, even for the most massive BH observed so far,

the resonance band is pretty narrow. This suggests that the spectrum of solutions is almost

empty for the lightest BHs, and hence such solutions can be approximated as a single state

with � ⇠ µ1, as assumed (see also Ureña-López and Liddle, 2002).

1For real scenarios, although � ⇠ µ it should exist an infinite number of solutions that fulfills with the
appropiate initial and boundary conditions. Those similar than what we found for multi-state boson
stars. In that sence we could also define a multi-state SSFDM configuration. However, thanks to that
the potential wells for real scenarios is very narrow we could say that the di↵erence between each � that
fulfills the boundary conditions should be extremelly small and then, for sake of simplicity we assume
that the complete system can be approximated by an unique state solution.
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Figure 6-1.: The e↵ective potential for the general Schwarzschild-Klein-Gordon equation for di↵erent val-
ues of the parameter ↵ (Figure taken from (Avilez et al., 2018)). For configurations to form
DM haloes hosting SMBHs, smaller values of ↵ should be considered, and pretty shallow
potentials arise. As a consequence, very large characteristic lengths rs are expected, which
is in agreement, at order of magnitude, with other values of rs obtained from fits to rotation
curves of galaxies (see e.g. Bernal et al., 2018).

M/M� ↵ kmax
s /µ rmin

s /kpc

107 10�6 8.8⇥ 10�4 1.14
108 10�5 2⇥ 10�3 0.25
109 10�4 6⇥ 10�3 0.083
1010 10�3 2⇥ 10�2 0.025

1.2⇥ 1010 2.5⇥ 10�3 3⇥ 10�2 0.017
2.5⇥ 1010 5⇥ 10�3 4⇥ 10�2 0.013
5⇥ 1010 7.5⇥ 10�3 5⇥ 10�2 0.010

Table 6-1.: Maximum wave-numbers, kmax
s , and minimum characteristic lengths, rmin

s , of a single state
solution of the SF of mass m22 = 1, for a range of parameters including typical observational
masses of SMBHs. Quasi-bound states of the system have square frequencies laying in the
resonance band (Veff (xmin), µ2).

According to (Barranco et al., 2011, 2012), stationary modes with real frequencies

�2 > µ2 do not exist. They found that the spectrum of solutions is continuous. The previous

statement is in agreement with no-hair theorems. Furthermore, these modes do not decay

at spatial infinity. If 0 < �2 < µ2, then the modes have purely imaginary frequencies and

they form a discrete set for which the amplitude inside the potential-well takes very large

values when compared with the amplitude close to the horizon; for that reason they are

called stationary resonances within the band Veff < �2 < µ2. When the conditions of no-

waves coming from the horizon and the requirement of spatial infinity decay are imposed, the

spectrum of stationary resonances become discrete and complex. This set of solutions has

been called quasi-resonances in the literature (Ohashi and Sakagami, 2004). Unfortunately,
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both sorts of solutions are non-physical due to the conserved energy density corresponding

to a Killing vector, which diverges at the horizon. Nevertheless, from numerical calculations,

(Barranco et al., 2011) found healthier solutions dubbed as dynamical resonances with finite

energy density in all regions. These solutions are damped oscillations driven by the SMBH

and survive for very long times. The spectrum of such sort of solutions is the same than

the stationary resonances. Actually, (Barranco et al., 2012) showed that the real part of

the frequency of the quasi-resonant modes coincides with the frequency of oscillation of the

stationary and dynamical resonances, and the imaginary part coincides with the decay rate

of the dynamical resonances. Now, since within this scenario it is assumed that SMBHs are

surrounded by quasi-resonances that are as long-lived as the Universe, we can assume they

are stationary and then we can, as a first approximation, neglect the decaying part of the

solution controlled by the imaginary part of the frequencies. In principle, ks could be taken

as a free parameter, however we argue that the range of its values is restricted by ↵. As

mentioned above, ks is allowed to take values below kmax

s
. Because ↵ takes such small values

for typical galactic SMBH masses, the characteristic length is expected to be quite large.

Usually, within the models accounting for SFDM configurations as galactic solitons,

the values for ks run between 0.35 kpc�1 and 10 kpc�1 (Bernal et al., 2018, Robles et al.,

2015). As we shall see below, the presence of a SMBH produces a considerate reduction in

the size of the soliton compared to fits of SFDM models without SMBH.

6.2.2. The SFDM configuration far away from the black hole

In the following, we aim to study the behaviour of matter at regions far away from the

SMBH, thus we need to solve equation (6-8) in the limit in which 2M/r ! 0, that is
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+

2Mµ2

r
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This equation is valid for most of the central region of the SFDM halo, i.e. the region where

a central soliton is expected. It must be stressed that the evolution of the SMBH and the

galactic system lay in very di↵erent spatial scales. Even stars living in the deepest galactic

regions, well inside the central halo, are parsecs away from the centre, while the Schwarzschild

radius of the SMBH is one part in a million smaller. On one hand, 2M ⇠ 10�14 pc for a

solar mass and 2M ⇠ 10�6 pc for a SMBH with M ⇠ 1010M�. On the other hand, typically

the size of the central halo (the soliton) runs from 1� 10 kpc.

By taking again the change of variable Ql ⌘ r Rl, equation (6-11) becomes

@rrQl + k2
S,L

Ql �
l(l + 1)

r
+

2Mµ2

r
Ql = 0. (6-12)

For l = 0, which is su�cient for spherically symmetric soliton profiles, a solution is given by

�(r) = �0 e�iksr
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, (6-13)
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where �0 is a constant and 1F1 is the hyper-geometric function of order (1, 1). From now on we

shall refer to linear combinations of this sort of solutions as Schwarzschild SFDM (SSFDM)

configurations. We shall analyse the features of the profiles arisen from this solution in detail

in Section 6.4. Well inside the central halo it happens that ksr ⌧ 1, therefore the solution

approximates to

� ' �0 (1�Mµ2r) +O[(ksr)
2] +O[(Mµ2)2]. (6-14)

This profile is in agreement to that proposed in (Lee et al., 2015). For small radii inside the

central halo, i.e. for r ⌧ rs, still far away from the SMBH (2M ⌧ r), the profile remains

constant. Still inside the soliton but closer to its edge (r ⇠ rs), the profiles start decaying.

In the next section we will show that the SMBH produces a driving e↵ect on the SF halo

solution, and the more massive it is more cuspy is the profile of the halo.

6.3. The driving e↵ect of the black hole on the halo

solution

Although equation (6-8) can be solved exactly and analytically, in this section we treat the

problem perturbatively in order to have a more intuitive understanding of the e↵ect that a

SMBH exerts onto a bare SFDM solution. From equation (6-8) it can be noticed that the

last term on the left-hand side is actually a perturbation to the KG equation in flat space for

a region r � 2M . Thus we can split the SF into a bare solution plus a small perturbation

induced by the SMBH:

� = �̄+ ��+O(µ2), (6-15)

being �̄ the solution for the soliton in flat space-time given by equation (4-30), which is

an exact solution of the KG equation for a SFDM perturbation2, that corresponds to the

galactic DM halo in the Newtonian limit found in the case of a temperature-corrected SF

potential for T ' 0. As we already commented, the corresponding density profile coming

from the linear combination of solution (4-30) for di↵erent values of ks and �̄0 is dubbed as

multistate SFDM.

By plugging equation (6-15) with solution (4-30) into (6-11), and setting l = 0, we

obtain an ordinary di↵erential equation for the perturbation given by

�R,rr + k2
s
�R = ��̄0

r0
r

sin [(ks + dks)r]

r
, (6-16)

2In fact the above is not the correct solution for the SFDM density profile given that it does not have a
finite energy in all space. However, as it was showed in (Bernal et al., 2018, Robles et al., 2015), this
solutions represent a very good approximation to the model and then, for simplicity, we decided to use
this kind of solutions in our description.
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that corresponds to a driven harmonic oscillator. Notice that the mass of the SMBH quan-

tifies the amplitude of the external force which has the same functional form than the bare

solution and has a wave-number ks+dks; dks quantifies the closeness to the natural frequency

of the oscillator: when dks ! 0, the corresponding solution is in resonance with the external

force and its amplitude is enhanced. Equation (6-16) holds the following analytic solution:

�k
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✓
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ks

◆2 ⇣rs
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Ci(�) cos ksr � Si(+) sin ksr

�
, (6-17)

where Ci(�)
⌘ Ci[dks r] � Ci[(ks + dks) r] and Si(+)

⌘ Si[dks r] + Si[(ks + dks) r] are the

cosine and sine integral functions, respectively. From the behaviour of the Ci(�) and Si(+)

functions, some physical information about the resonant solution can be extracted. Firstly,

the bigger the mass of the SMBH is, the solution for the SF becomes more cuspy (see Fig. 6-

2). As expected, when the frequency of the oscillator is equal to that of the driving force, the

amplitude of the oscillator blows-up. This happens because we are considering an idealized

situation in which the driving force is formed by a single state of the bare solution; however,

a more realistic configuration would correspond to a driven force as a coherent package made

of multiple bare solutions with di↵erent frequencies, laying within a frequency band of width

dks. In such case, dks would never vanish and therefore the solution for the oscillator would

never be purely resonant; in turn, while the driving force becomes narrower, the amplitude

increases without blowing up. Nonetheless, for the purposes of this subsection, the idealized

situation is enough to realize that the perturbative term due to the presence of a SMBH

works as a driving force which produces enhancement of the amplitude of the solution of

the SF. Fig. 6-2 shows solutions in this simple case with dks ⌧ 1 for di↵erent masses of the

SMBH.

6.4. Dark Matter Mass and Density Profiles

As mentioned above, in this work we model the central region of a SFDM halo housing a

SMBH. We assume that the observer is placed in a region far away from the SMBH in a

radius smaller than the characteristic size of the halo; in such regime, the back-reaction of

the SMBH and scalar dark matter can be neglected.. We model such a system by assuming

that DM is described by a configuration of a complex SF laying in a Schwarzschild space-

time. This framework is valid in the quasi-static limit in which the SMBH is already formed

and it remains still without accreting any matter or gas. Within this regime, the velocity

field of matter is a↵ected by the SMBH presence only by means of the halo solution given

by

⇢' ⌘ ' '⇤ = ⇢s

����1F1

✓
1�

i↵µrs
2

, 2, i2x

◆����
2

, (6-18)

where the central density ⇢s is a free parameter and we have defined the dimensionless

variable x ⌘ ksr = r/rs. As expected the order of magnitude of the parameters involved
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Figure 6-2.: Dimensionless solutions of the SF perturbed by a SMBH for di↵erent values of the ↵ pa-
rameter. As the mass of the BH increases, the solution becomes more cuspy and its width
decreases. This e↵ect is produced by a driving force due to the presence of the SMBH (Figure
taken from (Avilez et al., 2018)).

in the solution naturally coincides with typical sizes of cores in observed galaxies: for an

ultra-light SF with mass m22 ⇠ 1 we have µ�1
⇠ 0.5 pc and for a SMBH with mass M ⇠

1010M�, (Mµ2)�1
⇠ kpc. Taking advantage of these scaling relations, we choose the following

parametrization for the characteristic length rs of the solution:

rs =
⌘

↵µ
, (6-19)

where we introduced ⌘ as free parameter that scales rs in units of (Mµ2)�1. Using this

parametrization, the dimensionless SSFDM density of the SF configuration reads as

⇢̂'(x; ⌘) ⌘
⇢'(x; �)

⇢s
=

����1F1

✓
1�

i⌘

2
, 2, i2x

◆����
2

, (6-20)

that we show in Fig. 6-3 for di↵erent values of ⌘. In this way, we define conveniently the

dimensionless DM density profile as a function of the dimensionless variable x, parametrized

with a single free parameter ⌘.

As it can be seen in Fig. 6-3, as ⌘ increases, the point where the density profile

maximizes, rmax, shifts apart from the centre. Therefore, below such radius DM is not

as dense as in an intermediate region. This can be interpreted as follows: an initially

core-like profile of DM turns into a dough-nut-like configuration when it interacts with a

relativistic particle placed at the centre. This suggests that the largest amount of DM does

not concentrate at the centre. At this point, we have not determined the value of the central

density, thus we cannot quantify the mass of DM. Nonetheless, we can imply there is a region

o↵ the centre of the galactic disk concentrating more DM than in the centre for a fixed value

of rs.
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Figure 6-3.: Dimensionless radial density profile for the SF configuration for di↵erent values of the pa-
rameter ⌘ ⌘ µ2Mrs. The configuration takes its peak closer to the galactic centre as its
characteristic size rs increases for a fixed value of the SMBH mass M ((Figure taken from
(Avilez et al., 2018))).

From integrating out the density profile (6-20) within a given radius, we obtain the

radial mass density profile for the halo as

M'(r) =

Z
r

0

⇢'(r)r
2dr = r3

s
⇢sM̂'(x), (6-21)

where we have defined the dimensionless mass profile as

M̂'(x) ⌘

Z
r/rs

0

⇢̂'(x) x
2dx. (6-22)

At this point, the only information we have about the values of the free parameters of

these profiles, rs and ⇢s, (or alternatively ⇢s and ⌘) has been extracted from the condition

of the existence of bound-solutions in the KG equation determined by the structure of the

e↵ective potential (6-10). As a consequence, a lower bound for rs is established by boundary

conditions, which is in agreement with results from (Lee et al., 2015):

⇢s ⇠ ↵. (6-23)

However, the remaining indetermination is going to be removed by using information from

some universal features of galaxies. In the next sections, we shall reduce the space of param-

eters of our model by imposing a relation between the value of the central SFDM density

and ⌘. We achieve this by assuming the universal maximal acceleration (UMA) of DM par-

ticles, recently reported in (Ureña-López et al., 2017). In Section 6.6, in order to have a

rough estimate of rs, we use the observed correlation between the mass of the SMBH and

the velocity dispersion of baryonic matter in galaxies.
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6.5. Constraint on the central DM density from the mass

discrepancy-acceleration relation

Recently, it has been shown from the observed rotation curves of 153 galaxies from the

SPARC (Spitzer Photometry & Accurate Rotation Curves) database (Lelli et al., 2016),

including galaxies with very di↵erent features and morphologies with high-resolution gas

and stars information, that the acceleration inferred from the observations strongly correlates

with the acceleration due to the baryonic matter, showing a mass-discrepancy at the value

g† = 1.2 ⇥ 10�10 m/s2 (Lelli et al., 2017, McGaugh et al., 2016). Such mass discrepancy-

acceleration relation (MDAR) can be interpreted as a correlation between the baryonic and

the DM, and moreover, the maximum radial acceleration purely produced by baryonic matter

and that of DM are closely related, and in the case that DM particles exist, the maximum

radial acceleration they can reach in all haloes, g', cannot be greater than the UMA value

given by (Ureña-López et al., 2017)

gmax

'
= 0.65g† = 7.8⇥ 10�11m/s2. (6-24)

On the other hand, the acceleration profile comes as a theoretical prediction for every

model and its maximum value should be restricted by the last value. In our case, specific

values of the parameter ⇢s for the SFDM density profile (6-18) (given a mass M of the

SMBH) are required in order to predict the UMA value (6-24). The modulus of the radial

acceleration profile for the bosons forming the halo can be computed in terms of the mass

profile as follows:

g'(r; ⌘,↵) =
GM'(r; ⌘,↵)

r2
, (6-25)

which in terms of the dimensionless mass profile (6-22) and the dimensionless independent

variable x can be easily rewritten as

g'(r; ⌘,↵) = Grs⇢s
M̂'(x)

x2
,

= Gµ' ĝ'(x; ⌘), (6-26)

where we have defined the dimensionless acceleration profile as

ĝ'(x; ⌘) ⌘
M̂'(x; ⌘)

x2
, (6-27)

and we used the surface density definition given in (Ureña-López et al., 2017):

µ' ⌘ rs⇢s. (6-28)
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By imposing the constraint (6-24) over the theoretical maximum of the acceleration

profile, we obtain a value for the halo’s central surface density given by

µ' =
0.65g†

G ĝmax
'

(⌘)
, (6-29)

and consequently the central value for the density profile is

⇢s = ↵
⇢†

⌘ ĝmax
'

(⌘)
, (6-30)

where

⇢† =
0.65 µ g†

G
= 0.807⇥ 103

M�

pc3
. (6-31)

for m22 = 1. Notice that relation (6-30) is consistent with the boundary condition (6-23).

In (Ureña-López et al., 2017), using the UMA value for DM profiles, solutions of

the Schroedinger-Poisson system (valid at the Newtonian limit only), they conclude that

the central surface density µ' is a universal constant. In the context of the ultra-light

SFDM model, for the so-called fuzzy or wave DM soliton profile (Schive et al., 014a), µ' =

648M� pc�2. This result brings as a consequence that the Wave DM soliton profile should be

a universal feature of the SFDM haloes. However, in the context of this work, where central

SMBHs in galaxies manifestly a↵ect the DM profile in the core and also the central density,

while it is true that gmax

'
is a constant, from equation (6-29) it is clear that the central density

µ' is not necessarily constant. Rather, it obeys the following implicit relation between ⇢s
and rs:

rs⇢s � µ'(⌘ ⌘ Mµ2 rs) = 0. (6-32)

Therefore, the universality of the Wave DM soliton profile for galaxies hosting a SMBH

not necessarily holds unless Mµ2 rs = constant. Two interesting points arise from this

last conclusion: Firstly, haloes of galaxies with not-too-massive BHs in their centres nearly

satisfy Mµ2 rs = 1. This can be realized using the analysis made in Subsection 6.2.1, where

we saw that for small masses ks ! 0, the SF profile can be described by the Ureña-Liddle

solution (Ureña-López and Liddle, 2002), for which rs can be read o↵ as (Mµ2)�1. Secondly,

assuming the UMA value (6-24) actually holds, in the case of observing galaxies that violate

the universal Wave DM soliton profile, variations to the constraint (6-32) can be owed either:

i) to the influence of baryons on the solitonic halo through gravity, or ii) to the influence of

a SMBH at the centre of such galaxies. Consider we were studying the features of a SFDM

halo for an specific galaxy and from fits of its rotation curve, or another observation, it turns

out that µ' di↵ers from the universal value proposed in (Ureña-López et al., 2017); therefore,

we could set as a possibility the existence of a SMBH at its centre and, from the inferred

value of µ', the mass of the SMBH can be estimated.
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Figure 6-4.: For a fixed mass of the SMBHM ⇠ 1010M�, the radial acceleration profile g'(⌘(ks)) is plotted
for di↵erent wave-numbers ks of the solution ((Figure taken from (Avilez et al., 2018))).

In order to completely fix the central density of our SFDM profiles we still need to fix

rs (or ⌘). In Section 6.6 we shall determine rs by fitting the observed correlation between the

mass of the SMBH and the velocity dispersion of baryonic matter inside the stellar bulge (see

e.g. Ferrarese and Merritt, 2000). However, at this point, we are able to set some restrictions

over ⇢s from theoretical grounds. The following subsection is devoted to that purpose.

6.5.1. Theoretical upper bound for the central density of the SFDM

configuration

In Subsection 6.2.1 we derived an upper bound for the wave-number ks of the solutions

of the Schwarzschild-Klein-Gordon system, for a range of values of the SMBH mass (see

Table 6-1). Here, we derive the values of the central SSFDM density profile from the UMA

constraint (6-24), by using the procedure explained at the beginning of Section 6.5.

For a fixed value of the mass of the BH, M , the theoretical radial acceleration strongly

depends on rs (or ks), as Fig. 6-4 shows. As the value of ks increases, gmax

'
decreases, and

together with equation (6-30), we can see that ⇢s(↵, ⌘(kmax

s
)) increases. Therefore, for a

fixed M , the value ⇢s(↵, �(kmax

s
)) is an upper bound for all its possible values.

Let us denote such maximum value for the central density as ⇢↵
max

⌘ ⇢'(x = 0; ⌘ =

Mµ2rmin

s
), in order to distinguish these values purely associated to theoretical quantities from

those corresponding to a generic rs, which are going to be inferred from observations later.

The top panel of Fig. 6-5 shows the correlation between the parameter ↵ (that quantifies the

mass of the SMBH for a fixed mass of the SFDM) and its corresponding central density for

the minimal value of rs allowed. According to this relation, the intuitive and ideal picture

drawn in Section 6.3 is correct: the larger the mass of the central SMBH is, the denser is

the surrounding SFDM configuration (see the bottom panel of Fig. 6-5). This would be

actually true if nature would choose rmin

s
= 1/kmax

s
; however, the complexity of baryons in

real galaxies is mostly likely to mess up such assumption. Nonetheless, it gives us an idea of
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Figure 6-5.: Top panel: Upper bounds for the central density values ⇢↵max as function of the mass M
of the SMBH. These values are obtained for SF profiles fixing the characteristic length as
rmin
s = 1/kmax

s . Bottom panel: Density profiles for di↵erent values of M and rmin
s (M). As

expected, the halo is denser at the centre for more massive SMBHs; e↵ectively, the SMBH
increases the height and shrinks the length of the SF profile. This is in agreement with results
from our toy model discussed in Section 6.3 (Figure taken from (Avilez et al., 2018)).

how the haloes would ideally be without baryons, also it sets up some restrictions over the

central density.

6.6. Kinematics of visible matter inside the gravitational

potential of the SFDM halo

In practice, the mass of a SMBH is derived from measurements of di↵erent features of the

velocity field of stars and gas moving along the gravitational well-potential produced by the

whole system formed by the dark matter halo, stars, gas and the SMBH. From theoretical

grounds, the procedure goes the other way round: we assume a SMBH fully specified by its
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mass and we derive some kinematic features of the velocity field of the system. In this Section

our goal is to give an estimate for the free parameters of our SFDM model in concordance

with some observational features of galaxies. This shall serve us to test at which extent

our formalism is capable to describe the central regions of haloes laying in a space-time

considerably influenced by the presence of a SMBH. As a first step, we shall use the UMA

constraint (6-24) (Ureña-López et al., 2017) to reduce the space of parameters. Similarly as

we did at theoretical level in Section 6.5.1 by bounding the values of the central density, the

UMA constraint provides a relation between ⇢s and rs. As a second step, in order to obtain

an estimate of the remaining free parameter rs, we compute the baryonic stellar velocity

dispersion by solving the Jeans equation for di↵erent values of the mass of the SMBH. For

each value of M , we derive an estimate of rs that gives rise to the target value of the velocity

dispersion �⇤ reported in (McConnell and Ma, 2013). We carry out such procedure in two

cases:

1) In Subsection 6.6.2 we assume the gravitational pull of DM is dominant. We dub

such case DMD. Here, the velocity dispersion of baryons only depends on the DM

parameters and the ratio of rs and the e↵ective radius associated to the stellar density

profile. In this idealized case, as a first result, we obtain a correlation between rs
and the mass of the SMBH. This allows us to derive, as a complementary result, the

central surface density profile µ' of SFDM as function of ⌘, which is a generalization

of the main result from (Ureña-López et al., 2017) for DMD galaxies hosting SMBHs.

This idealized case may be applicable to ultra-compact dwarf (UCD) galaxies, which

are claimed to possibly host SMBHs and it is assumed that they host a small amount

of baryons, as inferred from their poor luminosities (Ahn et al., 2017, Drinkwater

et al., 2000). Aditionally, we consider that this description should be equivalent to

what should be obtained if we had used the model provided in (4-26), instead of the

generalization of (4-30).

2) In Subsection 6.6.3 we study the second case LGAL, in order to consider large galaxies.

We consider that the gravitational influence of both baryons and DM described by the

SSFDM model is important3. We must point out here that, since we are using a

Schwarzschild geometry of space-time a priori, we are ignoring the feedback of baryons

and the SF itself on the solution of the SFDM profile, and therefore the formalism used

in these cases only provides a rough description of the system. However, the results are

still useful to compare with other estimates arisen from similar models of DM within

the regime of applicability, in order to figure out possible e↵ects due to the presence

of a SMBH.

In both cases we consider an elliptical shape for the baryons distribution. In the second

case, our formalism is valid to describe massive, dispersive and early-type galaxies and bulges

3We assume the gravitational influence of the SMBH only happens through the DM solution.
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of late-type galaxies. We take as cases of study specific real elliptical galaxies and bulges.

6.6.1. Visible matter in the galaxies and the Jeans equation

Because we are assuming spherical symmetry, our model predicts that stars only move along

the radial direction. The stellar spatial distribution is fully described by the distribution

function f(r, v), which is the probability of finding a star at radius r with velocity v. This

distribution satisfies the Boltzmann equation and once it is known, all the macroscopic

statistical quantities associated to the visible part of the galaxy can be determined. However,

to determine such distribution is not straightforward, and sometimes it is not even necessary

to compute some observables, as it happens with the stellar velocity dispersions4, �⇤, which

obey the Jeans equation. This relation can be derived from the Boltzmann equation in the

case that stars in the system are non-collisional and when spherical symmetry is imposed,

and is given by (Binney and Tremaine, 2008)

1

⇢⇤(r)

d(⇢⇤�2
⇤)

dr
+

2��2
⇤

r
= �

GMtot(r)

r2
, (6-33)

where ⇢⇤ is the stellar density profile and � the anisotropy parameter that we shall ignore

since, even in the more complex cases, it modifies the results no more than 5% (Binney and

Tremaine, 2008, McConnell and Ma, 2013). The total mass of the galactic system, Mtot, is

defined by

Mtot(r) = Mbar(r) +M'(r), (6-34)

where Mbar and M' are the mass of the baryons (gas and stars) and the SFDM, respectively,

enclosed inside a given radius r. The left-hand side of equation (6-33) corresponds to kine-

matic terms of the visible matter, while the right side involves the dynamical sources that

produce the galactic well-potential that triggers the kinematics.

In this work we assume Mbar can be described by the Plummer density profile, which

is typically used to describe stars in galactic bulges, but also for elliptical and dwarf galaxies

(see e.g. Walker et al., 2009). For this profile, the radial density distribution of stars is given

by

⇢⇤(r) =
⇢0⇤

[1 + (r/Reff )2]
5/2

, (6-35)

where ⇢0⇤ ⌘ 3M tot

⇤ /(4⇡R3
e↵) is the stellar central density and M tot

⇤ is the mass of stars enclosed

within the e↵ective radius Re↵ , which is defined as the radius at which the luminosity of the

galaxy decreases to a half of its central value. The corresponding Plummer mass profile M⇤

4The stellar velocity dispersion is defined as the square root of the standard deviation of the velocity
probability distribution: �2

⇤ ⌘
R
V f(x, v)(v � v̄)2d3x d3v, where v̄ is the mean radial velocity.
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is obtained by integrating the density profile (6-35) within a radius r. The dimensionless

Plummer mass profile of stars, M̂⇤, is defined as

M̂⇤(r) ⌘
M⇤(r)

M tot
⇤

=
(r/Reff )

3

⇥
1 + (r/Reff )

2⇤3/2 . (6-36)

6.6.2. Determining the SSFDM characteristic length from the ‘M

sigma’ relation for the DMD case

The mass of visible matter in galaxies is an important parameter to consider in order to

understand the co-evolution of the SMBH, the SFDM halo and the messy system of stars

and gas. Real galaxies hosting SMBHs usually contain an important fraction of visible matter

in-falling into the gravitational well-potential and, thanks to such component, these objects

can be detected. In the next subsection we shall take into consideration the gravitational

contribution of baryons into the Jeans equation for very specific luminous galaxies. However,

in this subsection we start considering a simpler idealized case, that is, an hypothetical

system where the gravitational well-potential is mainly produced by the SF configuration

forming the DM halo.

Here we model the baryonic distribution using the Plummer profile (6-35) assuming a

spherical system. The parameters of this profile have been well tested and it can be used to

model systems of di↵erent sizes and luminosities (Walker et al., 2009). As mentioned before,

this case may be applied and tested in the future in UCD galaxies (Ahn et al., 2017). In this

respect, we must to mention that, at the date, there is not enough information to realize

whether UCDs are actually galaxies or compact clusters (Drinkwater et al., 2000). For that

reason, not even information about the stellar kinematics is still available. Although this sort

of systems need to be further investigated, at the moment we cannot exclude the possibility

of the existence of these old galaxies. From the theoretical point of view (Barranco et al.,

2011, 2012, Escorihuela-Tomas et al., 2017), it is reasonable to expect the existence of these

systems at some point when all baryons have been accreted, let us recall that in these models

DM decays much slower than baryons.

The Jeans equation (6-33) in this case reads

1

⇢̂⇤(r)

d(⇢̂⇤�2
⇤)

dr
= �

GM'(r)

r2
. (6-37)

Notice that M tot

⇤ is not a free parameter any more. The last equation is equivalent to

�2
⇤(r) =

1

⇢̂⇤(r)

Z
r

0

GM'(r0) ⇢̂⇤(r0)

r02
dr0, (6-38)

where ⇢̂⇤ ⌘ ⇢⇤/⇢0⇤. The last equation, written in terms of dimensionless quantities, turns into

�2
⇤(x) =

G ⇢†

µ2↵

⌘

ĝmax
'

(⌘)

1

⇢̂⇤(x, a)

Z
x

0

M̂'(x0, ⌘) ⇢̂⇤(x0, a)

x02 dx0, (6-39)
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where we have redefined the Plummer profile in terms of the dark-to-visible-size ratio, a ⌘

rs/Re↵ , as

⇢̂⇤(x, a) ⌘
1

(1 + a2x2)5/2
. (6-40)

It is worth to notice that equation (6-39) results to be a product of a term depending

only on ⌘ and other only depending on ↵. The square of the stellar velocity dispersion

evaluated in the e↵ective radius is given by

�2
⇤(Reff ) =

(v†)2

↵
�2
(a)(⌘), (6-41)

where we have introduced the SFDM characteristic velocity v† and the dimensionless quantity

�2
(a)(⌘) depending on the value of a as

(v†)2 ⌘
0.65 g†

µ
= 1.209⇥ 106 m2s�2, (6-42)

�2
(a)(⌘) ⌘

⌘

ĝmax
'

(⌘)

1

⇢̂⇤(1/a)

Z 1/a

0

GM̂'(x0, ⌘) ⇢̂⇤(x0, a)

x02 dx0.

(6-43)

Notice that the square of the actual velocity dispersion is just a rescaling of equation (6-43)

which exclusively depends on ↵ and the mass of the SF, µ. The last point is interesting

because, unlike other observables, the dependences on ↵ and µ in �2
(a) are separated and

hence they are not degenerated. In Fig. 6-6, �2
(a) is plotted for some values of the dark-

to-visible-size ratio a, for a fixed mass M of the SMBH. Notice that as the size of the

halo increases in relation to the size of the bulge, the whole velocity dispersion profile is

suppressed. Now, as it can be noticed from the integral in equation (6-43), the stellar

density profile serves as a weight of the radial acceleration profile, therefore, the larger a is,

such weight becomes steeper and the integrand falls down at smaller radius. This suggest

a connection between baryons and their hosting SSFDM haloes, this is, for fixed M and

Re↵ , visible matter in galaxies is less dispersive if it is embedded in larger haloes. Besides,

for a given M , visible matter has larger maximum velocity dispersions if the dark-to-visible

matter ratio is smaller, as shown in Fig. 6-6. This means that, in this model, the presence

of baryons in the central galactic region enhances the velocity dispersion of stars.

Let us turn to find the values of the characteristic size of the halo, rs, such that, for a

given value of M , we can reproduce the value of �⇤ given by the relation

log10

✓
M

M�

◆
= ↵ + � log10

⇣ �⇤
200 kms�1

⌘
. (6-44)

The previous equation corresponds to the best fit of measurements of M and �⇤ of a host

of galaxies within three main samples: early and late-type galaxies, and the full sample

considering both types (McConnell and Ma, 2013). The resulting parameters and errors of

the M � �⇤ relation for di↵erent samples are summarized in Table 6-2.
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Figure 6-6.: Dimensionless velocity dispersion �2
(a) as function of ⌘ for di↵erent values of a. If the size

of the halo increases in relation to the size of the bulge, the velocity dispersion profile is
suppressed (Figure taken from (Avilez et al., 2018)).

type ↵ �

early 8.07± 0.21 5.20± 0.36

late 8.39± 0.06 5.06± 1.16

full sample 8.32± 0.05 5.64± 0.32

Table 6-2.: Parameters for the M � �⇤ relation for samples of di↵erent classes of galaxies.

We constructed a set of bins of values of M running from 106 M� to 108 M�, and for

each bin we use the prescription explained above to compute �⇤ by solving equation (6-39).

In our procedure we set a = 1, that is, rs = Reff ⇠ kpc. We tried di↵erent values of ⌘

and picked the one that best reproduced the value of �⇤ associated to M by relation (6-44).

Fig. 6-7 shows theoretical curves of �⇤ as function of ⌘ corresponding to di↵erent masses

M of the SMBH; the points correspond to the picked values reproducing the observational

value of �⇤ along with the error bars corresponding to each sample. The resulting values of

the characteristic length from this procedure are summarized in Fig. 6-8.

An important result of this subsection is that models with values of a � 1 fail to

reproduce �⇤ from equation (6-44) for masses M > 108M�; however, the results change for

a < 1. This is important since it tells us that within the DMD model, only systems with

Re↵ > rs are able to reproduce the observed stellar velocity dispersion for a limited range of

values of M . However, this scenario falls out of the regime of validity of DMD. Therefore,

we can conclude that for DMD systems (with a � 1) the phenomenological �⇤ can only be

reached for BHs with masses up to M ⇠ 108M� at most (a = 1) within the model, assuming

that the gravitational field of DM is dominant (see Figs. 6-7 and 6-9). Equivalently, this is

consistent with the following: i) large SMBHs live in visible-matter-dominated galaxies and

ii) in hypothetical DMD systems –like UCD galaxies might be– SMBHs could be found with

masses of M ⇠ 108M� at most or without a SMBH.
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Figure 6-7.: Lines correspond to theoretical ⌘ � �⇤ curves for di↵erent values of the SMBH mass: M =
107M� (double-dot-dashed), M = 5 ⇥ 107M�(dot-dashed), M = 8 ⇥ 107M� (dashed) and
M = 108M�(solid). The points with error bars correspond to picked values of ⌘ that satisfy
the phenomenological M��⇤ relation (6-44) for di↵erent samples of galaxies. Notice that the
solid line corresponding to 108 M� barely reaches the observed �⇤ for the late-type sample
(Figure taken from (Avilez et al., 2018)).

Figure 6-8.: Scaling relation between the fit for ⌘ characterizing the size of the SSFDM halo and the mass
of the hosted SMBH for DMD systems. This relation is derived from fitting the observed
M � �⇤ relation (Figure taken from (Avilez et al., 2018)).

A complementary result of this work is the corresponding constraint (6-32) for values

of rs shown in Fig. 6-8. As mentioned before, unlike the standard SFDM profiles, in the
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Figure 6-9.: Empirical M � �⇤ correlation (McConnell and Ma, 2013) for a full sample of early and late-
types galaxies. The DMD regime within SSFDM can be only applied for SMBH with masses
within the blue region (Figure taken from (Avilez et al., 2018)).

case of SSFDM profiles µ' is not a constant, rather, as Fig. 6-10 shows, it depends on the

parameter ⌘ = Mµ2rs. In SFDM models within the Newtonian regime, the constancy of µ',

along with some scaling relations of the parameters, bring up an important prediction for

these models: the existence of a universal soliton-like profile in the central halo (Ureña-López

et al., 2017). In satellite dwarf galaxies of the Milky Way, which are the closest to pure DM

systems known at the date, this property would mean having a common mass around 107 M�

at 300pc which seems to have a strong observational support (Strigari et al., 2008). Here,

when the influence of a SMBH on the DM profile is considered, the result of µ' 6= constant

implies that the soliton behaviour is altered and then the mass at r ⌧ 300pc is expected to

be di↵erent depending on the mass of the guest SMBH.

6.6.3. Determining the SSFDM characteristic length from the ‘M

sigma’ relation for a Sample of Luminous Galaxies

As mentioned above, in a similar way than for the previous case, in this subsection we aim to

obtain estimates of the free parameters of the SSFDM profiles according to observations in

the central regions of some large galaxies hosting SMBHs. Unlike subsection 6.6.2, in which

an idealized case is considered, here we model six real, luminous and baryon dominated

galaxies (enlisted in Table 6-3). We refer this instance as LGAL, a case which technically

di↵ers from the DMD one studied in Subsection 6.6.2, since we take into consideration the full

gravitational pull of baryons and DM into the Jeans equation. As mentioned above, although

our models are far from being realistic approaches to the complex non-lineal systems forming

real large galaxies, the results in this subsection are obtained from observations from central

galactic regions and it would be helpful to compare them with other estimates arisen in other
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Figure 6-10.: Surface density for several values of ⌘. As expected in this model, this quantity is not a
constant, in contrast to that from SFDM models (Figure taken from (Avilez et al., 2018)).

SFDM models used to describe external galactic regions, like the multistate SFDM model

(see equation (4-30)).

We solved numerically the equation (6-37) using the Plummer mass profile to model

the visible matter contained in spherical systems and the mass profile corresponding to

SSFDM described before for di↵erent elliptical galaxies hosting SMBHs in their centres.

The corresponding parameters for each galaxy are enlisted in Table 6-3; they were extracted

from catalogues in (McConnell and Ma, 2013) and (Larkin and McLaughlin, 2016). On the

other hand, in (Larkin and McLaughlin, 2016), a correlation between the stellar total mass

and the e↵ective radius is reported and they infer the mean-stream trend in di↵erent galaxies

by means of the following phenomenological relation:

Reff/kpc = 1.5⇥ M̄0.1(1 + M̄5)0.1, (6-45)

where M̄ ⌘ M tot

⇤ /2 ⇥ 1010M�. We used this result in order to estimate the e↵ective radius

of some galaxies in our catalogue (Table 6-3) labelled with †. Such table also summarizes

the parameters used to solve the Jeans equation for each case.

After reducing the space of parameters using the UMA constraint derived in subsec-

tion 6.5.1, we determined the characteristic length of the haloes corresponding to each galaxy

in our catalogue such that, along with the other parameters of baryons in Table 6-3, the

velocity dispersion �⇤ from (6-44) is obtained. Once the set of points in the rs��⇤ space were

determined, a clear correlation between both parameters is observed which can be described

by the following law:

�⇤(Reff )

kms�1
= 109.0 + 38.4⇥

✓
rs
kpc

◆
. (6-46)
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Galaxy MBH/M� M tot

⇤ /M� Reff/kpc rs/kpc �(Reff )/kms�1

Milky Way Bulge 4.1⇥ 106 9⇥ 109 1.4 0.615 103± 20⇤

N3384 1.1⇥ 107 1.9⇥ 1010 1.58† 2.85 143.4± 7⇤

N3585 3.2⇥ 108 1.6⇥ 1011 5.2† 2.1 213± 10⇤

N3379 4.2⇥ 108 6.86⇥ 1010 3.143† 1.08 206± 10⇤

M87 3.2⇥ 109 3.3⇥ 1011 8.0 3.04 264± 13⇤⇤

M49 2.5⇥ 109 4.2⇥ 1011 9.3 3.44 250± 13⇤⇤

Table 6-3.: This table summarizes some physical parameters of some representative galaxies and their
SMBH and the derived values of the parameter rs within SSFDM obtained from fitting the
M � �⇤ reported in (⇤) (McConnell and Ma, 2013) and (⇤⇤) (Larkin and McLaughlin, 2016)
(SMBH mass, total stellar mass, e↵ective radius, characteristic size of the halo and velocity
dispersion). Values of Reff labelled with † were estimated using (6-45).

Fig. 6-11 illustrates the main result of this subsection: the observed velocity dispersion of

baryons in centres of large and luminous galaxies like the Milky Way –which typically contain

a dominant amount of baryons in those regions– can not be produced only by gravitational

potential wells of SSFDM haloes (as it has been shown in Subsection 6.6.2 as well), rather

an important contribution of this wells should come from the baryons.
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Figure 6-11.: The solid line corresponds to the best-fit of rs � �⇤ for the six galaxies in our catalogue
given by the yellow points with their corresponding error-bars (Table 6-3). The dashed
lines correspond to the ±1� theoretical errors from our best-fit given by relation (6-46)
(Figure taken from (Avilez et al., 2018)).



7. Consequences of the core-halo mass
relation in the self-interacting scalar
field dark matter model

In the last section, we have studied the SFDM model in presence of SMBHs. Most im-

portantly, in this section we would like to explain the formation of SMBHs in this SFDM

scenario. For such purpose, we consider again the possibility that the SFDM model could be

self-interacting and then, extend the core-halo mass relation that have been obtained in the

SFDM model (see equation (4-26)). Observe that we can relate halo quantities in terms of

soliton quantities via equations (4-27) or (4-28). For such porpoise, in this chapter, we shall

extend the review we did in section 2.4.2 in order to understand a little more soliton proper-

ties, and then, explore possible extension of the core-halo mass relation in the self-interacting

scenario.

It is important to stress that the core-envelope structure of SFDM halos with self-

interaction has not yet been established by numerical simulations, because the latter were

confined to the free case. Yet, we adopt the premise that there ought to be a core-envelope

structure also in models with self-interaction and we shall study the consequences. In fact,

the (quantum) cores of SFDM alone cannot explain the big range of galactic halo masses

found in the Universe, and it is this simple observation which ”mandates” that cores (with

or without self-interaction) have to be enshrouded by some envelopes. For instance, early

indications of the problem of the core-halo mass relationship and a toy model for strongly

self-interacting SFDM models can be found in (Rindler-Daller and Shapiro, 2014). Halo

envelopes were later confirmed in the free case by simulations by (Schive et al., 2014b) and

follow-up studies (see above).

The chapter is organized as follows: in section 7.1 we extend the basic description of

the SFDM soliton profile by adoptiong a Gaussian ansatz to describe the soliton in order to

maintain some freedom in working with the self-interaction parameter of the SFDM model.

We show that, in general, this ansatz maintains practically all the relations that are found

in the numerical description (the parameter dependence for the maximum mass for collapse

of the soliton, parameter dependence in the TF regime, etc), even if relativistic corrections

are considered. This implies that the Gaussian ansatz represents a good approximation for

the soliton. Also in this section, we show that the results provided by this ansatz can be

easily obtained in the hydrodynamic representation of the GPP system and by considering
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a simple dimensional argument, without the need of considering any functional form for the

core profile. In section 7.2, we extend the core-halo mass relation to self-interacting SFDM

by considering the conditions (4-27), or (4-28), which are fulfilled by core and halo quantities

in the simplest SFDM model. As a sequel to section 7.2, in section 7.3 we consider some

heuristic arguments on the nature of the halo envelopes extensions to try to understand what

extension should imply a more physical consequence for core-halo relations. In section 7.5,

we compare our results with previous works, with the emphasis on the implied constraints of

the SFDM model parameters. For this comparison, we focus on the core properties found in

the central region of SFDM halos. We find that for a repulsive SFDM candidate, the central

soliton should be represented in the TF regime, while for attractive SFDM, we have scenarios

where the soliton collapses and forms a SMBH for the most massive galaxies, while remaining

stable for the least massive galaxies. Finally, in section VII we present our conclusions.

7.1. Extending soliton properties

7.1.1. The weak-field limit

In this section, we decided to re-introduce explicitly the values for ~ and c to be consistent

with the typical works reported in the SFDM for galaxy formation with self-interactions.

Additionally, we decided to work in physical coordinates, instead of comoving.

As we explained before, the Structure formation of halos in a matter-dominated Uni-

verse can be well described by the Gross-Pitaevskii-Poisson (GPP) system (4-16):

i~@ 
@t

= �
~2
2m

r
2 +m� + g| |2 , (7-1a)

r
2� = 4⇡G⇢, (7-1b)

We will ignore the baryonic contribution in what follows, in order to be consistent with

most of the numerical simulations for structure formation in the SFDM model (Levkov

et al., 2018, Mocz et al., 2017a, Schive et al., 2014a,b, Schwabe et al., 2016, Veltmaat and

Niemeyer, 2016)). Then, we will consider that ⇢ = m| |2.

For simplicity, we shall re-express in physical units the di↵erent energy quantities that

we reviewed in (2-44) and (2-46):

Mt = m

Z

V

| |2d3r, Et =

Z

V


~2
2m

|r |2 +
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2
�| |2 +
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2
| |4

�
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and

Kt =
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2
�| |2d3r, USI,t =
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2
| |4d3r. (7-3)
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We shall also work with the dimensionless GPP system (2-49), in such case the dimen-

sionless variables defined in (2-48) are rewritten in physical units as

 ̂ =

r
4⇡G~2
mc4

 , r̂ =
mc

~ r, t̂ =
mc2

~ t,

�̂ =
�

c2
, ⇤̂ =

c2

4⇡G~2 g =
m2

pl

m2

�

8⇡
, (7-4)

As we explained in section 4.4.2, all the soliton solutions are virialized structures that

fulfill equation (2-47). They can be modeled by the boson stars reviewed in section 2.4.2.

Additionally, by multiplying (7-1) by  ⇤, considering a similar ansatz solution than (2-52)

but in physical units, i.e.

 (r, t) = �(r)e�µct/~, (7-5)

and integrating over all space, we obtain that such solutions also fulfill

Kc + 2Wc + 2Uc,SI = µc

Mc

m
, (7-6)

where µc is the chemical potential in physical units and, as we commented before, subindex

c means total soliton quantities (Mc is the total mass of the soliton, Kc is the total kinetic

energy of the soliton, etc.). Observe that in the free case, we arrive at the well-known relation

2Kc = �Wc and Kc = �Ec, where

Ec =
µc

3

Mc

m
. (7-7)

As we already explained, by using the re-escaling property in (2-50), it is possible to

construct all the soliton solution in the free field model, once one of the solutions is known,

whereas in the self-interacting case, it is possible to construct all the soliton solution for a

given ⇤ if one of such solutions is known.

We shall show that a Gaussian ansatz can describe correctly the soliton properties.

For such consideration, let us address the case of the soliton profile a little more in the non

interacting case. The first solution that is usually convenient to solve in the free case is

that one for which the central value  ̂(r̂ = 0) = 1. In this case, the numerical value of the

dimensionless chemical potential is given by µ̂ ' �0.69, which corresponds to a soliton with

the total mass

M (1)
c

'
2.79⇥ 1012

m22
M�. (7-8)

Then, from the above equation and the re-scaling parameter � in (2-51), it is possible to

construct solitons with di↵erent masses by considering

� = 3.6⇥ 10�6m22M
(�)
c,7 , (7-9)

where again M (�)
c,7 ⌘ M (�)

c /(107M�). Notice that we have left explicitly the � dependence for

the numerical solution of the soliton.
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Another important quantity is the radius that contains 99% of the soliton mass and is

given by1

R(�)
99 '

8.445⇥ 104

(m22)2M
(�)
c,7

pc. (7-10)

Finally, the soliton additionally fulfills the relation (see also equ.(7-20))

M (�)
c

' 4.3

 
K(�)

c

M (�)
c

!1/2
m2

pl

mc
. (7-11)

7.1.1.1. The Gaussian ansatz in the weak-field limit

Previous literature has made extensive use of two di↵erent analytic approximations for the

numerical, exact soliton profile of SFDM halos without self-interaction. On the one hand,

we have the polynomial approximation (4-22), which was proposed in (Schive et al., 2014a),

and which is based upon an empirical fit to the central region of simulated halos. On the

other hand, a Gaussian profile has been used to approximate SFDM solitons in (Chavanis,

2011, Guzmán and Ávilez, 2018). The use of a Gaussian is motivated by the fact that

Gaussian “wave packets” not only appear in many contexts of a linear Schrödinger equation,

it may also constitute a solution for laboratory Bose-Einstein condensates without particle

self-interaction, see e.g. (Baym and Pethick, 1996). In this chapter, we decided to use the

Gaussian approach, given its better physical foundation and the fact that it is easier to find

physical relations of interest from it. The di↵erence between the two analytic profiles can

be seen in appendix F: the polynomial description appears to match better to the numerical

result for the soliton for small r̂, while the Gaussian approach matches better to the numerical

solution at large r̂. However, what is more important in our context is the fact that the

Gaussian ansatz arrives at the same physical relationships as the numerical solution, and

the di↵erence in the prefactors is O(1), as we shall see.

Now, the question arises to what extent the Gaussian can be used, if self-interaction

is included. In fact, (Baym and Pethick, 1996) already used a Gaussian ansatz as a trial

function in a variational analysis, in order to find modified physical relationships, valid when

self-interaction is included. The same approach was proposed in (Chavanis, 2011) in order

to extend the modeling of the SFDM soliton profile with self-interaction by considering the

Gaussian density distribution

⇢(g)
c
(r) =

Mc

(⇡R2
c
)3/2

e�r
2
/R

2
c , (7-12)

where Rc is a characteristic core radius associated with the radius that contains 99% of the

total mass of the distribution2 as R99 = 2.38167Rc.

1This result is obtained from the mass-radius relationship (4-25).
2This number follows simply by calculating the radius which includes 99%, i.e. 2� of the mass of the
Gaussian distribution.
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A mass-radius relation was found by way of minimizing the energy3 functional (7-2),

and considering the ansatz (7-12) as a trial function. That procedure yields

Mc = 3
p
2⇡

~2
Gm2Rc

1� 6g
4⇡Gm2R2

c

, (7-13)

or equivalently

Mc,7 '
10.076⇥ 105

m22

R̂c

R̂2
c
� 6⇤̂

. (7-14)

We note that when g, ⇤̂ > 0 and Rc )
p
6g/(4⇡Gm2), or equivalently R̂c )

p
6⇤̂, we

obtain Mc ) 1, equivalent to the statement that Rc does not depend on the mass Mc.

(Chavanis, 2011) showed that this limit corresponds to the well-known Thomas-Fermi (TF).

The simplest way to see that consequence is by noticing from the above equation that

R̂c =
5.038⇥ 105

Mc,7m22

2

41 +

s

1 + 6⇤̂

✓
Mc,7m22

5.038⇥ 105

◆2
3

5 , (7-15)

and then, when the second term in the square root dominates, we obtain R̂c '

p
6⇤̂,

independent of Mc,7
4.

More precisely, the radius for the soliton profile follows in each case, as expected:

1. In the weak self-interacting limit

p
6⇤̂Mc,7m22

5.038⇥ 105
⌧ 1 and ⇤̂ � 0, (7-16a)

we obtain the relation McRc ' const5.

2. In the strong self-interacting limit

p
6⇤̂Mc,7m22

5.038⇥ 105
� 1, (7-16b)

we obtain R̂c ' const, i.e. independent of core mass.

3Notice that (Chavanis, 2011) uses an uncommon definition of W which di↵ers from the second equation
in (7-3) by a factor of 1/2.

4We can compare the radius that contains 99% of the total mass in this limit and the radius obtained in
the TF approach (4-32). Considering that for the Gaussian ansatz (Chavanis, 2011) R99 ' 2.38167Rc '

5.834
p
g/(4⇡Gm2), while for the TF approach R(TF ) = ⇡

p
g/(4⇡Gm2), we can see that both quantities

are practically of the same order of magnitude.
5The equality is obtained when ⇤̂ = 0. See also equation (4-25).
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Figure 7-1.: Mass-radius relation in the self-interacting SFDM model. We consider a Gaussian ansatz
which describes very well the results obtained in the numerical simulations.

By comparing Figure 7-1 and the numerical solution (Figure 2-3), we can observe

that the relation (7-13), or (7-14), maintains the same basic parameter dependences than

the numerical solution. For the attractive case (⇤̂ < 0), this means that there exists a

maximum mass allowed by the SF configuration given by

Mc,max ' 7.6952
mplp
|�|

, (7-17)

wich is comparable with the numerical result (2-54), while in the repulsive and free case

(⇤̂ � 0), it appears there is no maximum mass for the soliton profile. Another important

property that is also maintained is the fact that, the larger the coe�cient ⇤̂, the more

massive the equilibrium configuration. Interestingly, the radius at which the attractive case

reaches its maximum mass is given by R̂c =
q

6|⇤̂|, which is just the same radius at which

the repulsive case goes over to the TF regime.

Now, we can easily show that the total kinetic energy (7-3) for the SFDM Gaussian

ansatz with self-interaction is as follows (compare also to (7-38))

Kc =
3

4

~2Mc

m2R2
c

, (7-18)

which can be re-arranged to

1

Rc

=
2m
p
3~

✓
Kc

Mc

◆1/2

. (7-19)
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Using the Mc �Rc relation (see equation (7-13)), we arrive at

Mc ' 8.68
m2

pl

m

⇣
Kc

Mc

⌘1/2
/c

1� 8⇤̂
⇣

Kc

Mc

⌘
/c2

. (7-20)

This last expression will be very important in the next section. However, observe that in

the free case (⇤̂ = 0) the above result di↵ers only from (7-11) by a factor of 2.

Considering the free-field limit, we obtain

Rc '
6.44⇥ 104

(m22)2Mc,7
pc. (7-21)

Its radius R99 which contains 99% of the total mass of the soliton is R99 ' 2.38167Rc, which

from the above equation yields

R99 '
15.34⇥ 104

(m22)2M
(�)
c,7

pc. (7-22)

Comparing to the numerical result in (7-10), we see that the di↵erence in radius is small, of

order O(1).

7.1.1.2. Understanding the Mc �Rc relation from the hydrodynamic representation of
the GPP system

Although the Gaussian ansatz has been extensively used in the literature and is well mo-

tivated to represent the numerical ground state solution of the GPP system, we need to

entertain the possibility that we could have introduced inaccuracies in the di↵erent relations

that we obtained in the previous subsection by limiting ourselves to a functional form of

the profile that is not the exact solution. In this subsection, we thus consider an alterna-

tive procedure, independent of the functional form of the ”trial function”, to re-obtain the

most important results discussed in the above subsection. For that purpose, we use the

hydrodynamic representation of the GPP system (4-20), which in physical units is given by

⇢
@v̄

@t
+ ⇢(v̄ ·r)v̄ = �⇢rQ� ⇢r��rPSI , (7-23a)

@⇢

@t
+r · (⇢v̄) = 0, (7-23b)

where

 (r, t) =

r
⇢(r, t)

m
eiS(r,t), v̄ =

~
m
rS, (7-24)

and

Q ⌘ �
~2
2m2

r
2p⇢
p
⇢

PSI ⌘
g

2m2
⇢2. (7-25)
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In order to understand the parameter dependence of the soliton profile in the self-interacting

SFDM model, we may consider the following simplification: We saw that soliton structures

fulfill the relation @v̄/@t = 0 = v̄. Then, if we take for simplicity that r ⇠ 1/Rc, where Rc

is the characteristic radius of the system, then

rQ ⇠
~2

2m2R3
c

, rPSI ⇠
g⇢2

2m2Rc

, r� ⇠ �
GMc

R2
c

. (7-26)

By considering for simplicity that ⇢ ⇠ 3Mc/(4⇡R3
c
), which is equivalent to say that the

soliton profile possesses a nearly constant density, we obtain from (7-23)

�
~2

2m2R2
c

+ a
GMc

Rc

� b
3gMc

8⇡m2R3
c

= 0, (7-27a)

@⇢

@t
= 0, (7-27b)

where a and b are some constants that we introduced to apply the summation in the above

expression (i.e. we are considering, for example, that rQ ' const ⇤ ~2/(2m2
R

3
c
)).

First, equation (7-27b) reflects our assumption for an stationary solution, which is in

agreement with (2-52) and (7-5). On the other hand, from (7-27a) and by considering that

g > 0 we obtain

a
GMc

Rc

=
~2

2m2R2
c

+ b
3gMc

8⇡m2R3
c

, (7-28)

and then from this description it is easy to see that solitons are produced by the equilibrium

between the attraction of the gravitational potential force (left-hand side in the above ex-

pression) and the repulsion due to the quantum uncertainty pressure and the pressure due

to the self-interaction.

Two well studied limit cases are

• The fuzzy limit: This regime is obtained when the second term in the right-hand

side of equation (7-28) can be ignored, and then the soliton solution results in an

equilibrium between quantum pressure and gravity. In this limit, the Mc�Rc relation

reads

McRc =
1

2a

~2
Gm2

, (7-29)

which maintains the same parameter dependence found in the numerical treatment

(see equation (4-25)).

• The Thomas-Fermi approximation: This regime is obtained when the first term

in the right-hand side of equation (7-28) can be ignored, and then the soliton profile

results as an equilibrium between gravity and the pressure due to self-interaction. In

this limit, the soliton fulfills the Mc �Rc relation

Rc =

r
b

2a

3g

4⇡Gm2
, (7-30)
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which also maintains the same parameter dependence found by the exact solution (see

equation (4-32)).

On the other hand, if g < 0 we have

a
GMc

Rc

+ b
3|g|Mc

8⇡m2R3
c

=
~2

2m2R2
c

, (7-31)

and then the soliton profile can be understood as an equilibrium between the attraction due

to gravity plus the self-interacting pressure and the repulsion due to the quantum pressure

term. Observe that in this scenario, we can also define a new limiting case

• The Thomas-Fermi approximation in the attractive scenario: This regime is

obtained when the first term in the left-hand side of equation (7-31) can be ignored,

and then the soliton profile can be understood as the equilibrium between quantum

pressure and attractive self-interaction. In this limit, the Mc �Rc relation is

Rc = b
3|g|

4⇡~2Mc. (7-32)

These configurations correspond to soliton profiles with radius smaller than the one

with the maximum possible mass shown in Figure 7-1.

Generically, re-arranging equation (7-27a), we have

Mc =
1

2a

~2
Gm2Rc

1� b

2a
3g

4⇡Gm2R2
c

, (7-33)

and it is easy to see that this relation is equivalent to the one shown in (7-13).

At this point, we have not yet specified the numerical values of a and b. In order

to do so, we could proceed in two di↵erent ways: first, by taking the Gaussian result and

considering that Rc = Rc. In this case,

1

2a
= 3

p
2⇡,

b

2a
= 2, (7-34)

should be fulfilled and the Mc � Rc relation is given exactly by (7-13). On the other hand,

we could also obtain the numerical values of a and b by matching our result with the exact,

numerical result. For example, let us suppose that R is the radius that contains 99% of

the total mass of the configuration, and that such a radius can always be written as R =

const ⇤Rc. Then, from (7-33) we obtain

Mc =
1

2â

~2
Gm2R

1� b̂

2â
3g

4⇡Gm2R2

, (7-35)
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where â and b̂ are new constants. By matching the last expression with the well-known

numerical result in the fuzzy limit and the exact result in the Thomas-Fermi approximation

(see equation (4-25) and (4-32)), respectively, we have

1

2â
= 9.9,

s
b̂

2â
= ⇡, (7-36)

and then the final Mc �R relation should be

Mc ' 9.9
~2

Gm2R

1� ⇡2 3g
4⇡Gm2R2

. (7-37)

Finally, in order to obtain the core-halo mass extension in the self-interacting scenario,

it will be necessary to use (7-20) in the next section. To be sure that (7-20) is correct, it

should be enough to demonstrate that the Mc � Rc relation is correct, as well as (7-18). If

we continue with the same approximation (r ⇠ 1/Rc) and we calculate the integral for Kt

defined in (7-3), we finally obtain

Kc =
Ac

2

~2Mc

m2R2
c

, (7-38)

where we have introduced yet another constant Ac. Again, from the Gaussian ansatz, if we

set Rc = Rc we obtain

Ac =
3

2
. (7-39)

We stress that this way of obtaining the relations for the soliton profile is particularly

interesting, given that in this analysis the only thing we needed to do was to take into

account the characteristic scales of the system. We note that in all cases we can see that

the ansatz reproduced correctly the results already known from the numerical and analytical

descriptions of the soliton profile, as well as our result in this section. The only di↵erences

which occur involve the numerical values of the constants that accompany the parameter

dependence of the di↵erent relations, and they are all of order O(1). Thus, our analysis

should still provide the correct orders of magnitude for the di↵erent constraints of the SFDM

parameters. Nevertheless, for the sake of concreteness, we decided to continue to use the

results obtained from the Gaussian ansatz for the rest of this chapter.

7.1.2. Fully relativistic treatment

The analysis of the previous subsections was carried out in the weak-field regime. This

regime is a good approximation, given that it is very well justified at galactic scales. Yet, it

leaves out an important physical phenomenon that we reviewed in section 2.4.1, namely the

fact that a limiting maximum mass is also predicted to exist for the soliton for the free and

the repulsive self-interacting cases, once general-relativistic e↵ects are considered.
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It is then natural to anticipate that for certain masses of the soliton, a relativistic

treatment should be important – as it turns out, it is possible that some of the cores of

SFDM halos are not covered by the weak-field limit, for example the cores of the most

massive galaxies that possess the most massive solitons (see equation (4-26) or the next

section for the generalization to the self-interacting case). In this circumstance, the correct

way to model such solitons should be in the general relativistic scenario, i.e. by considering

the complete boson stars described in section 2.4.1. For this reason, in this subsection, we

cofront our Gaussian ansatz with the results that are obtained in the general relativistic

scenario. Specifically, we confront the Gaussian ansatz with the critical mass of Collapse for

the soliton profile.

We assume that the Gaussian ansatz will collapse into a BH, once R99 = 2.38167Rc '

Rsch, where Rsch ⌘ 2McG/c2 is the Schwarzschild radius associated with the soliton profile.

By considering (7-15), expressing hat quantities in terms of physical ones with (7-4) and

equating R99 = Rsch, we obtain in the free case M (g)
c,max ' 2.11m2

pl
/m, whereas in the strong,

repulsive self-interaction regime M (g)
c,max ' 3.57

p
⇤̂m2

pl
/m. We note that once comparing

the above results with the exact numerical results, (2-39) and (2-40), we obtain the same

parameter dependence for Mc,max in both cases, with the only di↵erence again in the nu-

merical prefactors that accompany each relation. Of course, the di↵erence between those

prefactors is rooted in the fact that we are trying to match a Newtonian ansatz with a

general-relativistic result, and, as expected, the critical masses from general relativity are

smaller than the Newtonian analysis suggests.

7.2. SFDM density profiles and the core-halo mass relation

in the self-interacting scenario

As we already explained in section 4.4.2, the numerical simulations performed by (Schive

et al., 2014a,b) have shown that, at cosmological redshifts z = 0, halos made of SFDM

without self-interaction can be well approximated by a core-envelope structure, where a

central core transitions at a certain radius to a “NFW-like” halo envelope. In their work,

they obtained the core-halo mass relation given by (4-26)

Mc,7 ' 1.4⇥ 102M1/3
h,12m

�1
22 M�. (7-40)

Let us elaborate on the above relation and how it can be understood by simple heuristics:

suppose the soliton core radius is of order the de Broglie wavelength, Rc ⇠ �dB, which we

expect in the free field case from analytic considerations and what is found in numerical

simulations, as well. For a virialized halo with mass Mh and nearly constant density, ap-

proximating Rh ⇠ M1/3
h

, the characteristic velocity increases as v / M1/3
h

. In fact, this

simple relation can be understood more broadly: for example, in (Chavanis, 2019), the same

parameter dependence for halo quantities was obtained by assuming that the SFDM galactic
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halo is composed of a central solitonic core plus an isothermal atmosphere6. Combining the

expressions yields Rc / m�1M�1/3
h

. Using the mass-radius relation of the soliton, Rc ⇠ M�1
c

(see also equation (4-25)), we arrive at the above relations.

More formally than the above simple description, in this section we shall explore the

core-halo mass extension for self-interacting SFDM models by considering equations (4-27)

and (4-28).

We can use equation (4-27) to derive the core-halo mass relation yet another way, again

restricting to the free case. Suppose that the core is in virial equilibrium, fulfilling

2Kc +Wc = 0. (7-41)

Next, we assume that the halo itself also fulfills his own virial equilibrium, i.e.

2Kh +Wh = 0. (7-42)

Of course, we might question in which sense it is meaningful to assume separate virial

equilibrium, for the core and for the halo. In practice, the above relationships will only hold

approximately, especially for the halo which takes a longer time to virialize during which

time the core might have already virialized. From (7-41), we have

Kc

Mc

= �
1

2

Wc

Mc

, (7-43)

and (7-42) implies
Kh

Mh

= �
1

2

Wh

Mh

. (7-44)

Combining the above relationships, equation (4-27) and using expressions for the potential

energy,

Wc = �Cc

GM2
c

Rc

, Wh = �Ch

GM2
h

Rh

, (7-45)

with positive constants Cc, Ch of order O(1), which depend upon the core and halo profiles,

respectively, this yields

Cc

Rc

Mc

= Ch

Rh

Mh

. (7-46)

Now, by using the Mc �Rc relation provided in equation (4-25) and assuming that

Mh / R3
h
, (7-47)

we get eventually

M2
c
/ M2/3

h
m�2, i.e. Mc / M1/3

h
m�1. (7-48)

6We stress that an isothermal exterior is not expected for SFDM halos, given that there are observational
constraints that rule out this scenario, see (Slepian and Goodman, 2012).
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Thus, we can see that the core-halo mass relation has something to do with overall and local

virial equilibrium.

Observe that equation (7-46) is almost the same than (4-28), which implies that equa-

tions (4-28) and (4-27) are equivalent in the fuzzy limit. However, we can see that when a

self-interaction is added to the model, both equations are not equivalent anymore. In this

chapter, we shall derive that Mc � Mh relation for both approximations. However, we are

interested in studying the consequences obtained from equation (4-27), in such case we shall

consider for that such relation is the correct one to describes core-halo quantities. We shall

also try to justify our assumption in the next section. On the other hand, as we have al-

ready pointed out in the beginning of this chapter, the core-envelope structure has not been

established in the self-interacting model by numerical simulations. Nevertheless, we may

assume that a similar core-envelope structure could result, in the wake of halo formation

and merging, and hence we adopt this premise in what we study in this section.

It is not di�cult to derive that the Mc � Rc relation for the Gaussian ansatz can be

rewriten as

Mc =

 
3
p
2⇡~2

m2G2
+

6g

4⇡m2G3

GMc

Rc

!1/2✓
GMc

Rc

◆1/2

. (7-49)

Using equation (4-28), and considering again that Mh ⇠ R3
h
, we finally obtain

Mc = AM1/3
h

"
3
p
2⇡~2

m2G
+ A2 6g

4⇡2m2G
M2/3

h

#1/2
, (7-50)

where A2 is a constant with units of density that depends on halo properties. We can take

for simplicity the result obtained by (Chavanis, 2019), in such case A2 = 1.7⇢c. We won’t

continue extending the above relation. However, notice that the central value of the soliton

profile can be obtained by considering the re-scaling property discussed in equations (2-50)

and (2-51).

We now extend the core-halo mass relation to self-interacting SFDM models by con-

sidering (4-27), again. Observe that once we consider the contribution of the self-interaction

parameter and we adopt again the separate virial equilibrium description, the core and halo

in virial equilibrium should fulfill

2Kc +Wc + 3USI,c = 0, (7-51a)

2Kh +Wh + 3USI,h = 0. (7-51b)

We note that, once self-interaction is added to the model, we cannot contemplate the simple

description from above, taking advantage of the individual (core and halo) gravitational

potential energy. However, we can use the di↵erent relations that we have derived so far.
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Notice that from (7-20) and (4-27), we obtain

Mc ' 8.68
m2

pl

m

⇣
Kh

Mh

⌘1/2
/c

1� 8⇤̂
⇣

Kh

Mh

⌘
/c2

, (7-52)

which relates the mass of the core and halo quantities. Then, we assume a simplification

at this point, as follows. We expect that the energy due to self-interaction is important

only if the self-interaction parameter is large enough. For example, we know from the free

case that the soliton makes up all or almost all of the halo for small galaxies. The same

would apply in the self-interacting models, once galaxies are small enough to be basically

described by the soliton only. However, that soliton is not just in the fuzzy limit, but

includes a self-interaction, albeit small. Thus, we can contemplate the following scenario:

by analogy to the free case, we expect the most massive solitons in the central regions of the

most massive galaxies, where the energy due to self-interaction could be small, compared

to the other energy contributions of the total halo. This assumption is justified on the

grounds that on the scales of large halos, SFDM should behave similar than CDM. On the

other hand, the least massive galaxies should harbor the lightest solitons, and then the

self-interaction energy could be also negligible (observe from Figure 7-1 that the lightest

solitons are basically indistinguishable from the ones obtained in the free case). These small

galaxies should always be in a regime where the self-interaction parameter is not too large,

i.e. their solitons would neither be in the TF limit, nor would they collapse to a BH7. In

that circumstance, we may expect that the entire galactic halo fulfills the virial theorem of

the free case, Kh ' �Wh/2, even if that relation is not fulfilled by the central solitons in

the largest halos. On the other hand, in (Schive et al., 2014b) the following8 relation was

obtained
1

c

✓
|Wh|

2Mh

◆1/2

' 2.47⇥ 10�4M1/3
h,12, (7-53)

by considering the definition of virial mass provided in (Bryan and Norman, 1998). Then,

we finally arrive at our novel core-halo mass relation for self-interacting SFDM models, given

by

Mc,7 '
2.8⇥ 102M1/3

h,12m
�1
22

1� 4.88⇥ 10�7⇤̂M2/3
h,12

. (7-54)

We must emphasize that, in general, the above result is not valid in the case when the energy

due to self-interaction in the total halo is not small, compared to the kinetic and gravitational

energy, di↵erent to the result we obtained in (7-50), which is valid for whichever value of

7In the case of a repulsive self-interaction, there is actually no problem if the smallest galaxies reach the
TF limit. However, as we shall see later, in that case our core-halo mass extension cannot be applied
anymore.

8In fact, this relation follows easily by using |Wh| ' M2
h/Rh and Mh ' R3

h (assuming a nearly constant

density of the halo), resulting in |Wh|/2 ' M5/3
h .
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⇤. However, we stress that this result is very interesting, given that it could represent

a very important property which can help to distinguish between SFDM models, i.e. we

can anticipate notable di↵erences at galactic scales, depending upon the sign of the self-

interaction parameter. For example, notice that in the above relation there is a critical

mass

M (crit)
h,12 =

 
107

4.88|⇤̂|

!3/2

, (7-55)

at which the mass of the soliton tends to infinity for ⇤̂ > 0, or the soliton arrives at its

maximum possible mass for ⇤̂ < 0. Then, in analogy to the description of 7.1.1.1, we adopt

the criterion that for Mh,12 � M (crit)
h,12 , the central soliton of an SFDM halo should follow

this description, i.e. arrive at the TF regime, or collapse to a BH. Additionally, if the above

critical mass is very small, which would happen if ⇤̂ is large, we can also see that the energy

contribution due to self-interaction cannot be ignored anymore.

Observe that once considering equation (4-27) for the extension for the core-halo mass

relation, we arrive naturally to the critical masses for solitons to reach the Thomas-Fermi

approximation or collapse to form a SMBH. This is a property that is not shared for the

extension done when considering (4-28). In fact, when there is an attractive self-interaction,

it appears that is possible to have zero-mass solitons from equation (7-50).

Remark: Notice that our formula (7-54) has a problem in the repulsive case once

the critical mass of the halo reaches the mass M (crit)
h,12 . By analogy to the explanation we

did before, this should suggest that such mass is the maximum mass allowed by a galaxy

(remember the discussion about R(TF )). However, such interpretation is not correct given

that, once a soliton profile reaches the TF limit, we have that Kc = 0, which, from (4-27),

should imply Kh=0 . Then, the interpretation for such divergence is that, after the central

soliton reaches the TF limit, our formula can not continue be used to describe the core-

halo mass relation. On the other hand, observe that in the attractive case, we do not have

this problem given that the kinetic energy is the only one that accounts to oppose to the

attraction due to gravity and the self-interaction.

In order to elaborate more on the consequences of equation (7-54), we plot in Figure

(7-2) Mc (top panel) and Rc (bottom panel) as a function of Mh with m22 = 1. This is

the mass and radius that a core in a galactic halo with mass Mh should have if SFDM is

ultra-light and self-interacting. We can see that the e↵ect of the self-interaction parameter

is such as to increase (decrease) the soliton mass with respect to the soliton in the free field

limit, when SFDM is repulsive (attractive). This result is expected, because when the self-

interaction parameter is positive (negative), the soliton profile admits more (less) massive

configurations and, consequently, more (less) of the total halo mass is accumulated in the

central soliton profile.

On the other hand, the radius changes very little between the three cases. Of course,

this result is a consequence of the term ⇤̂M2
c
m2/m4

pl
in (7-15), which for an ultra-light SFDM
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particle is of order ⇠ ⇤̂(Mc/1012M�)2. This number is always small, as long as ⇤̂ is not too

large. We can see that a final consequence of the above relation is the somewhat counter-

intuitive statement that for a repulsive (attractive) SFDM candidate, the central soliton

profile is denser (less dense) than in the free case.

Figure 7-2.: Mass and radius for a soliton in self-interacting SFDM halos, in terms of total halo mass.
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7.3. Contrasting two approximations

If we continue working with the hydrodynamical variables, we have that the kinetic energy

term Kt (see equation (2-46a)) can be rewritten upon the hydrodynamic variables (7-24) as

Kt =

Z

V

⇢

2
~v2
Q
d3r+

Z

V

⇢

2
~v2d3r =

Z

V

⇢

2
~v2
tot
d3r, ~v2

Q
=

~2
m2

(r
p
⇢)2

⇢
, (7-56)

where ~vQ is a quantum velocity term associated with the quantum uncertainty principle of

quantum mechanics, and ~v2
tot

⌘ ~v2 + ~v2
Q
. This quantum velocity term is motivated in the

spirit of the virial theorem in the fuzzy limit. By considering that ~vtot equals the virial

velocity in a halo, we obtain

Kt =
Mtv2vir

2
. (7-57)

Observe that, in the free case, we arrive at the relation Mc = RcMh/Rh, which is the

consequence that has been proposed in (4-28). In that limit, the virial velocity should

match the circular velocity in the SFDM model. From our point of view, a more physical

consequence for the extension in the core-halo mass relation should be given by considering

that the virial velocity at the core and halo radius match each other. That consequence is

obtained if the relation (4-27) is fulfilled.

We can focus a little on understanding what kind of consequences are derived from

the condition Mc = RcMh/Rh. Observe that, from (7-45), we should have that for such

approximation, SFDM haloes must fulfill the condition

Wc

Mc

⇠
Wh

Mh

, (7-58)

i.e., the gravitational energy density should be near the same at the core radius than at the

halo radius, independently on the fact that the SFDM is self-interacting or not.

7.4. Understanding the NFW envelope structure from the

hydrodynamic representation

Continuing with the Hydrodynamic representation, we have

Kt =

Z

V

~2
2m2

(r
p
⇢)2d3r+

Z

V

⇢

2
v̄2d3r

⌘ Kt,Q + Tt, (7-59)

where we define the total kinetic energy due to the quantum part Kt,Q and the ”rest” Tt,

which is basically related to any bulk motion of the fluid (e.g. rotation, large-scale flows,

etc.). Now, as supposed from (4-27), we consider that the core and halo will have their own
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respective terms, i.e. Kc = Kc,Q + Tc, Kh = Kh,Q + Th. Suppose that the core has no bulk

motion, i.e. Tc = 0, which is equivalent to assume a static soliton. The halo, however, may

have a non-vanishing bulk motion, Th 6= 0. That is, we can write

Kc

Mc

=
Kc,Q

Mc

, (7-60a)

Kh

Mh

=
Kh,Q

Mh

+
Th

Mh

. (7-60b)

Now, we can consider a similar heuristics than in section 7.1.1.2. For instance, we already

estimated the quantum-part of the core in equation (7-38). We can do a very similar heuris-

tics for the respective halo term Kh,Q, however, we do not know at this point what the

characteristic length scale looks like for the halo. We cannot simply use Rh, i.e. the char-

acteristic size of the halo, as the characteristic scale, because this would be equivalent to

say that the quantum-kinetic energy has the same importance for the halo, than it has for

the core. And this would imply that Rh ' Rc. Therefore, we set the characteristic scale to

rh ⇠ 1/(BhRh), i.e. a fraction of Rh, where the constant Bh fulfills 0 < Bh  1. The value

of BhRh may describe a characteristic size for structures that accounts for the total halo, for

example the size of “granules” in the halo envelope structure. Thus, we can write

Kh

Mh

= Ah

✓
~
m

◆2 1

B2
h
R2

h

+
Th

Mh

, (7-61)

where Ah is a constant depending on halo details.

If we now demand that the relation (4-27) should be fulfilled by our system, we end

up with a condition on Th/Mh, as follows:

Th

Mh

'

✓
~
m

◆2✓Ac

R2
c

�
Ah

B2
h
R2

h

◆
. (7-62)

Observe that in the case when Rc = Rh, i.e. the total halo is constructed by the soliton only,

we should have that Th ' 0, and then

Ac =
Ah

Bh

. (7-63)

In this way (7-62) can be rewriten as

Th

Mh

' Ac

✓
~
m

◆2✓ 1

R2
c

�
1

R2
h

◆
,

=

"
1�

✓
Rc

Rh

◆2
#
Mh

Mc

Kc,Q. (7-64)

The above quantity represents a very interesting consequence. Although the soliton solution

has been very well understood under what circumstances it can be formed (for example as
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a balance between the quantum pressure and the gravitational force in the fuzzy limit), the

halo quantities are not well understood. Thus, our simple heuristic analysis seems to suggest

that the NFW envelope should be supported through a non-vanishing Th term. Aditionally,

our description appears to suggest that the envelope structure should be related with the

quantum nature of the SFDM particle, since in the final relation that we found, it still

apearing ~ in the result.

7.5. Astrophysical consequences for the self-interacting

SFDM model

A fundamental question that arises in the SFDM scenario concerns the values of its free

parameters. As we showed in chapter 4, many constraints have been derived already, using

cosmological and astrophysical data. In this section, we first review and elaborate a little

more some of the most representative results introduced in that section, and then apply them

to our model. We consider the di↵erent constrictions we reviewed in chapter 4. However, we

do not contemplate all the constrictions, given that some of them already consider scenarios

that should not be applicable to our scenario. For example, in the repulsive scenario, most

of the constrictions are for galactic dynamics in the TF regime, and then, they already con-

sidered that a galaxy should be represented with a TF soliton. We only consider constraints

for the self-interacting scenario, given that our main purpose in this chapter is to study the

consequences of equations (7-54) and (7-55).

We should stress that some previous literature have shown that even small values of

the self-interaction parameter can lead to qualitatively di↵erent behavior, compared to the

free case. While this phenomenon has been appreciated in the boson star community, it is

only recently that DM cosmologists appreciate this variety, as well.

7.5.1. Repulsive case (⇤̂ > 0)

As we already commented, this scenario has been extensively studied in the literature and

its free parameters have been fitted by using di↵erent observations. Usually, the strong

self-interaction regime is considered, because of simplicity, and in this case, it is the ratio

g/(m2c4) or m22/�
1/4
90 , which is subject to constraints. Observe that the only constrictions

that do not consider galactic dynamics in section 4.5 are the ones for BBN and the value

necessary for the SFDM to behave as a dust-like fluid at the time of radiation-matter equality.

For such constrictions, we have values for the two kind of ratios constrained in the model.

Given that they are equivalent, in this section we decided to consider only one of them,

which we pick to be the ones that constraint the ratio g/(m2c4), given that they are newer.

Observe that, from (7-4), we have

⇤̂ = 1.5441m2
22 ⇥ 1037

⇣ g

m2c4

⌘ ev

cm3
, (7-65)
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i.e. we can likewise constrain ⇤̂. Whereas our results in (7-54) and (7-55) have been derived

assuming that self-interaction is not important at the scales of large galactic halos, and which

therefore may not be valid in the strong self-interaction limit, we still want to summarize some

of the constraints of the previous literature, which were limited to the strong self-interaction

regime. For one thing, the bounds are stronger and may hold for weak self-interaction, as

well. On the other hand, these bounds are put into context to our results.

As we commented, the first constraint, applicable to all candidates for dark matter,

refers to the fact that by the redshift of radiation-matter equality zeq, they must all be

non-relativistic, i.e. behaving like a pressureless fluid. It is well known that a scalar field

with an arbitrary potential V (') will have a varied dynamics during its cosmological evo-

lution. In particular, the dynamics of a self-interacting SFDM candidate with a repulsive

self-interaction has been studied previously and can be briefly summarized as follows (Ar-

bey et al., 2002a, Li et al., 2014, Suárez and Chavanis, 2017): after inflation, the SFDM

energy density behaves either like a cosmological constant (⇢' / a0), or like a sti↵ fluid

(⇢' / a�6), depending upon whether SFDM is e↵ectively a real or complex field, respec-

tively. This behavior of SFDM is rooted in the slowly oscillating phase and is characterized

by ⌦2
⌘ 2c2dV/d|'|2 ⌧ H2. In its fast oscillating regime (⌦2

� H2), there are two pos-

sible branches for SFDM (Li et al., 2014, Padilla et al., 2019): for weak self-interaction,

SFDM transitions from the sti↵ phase to the pressureless phase without having a radiation-

like behavior in between. This happens, because the first term in the scalar field potential

dominates over the second term at the moment of transition from slow to fast oscillation.

On the other hand, for strong self-interaction, SFDM transitions from the sti↵ phase to a

radiation-like phase, before behaving like a pressureless fluid. Demanding that at zeq, SFDM

should be in its pressureless phase implies a constraint as follows (Li et al., 2014):

⇤̂  6.176m2
22 ⇥ 1020. (7-66)

This result represents an upper bound for the self-interaction parameter, including the weak

self-interacting regime. This last result is also independent of whether SFDM is real or

complex, given that the strong and the weak regimes are applicable to both cases. Hence,

the above result is applicable to all self-interacting SFDM models with a repulsive self-

interaction.

On the other hand, the repulsive SFDM model has been also probed by considering the

e↵ective number of relativistic degrees of freedom during Big Bang nucleosynthesis (BBN),

Neff,BBN (Li et al., 2014). The analysis was performed in the strong self-interacting regime

for a complex SFDM candidate, and it was shown that this scenario can be made in ac-

cordance with BBN bounds. Using the allowed 1�-band on Neff,BBN at that time, it was

shown that the ratio g/(m2c4) must fulfill an upper and a lower bound. However, if the

lower bound of the 1�-band on Neff,BBN is relaxed, i.e. if BBN is considered in accordance

with the standard value of Neff = 3.046, then the ratio g/(m2c4) can be smaller than the

above upper bound, as long as the boson mass m fulfills a corresponding lower bound con-
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straint, which ensures that the sti↵-like era ends at an early enough time. We extended this

analysis in (Li et al., 2017), to include a scenario where the stochastic gravitational wave

background (SGWB) from inflation could be amplified, as a result of the sti↵-like behavior of

SFDM in the very early Universe, after reheating, when SFDM dominates the mean energy

density in the Universe. In this case both, SFDM and the inflationary SGWB, contribute to

Neff,BBN . The modified bounds which result e↵ectively shrink the available parameter space

of complex SFDM further, but in doing so the SGWB is boosted to a level where it can be

potentially observed by LIGO (see (Li et al., 2017)). However, if the sti↵ phase ends early

enough, such that the SGWB remains negligible, the lower and upper bounds on g/(m2c4)

are determined basically again by demanding that SFDM fulfills BBN bounds. An updated

value for Neff,BBN has been used in (Li et al., 2017) to derive newer bounds for this case,

as well. Using (7-65), the corresponding bounds read as

3.55⇥ 1019 
⇤̂

m2
22

 6.33⇥ 1020. (7-67)

Observe that if we were to insert the above result into equation (7-55), we would obtain

that practically all soliton structures should be in the TF regime of strong self-interaction,

never mind the total mass of the galactic halo. As shown in (Li et al., 2014, 2017), by

considering the above numerical value for g/(m2c4) and considering the ratio R(TF ) in the

TF regime (see equation (4-32)), the size for a soliton in the repulsive case is of order ⇠ kpc.

Thus, at this point (7-55) would have only confirmed previous works. Observe also that our

result predicts that all galactic halos should possess a central soliton with the same radius

R(TF ). Unfortunately, the dependence of the mass of the central soliton with respect to halo

quantities cannot be obtained from (7-54), given that we would need to take into account

the self-interaction energy contribution of all halo sizes. Finally, if we combine the critical

mass for collapse (2-40) in the repulsive case and the above constraints, we obtain

Mc,max ' (1.75⇥ 1021 � 7.39⇥ 1021)M�, (7-68)

implying that the mass of the soliton formed in this scenario is below the critical mass of

collapse by many orders of magnitudes.

Remark: The constraint in (7-67) can be applied only to certain SFDM models, namely

complex SFDM in the strong self-interaction regime, which behaves radiation-like during

BBN. If we relax this constraint by considering SFDM without self-interaction or with a

weak self-interaction, we could allow smaller values for ⇤̂/m2
22, and then we can use (7-54).

For example, if the central soliton is never described by the TF regime, we should have from

(7-55) that

0 < ⇤̂ <
107

2.44
⇣
M (max)

h,12

⌘2/3 , (7-69)

where M (max)
h,12 ⌘ M (max)

h
/(1012M�) and M (max)

h
is the maximum mass for a galactic halo. In

that case, small-scale structures would be suppressed basically in the same way than in the
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free field case, which implies a mass for the SFDM particle of around m22 ⇠ 1. However, as

seen from Figure 7-2, the implication of this scenario is such that the central soliton for the

most massive galactic halos should be denser than in the free case.

7.5.2. Attractive case (⇤̂ < 0)

In contrast to the repulsive case, the attractive scenario does not possess the same mechanism

to suppress small-scale structures and the self-interaction parameter � (or g) is usually

neglected, for it is extremely small in many models. The constraints which thereby result

are indistinguishable from the free case. However, as soon as self-interaction is included, the

picture changes. In this section, we shall review some representative constraints obtained a

for negative self-interaction parameter. Again, we can re-express these constraints in terms

of our parameter ⇤̂ by using (7-4) as

⇤̂ = 5.93⇥ 108
�90
m2

22

. (7-70)

For instance, it was demonstrated in (Suárez and Chavanis, 2015) that there is also a distinc-

tive behaviour between strong and weak self-interaction. In the weak regime, the dynamics

of SFDM is similar than in the repulsive case: SFDM experiences a sti↵-like era before it ends

up behaving like a pressureless fluid. On the other hand, in the strong self-interacting regime,

SFDM follows a completely di↵erent cosmological history: it first behaves e↵ectively as a

cosmological constant, then it transitions to a cosmic string-like era, before ending up behav-

ing as a pressureless fluid. However, this analysis was limited to cosmologies where SFDM

is the only component in the Universe, i.e. its free parameters could not be constrained by

cosmological data. Additionally, in (Suárez and Chavanis, 2015) linear perturbations were

studied, and it was shown that perturbations in this SFDM model grew faster than in the

⇤CDM model, even for small values of the self-interaction parameter, implying that galaxies

could form earlier than in the ⇤CDM model.

On the other hand, if the SFDM candidate is an ultra-light axion-like particle (m22 ⇠ 1)

– a pseudo Nambu-Goldstone boson generated by a spontaneously broken global U(1) sym-

metry –, it was suggested in (Visinelli, 2017) that these particles should be generated during

inflation in order to avoid observational constraints from Planck data, due to topological

defects. In the same work, it was argued that by demanding that the total dark matter

observed today is composed of these ultra-light axions, they should have a self-interaction

parameter9 ⇤̂ ⇠ �5.93 ⇥ 104 (�90 ⇠ �10�4), though some larger values ⇤̂ ⇠ �5.93 ⇥ 1012

(�90 ⇠ �104) could be also possible (Cicoli et al., 2012). Observe that these values for �90
are extremely small, which corroborate the fact that self-interaction is usually ignored. Ho-

wever, the fact that ⇤̂ is grater than 1, should suggested us that for certain circumstances,

9The self-interaction parameter is obtained as � = m2/f2, where f is the axion-decay constant. For an
ultra-light axion, the decay constant is of order f ⇠ 1016GeV .



7.5 Astrophysical consequences for the self-interacting SFDM model 153

the self-interacting parameter could not be ignored. Astrophysical considerations can lead

to further novel constraints, e.g. the soliton with the maximum mass and smallest radius

was matched to the smallest galaxy then known – Willman I – in (Chavanis, 2016). By de-

manding that the halo of Willman I is dominated by the self-interacting soliton, the SFDM

parameters were constrained to

m22 = 0.0193, ⇤̂ = �3.2476⇥ 1016. (7-71)

In that case, the maximum mass of collapse of a soliton should be close to the Willman I

mass, i.e. Mc,max ⇠ 106M�, which is close to the smallest masses of SMBHs that are typically

found in the centers of massive galaxies. It is for that reason that the author considers this

mechanism for generating SMBHs. However, using our Mc �Mh relation (7-54), we would

need to conclude that, if even the soliton of Willman I is close to the maximum mass of

collapse, then this would imply that the solitons of more massive galaxies would also have

collapsed, and we would in general expect SMBHs in the centers of dSphs. Observations do

not favor such a conclusion. In addition, we would end up with a model which is not able

to explain the cores of dSphs, unless a substantial scalar-field remnant survives the collapse.

Surely, both problems can be avoided if we relax the fit given in (7-71), considering that

Willman I is not made up solely by a soliton close to or at the critical maximum mass.

Still, in this section we build upon the idea of (Chavanis, 2016) and constrain the

free parameters for the attractive case by considering a more realistic scenario, instead. We

wish to adopt a conservative criterion for the SFDM model, which is to explain only those

SMBHs that formed in the most massive galaxies. It is now well-accepted that SMBHs exist

in almost all large galaxies, while this is not the case for the smallest ones (like small dSphs10).

We need to emphasize that, di↵erent to (Chavanis, 2016), we have found a dependence of

the soliton mass in terms of halo quantities (7-54) which allow us to constrain the free

parameters of the model, by demanding that SMBHs should only be generated in massive

galaxies. Low-mass galaxies should have a stable soliton, giving rise to a core-like structure.

This is a particularly interesting scenario given that, in this case, we could explain the

core structure in typical dSphs, as well as SMBHs in the most massive galaxies. For this

purpose, we use equations (7-54) and (7-55) to find a minimum SMBH mass generated by

the collapse of the soliton, for a given minimum halo mass M (crit)
h,12 whose central soliton

should be collapsed. These minimum-mass SMBHs could serve as seeds for the growth of

even more massive SMBHs that have been reported to exist in galactic nuclei. Their further

growth could then proceed by accretion. In Figure 7-3, we plot with a straight-line in purple,

blue, green and red the minimum mass of a SMBH that could be generated by this scenario

for M (crit)
h,12 = 0.001, 0.01, 0.1, and 1, which correspond to masses Mh = 109, 1010, 1011 and

1012M�, and a self-interaction parameter ⇤̂ ' �2.049⇥108,�4.415⇥107,�0.957⇥107, and

�2.049⇥ 106, respectively. Additionally, in the same figure we also show filled regions with

10In fact, there are few observations where astronomers have detected SMBHs in dSphs; see for example
(Ahn et al., 2017, ?). The formation of such SMBHs is not covered by our scenario.
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the same colors, which indicate that such masses for the central soliton cannot exist, given

that such masses are higher than the maximum possible mass allowed by an SFDM soliton

configuration. We show these four values as examples, however, we adopt as a conservative

criterion that the central soliton could collapse and form a SMBH in the centers of those

galaxies, whose halo masses are larger than M crit

h
⇠ (109 � 1012)M�. Observe that di↵erent

to standard descriptions, in this model the SMBHs start out already as supermassive objects

which could explain why there are no medium-sized BHs. Also, thanks to the rapid growth of

SFDM perturbations in the repulsive case (Suárez and Chavanis, 2015), SMBHs could have

formed even at high redshifts. This possibility is particularly favored by many observations

(Bañados et al., 2014, Fan et al., 2003, Jiang et al., 2008, 2007, Matsuoka et al., 2018a, 2017,

2016, 2019, 2018b, Mortlock et al., 2011, Venemans et al., 2013, Willott et al., 2007, 2010,

Wu et al., 2015). that indicate that SMBHs do exist at large redshifts (z > 5.6), which

standard scenarios have di�culties to explain.

Remark: Notice that in all cases the values of ⇤̂ are comparable to the values ob-

tained if SFDM is an axion-like particle which was generated during inflation. In principle,

by adopting this scenario we could also constrain the halo mass M (crit)
h,12 in terms of axion

quantities, as is the case for the axion-decay constant (see footnote 15) and the parameter

dependence of the model shown in (Visinelli, 2017). However, since we wish to be as general

as possible, we adopted a more general criterion.

In Figure 7-3, we also plot in a yellow band the mass region for 43 SMBHs reported

in (Bandara et al., 2009). In all cases, the mass of the host galaxy for each SMBH is

Mh > 1012M�, hence larger than all of our fiducial critical halo masses M (crit)
h,12 . Additionally,

we plot in a dot-dashed black line the mass for Sagitarius A⇤, which is the SMBH located

at the center of our Milky Way (Mh ⇠ 1012M�). Observe that, if we would like to explain

all these SMBH masses, then the critical mass of collapse for the central soliton should be

smaller than all the SMBHs reported in big galaxies. For example, in the data that we are

considering, the smallest SMBH corresponds to Sagitarius A⇤. If we consider a scenario in

which a SMBH at such a mass was generated (not having grown by another mechanism),

once the mass of the galactic halo was around 1012M�, we arrive at the following constraints

for the mass of the SFDM boson (red square in the figure) and its self-interaction parameter,

m22 ' 3.25⇥ 102, ⇤̂ ' �2.254⇥ 106. (7-72)

However, a more realistic picture may actually be as follows: the central SMBH formed with

a mass of MSMBH ' 106M� (black dashed line), which implies a range for the boson mass

parameter (intersection between the grey filled region, the black dashed line, and the purple

- red line that we draw for our example models for M (crit)
h,12 = 0.001� 1) in our fiducial model

of

m22 ' 1.4⇥ 102 � 1.4⇥ 103, (7-73a)

and a range for the self-interaction parameter of

⇤̂ ' �(2.049⇥ 108 � 2.049⇥ 106). (7-73b)
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Observe that we could also generate smaller SMBHs, if m22 is larger than the upper limit in

(7-73a) (region pointed out by the grey arrow).

Figure 7-3.: Attractive SFDM model: critical mass of soliton collapse vs. boson mass. Filled regions
correspond to masses for the soliton that are not stable against collapse. We also plot di↵erent
constraints for the boson mass from other cosmological and astrophysical data.

We could also consider an even more conservative scenario. For example, SMBHs

with masses similar to Sagitarius A⇤ seem not be common in big galaxies, since most of

such SMBHs possess a much higher mass. Therefore, we could relax our attempt to try to

explain the formation of all SMBHs in galactic nuclei and focus only on the most massive

ones, instead. This should imply that a SMBH like Sagittarius A⇤ should be formed by

some other mechanism, di↵erent to the one we are describing here. In this way, we use

only the data provided in (Bandara et al., 2009) in which all SMBHs possess a mass of

MSMBH & 108M�, in order to constrain our model. The lowest-mass galaxy reported in

(Bandara et al., 2009) has a halo mass of Mh,12 = 9.46. If we use the above mass in M (crit)
h,12

and we require that a seed SMBH with a mass of MSMBH ' 108M� should be forming, we

have from (7-54) and (7-55) that the free parameters for the model are

m22 ' 29.6, ⇤̂ ' �4.581⇥ 105. (7-74)

We need to emphasize that, although we are providing numerical values for each parameter,

they should be taken with caution, because we have obtained our di↵erent results by con-
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sidering heuristics and ansatz profiles. Nevertheless, as mentioned previously, we expect to

achieve correct orders of magnitudes in all of our derived constraints.

In any case, an important point of this section is the realization that the addition of a

self-interaction parameter can be advantageous, because under a certain range of parameters,

it could be possible to explain the formation of SMBHs in galactic nuclei. Of course, much

more remains to be done in order to really understand if this mechanism works out to describe

all the details. For example, numerical simulations of the collapse should be performed, also

to see what happens to the central SFDM profiles, after the formation of these SMBHs.

Although the e↵ects of self-interaction are important for the central solitons in big

galaxies, the numbers for the self-interaction parameter � are still very small (compare our

di↵erent constrictions with equation (7-70)). If we consider that the impact of self-interaction

on small halos is negligible11, which can be easily justify from Figure 7-2 or our Mc �Mh

relation (7-54), we would rediscover the constraints for the free case derived in previous

papers. Therefore, we include these bounds in our comparison, as well. The constraints

we consider include, for example, those obtained for the mass of the SFDM particle, using

stellar velocity dispersion to fit the Milky Way’s dSphs galaxies with a soliton core, assuming

the halo is dominated by that soliton. By studying the dynamics in Fornax and Sculpture,

a constraint on the mass parameter m22 < 0.4 was obtained in (González-Morales et al.,

2017). Placing constraints from the CMB in (Hložek et al., 2018) revealed a lower bound

of m22 > 0.01. The model has been also probed by reionization: using N-body simulations

and demanding an ionized fraction of HI of 50% by z = 8, (Sarkar et al., 2016b) obtained

the result m22 > 0.26. Considering the hydrodynamic representation of the SFDM model, it

was suggested in (Paredes and Michinel, 2016) that SFDM’s quantum pressure be the origin

of the o↵set between dark matter and ordinary matter in Abel 3827, which required a mass

of m22 ' 2⇥10�2. Finally, using the Lyman-↵ forest flux power spectrum demands that the

mass parameter fulfills m22 > 20 � 30. In Figure 7-3, we also display the aforementioned

constraints. In order to simplify the figure, we have only plotted the upper/lower bound of

the constraints that fit the boson mass with a vertical dashed line, and we added arrows that

point to those regions that remain valid in each case. Then, our plot should be read as follows:

for example, the lower bound constraint for m22 obtained from the CMB (m22 = 0.01) is

plotted with a pink vertical dashed line, while the pink arrow points to those masses that

are also valid from this constraint, i.e. m22 > 0.01. Observe that our scenario previously

described to obtain (7-72) or (7-73) is in agreement with most of these constraints, being in

tension only with the results obtained in (González-Morales et al., 2017) and (Paredes and

Michinel, 2016). On the other hand, our model (7-74) fulfills all constraints, except the ones

obtained for Lyman-↵ and Abel 3827.

Finally, we comment on the consequence if the central soliton never collapses. Typically,

most massive galaxies possess a mass Mh,12 < 1⇥ 102M�. From equation (7-55) this implies

11The di↵erence for large haloes should be that the final galaxy should have its cetral soliton collapsed.
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that the self-interaction parameter must fulfill

⇤̂ < �9.511⇥ 10�3. (7-75)

In this case, the formation of SMBHs must be explained by another mechanism. However,

similarly than in the repulsive case, the attractive scenario does imply that the density of

the central soliton is modified for the most massive galaxies, compared to the free case.
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In this thesis, we have extended the story line for SFs as a DM component in the Universe.

For such porpoise, we reviewed in chapter 1 the standard cosmological model to understand

what is the preferable model used to describe our Universe. Posteriorly, and given that

our main porpoise was to consider SFs as a DM candidate, in chapter 2, we discuss the

most important concepts about SFs in general relativity. After that, in chapter 3, we report

the main observational evidences for DM. In the same chapter, we continued commenting

about the standard cosmological model, putting special attention in the structure formation

process and the problems that the CDM sector – the DM sector – possesses at small scales.

Motivated for such problems, in section 4, we reviewed the SFDM model as an alternative

candidate for DM. We allowed in such chapter the possibility for the DM to be self-interacting

or not, and then, we focused in distinguished which works have been done for self-interacting

scenarios, and the ones that were carried out for the free case only. After this last 4 chapters,

we extended the story line for the SFDM model in the next 3 chapters.

In chapter 5, we studied the possibility that a real free or self-interacting SFDM particle

could coexist with the inflaton during inflation. In our assumptions, we have considered

the SFDM as a spectator in the inflationary process. Then, the SFDM contributes to the

primordial spectrum by generating isocurvature perturbations. By using the actual upper

constraints in the measurements of the tensor-to-scalar ratio r was possible to test the free

parameters for each model. As we discussed, at the moment it is di�cult to rule-out some

regions of parameters; however, it could be possible if r is measured soon.

Our main results in that chapter are shown in figures 5-1 and 5-4. In Fig. 5-1 we have

identified the masses allowed in the free model by isocurvature as well as cosmological and

astrophysical observations. We obtained that in order to fulfill the constrictions imposed

by CMB, we should not detect gravitational waves until r ' 1.3 ⇥ 10�3, while if we were

interested in fulfilling all the observations, we should not detect gravitational waves until

r . 2.33 ⇥ 10�5. This last result is important given that the detectability of gravitational

waves could represent a strong constriction for the free model. Analogously, in figure 5-4,

we have plotted in a m22 � �90 plane the region of parameters for the strong-self-interacting

model that are allowed by observations. We noticed that, for a given mass of the SFDM, it

is always possible to avoid isocurvature constrictions and fit astrophysical and cosmological

observations if a large enough self-interaction is added. Then, we notice with this result that

the addition of a self-interacting component to the SFDM seems to be a natural solution for

the model given that is possible to fulfill naturally all the constrictions that the model has.
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On the other hand, we explain how the SFDM spectator scenario could help to choose the

inflationary potential responsible to produce the inflationary period.

In this chapter, we only explored the SFDM model as a real field spectator. Howe-

ver, there are some motivations suggesting that a complex field should represent a better

candidate for DM, given that there are observations where its complex nature could help

to agreed with observations (for example, observations coming from BBN). In this way, it

continue being interesting to explore the possibility for the spectator field to be a complex

field and analyze the kind of restrictions that such scenarios should obtain.

In chapter 6, we assume the possibility that galactic systems hosting a SMBH in their

centres were formed earlier in the Universe from the collapse of a Bose-Einstein condensate

made of modes of a SF, most of them laying in the ground state. Based on previous studies,

we consider the hypothesis that the centres of DM haloes are made of quasi-resonant solutions

of a real ultra-light SF that are being swallowed by the SMBH at such slow rate that their

lifetime scales as the age of the Universe. Within the most general and realistic context,

the SF would be self-interacting and self-gravitating and, along with the metric of space-

time, form a complicated system of coupled non-linear di↵erential equations which has been

studied numerically by many groups since long time ago within some range of applicability.

However, the available computing and numerical tools at the moment have allowed to explore

these systems in a range of parameters corresponding to models of boson stars at most,

and assuming some symmetries that wipe out some e↵ects that should be present in more

realistic models. Solutions for configurations of SF with the size of a galactic halo and

BHs as massive as SMBH has not been obtained at the date in a general three dimensional

space-time including all the possible e↵ects.

In order to turn around such technical problem, in that chapter we intent to construct

a simple approach based in a semi-analytical procedure in order to model galactic systems in

the quasi-static limit. As a first step towards addressing the problem, we propose the simplest

prescription to describe DM in the centres of galactic systems hosting a central SMBH. We

model the haloes of galaxies as configurations made of solutions of the KG equation with a

Schwarzschild background. We find analytic solutions for a range of masses of the BH, M ,

in the limit r > 2M , that is, when the observer is placed far away from the SMBH and well

within a radius smaller than the characteristic length of the SSFDM halo (r < rs). In such

regime, the back-reaction of the SMBH and SFDM can be neglected. By using such solutions

we derive the corresponding density and mass profiles with ⇢s and rs as free parameters,

which were constrained using some observational features of galaxies. In specific, the space

of parameters of the DM model was reduced by using the UMA constraint (Ureña-López

et al., 2017). Later, the remaining free parameter rs was fixed by fitting measurements

of the velocity dispersion. In this procedure we considered two cases: Firstly, DMD, an

idealized case where it is assumed that the gravitational contribution of DM dominates the

galactic potential well. The main result in this part is that it is possible to reproduce the

observed stellar velocity dispersion at the e↵ective radius of systems hosting SMBHs of at
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most 108M�. This hypothetical case could be used in the future to study UCD galaxies.

However, our analysis in this case stands as theoretical so far, due to the lack of evidence

and observational data regarding to these systems at the date.

Secondly, in the LGAL case we considered a sample of six real, large and luminous

galaxies hosting SMBHs and managed to reproduce their observed stellar velocity dispersions

evaluated at the e↵ective radius in every case. We realized in this case, that in the context

of the SSFDM model, the role of gravity produced by baryons is crucial to reproduce the

observed velocity dispersions. A complementary result of this work is a generalization of

the constraint of µ' derived in (Ureña-López et al., 2017) for the case in which the galactic

haloes host central SMBHs and it dominates the gravitational potential of the system. By

reproducing the observational points of the M � �⇤ relation, we derive a rs � �⇤ correlation

in both cases. These results bring up new information about the SFDM model.

In chapter 7 we studied the consequences of the core-halo mass relation in the self-

interacting SFDM scenario. For such porpoise we considered a Gaussian ansatz to describe

a core profile in the SFDM to simplify our description and maintain the liberty of working

with the self-interacting parameter associated to the SFDM particle. We also showed, with

the help of the hydrodynamic representation of the GPP system, that the solutions obtained

for the soliton profile are general, and that they can be obtained simply from scale argu-

ments. Later, we showed the way the core-halo mass relation, typically found in numerical

simulations of structure formation in the free SFDM model, can be generalized to the case

of having a self-interacting parameter. For such porpoise, we considered that such relation

should remain in the self-interacting case, although no cosmological simulations have been

done for the model, in contrast to the free case. After obtaining this new result (7-54), which

we consider to be one of the main results in that chapter, we considered previous works in

order to constrain our finding. An interesting consequence that we observed in our model is

that, in the case of having a repulsive self-interacting parameter, the central soliton profile

that appears in the SFDM simulations should be in the TF approach, while in the case of

having a attractive self-interaction, we can obtain a scenario where the central soliton could

collapse and form SMBHs in the most massive galaxies, and then, give us a possibility to

explain the SMBHs typically found in galactic nuclei.

This last result represents a first step of trying to understand the e↵ects of self-

interaction in the SFDM model for big galaxies and, in general, the consequence obtained for

the collapse of the soliton profile should be also considered carefully since we have not taken

into account more contributions that should be important in a big galaxy, as it is the case of

the baryonic matter. On the other hand, in the numerical simulations done by (Schive et al.,

2014a,b), it was obtained that a SFDM halo is constructed by a granular distribution, where

the granules have a size similar than the central soliton, being the NFW profile obtained only

after having done a radial average for the SFDM distribution. Then, if such granules posses

a similar mass than the mass of the central soliton profile, we could obtain that they should

also collapse in the case of having an attractive self-interaction, and then, our scenario could
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represent a problem to the model. However, such problem could be easily avoided always

that the self-interacting parameter were small enough (see equation (7-75)). Interestingly,

this parameter should be even smaller than the one found for ultra-light axions.

Observe that most of the results in this chapter are based in semianalytical descriptions,

and they are also strongly at the mercy of the mechanism we take as the real consequence

for core-halo quantities. Then, if the extension we decided to use (4-27) is not correct, our

finding should not be correct for modeling the core-halo mass relation for self-interacting

particles. However, and based on the description we analyzed, we believe (4-27) represents

a correct consequence for core-halo quantities. In any way, there still too much work to do

in this direction; for example, it should be necessary to support our findings with numerical

simulations, and, after obtaining the collapse of the soliton profile, we should continue ex-

ploring the process of growing for such SMBH seeds, and understanding what happens with

the central region of galaxies after the central soliton collapsed.
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We found interesting the fact that it appears that the core-halo mass relation results only

when 3D simulations are carried out, whereas in the spherical symmetric case, what is

obtained is that the configurations, no matter how arbitrary they are, are relaxed via a

gravitational cooling e↵ects, and migrate to the ground state – the soliton –. We believe

that such problem could be avoided once we consider correct cosmological initial conditions

for structure formation in spherical symmetry. For such porpoise, we have adopted the

possibility to describe the structure formation process in the SFDM model with spherical

symmetry, with a secondary infall model.

9.1. Scale-free gravitational collapse

Analytical approximations have been developed to model the formation of haloes by the

1D growth of spherical cosmological density perturbations. In this section, we review some

of the di↵erent studies that have been done in this direction to apply them for the SFDM

model.

The concept of the so-called “secondary infall model (SIM)” was first presented by

(Gunn and Gott III, 1972). This SIM refers to the e↵ect of adding a point mass to a uniform,

expanding Friedmann-Robertson-Walker Universe, as a perturbation, causing in this way the

deceleration with respect to the background of a spherical region until it reaches a maximum

radius of expansion, and then, recollapse. Subsequent works generalized this approach to

include spherically symmetric initial perturbations for which the overdensity profile depends

upon radius of mass as a scale-free power law. Along this lines, (Fillmore and Goldreich,

1984) studied the dynamics of collisionless CDM haloes using a self-similar model, adopting

a scale-free initial overdensity parametrized by its shape: ✏ in equation (9-1). In (Ho↵man

and Shaham, 1985) it was shown that a power-law power spectrum would indeed generate

a scale-free initial condition, such as was adopted by (Fillmore and Goldreich, 1984). They

then argued that the resulting non-linear structure would be described by a power-law profile

determined by the shape of the power spectrum.
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9.1.1. Halo formation from scale-free linear perturbations

In an Eistein-de Sitter background Universe, an initial linear perturbation, whose mass profile

is spherically symmetric and has a scale-free power-law form

�M

Mun

/ M�✏
un
, (9-1)

results in structure formation, where Mun is the unperturbed mass enclosed at radius r and

�M is defined such as Mper ⌘ Mun + �M , Mper is the total mass enclosed within the same

radius. From now-on we shall neglect subindex un in order to simplify the writing of this

chapter. Each spherical mass shell around the centre expands until it reaches a maximum

radius (turn-around radius rta), and recollapses. For a given ✏, we have

rta / t", (9-2)

where

" =
2

3

✓
2✏+ 1

3✏

◆
. (9-3)

9.1.2. Halo formation from peaks of the Gaussian random noise

primordial density fluctuations

The theory of halo formation from peaks in the density field which result from Gaussian-

random-noise initial density fluctuations draws an interesting connection between the average

density profile around these peaks and the shape of the fluctuation power spectrum. Accord-

ing to (Ho↵man and Shaham, 1985), local maxima of Gaussian random fluctuations in the

density can serve as the progenitors of cosmological structures. They show that rare density

peaks (⌫ & 3, where ⌫ corresponds to ⌫�M peak) have a simple power law profile

�0(r) / r�(n+3), (9-4)

where �0(r) is the accumulated overdensity inside radius r and n is the e↵ective index of

the power spectrum P (k) approximated as a power law P (k) / kn at wavenumber k, which

corresponds to the halo mass as described in appendix G. The overdensity�0(r) is equivalent

to the fractional perturbation �M/M inside radius r,

�0(r) = �M/M / M�[(n+3)/3]. (9-5)

Comparing the above expression with equation (9-1) we obtain

✏ = (n+ 3)/3. (9-6)

According to this model, haloes of a given massM originate from density perturbations given

by equation (9-5) with n determined by the primordial power spectrum after it is tranferred

according to the parameters of the background Universe and the nature of the dark matter.
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Remark: The final virialized halo distribution is completely specified by the nature of

the dark matter component.

In this future work we shall analyze a SFDM distribution with the initial conditions

given by expression (9-1). We also decided to work in the field approach, then the way the

inital condition in (9-1) is translated to initial conditions for the SFDM is given in appendix

G.

9.2. Initial condition for the SFDM model

Our main porpoise in this section is to consider correct initial conditions for the SFDM

model. Typically, a solver for the SchP system considers a discretization of the space-time

coordinates, in such case we should have a complete profile for the initial conditions of

the SFDM in all space. Notice that, if we would like to use equation (9-1) for our initial

conditions, we should deal with the problem that for such configurations, there exist a region

where the perturbations are strongly non-linear (�M/M > 1). For such reason, we can

consider the following simplification: As we already saw, in the hydrodynamical description,

the only di↵erence between the SFDM model (in the free field limit) and the ⇤CDM model

is the quantum potential term. If we concentrate in a small perturbation �M/M ⌧ 1, we

could consider that for such mass shell we could neglect its quantum potential term, and

then, describes its dynamics in the same way that is described the ⇤CDM model. In that

limit, the SFDM model should be described by the cycloid solution

ri =
3ri(riinit)

10�i(tinit)
(1� cos ✓i), t =

3tinit
4(5�i(tinit)/3)3/2

(✓i � sin ✓i), (9-7)

where tinit and ri(tinit) is given by the time where �(ti
init

) ⌘ �Mi/Mi ⌧ 1, and subindex i

refers to di↵erent shells enclosing a mass Mi. At that time, the velocity of each shell is given

by

vi ⌘
dri
dt

= Hiri
⇥
1��i(tinit)/3

⇤
(9-8)

Observe that at time tinit, we could take an initial condition of the form (9-1), and concentrate

in a shell with a particular mass Mc. We could follow its dynamics from the time it continues

expanding and after collapsing. In general, the cycloyd solution allowed us to follow that

dynamics until r = 0, however, we know a priori that before to reach such radius, the non-

linear terms will take place and the shell should stop at a certain radius where a virialized

structure should formed. With this idea, we can consider that the cycloid solution remains

valid until rc(Tc) = Rc, i.e. the radius of the cycloid solutions equals the radius of a core

profile with a mass Mc. Then, we assume that the structures that exist for radius smaller

than Rc is the soliton profile, whereas we can concentrate in the dynamics for shells with a

mass greater than Mc. Such configurations should represent the infalling matter that will be

aggregating to the final galaxy in order to increase its mass and size. In order to find what
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is the mass enclosed at a certain radius at time Tc – the time when the shell with mass Mc

reaches the radius Rc – we can notice that the value of the angle ✓̂c when rc = Rc, is given

by

rc(Tc) =
3rc(tinit)

10�c(tinit)
(1� cos ✓̂c) = 9.9

~2
Gm2Mc

, (9-9)

which implies

✓̂c = arctan


1�

10

3

Rc

rc(tinit)
�c(tinit)

�
. (9-10)

And that happens at time Tc, given by

Tc =
3tinit

4(5�c(tinit)/3)3/2

h
✓̂c � sin ✓̂c

i
, (9-11)

where we have introduced hat quantities to specify that such quantity is measured at time

Tc. Observe that, after finding ✓̂c, we can calculate Tc from the above expression. On the

other hand, for shells with a mass greater than Mc we have

Tc =
3tinit

4(5�i(tinit)/3)3/2
(✓̂i � sin ✓i). (9-12)

The above two relations inply

✓̂i � sin ✓̂i

�it
3/2
init

=
✓̂c � sin ✓̂c

�ct
3/2
init

, (9-13)

whereas the radius and velocity for each shell is rewriten as

ri(Tc) =
3ri(riinit)

10�i(tinit)
(1� cos ✓̂i), vi(Tc) =

2

3

ri(tinit)
p
5�i(tinit)/3

tinit

 
sin ✓̂i

1� cos ✓̂i

!
. (9-14)

Simplifying our calculations

Observe that if we concentrate in the perturbation with mass Mc, we can reexpress

such mass as

Mc = Mb(1 + C), (9-15)

where C ⌘ �Mc/Mc ⌧ 1. In terms of this mass, our profile at time tinit can be re-expressed

as

�i(tinit) =

✓
Mi

Mc

◆�✏✓ C

1 + C

◆
. (9-16)

The radius at wich the shell with mass Mi is contained at time tinit is

ri(tinit) =


3Mi(1��i(tinit))

4⇡⇢̄

�1/3
=

2

664

3Mi

✓
1�

�
C

1+C

� ⇣
Mi

Mc

⌘�✏◆

4⇡⇢̄

3

775

1/3

, (9-17)
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where ⇢̄ is the background density. Particularly at rc(tinit)

rc(tinit) =


3Mc

4⇡⇢̄(1 + C)

�1/3
. (9-18)

Obtaining the SFDM initial conditions

The SchP solver we have access discretizes the space coordinate as r(j) = jdr. In that

case, what we need is to know the value of the SFDM amplitude and phase at each radius

r(j). First at all, observe that, from (9-13) and (9-16), we can express the ratio Mi/Mc as

Mi

Mc

=

 
✓̂c � sin ✓̂c

✓̂i � sin ✓̂i

!2/3✏

. (9-19)

Then, from equation (9-14) we can find the value of ✓̂c after imposing a value for ri(Tc) = r(j).

In such case we have only one free parameter ✓̂i, which can be found by a shooting method.

After that, we can obtain the value of the mass enclosed at such radius by considering

the above relation, and the velocity for such shell once we consider equation (9-14). After

knowing the mass enclosed at each radius r(j), we obtained a density profile via the general

formula

⇢(j + 1) =
1

r(j + 1)2


M(j + 1)�M(j)

2⇡dr
� ⇢(j)r(j)2

�
(9-20)

Our initial conditions for the hydrodynamical variables can be seen in figure 9-1. For such

figures we used ✏ = 1/3 to exemplify our procedure.

On the other hand, the field variables can be obtained simply by remembering that

| | =
p
⇢,

Z
si

sc

ds = m

Z
✓̂i

✓̂c

v
dr

d✓̂
d✓̂. (9-21)

We showed in 9-2 the initial conditions for the field variables. We believe that such initial

conditions represents a more physical cosmological initial condition for structure formation

in the SFDM model.

What follows?

Now, I am modifying a SchP solver that I have at my disposal, in order to consider

cosmological boundary conditions. After that, we can run our initial conditions and observe

what kind of configurations are formed after they relax.
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Figure 9-1.: (top) Radius vs density profile for the SFDM model at time Tc. (bottom) radius vs velocity
for the SFDM at time Tc.
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Figure 9-2.: (top) Amplitude for the SFDM in terms of radius at Tc. (bottom) Phase for the SFDM model
as a function of radius at Tc.



A. Compendium of General Relativity

While gravity is negligibly weak on scales of individual particles, unlike the other forces of

nature. it is also universal – acting on anything with mass or energy. For such property at

cosmological and astrophysical scales the dominant force that governs the dynamics of all

systems is gravity. In this appendix we shall review the main ideas of Einstein’s General

theory of relativity.

For hundreds of years the concept of gravity could be well described by the Newton’s

universal law of gravity

@i@
i�(xi) = 4⇡G⇢(xi) (A-1)

in which the force of attraction is proportional to the masses of objects and inversely related

to the square of distances. This description was very successful in modeling the orbital

motion of Earth and the planets, validating the theory as the leading theory of gravity

for several centuries, but it possesses several inconsistencies when it was tested with more

accurate experiments. For example more precise experiments were carry out for the orbit of

Mercury, finding that it precess in a way that could not be explained in Newton’s gravity. On

the other hand, the concept of instantaneous force acting, which is follow immediately from

Newton’s gravity, corresponds to a unreal description. In fact this problem was problem

was known more-or-less since the inception of the Theory. For this discrepancies it was

understood that it should be necessary to find a more general theory of gravity.

Einstein’s theory of General relativity solves all the problems that Newton’s law could

not and then it is now accepted as the mainstream theory for gravity. It set aside the idea

of instantaneous force acting and introduced the concept of curvature of the spacetime. In

this context gravity can be understand as a geometric theory in which the fundamental

objects of interest are mathematically modelled as tensor fields. The quantity encoding the

gravitational potential in the theory is not longer the scalar gravitational potential �, but

instead a four-dimensional symmetric metric tensor, gµ⌫ . The “proper distance” between

two neighboring points in spacetime is defined as

ds2 = gµ⌫dx
µdx⌫ , (A-2)

where dxµ are tensors specifying the displacement in space and time between the two points.

In the simplest case that the metric tensor can be written as (�1, 1, 1, 1) – the Minkowsky

metric ⌘µ⌫ – we recover the special theory of Relativity. In the general way gµ⌫ encodes the

geometry of the spacetime (as its curvature), and it manifests the “force” that objects feel
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as a gravitational attraction. In reality, there is not a force in the Newtonian sence; objects

simply move along geodesics of spacetime described by the metric, just as a free particle in

classical physics moves along geodesic’s of the geometry of its surrounding, which happens

to be tipically flat. The di↵erence in GR is that, in general, space is not a flat geometry

and then geodesics are not in general the typical straight lines of the Newtonian world. The

spacetime location of a test particle can be shown to obey the geodesic equation

d2xµ

d�2
+ �µ

↵�

dx↵

d�

dx�

d�
= 0, (A-3)

where � is an a�ne parameter. The � in the above equation are called the Christo↵el symbols

(Carroll, 2013) and are expressed in terms of the spactime metric gµ⌫ as:

�µ

↵�
=

1

2
gµ� (@↵g�� + @�g↵� � @�g↵�) . (A-4)

They enter in the definition of the covariant derivative operator rµ, whose action over a

vector field v⌫ and dual vector field !⌫ is respectively given by

rµv
⌫ = @µv

⌫ + �⌫
µ⇢
v⇢, (A-5a)

rµ!⌫ = @µ!⌫ � �
⇢

µ⌫
!⇢. (A-5b)

In the general form for a tensor with contravariant indices (µ1...µm) and covariant indices

(⌫1...⌫n) we have

r�T
µ1,...,µm

⌫1,...,⌫n
=
@T µ1,...,µm

⌫1,...,⌫n

@x�
+ �µ1

⇢�
T �,...,µm

⌫1,...,⌫n
+ ...+ �µm

⇢�
T µ1,...,�
⌫1,...,⌫n

+

� �⇢
⌫1�

T µ1,...,µm

⇢,...,⌫n
� ...� �⇢

⌫n�
T µ1,...,µm

⇢,...,⌫n
. (A-6)

Equation (A-3) can be understood as the generalisation of Newton’s second law. The

analogue to equation (A-1) in this context can be obtained always that we define some new

quantities, such as the Riemann Tensor, which is defined by the action of the commutator

of two covariant derivatives over a dual vector:

(rµr⌫ �r⌫rµ)!⌘ = R�

µ⌫⌘
!�. (A-7)

The Riemann tensor can be expressed in terms of Christo↵el symbols as

R�

µ⇢⌫
= @⇢�

�

µ⌫
� @⌫�

�

⇢⌫
+ ��

↵⇢
�↵
µ⌫

� ��
↵µ
�↵
⇢⌫
. (A-8)

From this quantity it can be defined the Ricci tensor

Rµ⌫ = R�

µ�⌫
= @��

�

µ⌫
� @µ�

�

�⌫
+ ��

↵�
�↵
µ⌫

� ��
↵µ
�↵
�⌫
, (A-9)

and then the Ricci scalar

R ⌘ gµ⌫Rµ⌫ . (A-10)
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The construction of this scalar measure of curvature is important since it allows us to

introduce the Einstein-Hilbert action

SG = 

Z
d4x

p
�gR, (A-11)

where g is the determinant of the metric and  is a constant (for now). This action describes

curvature from the geometry of the spacetime, and its variation with respect to the metric

leads to Einstein’s field equation in vacuum:

Gµ⌫ ⌘ Rµ⌫ �
1

2
Rgµ⌫ = 0, (A-12)

where Gµ⌫ is called the Einstein tensor, and is a symmetric, divergence-free, matrix of

functions of the metric and its first and second derivatives. The extension needed to introduce

the matter contribution in the Einstein equation is given when considering the total action

S = SG + Sm, (A-13)

where

Sm =

Z
d4x

p
�gLm, (A-14)

is the action due to the matter content in the system. The variation of (A-13) with respect

to the metric tensor leads to

Gµ⌫ =
1

2
Tµ⌫ , (A-15)

where Tµ⌫ is defined as the energy-momentum tensor for the matter content of the theory.

It can be derived in terms of the lagrangial Lm as

Tµ⌫ = �
2�
p
�gLm

p
�g�gµ⌫

= gµ⌫Lm � 2
�Lm

�gµ⌫
, (A-16)

and is a covariant conserved quantity, i.e. it fulfills with

rµT
µ⌫ = 0, (A-17)

generalizing the Newton’s idea of conservation of energy. On the constant term  is fixed

by requiring that in the weak gravitational limit we recover equation (A-1). From this it is

found that �1 = 16⇡G.

Finally, one can also add a constant term ⇤ in the action (A-13) as

S = SG + Sm + S⇤, (A-18)

where

S⇤ = �16⇡G

Z
d4x

p
�g⇤, (A-19)

which leads to the field equations

Gµ⌫ + ⇤gµ⌫ = 8⇡GTµ⌫ . (A-20)

This extra term represents the vacuum energy of spacetime itself, which in general we can

not assume that it is equal to zero and then it should gravitate acording to GR.



B. Gauge invariant quantities

In this section we show the Gauge invariant quantities. From (Durrer, 2001) the gauge

invariant energy-momentum perturbations are defined by

V ⌘ �u�
1

k
ḢT = �u(longit), (B-1a)

Dg ⌘ � + 3(1 + !)

✓
HL +

1

3
HT

◆
,

= �(longit) + 3(1 + !)�, (B-1b)

D ⌘ �(longit) + 3(1 + !), (B-1c)

� ⌘ ⇡L �
c2
s

!
�, (B-1d)

where (longit) labels perturbations in the longitudinal gauge.

The Einstein’s equations rewritten in the above quantities are given by:

4⇡Ga2⇢̄D = k2�, (B-2a)

4⇡Ga2(⇢̄+ p̄)V = k

✓
a

0

a
 � �

0
◆
, (B-2b)

8⇡Ga2p̄⇧ = �k2(�+ ), (B-2c)

while from the energy-momentum conservation follows

D
0

g
+ 3(c2

s
� !)

a
0

a
Dg + kV (1 + !) + 3

a
0

a
!� = 0, (B-3a)

V
0
=

a
0

a
(3c2

s
� 1)V + k

⇥
 � 3c2

s
�
⇤
+

c2
s
k

1 + !
Dg +

!k

1 + !


��

2

3
⇧

�
. (B-3b)

The gauge invariant expression for the comoving curvature perturbation is given by

R = HL +
1

3
HT +

a
0

ak
(V � B). (B-4)

This is the perturbation to the intrinsic curvature scalar of comoving hypersurfaces: hyper-

surfaces orthogonal to the worldlines that comove with the total matter (�ui = 0). In the

case that the Universe is dominated by a SF, R in gauge invariant form can be written as

R = HL +
1

3
HT �

a
0

a

��

�̄0 . (B-5)



C. Bayessian statistics and parameter
inference

As we explained in the thesis, Bayesian statistics is necessary to constraint di↵erent parame-

ters for cosmological models. Then, in this appendix we briefly explain several basic concepts

necessary to understand the parameter inference procedure with Bayesian statistics.

C.1. Bayesian vs Frequentist statistics

Fundamentally, the main di↵erence between Bayesian and Frequentist statistics is on the

definition of probability. From a Frequentist point of view, probability has meaning in

limiting cases of repeated measurements

P =
n

N
, (C-1)

where n denotes the number of successes and N the total number of trials. Frequentist

statistics defines probability as the limit for the number of independent trials going to in-

finity. Then, for Frequentist statistics, probabilities are fundamentally related to

frequencies of events. On the other hand, in Bayesian statistics the concept of probabil-

ity is extended to cover degrees of certainty about a statement. For Bayesian statistics,

probabilities are fundamentally related to our knowledge about an event.

Here we introduce some key concepts to understand the consequences this di↵erence

entails; for an extended review see (Heavens, 2009, Trotta, 2008, 2017, Verde, 2010). Let x

be a random variable related to a particular event and P (x) its corresponding probability

distribution, for both cases the same rules of probabilities apply1:

P (x) � 0, (C-2a)
Z 1

�1
dxP (x) = 1. (C-2b)

For mutually exclusive events we have

P (x1 [ x2) = P (x1) + P (x2), (C-2c)

1These rules are defined for a continuous variable; however, the corresponding discrete definition can be
given immediately by replacing

R
dx !

P
.
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but in general

P (x1 [ x2) = P (x1) + P (x2)� P (x1 \ x2).

These rules are summed up as follow. The first condition (C-2a) is necessary due to

the probability of having an event is always positive. The second rule (C-2b) is a normalized

relation, which tells us that we are certain to obtain one of the possible outcomes. Now, in

the third point (C-2c) we have that the probability of obtaining an observation, from a set

of mutually exclusive events, is given by the individual probabilities of each event. Finally,

and in general, if one event occurs given the occurrence of another then the probability that

both x1 and x2 happen is equal to the probability of x1 times the probability of x2 given

that x1 has already happened

P (x1 \ x2) = P (x1)P (x2|x1). (C-2d)

If two events x1 and x2 are mutually exclusive then

P (x1 \ x2) = 0 = P (x2 \ x1). (C-3)

The rules of probability distributions must be fulfilled by both Frequentist and Bayesian

statistics. However, there are some consequences derived by the fact these two scenarios have

a di↵erent definition of probability, as we shall see.

C.1.1. Frequentist statistics

Any frequentist inferential procedure relies on three basic ingredients: the data, the model

and an estimation procedure. The main assumption in Frequentist statistics is that the data

has a definite, albeit unknown, underlying distribution to which all inference pertains.

The data is a measurement or observation, denoted by X, that can take any value

from a corresponding sample space. A sample space of an observation X can be defined

as a measurable space (x, B̂) that contains all values that X can take upon measurement.

In Frequentist statistics it is considered that there is a probability function P0 : B̂ ! [0, 1]

in the sample space (x, B̂) representing the “true distribution of the data”

X ⇠ P0.

Now there is the model. For Frequentist statistics the model Q is a collection of

probability measurements P✓ : B̂ ! [0, 1] in the sample space (x, B̂). The distributions

P✓ are called model distributions, with ✓ as the model parameters; in this approach ✓ is

unchanged. A model Q is said to be well-specified if it contains the true distribution of the

data P0, i.e.

P0 2 Q.

Finally, we need a point-estimator (or estimator) for P0. An estimator for P0 is a map

P̂ : x ! Q, representing our “best guess” P̂ 2 Q for P0 based on the data X.
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Frequentist Bayesian

Data are a repeatable random Data are observed from the

sample. There is a frequency. realized sample.

Underlying parameters remain Parameters are unknown and

constant during this repeatable described probabilistically.

process.

Parameters are fixed. Data are fixed.

Table C-1.: Main di↵erences between the Bayesian and Frequentist interpretations.

Hence, the Frequentist statistics is based on trying to answer the following questions:

“what the data is trying to tell us about P0?” or “considering the data, what can we say

about the mean value of P0?”.

C.1.2. Bayesian statistics

In Bayesian statistics, data and model are two elements of the same space, i.e. no formal

distinction is made between measured quantities X and parameters ✓. One may envisage

the process of generating a measurement’s outcome Y = y as two draws, one draw for ⇥

(where ⇥ is a model with associated probabilities to the parameter ✓) to select a value of ✓

and a subsequent draw for P✓ to arrive at X = x. This perspective may seem rather absurd

in view of the definitions for a Frequentist way of thinking, but in Bayesian statistics where

probabilities are related to our own knowledge, it results natural to associate probability

distributions to our parameters. In this way an element P✓ of the model is interpreted simply

as the distribution of X given the parameter value ✓, i.e. as the conditional distribution X|✓.

Table C-1 provides a short summary of the most important di↵erences between the

two statistics.

C.2. A first look at Bayesian statistics

Before we apply Bayesian statistics in cosmology it is necessary to understand the most

important mathematical tools in the Bayesian procedure. In this section, we present an

informal revision but encourage the reader to look for the formal treatment in the literature,

cited in each section.
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C.2.1. Bayes theorem, priors, posteriors and all that stu↵

When anyone is interested on the Bayesian framework, there are several concepts to under-

stand before presenting the results. In this section we quickly review these concepts.

The Bayes theorem. The Bayes theorem is a direct consequence of the axioms of

probability shown in Eqs. (C-2). From Eqn. (C-2d), without loss of generality, it must be

fulfilled that P (x1 \ x2) = P (x2 \ x1). In such case the following relation applies

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (C-4)

As already mentioned, in the Bayesian framework data and model are part of the same space.

Given a model (or hypothesis) H, considering x1 ! D as a set of data, and x2 ! ✓ as the

parameter vector of said hypothesis, we can rewrite the above equation as

P (✓|D,H) =
P (D|✓, H)P (✓|H)

P (D|H)
. (C-5)

This last relation is the so-called Bayes theorem and the most important tool in a Bayesian

inference procedure. In this result, P (✓|D,H) is called the posterior probability of the

model. P (D|✓, H) ⌘ L(D|✓, H) is called the likelihood and it will be our main focus

in future sections. P (✓|H) ⌘ ⇡(✓) is called the prior and expresses the knowledge about

the model before acquiring the data. This prior can be fixed depending on either previous

experiment results or the theory behind. P (D|H) ⌘ Z is the evidence of the model, usually

referred as the Bayesian Evidence. We notice that this evidence acts only as a normalizing

factor, and is nothing more than the average of the likelihood over the prior

P (D|H) =

Z
dN✓P (D|✓, H)P (✓|H), (C-6)

where N is the dimensionality of the parameter space. This quantity is usually ignored, for

practical reasons, when testing the parameter space of a unique model. Nevertheless, the

Bayesian evidence plays an important role for selecting the model that best “describes” the

data, known as model selection. For convenience, the ratio of two evidences

K ⌘
P (D|H0)

P (D|H1)
=

R
dN0✓0 P (D|✓0, H0)P (✓0|H0)R
dN1✓1 P (D|✓1, H1)P (✓1|H1)

=
Z0

Z1
, (C-7)

or equivalently the di↵erence in log evidence lnZ0 � lnZ1 if often termed as the Bayes

factor B0,1:

B0,1 = ln
Z0

Z1
, (C-8)

where ✓i is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1.

In Eqn. (C-8), the quantity B0,1 = lnK provides an idea on how well model 0 may fit the
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|B0,1| Odds Probability Strength

< 1.0 < 3 : 1 < 0.750 Inconclusive

1.0-2.5 ⇠ 12 : 1 0.923 Significant

2.5-5.0 ⇠ 150 : 1 0.993 Strong

> 5.0 > 150 : 1 > 0.993 Decisive

Table C-2.: Je↵reys guideline scale for evaluating the strength of evidence when two models are compared.

data when is compared to model 1. Je↵reys provided a suitable guideline scale on which we

are able to make qualitative conclusions (see Table C-2).

We can see that Bayes theorem has an enormous implication with respect to a statistical

inferential point of view. In a typical scenario we collect some data and hope to interpret it

with a given model, however, we usually do the opposite. That is, first we have a set of data

and then we can confront a model considering the probability that our model fits the data.

Bayes theorem provides a tool to relate both scenarios. Then, thanks to the Bayes theorem,

in principle, we are able to select the model that best fits the data.

C.2.2. Updating the probability distribution

In general we won’t be able to get the real value of a given parameter p because the lack of

enough data. Given this, it is clear that in order to confront a parameter model and be more

accurate about the most probable (or “real”) value, it is necessary to increase the amount

of data (and the precision) in any experiment. Then, we have some model parameters that

have to be confronted with di↵erent sets of data. This can be done in two alternative ways:

(a) by considering the sum of all datasets we have; or (b) by taking each data set as the new

data, but our prior information updated by the previous information. The important point

in Bayesian statistics is that it is indeed equivalent to choose any of these two possibilities.

In fact, if we rewrite Bayes theorem so that all probabilities are explicitly dependent

on some prior information I (Heavens, 2009)

P (✓|DI,H) =
P (✓|I,H)P (DI|✓, H)

P (D|I,H)
, (C-9)

and then we consider a new set of data D0, letting the old data become part of the prior

information I 0 = DI, we arrive at

P (✓|D0I 0, H) =
P (✓|I,H)P (DD0I|✓, H)

P (DD0|I,H)
= P (✓|[DD0]I,H), (C-10)

where we can explicitly see the equivalence of the two di↵erent options.
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C.2.3. About the Likelihood

We mentioned that the Bayesian evidence is usually set apart when doing any inference

procedure in the parameter space of a single model. Then, without loss of generality, we can

fix it to P (D|H) = 1. If we ignore the prior2 we can identify the posterior with the likelihood

P (✓|D,H) / L(D|✓, H) and thus, by maximizing it, we can find the most probable set of

parameters for a model given the data. However, having ignored P (D|H) and the prior,

we are not able to provide an absolute probability for a given model, but only relative

probabilities. On the other hand, it is possible to report results independently of the prior

by using the Likelihood ratio. The likelihood at a particular point in the parameter space

can be compared with the best-fit value, or the maximum likelihood Lmax. Then, we can

say that some parameters are acceptable if the likelihood ratio

⇤ = �2 ln


L(D|✓, H)

Lmax

�
, (C-11)

is bigger than a given value.

Let us assume we have a Gaussian posterior distribution, which is single-peaked. We

consider that ✓̂ is the mean of the distribution

✓̂ =

Z
d✓✓P (✓|D,H). (C-12)

If our model is well-specified and the expectation value of ✓̂ corresponds to the real or most

probable value ✓0, we have

h✓̂i = ✓0, (C-13)

then we say that ✓̂ is unbiased. Considering a Taylor expansion of the log likelihood around

its maximum

lnL(D|✓) = lnL(D|✓0) +
1

2
(✓i � ✓0i)

@2 lnL

@✓i@✓j
(✓j � ✓0j) + ..., (C-14)

where ✓0 corresponds to the parameter vector of the real model. In this manner, we have

that the likelihood can be expressed as a multi-variable likelihood given by

L(D|✓) = L(D|✓0) exp


�
1

2
(✓i � ✓0i)Hij(✓j � ✓0j)

�
, (C-15)

where

Hij = �
@2 lnL

@✓i@✓j
, (C-16)

is called the Hessian matrix and it controls whether the estimates of ✓i and ✓j are corre-

lated. If it is diagonal, these estimates are uncorrelated.

2It is expected that the real value of any given parameter for a large enough dataset is independent of the
prior.
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The above expression for the likelihood is a good approximation as long as our posterior

distribution possesses a single-peak. It is worth mentioning that, if the data errors are

normally distributed, then the likelihood for the data will be a Gaussian function as well. In

fact, this is always true if the model is linearly dependent on the parameters. On the other

hand, if the data is not normally distributed we can resort to the central limit theorem.

In this way, the central limit theorem tell us that the resulting distribution will be best

approximated by a multi-variate Gaussian distribution (Verde, 2010).

C.2.4. Letting aside the priors

In this section we present an argument for letting aside the prior in the parameter estimation.

For this, we follow the example given in (Trotta, 2008). In this example there are two people,

A and B, that are interested in the measurement of a given physical quantity ✓. A and B

have di↵erent prior beliefs regarding the possible value of ✓. This discrepancy could be given

by the experience, such as the possibility that A and B have made the same measurement

at di↵erent times. Let us denote their priors by P (✓|Ii), (i = A,B), and assume they are

described by two Gaussian distributions with mean µi and variance ⌃2
i
. Now, A and B make

a measurement of ✓ together using an apparatus subject to a Gaussian noise with known

variance �. They obtain the value ✓0 = m1. Therefore they can write their likelihoods for ✓

as

L(D|✓, HI) = L0 exp


�
1

2

(✓ �m1)2

�2

�
. (C-17)

By using the Bayes formula, the posterior of the model A (and B) becomes

P (✓|m1) =
L(m1|✓Ii)P (✓|Ii)

P (m1|Ii)
, (C-18)

where we have skipped writing explicitly the hypothesis H and used the notation given in

Eqn. (C-9). Then, the posterior of A and B are (again) Gaussian with mean

µ̂i =
m1 + (�/⌃i)2µi

1 + (�/⌃i)2
, (C-19)

and variance

⌧ 2
i
=

�2

1 + (�/⌃i)2
, (i = A,B). (C-20)

Thus, if the likelihood is more informative than the prior i.e. (�/⌃i) ⌧ 1 the posterior mean

of A (and B) will converge towards the measured value, m1. As more data are obtained one

can simply replace the value of m1 in the above equation by the mean hmi and �2 by �2/N .

Then, we can see that the initial prior µi of A and B will progressively be overridden by the

data. This process is illustrated in Figure C-1 where the green (red) curve corresponds to

the probability distribution of ✓ for person A (B) and the blue curve corresponds to their

likelihood.



180 C Bayessian statistics and parameter inference

Figure C-1.: Converging views in Bayesian inference (taken from (Trotta, 2008)). A and B have di↵erent
priors P (✓|Ii) for a value ✓ (panel (a)). Then, they observe one datum with an apparatus
subject to a Gaussian noise and they obtained a likelihood L(✓;HI) (panel (b)), after which
their posteriors P (✓|m1) are obtained (panel (c)). Then, after observing 100 data, it can be
seen how both posteriors are practically indistinguishable (panel (d)).

C.2.5. Chi-square and goodness of fit

We mentioned the main aim of parameter estimation is to maximize the likelihood in order

to obtain the most probable set of model parameters, given the data. If we consider the

Gaussian approximation given in Eqn. (C-15) we can see the likelihood will be maximum if

the quantity

�2
⌘ (✓i � ✓0i)Hij(✓j � ✓0j), (C-21)

is minimum. The quantity �2 is usually called chi-square and is related to the Gaussian

likelihood via L = L0e��
2
/2. Then, we can say that maximizing the Gaussian likelihood is

equivalent to minimizing the chi-square. However, as we mentioned before, there are some

circumstances where the likelihood cannot be described by a Gaussian distribution, in these

cases the chi-square and the likelihood are no longer equivalent.

The probability distribution for di↵erent values of �2 around its minimum, is given by

the �2 distribution for v = n � M degrees of freedom, where n is the number of indepen-

dent data points and M the number of parameters. Hence, we can calculate the probability

that an observed �2 exceeds by chance a value �̂ for the correct model. This probability is

given by Q(v, �̂) = 1 � �(v/2, �̂/2) (Press et al., 2007), where � is the incomplete Gamma

function. Then, the probability that the observed �2 (even the correct model) is less than

a given value �̂2 is 1�Q. This statement is strictly true if the errors are Gaussian and the

model is a linear function of the likelihood, i.e., for Gaussian likelihoods.

If we evaluate the quantity Q for the best-fit values (minimum chi-square) we can have

a measure of the goodness of fit. If Q is small (small probability) we can interpret it as:

• The model is wrong and can be rejected.

• The errors are underestimated.
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��2

� p M = 1 M = 2 M = 3

1 68.3% 1.00 2.30 3.53

2 95.4% 4.00 6.17 8.02

3 99.73% 9.00 11.8 14.20

Table C-3.: ��2 for the conventional 68.3%, 95.4% and 99.73% as a function of the number of parameters
(M) for the joint confidence level.

• The error measurements are not normally distributed.

On the other hand, if Q is too large there are some reasons to believe that:

• Errors have been overestimated.

• Data are correlated or non-independent.

• The distribution is non-Gaussian.

C.2.6. Contour plots and confidence regions

Once the best fit parameters are obtained we would like to know the confidence regions

where values could be considered good candidates for our model. The most logical election

is to take values inside a compact region around the best fit value. Then, a natural choice

are regions with constant �2 boundaries. When the �2 possesses more than one minimum,

it is said that we have non-connected confidence regions, and for multi-variate Gaussian

distributions (as the likelihood approximation in Eqn. (C-15)) these are ellipsoidal regions.

In this section we exemplify how to calculate the confidence regions, following (Verde, 2010).

We consider a little perturbation from the best fit of chi-square ��2 = �2
� �2

best
.

Then we use the properties of �2 distribution to define confidence regions for variations on

�2 to its minimum. In Table C-3 we see the typical 68.3%, 95.4% and 99.73% confidence

levels as a function of number of parameters M for the joint confidence level. For Gaussian

distributions (as likelihood) these correspond to the conventional 1, 2 and 3 � confidence

levels.

The general recipe to compute constant �2 confidence regions is as follows: after finding

the best fit by minimizing �2 (or maximizing the likelihood) and checking thatQ is acceptable

for the best parameters, then:

1. Let M be the number of parameters, n the number of data and p be the confidence

limit desired.
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2. Solve the equation:

Q(n�M,min(�2) +��2) = p. (C-22)

3. Find the parameter region where �2
 min(�2) + ��2. This defines the confidence

region.

C.2.7. Marginalization

It is clear that a model may (in general) depend on more than one parameter. However, some

of these parameters ✓i may be of less interest. For example, they may correspond to nuisance

parameters like calibration factors, or it may be the case that we are interested in only one

of the parameter constraints rather than the joint of two or more of them simultaneously.

Then we marginalize over the uninteresting parameters by

P (✓1, ..., ✓j, H|D) =

Z
d✓j+1...d✓mP (✓, H|D), (C-23)

where m is the total number of parameters in our model and ✓1,...,✓j denote the parameters

we are interested in.

C.3. Numerical tools

In typical scenarios it results very di�cult to compute the posterior distribution analytically.

For these cases the numerical tools available play an important role during the parameter

estimation task. There exist several options to carry out this work, nevertheless in this

section we focus only on the Markov Chain Monte Carlo (MCMC) with the Metropolis

Hastings algorithm (MHA). Additionally, in this section we present some useful details we

take into account to make more e�cient our computation.

C.3.1. MCMC techniques for parameter inference

The purpose of a MCMC algorithm is to build up a sequence of points (called “chain”)

in a parameter space in order to evaluate the posterior of Eqn. (C-5). In this section we

review the basic results for this procedure in a simplistic way, but for curious readers it is

recommendable to check (Gelman et al., 2013, Gilks et al., 1995, Ross, 2014, Tanner, 2012)

for the Markov chain theory.

A Monte Carlo simulation is assigned to algorithms that use random number genera-

tors to approximate a specific quantity. On the other hand, a sequence X1, X2, ... of elements

of some set is a Markov Chain if the conditional distribution of Xn+1 given X1, ..., Xn de-

pends only on Xn. In other words, a Markov Chain is a process where we can compute

subsequent steps based only in the information given at the present. An important property

of a Markov Chain is that it converges to a stationary state where successive elements of
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the chain are samples from the target distribution, in our case it converges to the posterior

P (✓|D,H). In this way we can estimate all the usual quantities of interest out of it (mean,

variance, etc).

The combination of both procedures is called aMCMC. The number of points required

to get good estimates in MCMCs is said to scale linearly with the number of parameters, so

this method becomes much faster than grids as the dimensionality increases.

The target density is approximated by a set of delta functions

p(✓|D,H) '
1

N

NX

i=1

�(✓ � ✓i), (C-24)

being N the number of points in the chain. Then, the posterior mean is computed as

h✓i =

Z
d✓✓P (✓, H|D) '

1

N

NX

i=1

✓i, (C-25)

where ' follows because the samples ✓i are generated out of the posterior by construction.

Then, we can estimate any integrals (such as the mean, variance, etc.) as

hf(✓)i '
1

N

NX

i=1

f(✓i). (C-26)

As mentioned before, in a Markov Chain it is necessary to generate a new point ✓i+1

from the present point ✓i. However, as it is expected, we need a criteria for accepting (or

refusing) this new point depending on whether it turns out to be better for our model or

not. If this new step is worse than the previous one, we may accept it, since it could be

the case that, if we only accept steps with better probability, we could be converging into

a local maximum in our parameter space and, therefore, not completely mapping all of it.

The simplest algorithm that contains all this information in its methodology is known as the

Metropolis-Hastings algorithm.

C.3.2. Metropolis-Hastings algorithm

In the Metropolis-Hastings algorithm (Hastings, 1970, Metropolis et al., 1953) it is

necessary to start from a random initial point ✓i, with an associated posterior probability pi =

p(✓i|D,H). We need to propose a candidate ✓c by drawing from a proposal distribution

q(✓i, ✓c) used as a generator of new random steps. Then, the probability of acceptance the

new point is given by

p(acceptance) = min


1,

pcq(✓c, ✓i)

piq(✓i, ✓c)

�
. (C-27)

If the proposal distribution is symmetric the algorithm is reduced to theMetropolis algorithm

p(acceptance) = min


1,

pc
pi

�
. (C-28)
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In this way the complete algorithm can be expressed by the following steps:

1. Choose a random initial condition ✓i in the parameter space and compute the posterior

distribution.

2. Generate a new candidate from a proposal distribution in the parameter space and

compute the corresponding posterior distribution.

3. Accept (or not) the new point with the help of the Metropolis-Hastings algorithm.

4. If the point is not accepted, repeat the previous point in the chain.

5. Repeat steps 2-4 until you have a large enough chain.

C.3.3. Convergence test

It is clear that we need a test to know when our chains have converged. We need to verify

that the points in the chain are not converging to a “false convergent point” or to a local

maximum point. In this sense, we need that our algorithm takes into account this possible

di�culty. The simplest way (the informal way) to know if our chain is converging to a

global maximum is by running several chains starting with di↵erent initial proposals for the

parameters we are interested in. Then, if we see by naked eye, that all the chains seem to

converge into a single region of the possible value for our parameter, we may say that our

chains are converging to that region.

The convergence method explained above is very informal and we would like to have

a better way to ensure that our result is correct. The usual test is the Gelman-Rubin

convergence criterion (Brooks and Gelman, 1998, Gelman et al., 1992). That is, by starting

with M chains with very di↵erent initial points and N points per chain, if ✓j
i
is a point in the

parameter space of position i and belonging to the chain j, we need to compute the mean

of each chain

h✓ji =
1

N

NX

i=1

✓j
i
, (C-29)

and the mean of all the chains

h✓i =
1

NM

NX

i=1

MX

j=1

✓j
i
. (C-30)

Then, the chain-to-chain variance B is

B =
1

M � 1

MX

j=1

(h✓ji � h✓i)2, (C-31)
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and the average variance of each chain is

W =
1

M(N � 1)

NX

i=1

MX

j=1

(✓j
i
� h✓ji)2. (C-32)

If our chains converge, W and B/N must agree. In fact we say that the chains converge

when the quantity

R̂ =
N�1
N

W +B(1 + 1
M
)

W
, (C-33)

which is the ratio of the two estimates, approaches unity. A typical convergence criteria is

when 0.97 < R̂ < 1.03.

C.3.3.1. Some useful details

The proposal distribution. The choice of a proposal distribution q is crucial for the

e�cient exploration of the posterior.If the scale of q is too small compared to the scale of

the target (in the sense that the typical jump is small), then the chain may take very long

to explore the target distribution which implies that the algorithm will be very ine�cient.

On the other hand, if the scale of q is too large, the chain gets stuck and it does not jump

very frequently, so we will have di↵erent “peaks” in our posterior.

In order to fix this issue in a more e�cient way, it is recommendable to run an ex-

ploratory MCMC, compute the covariance matrix from the samples, and then re-run with

this covariance matrix as the covariance of a multivariate Gaussian proposal distribution.

This process can be computed a couple of times before running the “real” MCMC.

The burn-in. It is important to notice that at the beginning of the chain we will have

a region of points outside the stationary region (points inside the ellipse in the right panel of

Figure ??). This early part of the chain (called “burn-in”) must be ignored, this means that

the dependence on the starting point must be lost. Thus, it is important to have a reliable

convergence test.

More samplers. The generation of the elements in a Markov chain is probabilistic by

construction and it depends on the algorithm we are working with. The MHA is the easiest

algorithm used in Bayesian inference. However, there are several algorithms that can help

us to fulfill our mission. For instance, some of the most popular and e↵ective ones, are the

Hamiltoninan Monte Carlo (see e.g. (Hanson, 2001, Neal et al., 2011)) or the Adaptative

Metropolis-Hastings (AMH) (see e.g. (Tokdar and Kass, 2010)).



D. The attractor behaviour for the
SFDM candidate

In this appendix we comment about the attractor behaviour of the strong-self-interacting

SFDM during inflation. For this purpose let us remember the dynamical equations that

the Universe follows when it contains only two real scalar fields � and '. In that case the

Universe is described by the Friedmann and Klein-Gordon di↵erential equations

H2 =
8⇡

3m2
pl


1

2
�̇+

1

2
 ̇ + V (�,')

�
, (D-1a)

�̈i + 3H�̇i + V,�i
= 0 (D-1b)

where �̇i ⌘ d�i/dt, V,�i
⌘ dV/d�i, and �1,2 = �,'. In what follows we consider the full

potential V (�,') ' V̂ (�) + µ2'2/2 + ⌫'4/4.

In the inflationary scenario, it is assumed that the Universe is dominated by the inflaton

and that it is slowly-rolling during that process, i.e. that the slow-roll parameters

✏� ⌘
m2

pl

16⇡

✓
V,�

V

◆2

, ⌘� ⌘
m2

pl

8⇡

✓
V,��

V

◆
(D-2a)

are small (✏� ⌧ 1 and ⌘� ⌧ 1). In that case the Friedmann equation and the KG equation

associated to the inflaton are reduced to

H2
'

V̂ (�)

3M2
pl

, (D-2b)

3H�̇+ V,� = 0, (D-2c)

while the dynamics for the SFDM continue being, in general, described by equation (D-1b).

D.1. Justifying the slow-roll condition for the SFDM

candidate

In order to obtain a slowling-rolling SFDM during the inflationary process, it is necessary

that it fulfills a similar relation that the one by the inflaton, i.e. the slow-roll parameters

associated for the SFDM ✏' and ⌘' – defined in a similar way than in (D-2a) – being
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small (✏', ⌘' ⌧ 1). Considering that in the inflationary scenario V ' V̂ and from (D-2b)

V̂ ' 3m2
pl
H2/(8⇡), we obtain that the slow-roll parameters for the SFDM can be written as

✏' ' 4⇡

 
⌫'3

3mplH2
inf

!2

, ⌘' '
⌫'2

H2
inf

. (D-3)

where Hinf is the Hubble parameter at the epoch of inflation and we have considered that

we are in the strong-self-interacting regime. Typically, the self-interacting parameter ⌫ is

very small (see section 4.5). In that case we can observe that the slow-roll condition can be

fulfilled for most of the values of the field '.

D.1.1. Attractor solution for the SFDM

The dynamic of the SFDM during inflation is described by equation (D-2c), but interchanging

� for '. In that case notice that both fields must follow the relation

d'

V,'

=
d�

V,�

. (D-4)

In the strong-self-interacting regime (where V,' ' ⌫'3) the above equation results in

1

'2
�

1

'2
it

= 2⌫

Z
�it

�

d�

V,�

. (D-5)

Then, after enough time, the field ' becomes far smaller than 'it and then the field reaches

the attractor solution

'att =

✓
2⌫

Z
�it

�

V �1
,�

d�

◆�1/2

. (D-6)

Notice that the time needed to obtain the attractor behavior for the SFDM is described by

the inflationary potential and the self-interaction parameter. Then, the attractor behavior is

reached more quickly for the SFDM models with large self-interaction compared to models

with small self-interaction. As an example, notice that when the SFDM has an extremely

small self-interaction and if the inflationary period does not last for a long time, the attractor

behavior is not reached and then the dynamics is described by (D-5). In fact, if the self-

interaction is extremely small, we can approximate 'end ⇠ 'it, where 'end is the value of '

at the end of inflation.



E. Self-Gravity in the Newtonian Limit
of the Klein-Gordon-Poisson System

The fully relativistic regime of the system formed by a BH and a DM halo, ends up at small

radii away from the centre. To give an idea of that, let us think in the Milky-Way, where

2M ⇠ 10�4 pc. Therefore, at few parsecs away from the centre, the Newtonian limit is valid,

that is for r � 2M and the gravitational potential produced by the DM halo being �h ⌧ 1.

The metric describing the space-time at such region is approximately:

ds2 = �

✓
1�

2M

r
+ �h

◆
dt2 +

✓
1 +

2M

r
� �h

◆
dr2 + r2d⌦2, (E-1)

and the gravitational potential of the halo obeys the Poisson equation given by

r
2�h = 4⇡G'2, (E-2)

which in spherical symmetry can be approximated by

1

r2
@r(r

2@r�h) = 4⇡G'2,

⇠
3

r2
�h ⇠ 4⇡G'2. (E-3)

On the other hand, the Klein-Gordon equation for the radial part of the scalar solution

in this metric in the limit r � 2M and �h ⌧ 1 reads

k2
s
R +

1

r2
@r[r

2@rR] + µ2

✓
2M

r
� �h

◆
R = 0. (E-4)

After plugging (E-3) in the last equation we have

k2
s
R +

1

r2
@r[r

2@rR] + µ2


2M

r
� r2

✓
4⇡

3
G⇢s R

2

◆�
R = 0. (E-5)

Assuming that the observer is placed in a region nearby the BH influence radius r0 (defined

as 4⇡⇢sr20R
2 = 2M/r0, r0 ⇠ 100 pc for the Milky Way), if 2M ⌧ r ⌧ µ�1, the last

term in equation (E-5) (which roughly accounts for self-gravity e↵ects of the scalar halo

nearby the centre) can be dropped away. In a region even further from the influence region,

R ⇠ sin(ksr)/r, if r < rs and then R ⇠ ks and equation (E-5) becomes
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k2
s
R +

1

r2
@r[r

2@rR] + µ2


2M

r
� (ksr)

2

✓
4⇡

3
G⇢s

◆�
R = 0. (E-6)

Under the considered conditions, we have demonstrated that if 2M ⌧ r ⌧ rs, the last two

terms in equation (E-6) can be ignored.



F. Gaussian vs polynomial semi-analytic
approximations

Previous literature has made extensive use of two di↵erent analytic approaches for the central

soliton in SFDM halos without self-interaction (the free case). On the one hand, there is a

polynomial density distribution ⇢(p)c given by (Schive et al., 2014a)

⇢(p)
c
(r) =

⇢0✓
1 + 0.091

⇣
r

rc

⌘2◆8 , (F-1)

where ⇢0 is the central density of the soliton

⇢0 = 1.93⇥ 107m�2
22

✓
rc

1kpc

◆�4

M�kpc
�3, (F-2)

and the core radius rc is defined as the radius where the mass density drops by a factor of 2

from its value at the origin

rc '
2.27⇥ 104

(m22)2Mc,7
pc. (F-3)

On the other hand, it has been noted that the soliton profile can be well approximated by a

Gaussian density distribution ⇢(g)c (Chavanis, 2011)

⇢(g)
c
(r) =

Mc

(⇡R2
c
)3/2

e�r
2
/R

2
c , (F-4)

where we take Rc in such a way that the radius that contains 99% of the mass of the Gaussian

ansatz matches with the numerical solution. Then,

Rc '
3.54⇥ 104

(m22)2Mc,7
pc. (F-5)

Observe from (2-50) and (2-51) that both cases, (F-1) and (F-4), follow the same re-scaling

dependence ⇢(p)c , ⇢(g)c / ��4, as expected.

We can compare the above analytic profiles with the numerical solution. For that pur-

pose, it is convenient to rewrite each approximation in terms of dimensionless variables(7-4),

i.e. “hat” quantities, and by considering the solution that has a central SF value equal to 1.

In this manner, we can compare each approximation with the numerical solution with � = 1.



191

Figure F-1.: Polynomial (red solid) vs. Gaussian (red dashed) density distributions. In the top figure, we
plot each case and the numerical solution (black solid), while in the bottom figures we plot
the relative (left) and the absolute (right) errors for each approximation.

We emphasize that the analytic approach given in (F-1) results in a better approximation

for the soliton at small r̂ than the Gaussian, as can be seen from figure F-1. In the top

figure, we plot the dimensionless squared wave solution | ̂(1)
|
2, where subscript 1 refers to

� = 1, together with the Gaussian and the polynomial approximations. The middle figure

shows the relative error �i ⌘ |⇢̂(1)c � ⇢̂(i)c )/⇢̂(i)c |, i = p, g, while the bottom figure shows the

total error �i ⌘ |⇢̂(1)c � ⇢̂(i)c )|, i = p, g for each approximation.



G. Appendix for future works

G.1. E↵ective index of the power spectrum

We show how we got neff for di↵erent mass scales. It is slightly di↵erent from the usual way

to obtain it, which is by di↵erentiating the rms mass fluctuation, �Mun,

neff = �3

✓
1 +

d ln �M 2
un

d lnMun

◆
, (G-1)

where

�M
2
un

⌘
h(Mper �Mun)2i

M2
un

=
1

2

Z 1

0

P (k)W 2(kR)k2dk, (G-2)

where Mper is the mass enclosed by a sphere of radius R, which also defines the unperturbed

mass Mun through

Mun =
4⇡

3
R3⇢0, (G-3)

where ⇢0 is the present matter density, and the average hi is taken over all positions of the

centre of these spheres. This “Top-hat” filtering results in a window function

W (X) =
3

X
(sin(X)�X cos(X)). (G-4)

It is then straightforward to calculate neff as a function of Mun using equation (G-1).

However, we are interested in the neff that is valid when we consider the initial average

overdensity around density peaks, �0(R). Notice that �0(R) is given by

�0(R) ⌘
�M

Mun

=
�0
�2

1

2⇡2

Z 1

0

P (K)W (kR)k2dk, (G-5)

where Mun and W (X) are defined by equation (G-3) and (G-4), respectively. From equation

(G-3) and the above expression, we can see that for a power spectrum P (k) / kn,

�0(R) / R�(n+3)
/ M�(n+3)/3. (G-6)

Therefore, one can obtain neff as follows:

neff = �3

✓
1 +

d ln�0(Mun)

d lnMun

◆
. (G-7)
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Bañados, E., Venemans, B., Morganson, E., Decarli, R., Walter, F., Chambers, K., Rix,

H.-W., Farina, E., Fan, X., Jiang, L., et al. (2014). Discovery of eight z 6 quasars from

pan-starrs1. The Astronomical Journal, 148(1):14.



BIBLIOGRAPHY 195

Bandara, K., Crampton, D., and Simard, L. (2009). A relationship between supermassive

black hole mass and the total gravitational mass of the host galaxy. The Astrophysical

Journal, 704(2):1135.

Bar, N., Blas, D., Blum, K., and Sibiryakov, S. (2018). Galactic rotation curves versus

ultralight dark matter: Implications of the soliton-host halo relation. Physical Review D,

98(8):083027.

Bar, N., Blum, K., Sato, R., and Eby, J. (2019). arxiv: Ultra-light dark matter in disk

galaxies. Technical report.

Bardeen, J. M. (1980). Gauge-invariant cosmological perturbations. Physical Review D,

22(8):1882.

Barranco, J., Bernal, A., Degollado, J. C., Diez-Tejedor, A., Megevand, M., Alcubierre, M.,
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Guzmán, F. and Ávilez, A. A. (2018). Head-on collision of multistate ultralight bec dark

matter configurations. Physical Review D, 97(11):116003.

Guzmán, F. S. and Matos, T. (2000). LETTER TO THE EDITOR: Scalar fields as dark

matter in spiral galaxies. Classical and Quantum Gravity, 17:L9–L16.

Guzmán, F. S. and Matos, T. (2000). Scalar fields as dark matter in spiral galaxies. Classical

and Quantum Gravity, 17(1):L9.
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Hložek, R., Marsh, D. J., and Grin, D. (2018). Using the full power of the cosmic microwave

background to probe axion dark matter. Monthly Notices of the Royal Astronomical

Society, 476(3):3063–3085.

Ho↵man, Y. and Shaham, J. (1985). Local density maxima-progenitors of structure. The

Astrophysical Journal, 297:16–22.

Hu, W., Barkana, R., and Gruzinov, A. (2000). Fuzzy Cold Dark Matter: The Wave Prop-

erties of Ultralight Particles. Physical Review Letters, 85:1158–1161.

Hu, W. and Dodelson, S. (2002). Cosmic microwave background anisotropies. Annual Review

of Astronomy and Astrophysics, 40(1):171–216.

Hui, L., Ostriker, J. P., Tremaine, S., and Witten, E. (2017). Ultralight scalars as cosmolo-

gical dark matter. Physical Review D, 95(4):043541.

Husdal, L. (2016). On e↵ective degrees of freedom in the early universe. Galaxies, 4(4):78.

Ibata, R. A., Lewis, G. F., Conn, A. R., Irwin, M. J., McConnachie, A. W., Chapman, S. C.,

Collins, M. L., Fardal, M., Ferguson, A. M., Ibata, N. G., et al. (2013). A vast, thin plane

of corotating dwarf galaxies orbiting the andromeda galaxy. Nature, 493(7430):62.

Int., L. (2019). Introduction to gravitational lensing. http://www.icc.dur.ac.uk/~tt/

Lectures/Galaxies/GravitationalLensing/GalaxyClusters/index.html.

http://www.icc.dur.ac.uk/~tt/Lectures/Galaxies/GravitationalLensing/GalaxyClusters/index.html
http://www.icc.dur.ac.uk/~tt/Lectures/Galaxies/GravitationalLensing/GalaxyClusters/index.html


BIBLIOGRAPHY 203
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Membrado, M., Pacheco, A., and Sañudo, J. (1989). Hartree solutions for the self-yukawian

boson sphere. Physical Review A, 39(8):4207.

Menou, K., Haiman, Z., and Narayanan, V. K. (2001). The merger history of supermassive

black holes in galaxies. The Astrophysical Journal, 558(2):535.

Mermod, P. (2013). Magnetic monopoles at the lhc and in the cosmos. arXiv preprint

arXiv:1305.3718.

Merritt, D. and Ferrarese, L. (2001). The m•-� relation for supermassive black holes. The

Astrophysical Journal, 547(1):140.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).

Equation of state calculations by fast computing machines. The journal of chemical

physics, 21(6):1087–1092.



BIBLIOGRAPHY 209

Metz, M., Kroupa, P., and Jerjen, H. (2006). The spatial distribution of the milky way

and andromeda satellite galaxies. Monthly Notices of the Royal Astronomical Society,

374(3):1125–1145.

Metz, M., Kroupa, P., and Libeskind, N. I. (2008). The orbital poles of milky way satellite

galaxies: a rotationally supported disk of satellites. The Astrophysical Journal, 680(1):287.

Mielke, E. W. (2016). Rotating boson stars. In At the Frontier of Spacetime, pages 115–131.

Springer.

Mocz, P., Vogelsberger, M., Robles, V. H., Zavala, J., Boylan-Kolchin, M., Fialkov, A.,

and Hernquist, L. (2017a). Galaxy formation with becdm–i. turbulence and relaxation of

idealized haloes. Monthly Notices of the Royal Astronomical Society, 471(4):4559–4570.

Mocz, P., Vogelsberger, M., Robles, V. H., Zavala, J., Boylan-Kolchin, M., Fialkov, A.,

and Hernquist, L. (2017b). Galaxy formation with becdm–i. turbulence and relaxation of

idealized haloes. Monthly Notices of the Royal Astronomical Society, 471(4):4559–4570.

Moore, B. (1994). Evidence against dissipation-less dark matter from observations of galaxy

haloes. Nature, 370(6491):629–631.

Moore, B., Ghigna, S., Governato, F., Lake, G., Quinn, T., Stadel, J., and Tozzi, P.

(1999a). Dark matter substructure within galactic halos. The Astrophysical Journal

Letters, 524(1):L19.

Moore, B., Governato, F., Quinn, T., Stadel, J., and Lake, G. (1998). Resolving the structure

of cold dark matter halos. The Astrophysical Journal Letters, 499(1):L5.

Moore, B., Quinn, T., Governato, F., Stadel, J., and Lake, G. (1999b). Cold collapse and the

core catastrophe. Monthly Notices of the Royal Astronomical Society, 310(4):1147–1152.

Mortlock, D. J., Warren, S. J., Venemans, B. P., Patel, M., Hewett, P. C., McMahon, R. G.,
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Ureña-López, L. A., Matos, T., and Becerril, R. (2002). Inside oscillatons. Classical and

Quantum Gravity, 19(23):6259.

Vázquez, A. (2013). Constraining alternative cosmological models with current and future

observations. PhD thesis, Kavli Institute for Cosmology/ Cabendish Laboratory, Cam-

bridge University.



216 BIBLIOGRAPHY

Vázquez, J. A., Padilla, L. E., and Matos, T. (2018). Inflationary cosmology: From theory

to observations. arXiv preprint arXiv:1810.09934.

Veltmaat, J. and Niemeyer, J. C. (2016). Cosmological particle-in-cell simulations with

ultralight axion dark matter. Physical Review D, 94(12):123523.

Veltmaat, J., Schwabe, B., and Niemeyer, J. C. (2019). Baryon-driven growth of solitonic

cores in fuzzy dark matter halos. arXiv preprint arXiv:1911.09614.

Venemans, B., Findlay, J., Sutherland, W., De Rosa, G., McMahon, R., Simcoe, R.,
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