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RESUMEN

Las Redes Neuronales Artificiales son modelos computacionales con la capacidad de aprox-
imar cualquier función no lineal, lo que permite incorporarlas en el modelado de datos y en
su análisis estadístico. El principal objetivo de esta tesis ha sido mostrar la pertinencia del
uso de las redes neuronales dentro del análisis Bayesiano de datos mediante dos diferentes
maneras: 1) reduciendo el tiempo de la inferencia Bayesiana y 2) creando modelos para los
datos para después analizar datos nuevos (generados por estos modelos de redes neuronales)
mediante inferencia Bayesiana. Hemos utilizado conjuntos de datos cosmológicos para
validar nuestros métodos y, por lo tanto, también hemos demostrado que se puede extraer
información cosmológica interesante a partir de estos enfoques, en particular, los modelos
de redes neuronales pueden evidenciar ciertas problemáticas que actualmente presenta
el modelo estándar de la cosmología ΛCDM utilizando, solamente, conjuntos de datos
pequeños de observaciones cosmológicas con corrimientos al rojo menores que z = 2.

Palabras clave: Inferencia bayesiana, redes neuronales artificiales, cosmología obser-

vacional



ABSTRACT

Artificial Neural Networks are computational models with the ability to approximate any
non-linear function, which allows them to be incorporated into data modelling and sta-
tistical analysis. The main goal of this thesis has been to show the relevance of the use
of neural networks within Bayesian data analysis by two different ways: 1) reducing the
time of Bayesian inference and 2) creating models for the data and then analysing the new
data (generated by these neural network models) through Bayesian inference. We have
used cosmological datasets to validate our methods, and therefore we have also shown that
interesting cosmological information can be extracted from these approaches, in particular,
neural network models can highlight certain drawbacks currently presented by the standard
model of cosmology ΛCDM using only small datasets of cosmological observations with
redshifts less than z = 2.

Keywords: Bayesian inference, Artificial neural networks, observational cosmology
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CHAPTER 1

OUTLINE

Modelling is a cornerstone in science. Scientists need to create models to explain a nature
phenomena and improve the knowledge about it. A deductive way to generate a model is
only based on theoretical principles and physical laws through the formulation of equations.
Another approach to create a model is using the experimental (or measured) data and,
inductively, to infer the relationships between several variables. This last approach based
on learning from the data is the spirit of data analysis and in this thesis we have focused on
two approaches: Bayesian inference and non-parametric modelling.

In Bayesian modelling there are assumed some probabilistic density functions to the
relationships of the parameters of a theoretical model and the data through the Bayes’
theorem and using sampling algorithms the obtained output is a set of samples that can be
described by a probabilistic density function that corresponds to the conditional probability
of the parameters of the model given the data. The samples allow to know the median and
standard deviations of their, beforehand unknown, probability distribution.

In recent years, the increase in hardware power and the maturity of various computa-
tional techniques for storing, analyzing and processing data have allowed the consolidation
of the called Data Science, in which the Machine Learning is the part of our interest in
this thesis because it is the field of the Artificial Intelligence dedicated to the statistical
modelling for the data, in this sense, Machine Learning is the heir of the traditional statistics
in the current computational kingdom.

Artificial Neural Networks, computational models of Machine Learning, have shone by
their own light and their great applicability in various scientific, medical, industrial and

1



social sectors, and therefore, a new field of study has been inaugurated dedicated to them:
Deep Learning. In the present work, we have applied Artificial Neural Networks in two
different tasks: 1) to reduce the computational time of a Bayesian inference process by a
nested sampling algorithm and 2) to perform non-parametric reconstructions of the intrinsic
functions in the data.

All the data used in this work is from cosmological observations and therefore some
of the analysis have cosmological implications. We choose this nature of data because
we know well the theory, the cosmological models have several parameters and Bayesian
inference is widely used in this scientific field. However the type of analysis and methods
shown in this work can be implemented to any other type of datasets.

The task of non-parametric reconstructions of cosmological data falls into the non-
parametric statistical inference because the process made with the Artificial Neural Net-
works, over the cosmological data, does not have any theoretical or statistical assumption
beforehand and allows new values predictions based on the existing data. Once the Artificial
Neural Networks have been properly trained, a computational model for the data have been
produced and it have the faculty of generate new data with which a Bayesian inference
process, based on a theoretical model, can be performed to analyze the insights of these
new datasets and make a comparison with the originals.

The aim of this thesis is to show some strategies to include the modelling with Artificial
Neural Networks into the traditional Bayesian analysis, in particular (but not exclusively)
in the field of observational cosmology. We show that use of Artificial Neural Network
can reduce the time and complement the quality of a cosmological data analysis based on
Bayesian inference.

1.1 Chapter overview

In the first chapters of this thesis, we provide the worth theoretical frameworks: statistical,
Artificial Neural Networks and cosmology. In the Section 2 we show the basis of Bayesian
inference and the Markov Chain Monte Carlo algorithms; also we describe the general idea
of the non-parametric approach. The Section 2.4 have an overview of the basis of Artificial
Neural Networks and, in particular, about the Feed Forward Neural Networks, convolu-
tional neural networks and Autoencoders. The Chapter 3 contains the worth cosmological
background to understand the cosmological datasets used in this work, this chapter also

2



describes the cosmological parameter estimation code SimpleMC and my contributions on
it.

The chapters 4, 5 and 6 have the applications of Artificial Neural Networks in the
analysis of cosmological data. Chapter 4 shows a method to reduce the computational time
of a Bayesian inference process learning the likelihood function on real time [2–4], Chapter
5 have a non-parametric approach to modeling several cosmological data and the Chapter
6 is and extension of the previous chapter and contains the reconstructions of covariance
matrix with a variational autoencoder [5]. Finally, Chapter 7 shows the conclusions and
summary about all this manuscript.
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CHAPTER 2

STATISTICAL BACKGROUND

2.1 Introduction

The strength of the probability theory, therefore also of statistics, is well synthesized in a
phrase of Pierre-Simon Laplace of his Philosophical Essay on Probabilities:

“...the theory of probabilities is basically only common sense reduced to a
calculus...”

Based on the above, what better than to use statistics as the mathematical tool par
excellence to analyze data. In all scientific areas, we often have models and data, therefore
we need to make inferences. The word inference refers at the process to obtain logical
consequences assuming some premises. Statistical inference, also called, inductive statis-
tics, is a way of reasoning from sample data to population parameters, for example, any
prediction, generalization, prediction, decision or estimation based on a sample data [6].
In this sense, data analysis, machine learning and data mining are different names to the
practice of statistical inference according diverse contexts [7]. Indeed, the most popular
task of machine learning and data mining such as clustering, classification or prediction are
different applications of statistical inference [7, 8].

In the computer science vocabulary, statistical inference is known as learning. Its
goal is to obtain some idea about the distribution that obey a given dataset and when
a computational model or algorithm discovers some pattern in the insights of the data,
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then it had learned. There are two types of approaches to analyze the data: parametric or
non-parametric.

To make possible a parametric inference it is necessary to have a probabilistic model
with a finite number of parameters. On the other hand, the non-parametric inference
subtracts information directly to the data with the less possible assumptions or with models
that have an undetermined number of parameters.

In this work we used, Bayesian inference as parametric approach. In particular, we use
Markov Chain Monte Carlo (MCMC) methods. In addition, we implement Artificial Neural
Networks to develop non-parametric inferences.

In this chapter, we show an overview about statistical inference, MCMC methods, a
briefly idea about non-parametric inference and the necessary background about Artificial
Neural Networks. We do not make a deep description of classical non-parametric techniques
because we do not use them in the present work.

2.2 Bayesian inference

Bayesian inference is a paradigm to infer unknown quantities of a theoretical model using
experimental data based on previous knowledge or assumptions, for this reason it is also
referred as a subjective thinking; however it is a very robust mathematical method that
along the years has been tested in several fields. Bayesian inference works with the Bayes’
theorem that involves conditional probabilities.

The classical derivation of the Bayes’ theorem, using the basic rules of sum and product
of probabilities, have the following expression:

P(A j|E) =
P(E|A j)P(A j)

∑
k
i=1 P(Ai)P(E|Ai)

, j = 1,2, ...k (2.1)

where A1,A2, ...,Ak are k independent events and each probability is based on known events
and their frequencies.

The use of the Bayes’ theorem does not necessary falls under the Bayesian paradigm.
The Bayesian perspective does not use frequentist probabilities and use the theorem to
measures the uncertainty of the data, below in this section we talk more about the called
Bayesian methods.

We after mentioned that to perform Bayesian inference it is necessary a dataset. This
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dataset can be from experiments, observations or other source; furthermore, this data should
to have the relevant information about the phenomena under study. Thus we can assume
that a dataset of measurements D under a non-linear model have the following general
form:

D = f (x;θ)+ ε, (2.2)

where x represents the known quantities such as control variables or constants; θ =

(θ1,θ2, ...,θN) is the vector of unknown parameters and ε indicates the measurement
errors. With this nomenclature, we can write the Bayes’ theorem, assuming some believes

about the probabilities, and convert all the terms involved into probability density functions
(PDFs):

P(θ |D) =
P(D|θ)P(θ)

P(D)
, (2.3)

where P(θ) is the prior distributions over the parameters θ and can represent previous
knowledge about the parameters before the data are observed, if we do not know anything
about the involved parameters, the prior PDF can be an uninformative prior P(θ) = 1; if
we know the bounds of the parameters we can define the prior as an uniform distribution;
another common practice is to choose a conjugate prior, that means the posterior PDF
and prior PDF are of the same family of distributions, for example, exponential and
normal distributions. On the other hand, P(D|θ) is the likelihood function and indicates the
conditional probability of the data given the model. P(D) is a normalisation constant, that
is, the likelihood marginalisation and is called Bayesian evidence.

P(D) =
∫
RN

P(D|θ)P(θ)dθ , (2.4)

where N is the number of dimensions of the parameter space for θ . When there are more
than a few dimensions, this integral is very hard to estimate, often impossible analytically,
and turns very difficult the calculation of the posterior PDF through the Bayes’ theorem.
The sampling methods of Markov Chain Monte Carlo (see Section 2.2.4) avoid this problem
using rates of posteriors in order to cancel this normalisation constant. On the other hand,
algorithms such as nested sampling (Section 2.2.5) allow to calculate this quantity during
the sampling.

It can be assumed that the measurement error ε is independent of θ and has a PDF Pε .
In this case, the predicted value and the measurement error share the same distribution,
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therefore the likelihood function can be expressed as:

P(D|θ) = Pε(D− f (x;θ)), (2.5)

and if the error ε ∼ N(0,C) has a normal distribution centered in zero and a covariance
matrix C, then:

P(D|θ) = 1
(2π)n/2|C|1/2 e−0.5(D− f (x;θ)TC−1(D− f (x;θ)) , (2.6)

Bayesian inference can perform two important tasks in data analysis: parameter estima-
tion and model comparison.

2.2.1 Parameter estimation

One of the goals of Bayesian inference is to know the values and uncertainties of the most
probable θ parameters of a mathematical model. This task is called parameter estimation.

The problem to find the value of θ most probable under the likelihood PDF is known as
Maximum Likelihood Estimation (MLE): θMLE = maxθ P(D|θ). In the Bayesian context,
if the prior PDF is uninformative, the find of this value is analog to find the most probable
value of the parameter vector in the posterior PDF (Maximum A Posteriori, MAP). However,
for informative priors, we need to find the maximum value of the parameter vector to the
posterior , MAP) considering both the likelihood and the prior PDFs:

θMAP = maxθ (P(D|θ)P(θ)); (2.7)

In order to find MAP or MLE, there are several techniques such as optimization (eg.
simplex, gradient descent, Newton), meta-heuristics (eg. genetic algorithms, particle swarm
optimization), approximation (eg. Laplace and variational), quadrature, Monte Carlo and
Markov Chain Monte Carlo (see [9] for more details). We will focus on MCMC methods
(Section 2.2.4), but before it is worth a very briefly introduction abut what is a Monte Carlo
method included in Section 2.2.3.
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Example: Fitting a straight line

Suppose we have a dataset and a linear model is proposed to describe it y = ax + b.
The parameters of the model are the abscissa a and the ordinate to the origin b. By
performing Bayesian inference for this model and with the data (black dots in the left
panel of Figure 2.1) we find the most probable straight line to describe the data (red line).
In addition, Bayesian inference provides us their uncertainties with the posterior PDFs
of these parameters, for example, in the right panel of Figure 2.1 the 1D plots show the
posterior probability density function of each parameter separately, while the 2D plot is the
joint PDF, where the darker region of the ellipse indicates the region corresponding to the
1σ deviation and the less dark region to 2σ .

Figure 2.1: Example parameter estimation of a straight line

2.2.2 Model Comparison

In each dataset under analysis, different mathematical models may be proposed to describe
them, however, we know that if there is a correct description of the data, only one model
could be true. Therefore, the comparison of models is very important.

There are some measures called information criteria [10, 11] among which are the
Akaike Information Criteria (AIC) and Bayesian Information Criteria (BIC), for example.
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However, these measures are very sensitive to the size of the data set and the number
of parameters of the model under analysis, so they do not provide completely reliable
information in many circumstances. On the other hand, Bayesian evidence Z has been
shown to be a much more robust and rigorous mathematical tool [1, 12] , which by means
of the Bayes Factor allows the comparison of models. The Bayes factor B0,1 of the Model
0 with respect to Model 1 is the ratio of their respective Bayesian evidences:

B0,1 =
Z0

Z1
(2.8)

or in logarithm:
lnB0,1 = lnZ0− lnZ1 (2.9)

For a more detailed discussion on the advantage of comparing models with the Bayes
factor over information criteria, see reference [13].

In order to comparing two models through Bayesian factors, it can be used the scale
proposed by Harold Jeffrey shown in Table 2.1 [14]. In the Table 2.1 the strength of the
Bayesian evidence Z is in favours of the Model 0 over the Model 1.

lnB0,1 Strength of Z

< 1 Inconclusive
1−2.5 Significant
2.5−5 Strong
> 5 Decisive

Table 2.1: Jeffreys’ scale for comparison between two models.

.

Example: Toy models comparison

We generate a synthetic data set with the function y = −3.5x2 +3.6x−0.1 plus random
noise. Therefore, we can assume that this is our experimental data set and propose the
following models to describe the data:

• Model 1: y = ax2 +(−a+b)x+ c.
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• Model 2: y = asin(bx)+ c

Figure 2.2: Example: Model comparison

Figure 2.2 shows that these two models, at first glance, are very similar to the data. However,
let us perform the calculation of the Bayes factor for these models:

B1,2 =log(
Z1

Z2
)

= log(Z1)− log(Z2)

=−62.002− (−255.064)

= 193.062

The Bayes factor B1,2 = 193.062 indicates, according to Jeffrey’s scale, that there is a
decisive advantage for model 1, which was to be expected due to the way in which the
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dataset was generated and, therefore, the power of model comparison by Bayesian evidence
can be appreciated in this example.

2.2.3 Monte Carlo methods

To understand the spirit of Monte Carlo methods, it is worth to remember some probability
laws. For more details, we recommend the didactic paper of the reference [15] or its code
repository 1.

Theorem 2.2.1 The Weak Law of Large Numbers
If X1,X2, ...Xn are independent and identically distributed (iid) with mean µ . Then, for

each ε > 0:

P
{∣∣∣X1 + ...+Xn

n
−µ

∣∣∣> ε

}
→ 0, when n→ ∞. (2.10)

Its generalization is the following:

Theorem 2.2.2 The strong law of large numbers. Under the same conditions of the pre-

vious theorem, the following expression have probability equal to 1:

lim
n→∞

X1 + ...+Xn

n
= µ. (2.11)

The Central Limit Theorem, is another very important probability to the Monte Carlo
methods:

Theorem 2.2.3 Central Limit Theorem Let X1,X2, ... be iid with mean µ and variance σ2

it is true that:

lim
n→∞

P
{X1 + ...+Xn−nµ

σ
√

n
< x
}
= φ(x), (2.12)

where φ(x) = 1√
2π

∫ x
−∞

e
−x2

2 dx is a gaussian distribution for −∞ < x < ∞ .

The integration with Monte Carlo method has its basis on above theorems, they guaran-
tee the operation of Monte Carlo methods. To solve an intractable integral, a Monte Carlo
method consists in generate iid samples under certain probability distribution Xi ∼ P(·)
considering the integral as the expected value of the function. The problem of Monte Carlo

1� www.github.com/igomezv/IntroMCMC
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methods is how to generate this independents samples, one solution to attack this issue is
through the Markov Chains.

Figure 2.3 shows an example of Monte Carlo sampling that allows to calculate the
integral of a function (blue line). Through random sampling and determining which sample
is above or below the function it is possible to estimate the value of the integral.

Figure 2.3: Monte Carlo sampling

2.2.4 Markov Chain Monte Carlo

A stochastic process is a collection of random variables Xt : t ∈ T , where Xt takes values
from a state space indexed by the set T , called time, which can be discrete or continuous. A
stochastic process Xn : n ∈ T is a Markov Chain if:

P(Xn = x|X0, ...,Xn−1) = P(Xn = x|Xn−1) (2.13)
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therefore the probability of Xn only depends of Xn−1. This condition is called Markov
property. On the other hand, the transition probabilities are defined as:

pi j ≡ P(Xn+1 = j|Xn = i), (2.14)

and the transition matrix P has entries (i, j) as pi j.

Definition 2.2.1 A Markov chain is irreducible if for each pair of states i and j there are a

probability for the process to move from state i to state j.

Theorem 2.2.4 An irreducible ergodic Markov chain has a unique stationary distribution

π . The limiting distribution exists and is equal to π . If g is a bounded function, then with

probability 1:

limN→∞

1
N

Σ
N
n=1g(Xn)→ Eπ(g)≡ Σ jg( j)π j (2.15)

π satisfies the detailed balance if:

πi pi j = p jiπ j. (2.16)

Therefore, we have the following:

Theorem 2.2.5 If π satisfies detailed balance, then π is a stationary distribution.

Therefore, we need algorithms that generates a Monte Carlo sampling through Markov
chains. The most popular algorithm of this type is Metropolis-Hastings:

The function q(·|Xt) is a distribution that can already be simulated (due to its symmetry,
the normal distribution is usually chosen to facilitate the simulation process), π(·) is the
objective function and α(Xt ,Y ) is defined as:

α(X ,Y ) = min
(

1,
π(Y )q(X |Y )
π(X)q(Y |X)

)
. (2.17)

In the original Metropolis-Hastings algorithm of 1953, it only uses symmetrical distri-
butions where q(Y |X) = q(X |Y ), in this case the acceptance rate is:

α(X ,Y ) = min
(

1,
π(Y )
π(X)

)
.
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Figure 2.4: Random walk Metropolis-Hastings

Algorithm 1: Metropolis-Hastings

Initialise X0, nsamples, t = 0;
while t<nsamples do

Generate a candidate Y ∼ q(·|Xt);
Generate U ∼U(0,1);
if U ≤ α(Xt ,Y ) then

Xt+1 = Y

else
Xt+1 = Xt

end
t = t +1

end

On the other hand, the also popular random-walk Metropolis-Hastings algorithm uses
q(Y |X) = q(|X −Y |) as in the Figure 2.4. The correct choice of α(X ,Y ) allows that π(·)
satisfies the deailed balance condition (Eq. 2.16 and that π(·) have the same stationary
distribution of the Markov Chain.

In strictly words and as it can be seen in the above elements of the MCMC methods,
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there are not a convergence criterion. Therefore, there are two ways to stop the learning
process, one is defining a limit number of samples generated. The second way is more
formal and consists in verify if the Markov Chain have achieved a stationary state. One
method to monitor this is the Gelman-Rubin test that consist in the following steps:

Algorithm 2: Gelman-Rubin diagnostic

Initialise N;
Initialise M ≥ 2 number of Markov chains;
Generate M Markov chains, each with N steps;
R = 0.0;
while R<0.97 or R>1.03 do

Generate N new samples for each Markov chain;
Burn the the first N iterations in each chain ;
# s2 variance of each chain:;
W = 1

M ΣM
j=1s2

j ;

# Calculate the variance between chains;
B = N

M−1ΣM
j=1(θ̄ j− ¯̄

θ)2;

# ¯̄
θ is the mean of the M chains;

var(θ) = (1− 1
N )W + 1

N B ;

R =

√
var(θ)

W ;

2.2.5 Nested Sampling

Nested sampling is a category of Bayesian inference algorithms to estimate the Bayesian
evidence, with its uncertainty, and as by-product sampling the posterior probability density
function.

The basic idea of nested sampling is to simplify the integral of Bayesian evidence by
mapping the parameter space in an unit hypercube. The fraction of the prior contained
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within an iso-likelihood contour Lc in the unit hypercube is called called prior volume:

X(L ) =
∫
L (θ)>Lc

π(θ)dθ . (2.18)

The Bayesian evidence can be reduced as an one-dimensional integral of the Likelihood as
function of the prior volume X :

Z =
∫ 1

0
L (X)dX . (2.19)

Figure 2.5: Five steps of nested sampling with three live points. Source image: [1]

Nested sampling starts with a specific number nlive of random points, called live points,
within the prior volume given by the constrained prior. This samples are ordered according
their likelihoods values. In each new iteration, the worst point (with the lowest likelihood
Lworst) is removed (see Figure 2.5). A new sample is generated within a contour delimited
by Lworst and with a likelihood L (θ) > Lworst . It is expected that the prior volume at
each iteration be compressed by a factor t, that in the crude implementation is:

t = e−1/nlive, (2.20)
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and the Eq. (2.19) can be simplified as a Riemann sum:

Z ≈
N

∑
i=1

Liωi, (2.21)

where ωi is the difference between the prior volume of two consecutive points: ωi =

Xi−1−Xi.
At every moment, nested sampling maintains the population of nlive live points and the

final set of live points are agglomerated in a zone of high probability.
According the way that the sampling from the constrained prior is performed, there

are different nested sampling algorithms. For example, MultiNest [16] uses rejection
sampling within ellipsoids, while in Polychord [17] the points are generated with slice
sampling.

Algorithm 3: Nested Sampling (crude implementation) from [18]

Generate N from samples prior PDF;
Initialise Z = 0,X0 = 1, it = 0,maxit;
while it < maxit do

Record the lowest of the current likelihood values as Li;
Xi = exp(−1/N);
wi = Xi−1−Xi;
Z = Z +Li ∗wi;
replace point of lowest likelihood by new one sample from within L(θ)> Li;
it += 1;

Z = Z +N−1(L(θ1)+ ...+L(θN))Xmaxit ;

The Figure 2.6 shows a nested sampling in different stages. Unlike the random walk of
Metropolis Hastings, each new sample is within the previous worst likelihood contour.

Figure 2.7 shows the main difference between a MCMC algorithm like Metropolis-
Hastings and a nested sampling algorithm.

For more details about nested sampling we recommend the references [1, 17, 19].
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Figure 2.6: Three different stages of a nested sampling

Figure 2.7: MCMC sampling vs nested sampling

2.3 Non-parametric inference

There are situations in which there are not a functional way to describe the data or the
information about the data is very poor. In these cases, non-parametric inference to analyze
the data with the fewest possible assumptions. In this work we do not use these methods,
rather we use Artificial Neural Networks to make non-parametric inferences, however, we
believe that a brief description about it could be useful. For more details on these types of
methods, see Reference [7, 20].

A non-parametric model is a set of statistical models that cannot be parametrized by
a finite number of parameters and allows "free form" solutions. To estimate in a non-
parametric way a probability density function it is necessary to sort some smoothness
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assumptions on the data. A popular method is the histogram as a density estimator, which
divides the real line in small parts called bins; this type of estimator is a piecewise constant
function and the number of observation in each bin is proportional to the height of the this
function.

Other nonparametric methods are known as kernel density estimators. In these cases,
a kernel function is centered on each data point and if this function is smooth, then the
result will be a smooth density estimate, unlike the histogram method where there is a
great dependence on the number of bins and their width. Under these type of methods are
Gaussian processes and predictive models.

To test a nonparametric model, it is necessary to measure how far its predictions are
from the expected values. Let X1, ....,Xn be n iid data points from some distribution. We
define a point estimator θ̂n of a parameter θ as a function θ̂n = g(X1, ...,Xn). A common
metric is Mean Squared Error (MSE) defined as follows:

MSE =
1
n

n

∑
i
(θi− θ̂i)

2, (2.22)

where θi is a vector with predictions, θ̂i is a vector with the expected values and n is the
number of predictions (or the length of θi and θ̂i).

Theorem 2.3.1 The MSE can be written as follows:

MSE = bias2(θ̂)+ variance(θ̂), (2.23)

where bias = E(θ̂)−θ .

The bias measures how far the neural network predictions are from the actual value,
while variance refers to how much the prediction varies at nearby points. As the complexity
of the model increases, the bias can decrease and the variance can increase, this is called
the bias-variance dilemma [21]. A model with high variance will be overfitted, while a
model with high bias will be insufficient to learn the complexity of the data (underfitting).
In both cases, the model generated by the non-parametric have inaccurate predictions.
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Figure 2.8: Bias and variance related with model complexity

2.4 Artificial neural networks

Artificial neural networks are computational models that was inspired on the biological
neurons (see Fig. 2.9). They had been idealized in the 1940s, but due to the limitations
of computing power, their development was successful until 1980s. In recent years, with
parallel computing and other advances in Computer Science, the ANNs have had a new
resurgence. They are part of the tools used in machine learning. In fact, the perceptron (the
simplest type of ANN) was the first learning machine.

Figure 2.9: Analogy between a biological neural networks and an ANN (perceptron)
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As is common in supervised machine learning, at the beginning of the ANN training,
the original dataset is separated in two parts: training and validation sets. An usual choice
is 80% and 20% respectively. The first set is used to train the ANN, while the validation
set contains unseen values, therefore it is useful for testing the performance of the ANN
and evaluating its ability to produce a good model to the input dataset. Figure 2.10 shows a
diagram of this process.

Figure 2.10: Flow of supervised machine learning

On the other hand, the Universal Approximation Theorem [22] states that an ANN with
at least one hidden layer with a finite number of neurons can approach any continuous
function if the activation function is continuous and nonlinear. Figure 2.11 shows some
examples of these types of activation functions.

In general, an ANN is a directed graph with the following properties:

• Every node i has a stage variable xi

• Every connection (i, j) of i, j nodes has an weight wi j ∈ R.

• Each node is associated with an threshold θi.

• For each node i a function fi(x j,wi j,θi) is defined that depends on the weights of its
connections, the threshold and the states of the nodes j to it connected. This function
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Figure 2.11: Examples of activation functions

provides the new state of the node.

According to the above, the nodes are the neurons and the weights the synapses.
Therefore, a neuron without incoming synapses is an input neuron and a neuron without
outgoing synapses is an output neuron. Intermediate neurons are called hidden neurons and
form hidden layers.

If the network does not present closed loops of connections, it is unidirectional or
feedforward. In counterpart, if there exists feedback, then it is a recurrent network.

In general, the learning mechanism of an ANN is as follows:

• The first layer of neurons reads the features of the dataset. In each connection between
a neuron and another is assigned a random number (we use random numbers with a
normal distribution centred on 0 with a standard deviation of 0.01). The input data
make up a matrix X1 and provides the values for the first layer of nodes. Xi refers to
the values of the nodes in the i-th layer. The weights make up another matrix Wi and
they are the values for the connections between the i-th and the (i+1)-th layers. The
product Z of these two matrices is the following:

Zi+1 =W T
i Xi, (2.24)

where Wi ∈ Rm×n, with m,n as the number of nodes in the i-th and (i+1)-th layers
respectively. Xi corresponds to the i-th layer, therefore has m dimensions. It is worth
to apply the transpose of Wi in order to allow the matrix product.
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• A nonlinear activation (or transfer) function φ modulates Zi and assigns values to the
next layer of neurons. This process, known as forward propagation, is repeated until
the last layer is reached. The values of neurons in subsequent layers are given by:

Xi+1 = φ(Zi+1). (2.25)

• The value of the neurons in the last layer must be evaluated by an error function (or
loss function) which measures the difference between the value given by the ANN
and the expected one. The loss function is minimised by an optimisation algorithm,
typically such as gradient descent combined with the backpropagation algorithm
[23, 24] to calculate gradients. In this paper we use the Mean Squared Error (MSE)
as a loss function because it is the usual selection in regression problems. The goal
of the training in an ANN is to minimise the loss function.

• During backward propagation the weights are updated, then forward propagation is
performed again. This is repeated until the loss function reaches the desired precision
and then the neural network is trained and ready to make predictions.

2.4.1 Hyperparameters

The internal parameters of a neural network model are known as hyperparameters. Some
of them, such as the number of nodes and layers, have already been defined above. Also
considered hyperparameters are the algorithm used to minimize the loss function, as well
as the loss function, since there is a considerable range of options for each case. In the
following list, we will describe others that we used in this work.

• The number of samples propagated through the network before updating the weights
is known as batch size.

• Each iteration of the entire data set constitutes an epoch.

• The dropout (DO), is a regularisation technique [25] that allows smaller values to be
achieved in the loss function and prevents overfitting. It consists of randomly turning
off neurons during training, so the neurons that operate at each epoch are different.
The associated hyperparameter is a scalar value that indicates the probability of
turning off a neuron in each epoch.
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As previously mentioned, ANNs have the ability to approximate any function, in other
words, they can generate computational models that generalise the input data. It is worth
to select carefully a good combination of them to guarantee that the ANN model has the
capability of generalisation, an incorrect choice of them can produce undesirable models,
either underfitted or overfitted with respect to the data. A neural network well trained should
satisfy the bias-variance dilemma of the Equation 2.23.

There are several approaches to tune the hyperparameters [26–29]. In this work, for
simplicity, we use a common empirical strategy based on a grid of hyperparameters [29].
Figure 2.12 shows an example grid in which four hyperparameters are varied to find the
best combination of them (those that minimize the loss function).

The hyperparameter grid consists of a selection of possible values for all the ANN
parameters to be adjusted. The ANN is trained for all combinations of them, included on
the grid, to find the one that obtains the lowest value for the loss function in the validation
set. In addition, it is necessary to verify that the loss function of both the validation set and
the training set have convergent behaviour to ensure that the ANN model is well trained
(neither overfitting nor underfitting).

Whenever overfitting occurs it is mainly because the behaviour of the loss function
in the test and training sets shows that the model has a high error in its predictions and,
therefore, also has a high bias. In the other case, overfitting occurs when the loss function
evaluated at the validation shows an increasing trend, or because there is a considerable
gap with the loss function of the training set. We use the difference between the predictions
of the last two epochs (∆MSEval) to get an idea about the variance of the ANN model, the
smaller this error, the smaller the variance.

2.4.2 Feedforward neural networks

The Feed-forward Neural Network (FFNN)s, also called multilayer perceptrons or deep
feedforward networks, are the quintessential deep learning models [30]. In this type of
ANN the connections between layers and the information flow are straight forward. They
are composed of one input layer, at least one hidden layer and an output layer. The input is
conformed by the independent variables (or features) of the dataset, while the output is the
dependent variables (or labels).
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Figure 2.12: Hyperparameter grid

Figure 2.13: Feedforward Neural Network (FFNN)

2.4.3 Autoencoder

The other type of ANN used in this work is the Autoencoder (AE) [31], that is trained to
generate a copy of its input on its output. These type of neural networks can be thought as
two symmetrical coupled ANNs, where the first (encoder) makes a dimensional reduction
for the input and obtains a coded representation (vector embedding) of the original data. The
second part (decoder) takes the coded representation of the data and recovers an instance
with the same dimension of the original input. The encoder is a function f that maps the
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input x with dimension l to an encoded vector h with dimension m, with m < l:

f : x ∈ Rl → h ∈ Rm, (2.26)

where hi := fi(x) = φ(W T
i Xi), i = 1,2, ...,m with φ as activation function. The decoder is

the following g function, that maps the encoded representation with dimension m into an
output x̂ with the same dimension l as the original input x:

g : h ∈ Rm→ x̂ ∈ Rl. (2.27)

If the activation function, used in the autoencoder, is the identity function, i.e. φ(x) = x,
therefore this type of neural network is analogous to the Principal Component Analysis
(PCA) technique. The figure 2.14 is an example of an autoencoder.

Figure 2.14: Classical autoencoder has an encoder, a decoder and a discrete compressed
representation.

2.4.4 Variational Autoencoder

Here we briefly describe the idea of a variational autoencoder (VAE) [32, 33], however
for an extended review see [34, 35]. In addition, we explain a first approach method used
to generate synthetic covariance matrices from the original covariance matrix of the JLA
SNeIa binned version.

Variational autoencoders use variational inference to sample the compressed repre-
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sentation (or latent space) and, therefore, allow to know the probability density function
associated, precisely, to the compressed representation. Unlike classical autoencoders, such
as those described earlier in this work, two layers of the same dimension as the latent space
are designed before the compressed representation, whose function is to generate values to
sample the mean µ and variance σ which are the parameters of the statistical distribution
that produces an input data (matrix or image) of the VAE to generate a point z of the latent
space.

As a way to construct a latent space distribution similar to the proposed Gaussian
distribution, the Kullback-Leiber divergence (KL) is used. Thus, the selection of the
relevant loss function to train the VAE is as follows:

lossVAE = MSE+KL(q(z|x)||p(z)) (2.28)

where q(z|x) is the probability density function to generate a z point of the latent space
given an input x. On the other hand, we can assume that p(z) = N(0, I) with p a probability
density function of the z points in latent space and N a normal distribution centered at
0 with covariance matrix equal to the identity matrix. Because VAEs are widely used in
image processing, it is more common to choose binary cross entropy [36] instead of MSE,
however our interest is in the numerical information and not in a classification problem that
takes place in image generation.

A diagram of a variational autoencoder is shown in the Figure 2.15, where the VAE has
a continuous latent space that is sampled with the mean and variance layers; the notation is
the same as in Equation 2.28 with z the latent space variable, x is the input variable and the
encoder and decoder are associated with conditional probability density functions.

2.4.5 Monte Carlo Dropout

Due to its random nature, the dropout (schematized in Figure 2.16) can be used as a Monte
Carlo simulation. When an ANN is trained, the dropout can be implemented in such a
way that each prediction is different because the active neurons are different at each epoch.
Therefore, it is possible to make several predictions, and thus obtain the average and
standard deviations. Using this formalism, dubbed Monte Carlo dropout (MC-DO) [37] we
can obtain a statistical uncertainty of a trained ANN model. We apply the dropout method
to the FFNNs implemented in this work and compare the results with those solely with
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Figure 2.15: Variational Autoencoder

FFNNs.

Figure 2.16: The dropout regularization technique turns off random neurons at each epoch.
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CHAPTER 3

COSMOLOGICAL FRAMEWORK

3.1 Introduction

Cosmology is the study of the Universe on very large scales as a whole. At this scale a
complex galaxy is a simple dot, and it is valid the Cosmological Principle that is the notion
that the spatial distribution of matter, at large scales, in the Universe is homogeneous and
isotropic. Homogeneity refers to the fact that all the places in the universe are equivalent,
that is, that any observer will measure the same physical properties. On the other hand, the
isotropy makes reference to that, in addition, each observer will measure the same in all
the directions that observe. Along this manuscript the cosmological models, functions and
datasets use the units h̄ = c = 8πG = 1.

3.1.1 General Relativity

The General Theory of Relativity (GTR) is the gravitational theory that governs the evolu-
tion of the Universe and a fundamental element of this theory is the metric tensor gµν . This
tensor has symmetry:

gµνgνσ = gλσ gλ µ = δ
µ

σ , (3.1)

where δ
µ

σ is the delta of Kronecker and the symmetry of the metric tensor implies that its
inverse gµν is also symmetric.

The metric tensor gµν(xα) describes the spacetime geometry and determines the invari-
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ant proper distance ds between two events. We can note:

ds2 = gµν(x)dxµdxν (3.2)

(3.3)

gµν(x)dxµdxν = g′
αβ

(x′)dx′αdx′β

= g′
αβ

(x′)(
∂x′α

∂xµ
dxµ)(

∂x′β

∂xν
dxν)

=
∂x′α

αxµ

∂x′β

∂xν
g′

αβ
(x′)dxµdxν , (3.4)

where we have a general coordinate transformation xα → x′α .
The spacetime is a 4-dimensional pseudo-Riemannian manifold (M,gµν) with a differ-

entiable manifold M and a metric gµν . In a curved manifold, the trajectory of a particle is
given by geodesics:

d2xµ

ds2 +Γ
µ

νρ

dxν

ds
dxρ

ds
, (3.5)

where Γα

βγ
are the Christoffel symbols defined as following:

Γ
ρ

µν =
gρσ

2
(
∂gνσ

∂xµ
+

∂gσ µ

∂xν
−

∂gµν

∂xσ
), (3.6)

where xµ are local coordinates. Geodesics followed by massive particles are assumed to
be time-like, whereas massless particles (e. g. photons) move along null-like geodesics. A
particle that moves along space-like geodesics does not have physical sense because thy
propagate at superluminal speeds.

The Riemann tensor have information about the curvature of the spacetime, given by:

Rρ

σ µν = ∂µΓ
ρ

νσ −∂νΓ
ρ

µσ +Γ
ρ

µλ
Γ

λ
νσ −Γ

ρ

νλ
Γ

λ
µσ . (3.7)

We can contract the first and third indices of the Riemann tensor and we can find the
Ricci tensor: Rσν = gρµRρσ µν . Then, contracting again the indices, we obtain the Ricci
scalar: R = gµνRµν .

Einstein’s field equation (the equation of GTR) indicates how the metric responds to
the matter in it through its energy and its momentum, hence it contains the dynamics of the
gravitational field:

Rµν −
1
2

Rgµν = 8πGTµν (3.8)
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where Tµν is the energy-momentum tensor of the matter fields. We are assuming units such
that the speed of light is c = 1. The dynamical evolution of the metric gµν according to the
dynamical changes of the matter fields represented by Tµν is described by (3.8).

The Eq. (3.8) can be seen as a relationship between the geometry of the spacetime
(left side of equation) and its energy or physics (right side). This equation tells us how the
curvature of spacetime reacts to the presence of energy-momentum.

One can use the variational approach of the field equations, Eq. (3.8). Then, using the
Einstein-Hilbert action:

S =
∫

d4x
√
−g
[ 1

16πG
R+Sm

]
. (3.9)

It is the most general action containing up to two derivatives of the metric, guaranteeing
that the field equation contains up to second orders of the metric. If we vary the action (3.9)
with respect to the metric, we get (3.8).

3.1.2 Cosmology

Mathematically, to guaranty the Cosmological Principle, we need a geometry that allow it,
and an isotropic and homogeneous manifold is given by the Friedman-Lemaître-Robertson-
Walker (FLRW) metric:

ds2 =−dt2 +a2(t)
( dr2

1− kr2 + r2(dθ
2 + sin2

θdφ
2)
)

(3.10)

where a(t) is the scale factor, k is the curvature parameter (k = 1 for closed universes, k = 0
for flat and k =−1 for open universes). For the following equations, we adopt units such
that 8πG = 1. It is worth mentioning that the scale factor a(t) indicates the growth of the
relative distance between the comoving points in the spacetime. Hence, the dynamical
evolution of the Universe as a whole is dictated by a(t). The functional form of a(t) can be
found by solving the Eqs. (3.8) with the input (3.10).

To completely determine how the Universe evolves we must choose a metric, in this
case the metric of the Eq. 3.10 and solve Eq. 3.8. To do that let us assume that the Universe
is dominated by a perfect fluid in its own rest-frame with a 4-velocity given by:

uµ = (1,0,0,0), (3.11)
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and the following energy-momentum tensor:

Tµν = (p+ρ)uµuν + pgµν =


ρ 0 0 0
0
0 gi j p

0

 , (3.12)

where p is the pressure and ρ the energy density of the fluid.
The Equation of State (EoS) of perfect fluids is given by the ratio of their pressure and

energy density:
ω =

p
ρ

(3.13)

and the conservation of energy equation becomes:

ρ̇

ρ
=−3(1+ω)

ȧ
a

(3.14)

Different kind of fluids or matter species (see Section 3.1.3) are present in the Universe,
each of them with its own EoS. The energy-momentum tensor incorporates all of the
components in the Universe so it simply amounts to the sum of multiple terms like (3.12),
each with its specific value of p and ρ . For future purposes, it is worth recalling that
ordinary perfect fluids fulfill the Strong Energy Condition:

ρ +3p≥ 0. (3.15)

Employing the FLRW metric (3.10), Christoffel symbols, Ricci Tensor and Ricci Scalar
can be computed and inserted in the Field Equation, (3.8). By solving the time-time
component G00 and the space-space components Gi j we obtain the Friedmann Equations
(FE), that, following the evolution of a(t), describe the dynamic of the Universe as whole.
These equations read:

H2 ≡ (
ȧ
a
) =

1
3

ρ− κ

a2 , (3.16)

Ḣ +H2 =
ä
a

= −1
6
(ρ +3p), (3.17)

where ẋ, ẍ represent derivative and double derivative respect to the time t and H is the
Hubble parameter. These equations are known as Friedmann equations and they can be
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combined into the continuity equation as following:

dρ

dt
= −3H(ρ + p) (3.18)

or
d(lnρ)

d(lna)
= −3H(1+ω). (3.19)

Integrating Eq. (3.19) and using Eq. (3.16) leads to the solution for the scale factor:

a(t) ∝


t

2
3(1+ω) i f ω 6=−1

eHt i f ω =−1

(3.20)

This shows that the qualitative behavior of the cosmological evolution depends crucially on
the equation of state ω .

To complement the basic terminology of cosmological parameters, it is worth mention-
ing the rate of expansion of the Universe characterized by the Hubble parameter:

H =
ȧ
a
. (3.21)

It is also important to define the deceleration parameter:

q =−aä
ȧ2 , (3.22)

which measures the rate of change of the rate of expansion.
Another useful quantity, and very important in the test of cosmological models, is the

density parameter:

Ω =
8πG
3H2 ρ =

ρ

ρc
, (3.23)

where ρc is the critical density defined by:

ρc =
3H2

8πG
. (3.24)

The critical density changes with time and is called critical because the Friedman equation
(Eq. 3.16) can be written:

Ω−1 =
κ

H2a2 , (3.25)
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and we have the following:

if


ρ < ρc =⇒ Ω < 1 =⇒ κ < 0 =⇒ open universe

ρ = ρc =⇒ Ω = 1 =⇒ κ = 0 =⇒ flat universe
ρ > ρc =⇒ Ω > 1 =⇒ κ > 0 =⇒ closed universe

Therefore, the density parameter tells us which of the three FLRW geometries describes
our Universe. Observational data are of crucial importance to know its value; currently, the
CMB data allows us to believe that Ω' 1, so a flat universe is the most feasible option.

For a homogeneous universe filled with matter or radiation, GRT predicts that the
cosmic expansion will slow down over time [38]. In the 1990s, however, two independent
studies of supernovae shown that the expansion of the universe has accelerated over the last
billions of years [39, 40].

One of the major challenges of the cosmology is, precisely, explain the acceleration of
the Universe and the best candidate is a mysterious component called Dark Energy (DE).

3.1.3 The components of the Universe

The matter species of the Universe are broadly classified into relativistic particles, non-
relativistic matter and dark energy. The relatvistic particles correspond to photons (bossons)
and some neutrinos (fermions) and their EoS without degeneracies is given by ω = 1

3 .
Particularly, the photons have an energy density and density parameter are the following
(based on the CMB results):

ργ0 = 4.641×10−34gcm−3, (3.26)

Ωγ0 =
8πGργ0

3H2
0

= 2.469×10−5h−2. (3.27)

On the other hand, the energy density of the neutrinos and anti-neutrinos (together) is given
by:

ρν = Ne f f =
7π2

120
T 4

ν , (3.28)

where Ne f f is the effective number of neutrino species and Tµ is its temperature. Then, the
density parameter of radiation, that considers the sum of photons and relativistic neutrinos,
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is:
Ωr0 =

ργ0 +ρν0

ρc0
= Ωγ0(1+0.2271Ne f f ). (3.29)

Using the accepted values h = 0.72 and Ne f f = 3.04, we obtain Ωr0 = 8.051×10−5.
In the case for non-relativistic particles, there are baryons that their density parameter

has been estimated from observations of BAO, WMAP and SNe-Ia:

Ωb0h2 = 0.02267+0.00058
−0.00059. (3.30)

The baryonic matter alone, however, is not sufficient to allow a consistent structure for-
mation with the observations of large scale structure, hence is necessary to considerate
the existence of dark matter as another non-relativistic component in the Universe. In fact,
the CMB anisotropy data show that the present abundance of dark matter is about 5 times
larger than the baryons. The data of WMAP [41] constrain the density parameter of CDM
(Cold Dark Matter) as following:

Ωc0h2 = 0.1131+−0.00034. (3.31)

Despite observations confirm the existence of dark matter, its origin has not been identified
yet.

If we sum the density parameters of radiation, baryons and dark matter, we can note that
the result does not exceed 0.3 and, precisely, the Dark Energy is the unknown component
that corresponds to the remaining 70% of the cosmic matter. The observational data from
WMAP, SNe-Ia and BAO constrain the present density parameter of DE:

ΩDE0 = 0.726±0.015. (3.32)

The standard cosmological model explains the Dark Energy by the cosmological constant
and the Einstein equation becomes:

Rµν −
1
2

Rgµν +Λgµν = 8πGTµν (3.33)

which can be derived from the action:

S =
1

16πG

∫
d4x
√
−g(R−2Λ)+Sm (3.34)
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The Friedmann equation describing the late-time dynamical evolution for a flat-ΛCDM
model can be written as

H(z)2 = H2
0
[
Ωm,0(1+ z)3 +(1−Ωm,0)

]
, (3.35)

where H is the Hubble parameter and Ωm is the matter density parameter; subscript
0 attached to any quantity denotes its present-day (z = 0) value. In this case, the EoS is
w(z) =−1.

The main bet of the cosmological community to explain the current accelerated ex-
pansion of the Universe is the Dark Energy (DE), a theoretical conception whose nature
is still unknown [42–44]. The standard cosmological model Lambda Cold Dark Matter
(ΛCDM) showed above,assumes the DE being a cosmological constant, has had great
achievements such as and excellent agreement with most of the currently available data, i.e.
Cosmic Microwave Background [45], Supernovae IA (SNeIa) [46] and Baryon Acoustic
Oscillations (BAO) [47]. Nevertheless, the ΛCDM model has its own drawbacks: on the
theoretical side fine tuning and cosmic coincidence [48, 49], and from an observational
point of view, it also suffers from the Hubble tension [50], amongst others. These issues
open the door to many other cosmological models, either by considering a dynamical DE,
or by modifying the general theory of relativity [51].

With the intention of better explaining the nature of Dark Energy several surveys [45,
52, 53] have been carried out to obtain a greater amount of cosmological observations such
as SNeIa, BAO, galaxies, large scale structure [54] and Cosmic Microwave Background
(CMB). Nowadays, cosmological models present great challenges because, to be validated,
they must match with all the relevant observational data.

A step further to the standard model is to consider the dark energy being dynamic,
where the evolution of its EoS is usually parameterised. A commonly used form of w(z) is
to take into account the next contribution of a Taylor expansion in terms of the scale factor
w(a) = w0 +(1−a)wa or in terms of redshift w(z) = w0 +

z
1+zwa (CPL model: [55, 56]).

The parameters w0 and wa are real numbers such that at the present epoch w|z=0 = w0

and dw/dz|z=0 = −wa, and we recover ΛCDM when w0 = −1 and wa = 0. Hence the
Friedmann equation for the CPL parameterisation turns out to be:

H(z)2 = H2
0

[
Ωm,0(1+ z)3 +(1−Ωm,0)(1+ z)3(1+w0+wa)e−

3waz
1+z

]
. (3.36)
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As part of some simple models that allow deviations from ΛCDM we also use the
polynomial-CDM model (PolyCDM) [57], that can be thought as a parameterisation of the
Hubble function [58]. This model has the following Friedmann equation:

H(z)2 = H2
0
[
Ωm,0(1+ z)3 +Ω1,0(1+ z)2 +Ω2,0(1+ z)1 +(1−Ωm,0−Ω1,0−Ω2,0)

]
,

(3.37)
where Ω1,0 and Ω2,0 are two additional parameters, which within the ΛCDM both

of them remain absent. Nevertheless, in [59] Ω2,0 is interpreted as a ‘missing matter’
component introduced to allow a symmetry that relates the big bang to the future conformal
singularity. We recover ΛCDM when Ω1,0 = 0 and Ω2,0 = 0.

3.2 Cosmological observations

In cosmology, there are astronomical objects that allow the direct or indirect measure of
a cosmological distance, this last quantity also can be calculated given the Friedmann
equation of a certain cosmological model and then compare observational datasets with
theoretical predictions.

3.2.1 Cosmic chronometers

Cosmic chronometers (CC) are galaxies, that evolve slowly and allow direct measures of
the Hubble parameter H(z). They are also known as Observational Hubble Data (OHD)
and provide a direct measurement of the Hubble parameter and this is its advantage over
other data like SNe-Ia and BAO. The differential age (DA) method measures H(z) between
two passively evolving galaxies that have similar metallicities and separated by a small
redshift interval:

H(z)'− 1
1+ z

∆z
∆t

(3.38)

In this last equation, to obtain the rate ∆z
∆t is necessary measure the difference in age for

two red galaxies at different redshifts [60]. Precisely these red galaxies receipt the name
of cosmic chronometers. Another method with Luminous Red Galaxies (LRG) as cosmic
chronometers, assumes that stars in LRG are all formed at the same time [61].
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The respective statistical χ2 also can be calculated to the following way:

χ
2
H =

N

∑
i=1

(Hi,th−Hi,obs)
2

σ2
i

(3.39)

where σi is the error of the data. And with this χ2 we can use a MCMC method to estimate
the parameters.

Cosmic chronometers measurements have been collected along several years [28, 62–
68], and now 31 points are available with redshifts between 0.09 and 1.965, along with
their statistical errors.

Given a Friedmann equation from a cosmological model then a theoretical value for
H(z) can be obtained and compared directly with these measurements.

3.2.2 Standard rulers: BAO

Standard rulers are astronomical objects with known length. A first example of standard
rulers are the baryon acoustic oscillations (BAO), wich are fluctuations in the density
of the visible baryonic matter caused by the decouple between photons and baryons by
recombination.

In theory, the BAO scale is well determined and measures approximately 150Mpc,
hence the BAO are considered standard rulers. Then, we can consider the angular diameter
distance as the ratio of the comoving size of the object over its angular size:

dA =
c

1+ z

∫ z

0

dz
H(z)

=
∆χ

∆θ
(3.40)

Note that the angular size is related with the cosmological parameters via H(z). In the
equation 3.40, χ is the known (by theory) size of the object and ∆θ can be measured.

3.2.3 Standard candles: Type Ia supernovae

Standard candles are a class of cosmic objects for which all members have the same
absolute magnitude M and, among other contributions, the standard candles allowed the
establishment of the expansion rate of the Universe. In the following equation µ(z) is the
distance module, M the absolute magnitude and mb(z) the apparent magnitude in the B
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band.

µ(z) = mb(z)−M (3.41)

The Type Ia are a special class of supernovae, since they all have similar mass involved
in their explosions, then also their absolute magnitudes are similar. Therefore, Type Ia
supernovae can be made into standard candles by applying small corrections on their light
curves (on the colour and shape) and they are useful to research about the expansion of the
Universe, hence, of Dark Energy.

We can say that type Ia supernovae (SNeIa) have a known luminosity, therefore we
can know the luminosity distance, which is a measure of the integral of the Hubble factor
H(z), and this quantity provides information about the cosmological parameters of a certain
model.

As mentioned above, the traditional cosmology analysis [39] minimizes the statistic
χ2 that is related to the theoretical values (predicted distance module) with the observed
distance module:

χ
2 = (µobs−µC)

tC−1
µ (µobs−µC) (3.42)

Note that the decrease in χ2 means closer proximity between the theoretical value and the
observational value.

The observed values, are calculated by the Spectral Adaptative Lightcurve Template 2
(SALT2) [69], that is the most general distance estimator linear:

µobs = m∗B−MB +αx1−βc (3.43)

where m∗B refers to the peak magnitude in the B band of the rest-frame. If x1 = c = 0 , α is
the stretch correction and β is the color correction.

On the other hand, µC can be calculated given the cosmological parameters:

µC = 5log(
dL

10pc
) (3.44)

dL(z,θ) = (1+ z)
c

H0

∫ z

0

dz′

E(z′,θ)
(3.45)

39



Besides, the covariance matrix is:

CSALT 2 =

 σ2
x0

σx0,x1 σx0,c

σx0,x1 σ2
x1

σx1,c

σx0,c σx1,c σ2
x2


The covariance matrix with the equation 3.42 allow us to build χ2 and the likelihood
function for the Bayesian inference. See the references [70–72] for more details.

Lastly, related with the distance modulus function and the SNeIa data, if we consider a
spatially flat universe, we have the following relationship between the luminosity distance
(dL) and the comoving distance D(z):

dL(z) =
1

H0
(1+ z)D(z), with D(z) =

∫ dz
E(z)

, (3.46)

where E(z) = H(z)/H0. Finally, we can define the distance modulus as:

µ(z) = 5logdL(z)+25. (3.47)

The SNeIa dataset used in this work is JLA, a compilation of 740 Type Ia supernovae.
It is available a binned version that consists in 31 data points with a covariance matrix
C jla ∈ R31×31 [46].

3.2.4 Growth factor fσ8 measurements

The growth rate measurement is usually referred to the product of f σ8(a) where f (a)≡
d lnδ (a)/d lna is the growth rate of cosmological perturbations given by the density
contrast δ (a)≡ δρ/ρ , being ρ the energy density and σ8 the normalisation of the power
spectrum on scales within spheres of 8h−1Mpc [73]. Therefore, the observable quantity
f σ8(a) [or equivalently f σ8(z)] is obtained by solving numerically

f σ8(a) = a
δ ′(a)
δ (1)

σ8,0. (3.48)

The f σ8 data are obtained through the peculiar velocities from Redshift Space Distortions
(RSD) measurements [74] observed in redshift survey galaxies or by weak lensing [75],
where the density perturbations of the galaxies are proportional to the perturbations of
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matter. An extended version of the Gold-2017 compilation is available at [76], with 22
independent measurements of f σ8(z) from redshift space distortion measurements from a
variety of surveys (see references therein).

3.3 SimpleMC code

SimpleMC 1 is a pure-Python package to cosmological parameter estimation, particularly
to Dark Energy models. It was developed by Dr. José Alberto Vázquez and Dr. Anže
Slosar. This code provides to cosmological researchers datasets, theory and algorithms
and it already have defined several likelihoods functions in order to an easy use of the
observational data and the theoretical models.

All Bayesian analysis performed in this work was with SimpleMC code. Figure 3.1
shows the overall structure and the parts where I had the opportunity to contribute in the
coding (wrappers for external libraries or implementing certain routines) are in red boxes
and briefly described in Table 3.

1� https://github.com/ja-vazquez/SimpleMC
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Figure 3.1: SimpleMC structure and contributions

Contribution Description

ini file A configuration file to the end user.
Gelman-Rubin Routine of Gelman-Rubin diagnostics to only one chain from Metropolis-Hasting algorithm.

Nested sampling Wrapper for a modified version of dynesty library [77].
Emcee Wrapper to Emcee algorithm [78].

Post-processing Print and save output files and summaries.
Plots libraries Wrappers for Getdist [79], corner [80] and fgivenx [81] libraries.

Generic classes Python classes for generic and simple likelihoods and models.
Genetic algorithms Simple genetic algorithm to optimization.

Neural networks ANN to speed-up likelihood calculations.

Table 3.1: Contributions in SimpleMC code
.



CHAPTER 4

SPEED-UP BAYESIAN INFERENCE

4.1 Introduction

Likelihood functions link the data to theory and are constructed by assuming some particular
statistical distribution for the D data, usually a Gaussian distribution. In the calculation
of likelihood function, at a given point, it is also necessary to evaluate the theoretical
model several times. On the other hand, if several types of observations are involved, the
probability density function proposed as likelihood function should be a multiplication of
several likelihoods (one for each type of data). The nature of Bayesian inference requires
multiple evaluations of the likelihood function to generate a new sample with a higher
likelihood value than its predecessor, and if these functions are complex, the computational
time spent on these evaluations can be considerable.

In this chapter we evaluate the performance of an Artificial Neural Network (ANN) in
the calculation of likelihood functions within a Bayesian inference process similar than
[82, 83] and our tests were described in [2, 3]. In the following section we describe, in
general terms, the procedure of our study and how we use the ANN. In Section 4.4, we
show an application on the standard cosmological model and make the comparison of
results of Bayesian inference using and not using the neural network to calculate the values
of the likelihood function. Finally, the Section 4 contains our conclusions.

We based this work in the Ref. [82] that proposes a feedforward ANN to learn the
likelihood function within a nested sampling algorithm [18]. As a first step, we use the
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pyBambi package [84], a python development based on [82], with MULTINEST [85]
which is available in C language with a Python wrapper called pymultinest. We test the
multinest with and without pyBambi with toys models to compare their samplings, it can
be seen in Figure 4.1.

Figure 4.1: Comparison between sampling with MULTINEST and BAMBI

However, we wanted two different things. The first is a pure-Python way to implement
a method of using the ANN with a nested algorithm, this allows an easy to install. Secondly,
to use the speed-up method in cosmological parameter estimation. Therefore we use a
nested sampling algorithm [85] available in Dynesty [77], we modify pyBambi [84] to our
purposes and we implement our method in SimpleMC1. The ANN was implemented with
the tensorflow Python library.

1� www.github.com/ja-vazquez/SimpleMC
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4.2 Artificial neural network architecture

The Universal Approximation Theorem [22] allows the use of an ANN to learn how to
calculate the likelihood function. It states that an Artificial Neural Network with at least
one hidden layer with a finite number of neurons can approach any continuous function if
the activation function is continuous and non-linear.

In our case, we use a Feed-forward Neural Network with three hidden layers and the
Rectified Linear Unit (RELU) as activation function. The loss function is the Mean Squared
Error (MSE):

MSE =
1
n

n

∑
i
(yi− ŷi)

2 (4.1)

we apply the Adam gradient descent method to minimize it, initially with learning rate
of 0.1 and reducing it by a factor of 0.1, until 0.0001, if through 5 epochs the value of the
loss function does not improve.

The likelihood function evaluates points in the parameter space that have as many
coordinates as free parameters have the theoretical model considered to make the Bayesian
inference. As will be described later, the model used in this paper has three free parameters.
Therefore, the number of nodes in the input layer of the neural network must match this
value. On the other hand, the output layer have a single node that is the prediction of the
likelihood function.

We tune the hyper-parameters of the neural network running 35 combinations of them
and choosing the one that achieve a lower value for the loss function. For this test we use
50, 100, 150, 200, 250 and 300 nodes for the three hidden layers and 4, 8, 16, 32 and 64 for
the batch size value. The combinations of hyperparameters are represented in Figure 4.2
and the best of them was the shown in Figure 4.3 with 8 for the batch size.

4.3 Method

In the generation of every 500 new samples, within the Bayesian inference framework, the
neural network was trained. Therefore the 80% of this 500 samples with their respective
likelihoods are used as training set, the remaining samples conform the test set.

When the MSE is below a predefined value (in our case, we use 0.1), the trained neural
network replaces the analytical calculations of the likelihood function, otherwise the ANN
is retrained after another 500 samples are generated and in the meantime the analytical
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Figure 4.2: Hyperparameter grid to ANN that learn likelihood of ΛCDM with
CC+BAO+JLA.

Figure 4.3: Feedforward ANN with three hidden layers used to learn likelihood function
of ΛCDM with CC+BAO+JLA datasets.

likelihood continues to be used.
If, using the neural network, its predictions are outside the range of existing likelihoods

(with a small deviation as tolerance, 0.1 in our case), the neural network is no longer used
and the analytical calculation is returned. Subsequently, if the neural network is retrained
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correctly in the way described above, it can come back into action. In a few steps, we do
the following:

1. Select a number of samples for the training set and validation set.

2. Choose a value for the loss function in which the neural network is considered to
predict probabilities.

3. Define a criterion to evaluate whether the value of the likelihood function generated
by the ANN is good or not. We force the value of the likelihood predicted to be
between the low and high value of the last training set.

Figure 4.4: Flow of the method

4.4 Bayesian inference on the ΛCDModel

The standard cosmological model, also known as ΛCDM, represents a flat universe with
a cosmological constant that provides accelerated expansion. We use the Friedmann’s
equation, with a constriction for the cosmological constant energy density ΩΛ = 1−Ωm

(Ωm is the matter energy density), to reduce the number of free parameters:

H2(a)
H2

0
=

1
h2

Ω0bh2 +Ω0ch2

a3 +(1−Ω0m), (4.2)
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Figure 4.5: Loss function of the neural network in the training and validation set

where H is the Hubble factor, H0 the Hubble constant, a is the scale factor (function of time
representing the relative expansion of the universe), Ω0b is the current energy density of
baryons, Ω0c the current energy density of cold dark matter, Ω0m = Ω0b +Ω0c and h = H

100 .
Therefore, we use three free parameters: h2, Ω0m and Ω0bh2. There are well known in
cosmology [86] and allow us to evaluate our results of the Bayesian inference with and
without neural network.

If we assume a Gaussian distribution for the data, we can construct the log-likelihood
function as a chi-square test involving the theoretical model of the Equation 4.2 and the
observational data. In our test, the likelihood function considers data from Type-Ia Super-
novae [46], Cosmic Chronometers [87], Baryon Acoustic Oscillations and a compressed
information of Planck-15 [57].

The figure 4.5 shows the behavior of the loss function (MSE) for the ANN, described in
the previous section, in the training and validation sets, using 500 samples of the Bayesian
inference process. If the value for MSE is high, it is very likely that the predictions made
by the ANN will be wrong, so it is necessary to wait until the final stage of sampling in
order to properly use the neural network predictions. Figure 4.6 shows the 1D and 2D plots
of the resulting posterior distribution for Bayesian inference with and without ANN, we
implemented this in the SimpleMC repository [88].

The parameter estimation process for ΛCDM was performed five times, both with and
without ANN. The averages of these five procedures for each case are reported in table 4.1.
We can note that the parameter estimation by nested sampling with and without the neural
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Figure 4.6: Posterior samples for the ΛCDM model obtained by nested sampling with and without neural
network.

network are very close to each other and can be statistically interpreted in the same way.
To get closer to the reference values, it would be necessary to add even more data to our
Bayesian inference and that is not the purpose of this work.

We found that, on average, the neural network only calculates about 6% of the total
likelihood calls and generates 4% of the total samples. However, in our example, this
reduces the computational time by about 9.1 percent.

4.5 Conclusions

According to our results, for the standard cosmological model and the data sets mentioned
above, we have noticed that if the neural network is well calibrated and achieves a low
MSE, it can substitute the analytical calculation of the likelihood function in the final part
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Reference value [86] without ANN with ANN

Ωm 0.3166±0.0084 0.2978±0.0680 0.2982±0.0660
Ωbh2 0.02242±0.00014 0.0224±0.0009 0.0224±0.0010

h 0.6727±0.006 0.6918±0.0734 0.6906±0.0723
log(Bayesian evidence) −41.890±0.196 −41.849±0.195

Samples generated with dynesty 7742 7700
Samples generated with ANN predictions 282

Likelihood predicted with ANN 2202
Total likelihood calls 33007 33323

time (minutes) 73.2 66.8

Table 4.1: Results of the nested sampling algorithm applied to ΛCDM model

of a Bayesian inference process without significant alterations in the statistical analysis.
Although the samples generated with the neural network likelihood predictions make up a
small percentage, the acceleration in the Bayesian inference process is noticeable.

As future work we want to test this technique with more complex models, both in the
field of cosmology and in any other branch of science in which a Bayesian inference process
can be applied. We are also interested in testing with larger data sets and implementing it in
parallel.
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CHAPTER 5

NON-PARAMETRIC COSMOLOGICAL

RECONSTRUCTIONS

5.1 Introduction

In this Chapter we show the main results of [5], in which we use cosmological datasets
from cosmic chronometers, fσ8 measurements and SNeIa to reconstruct with Artificial
Neural Networks, since a non-parametric inference, the observable cosmological functions
provided by these data. In addition, we make a cosmological analysis of the results of our
method and we compare it with the theoretical prediction from ΛCDM, CPL and PolyCDM
models.

As part of a consistency test of our results, we generate synthetic data with the models
generated by the trained neural networks and then, we perform Bayesian inference with
SimpleMC. We compare the posterior PDF sampling using synthetic data with the respective
result using the orgininal observational datasets.

5.2 Neural networks calibration

Throughout this work we use FFNNs for datasets with diagonal covariance matrices and
autoencoders when correlations between the measurements are present, for instance within
the JLA dataset.

In general, for the three types of cosmological observations (CC, f σ8 and SNeIa)
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Figure 5.1: Neural network architectures chosen for cosmic chronometers (CC), f σ8 measurements and
distance modulus in JLA respectively. In the same order, the batch size found for each case was: 16, 1 and 1.
The blue numbers indicate the nodes in each layer. In the last architecture, there is only one node in the
output layer because the errors are calculated with a variational autoencoder (described in the Chapter 6)
given the original covariance matrix of the systematic errors.

we have followed the next steps to find out a suitable neural network model for the
corresponding data:

• We train several neural network configurations to gain insights about the complexity
that their architecture require to model the data. According to the results of the loss
function, we choose a number of layers.

• Several values are suggested for each hyperparameter of the neural network, based
on the intuition achieved in the first step, a grid is formed that must be traversed to
find the combination that provides the minimum value of the loss function. Among
the hyperparameters it is the batch size, the number of nodes per layer and, in some
cases, the dropout.

• The best ANN architectures found for each case are shown in Figure 5.1. The first
two correspond to the CC and f σ8 datasets respectively, for which 320 combinations
were tested up to three fixed hidden layers: number of nodes in {50,100,150,200}
and the batch size in {1,4,8,16,32}. We found that for the compressed JLA dataset
a one-layer neural network works best, so we refined the third architecture among 20
combinations, varying the number of nodes in {30,50,100,150,200} and the batch
size in {1,2,4,8}.

• We train the neural network with the combination of hyperparameters chosen in
the previous step with a correct number of epochs. We verify the behaviour of the
loss function in the training and validation sets to check that our model is neither
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underfitted nor overfitted. The effect of the epochs in the learning process using the
first two ANN architectures of Figure 5.1 is shown in Figure 5.2.

• Once the neural network is trained, we can generate synthetic data points with absent
redshift in the original datasets.

• By making several predictions with the neural network, the reconstruction of the data
can be appreciated and compared with the original data. If the statistical behaviour
of the synthetic data is not consistent, the neural networks must be retrained.

• We store the output, for a certain number of predicted data points as well as the new
covariance matrix in order to be able to do the Bayesian inference of the cosmological
models with these artificial data.

• We compare the parameter estimation of the synthetic data with the original set
to verify they are statistically consistent and to analyse their differences. For this
purpose, we use the SimpleMC1 package [88], initially released at [57], along with a
modified version of the dynesty nested sampling library [77], which allows to do the
parameter estimation and Bayesian evidence calculation.

We have developed a package called CRANN2 that contains the ANNs models already
trained to produce synthetic cosmological data given a set of arbitrary redshifts. All the
ANNs used in this work and their hyperparameter tuning were based on Tensorflow3 and
Keras4 Python libraries.

In the case of cosmic chronometers and f σ8 measurements we use FFNNs. These types
of data have a diagonal covariance matrix and hence it can be arranged into a single column
of the same length as the number of measurements. Therefore, these two datasets have three
features (columns): the redshift z, the function f (z), and the related error (taken from the
diagonal of the covariance matrix). Once the FFNN is trained, for a given of set of points
(redshifts) we can output the cosmological function together with its simulated statistical
error. It should be noted that the neural networks learn to generate the cosmological function
and the error, where the latter is the result of modelling the original statistical errors from
the observational data set.

1� www.github.com/ja-vazquez/SimpleMC
2Cosmological Reconstructions with Artificial Neural Networks (CRANN). � https://github.com/

igomezv/crann
3www.tensorflow.org
4www.keras.io
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Figure 5.2: Effect of the number of epochs in the training with the CC dataset (top) and with the f σ8(z)
measurements (bottom). The first case (20 epochs) shows underfitting, while considering 1000 epochs shows
overfitting. In the f σ8 dataset, the cases for 500 and 1000 epochs present overfitting. In both cases, we
choose 100 epochs due to the lower values of MSE and ∆MSE in the validation set. Green points display real
data-points with error bars, and in purple synthetic data along with red error bars.

On the other hand, through the analysis of the JLA SNeIa compilation, we also use
a FFNN to learn the behaviour of distance modulus µ(z) in a similar fashion we did for
the CC and f σ8. However, in order to handle the full covariance matrix we use a VAE
as described in the Chapter 6; using this type of neural network allows us to map the
distribution of the distance modulus to the distribution of the coded representation of the
autoencoder to generate new covariance matrices. One restriction of this method to bear in
mind is that the new matrix has to have the same dimension as the original one. However,
we can generate a matrix given any combination of new redshifts, provided that this set has
the same length as the original measurements.

In addition to the above procedure, we slightly modify the FFNNs to implement an
epistemic calculation of their uncertainties using the dropout [37]. In this way, we add
dropout between the layers of the FFNNs and run the Monte Carlo dropout several times to
obtain average values and uncertainties for each prediction. We combine our FFNN designs
with the implementation of MC-DO layers from astronn5[89], and compare the results of
this method with the previous ANNs implementations. Because dropout is a regularisation
technique, the number of epochs is irrelevant for a large enough set. The error predictions

5� https://github.com/henrysky/astroNN
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and the uncertainties are independent, therefore the total standard deviation is:

σ =
√

erp +∑
i

u2
i , (5.1)

where ui is the epistemic uncertainty involved with the FFNN used and erp is the error
prediction.

As mentioned above, once the non-parametric reconstruction is obtained we can
generate synthetic data and use them to perform a Bayesian inference procedure. For
these purposes, we use the following flat priors: for the matter density parameter to-
day Ωm ∈ [0.05, 0.5], for the physical baryon density parameter Ωbh2 ∈ [0.02, 0.025],
for the reduced Hubble constant h ∈ [0.4, 0.9], and for the amplitude of the (linear)
power spectrum σ8 ∈ [0.6, 1.0]. When assuming the CPL parameterisation, we use w0 ∈
[−2.0, 0.0] and wa ∈ [−2.0, 2.0]; and for the PolyCDM model, we use Ω1 ∈ [−1.0, 3] and
Ω2 ∈ [−0.5, 3]. The h parameter refers to the dimensionless reduced Hubble parameter
H/100kms−1Mpc−1.

5.3 Results

In order to perform the reconstructions of the Hubble parameter H(z), the growth rate
measurement f σ8(z) and the distance modulus µ(z) we apply two different methods by
implementing the feedforward neural networks shown in Figure 5.1: i) using the trained
neural network (FFNN) and ii) along with the FFNN, by considering uncertainties with
the Monte Carlo dropout (FFNN+MC-DO). To test the quality of our ANNs predictions
we perform the Bayesian inference procedure for the CPL and PolyCDM models with the
original data and with the data generated by the neural networks. Then, and to improve the
constraints on the free parameters, in some cases we also include a compressed version of
Planck-15 information (treated as a BAO experiment located at redshift z = 1090 [57]).

Reconstruction of H(z)

Once the chosen FFNN is trained with the CC dataset (green points in Figure 5.3), we input
new redshift values (z) and let the network to predict the corresponding values for H(z)

and their errors. In the left-panel of Figure 5.3, we generate 1000 synthetic data (magenta
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points) with their respective error bars (red lines) with the FFNN. These errors are the result
of the ANN modelling the errors contained in the original dataset.

Besides the intrinsic error associated with the datasets, we consider an uncertainty
related with the FFNN by adding a Monte Carlo dropout between each layer of the chosen
FNNN architecture, under the method described in [37]. Among several tests to dropout
values between [0,0.5], we found that a good value for the dropout is 0.3 and we trained
the FFNN with MC-DO along 1000 epochs. After training the new FFNN with dropout
between each layer, we can make the predictions to 1000 unseen redshifts and, with 100
executions of MC-DO for each prediction. We obtain the right-panel of Figure 5.3, that
contains the total standard deviation considering the uncertainties of the neural network. In
this case, the result is not continuous due to the variations caused by the probabilistic nature
of the MC-DO and, now, the error bars contain information about the statistical uncertainty
of the FFNN trained model; indeed the error is larger than in the FFNN alone case.

Figure 5.3: H(z) reconstructions produced with 1000 synthetic data points generated with FFNNs. Left:
Purple line represents the FFNN predictions for H(z) along with their error bars in red colour. Right:
Similarly to FFNN but adding MC-DO, we executed 100 times the Monte Carlo dropout to compute the
uncertainties of the predictions, therefore the purple points are the average predictions of the MC-DO
executions and the red error bars are the uncertainties of the FFNN plus the error predictions (see Equation
5.1). In both cases, we compare the non-parametric reconstruction with the original cosmic chronometers
(green bars) and H(z) from ΛCDM, as shown in the labels. The small panels displayed the receptive
behaviour of the loss function (MSE) in the training (red) and validation (green) sets.

An interesting feature shown in both panels of Figure 5.3 is that, despite the original
dataset does not contain a measurement for H(z = 0), the FFNN prediction is Hpred(z =
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0) = 75.09± 15.49 km s−1 Mpc−1 and the prediction of the FFNN with Monte Carlo
dropout is Hpred(z= 0)= 77.07±15.91 km s−1 Mpc−1. Both results have a better matching
to the one measured with Cepheid variables [87]: H0 = 73.24 km s−1 Mpc−1. In addition,
it can be appreciated that as the redshift increases, the model generated by the FFNNs
approaches ΛCDM with H0 = 67.40 km s−1 Mpc−1 measured by Planck mission [45]. It
is worth to remember that the ANN models do not have any prior cosmological or statistical
assumption so they have been built solely from the data.

Reconstruction of f σ8(z)

Similarly to the Hubble parameter case, we apply the same methodology but now with
measurements of the f σ8 function [76]. In order to generate the reconstruction plot shown
in the left panel of Figure 5.4, once the FFNN is trained, we generate 1000 synthetic data
points (red points). Besides, we put the evaluation of f σ8(z) from CPL model in three
different scenarios of w0 and wa.

We added Monte Carlo dropout to the FFNN, shown in the second ANN architecture of
Figure 5.1, to be able to calculate the uncertainties of the ANN. We train this new FFNN
along 2000 epochs. In this case, among several tests to dropout values between [0,0.5], we
choice a dropout of 0.1 because it had the best performance. Then we obtain, with 1000
synthetic f σ8 data points, the reconstruction of the right-panel of Figure 5.4, where the
purple line is the average obtained by MC-DO predictions and the error bars contain an
error conformed by the standard deviations (uncertainties) of MC-DO for each prediction
plus the error predictions. We can notice, that in both cases, the models plotted are within
the reconstruction and hence this dataset by itself may provide loose constraints on the CPL
parameters. However, the values w0 =−0.8 and wa =−0.4 (brown line) seem to have a
better agreement with the reconstruction, as we shall see below.

Distance modulus µ(z) reconstructions

Regarding to the distance modulus µ(z), we train a FFNN (last ANN in Figure 5.1) for
a given redshift. We assume a gaussian distribution for the predictions of the distance
modulus and using a trained VAE we produce a new covariance matrix (see Chapter 6).
Once the FFNN is trained, we can generate synthetic data points for unseen redshifts and
reconstruct the µ(z) function as it can be appreciate in the left panel of Figure 5.5. In
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Figure 5.4: Reconstruction of f σ8(z) with 1000 synthetic data points (red dots) and their respective errors
(red bars) learned by ANNs. Left: FFNN alone, red line is conformed by the predictions of f σ8. Right: FFNN
using Monte Carlo dropout, the averages of 100 executions of MC-DO are indicated with the red line and
their standard deviations are added to the error predictions. In both cases the small panels displayed the
receptive behaviour of the loss function (MSE) in the training (red curve) and validation (green curve) sets.

particular, we use 31 log-uniformly distributed redshifts over the interval z ∈ [0.01,1.3]. To
apply MC-DO, we did several tests to dropout values in the interval [0,0.5] and we found
that a dropout with 0.01 value has a good performance. We executed 100 times MC-DO to
obtain the right panel of Figure 5.5.

An important point to bear in mind is that when using a full covariance matrix we need
to restrict to 31 synthetic data points in order to generate the covariance matrix with the
VAE for mapping to the new points in the latent space. See the next chapter for details.

Parameter estimation with synthetic data

Neural networks allow us to produce data models with several parameters (neural network
weights) which are uninterpretable, however with the use of synthetic data generated by
these models we can analyze them with Bayesian inference and compare their results with
those obtained from the original data. Thus we performed the Bayesian inference analysis
to estimate the best fit parameters of the CPL and PolyCDM models. The aim of this
procedure is to look for possible deviations of the ΛCDM model with the neural networks
approach.

In addition to the three original datasets (cosmic chronometers, f σ8 measurements and
binned JLA compilation), we have created two datasets for each type of observation from
the trained FFNNs with and without MC-DO. As a proof of the concept, the new datasets
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Figure 5.5: Left: 31 new data points (red dots) generated with FFNN. Right: 31 new data points (red dots)
generated with FFNN+MC-DO. In both cases it is shown their receptive behaviour of the loss function
(MSE) in the training (red curve) and validation (green curve) sets along the chosen number of epochs for
each case (300 and 1800). The 31 green dots are the original points from the binned version of JLA.

for CC and f σ8 consisted of 50 random uniformly distributed points in redshift, while for
SNeIa they were 31 log-uniformly distributed in redshift (same size as the original dataset).
For the SNeIa case we also generated its respective covariance matrix with the decoder part
of the trained VAE.

We have used the data from CC, f σ8 measurements and JLA separately, and also some
combinations of them. The most representative results are in Figure 5.6 along with Tables
5.1 and 5.2, which contains mean values and standard deviations, and they have been sorted
according to the datasets used as a source (original, FFNN, and FFNN+MC-DO), and to the
models involved (ΛCDM, CPL, and PolyCDM). It is indicated when the Planck point has
been added to the data sets. Results are displayed for the reduced Hubble parameter h, σ8,
w0 and wa measurements for the CPL model, and Ω1 with Ω2 when the model is PolyCDM.
In addition, the last column of the Table 5.1 and Table 5.2 contains the −2logLmax of the
Bayesian inference process for each case. Before analysing each case separately, it is worth
mentioning that there are some generalities in the results. In general, it can be noted that
when using a single source separately (no Planck information added) the constraints are
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consistent among each other, that is, they all have a similar best-fit (maximum likelihood)
and are in agreement with the ΛCDM model.

In the case of parameter estimation using exclusively the CC dataset, the first two
panels of Figure 5.6 (and first block in Table 5.1) show that the best-fit values are mutually
contained within their 1σ standard deviations and are in agreement with the ΛCDM
values. However, we can notice that when Planck information is added the reduced Hubble
parameter value slightly increases for the ANNs. For instance, for the CPL model with
original data the constraints are h= 0.673±0.046 whereas for the synthetic data it increases
to 0.713± 0.059 for the FFNN and 0.726± 0.063 for the FFNN+MC-DO; in fact these
values obtained by the synthetic data are closer to the Hubble parameter value of the
Cepheid variables than to the Planck mission value. This issue, as a supplement to Figure
5.3, shows that the neural network models generated by cosmic chronometers are sensing
the Hubble tension, although considering the size of the standard deviation values, all
the results of the parameter estimation are still statistically consistent with each other.
Something similar happens when added Planck information to JLA SNeIa and assuming
the CPL model. With the original data the constraints are h = 0.695± 0.021 whereas
for the synthetic data they increase to 0.704± 0.025 for the FFNN and 0.712± 0.026
for the FFNN+MC-DO. However both datasets are still statistically consistent, within
1σ , with the ΛCDM parameters. If taken into account the JLA+CC combination with
the Planck information, the increment of the reduced Hubble parameter is still present
but also a small deviation of ΛCDM (about 1σ ) for FFNN+MC-DO, with constraints of
w0 =−0.957±0.141 and wa =−0.563±0.669.

On the other hand, considering only measurements of f σ8+Planck for the synthetic
data, the w0 and wa constraints suggest a slight deviation from ΛCDM. With the FFNN data
the values are w0 =−0.657±0.172 and wa =−0.493±0.265, and for FFNN+MC-DO we
have w0 =−0.673±0.183 and wa =−0.364±0.221. In fact, it can be seen in the Figure
5.6 that the cosmological constant is right on the limits of the 2σ contours.

By using all datasets combined CC+ f σ8+JLA we have performed a Bayesian inference
to the three models ΛCDM, CPL and PolyCDM. Compared to the original datasets we
found consistency throughout the models with the ΛCDM parameters and slight shift when
using the synthetic data, for instance higher values for the reduced hubble parameter, lower
for the σ8 parameter and for w0:−0.916±0.065 (FFNN) and−0.925±0.068 (FFNN+MC-
DO). Deviations of the standard values are enhanced once we use synthetic data along with
Planck information. This can be seen on the constraints of the PolyCDM model for the
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FFNN source: Ω1 = 0.272±0.194, Ω2 =−0.092±0.058. Also, based on the improvement
in the fit alone (

√
2∆ logLmax), and using the same source, we found a preference to the

data for the CPL model of 1.5σ and 1.7σ for the PolyCDM. That is, the Artificial Neural
Network by itself is finding deviations from the standard cosmological model.

The above discussion suggests that, if the models generated by the neural networks are
correct, hypothetical new observations within the range of the existing ones would tend
to move away from ΛCDM. Therefore, parameter estimation in the CPL and PolyCDM
models in conjunction to the models generated by the neural networks suggest that ΛCDM
does not have the best match to the data. In all cases, the addition of the Planck point
increases the tension and the need for a model beyond ΛCDM.

To reinforce the idea that models generated by the neural networks depart from ΛCDM,
from the posterior distribution samples for CPL, we obtained the posterior distribution of
its corresponding EoS, as shown in Figure 5.7 (using fgivenx Python library [81]). From
these plots it can be seen that w = −1 (value corresponding to ΛCDM) lies in the most
probable region within 1σ with the original data; however, in the case of the synthetic
data the cosmological constant moves away from the most probable region, still within 1σ

without considering the Planck point, and outside 1σ when it is taken into account.
Finally, as part of the Bayesian analysis, we can perform a model comparison with

Bayesian evidences Z through the Bayes’ factor B and the Jeffrey’s scale [90]. Table 5.3
shows the log-Bayes’ factor of ΛCDM compared to CPL and PolyCDM models using the
different sources of data. It can be seen that with the synthetic data the penalisation of
having extra parameters decreases from strong advantage to an inconclusive advantage due
to the improvement of the fit in both models. However, it is worth noting that ΛCDM stays
with a slight advantage.

Source CPL PolyCDM

Original 3.651 2.837

FFNN 1.823 0.687

FFNN+MC-DO 2.464 1.159

Table 5.3: Log-Bayes’ factor ln(B) = ln(ZΛCDM)− ln(Z) of ΛCDM with respect the other models using the
same data source for each case. The combined dataset used in this table is JLA+CC+ fσ8+Planck

.
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Figure 5.6: 2D marginalised posterior distributions from different combinations of datasets: original data,
synthetic datasets from FFNN and FFNN+MC-DO. The green dashed lines (w0 =−1, wa = 0) and (Ω1 = 0,
Ω2 = 0) correspond to the ΛCDM model. The constraints are plotted with 1σ and 2σ confidence contours.

5.4 Conclusions

Throughout this work, we have shown that well-calibrated artificial neural networks have
the capacity to produce non-parametric reconstructions from which synthetic cosmological
data, statistically consistent with the originals, can be generated even when the datasets are
small.

We have explored the generation of synthetic covariance matrices through VAE, and
the results have allowed us to carry out Bayesian inference without drawbacks. However,
for larger datasets, we believe that it will be convenient to use convolutional layers in the
autoencoder and a slightly different approach to dealing with the computing demand.
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Figure 5.7: Posterior probability distribution functions of the Dark Energy EoS considering CPL
parameterisation, by using original data, FFNN and FFNN+MC-DO respectively. Planck-15 point
information is additionally included in the lower panels. 1−3σ confidence intervals are plotted as black
lines.

Using the Monte Carlo dropout method allows to have more information about the
predictions of neural networks through their epistemic estimation of uncertainty. The results
obtained have also contributed to both the methodological and the cosmological analysis
and validate the outputs from the ANNs without this method as they are very similar.

The models generated by the neural networks were produced exclusively from the
data, therefore they offer the possibility of reconstructing cosmological functions without
assumptions about the data distribution and without assuming any cosmological model as a
starting point. From the non-parametric reconstructions produced with the neural networks,
we were able to observe how the Hubble parameter changes as the cosmic chronometers
are at higher redshifts, as suggested by the current Hubble tension. We could also note that
SNeIa are observations very much in accordance with ΛCDM and, in contrast, that ΛCDM
is not the best model to describe f σ8 measurements. Overall, using Bayesian inference on
the CPL and PolyCDM models with the synthetic neural network data, we have observed
that the ΛCDM model does not perfectly match these data and loses some of the advantage
given by the original observations.

It is worth mentioning that the cosmological results obtained in this work are limited
to the current observational used and have been sufficient to show some interesting cos-
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mological features from the data alone. We have shown that our method can be a good
complement to the traditional Bayesian analysis and, moreover, could be applied to other
types of cosmological observations and models. In this way, we can see that the use of
neural networks, from their models created for the data and the generation of synthetic data,
can complement the analysis of cosmological models and improve the interpretations of
their behaviours. We plan to apply similar techniques to other types of cosmological data,
including the complete set of covariance matrices.

Source Model Datasets: CC −2lnLmax

h w0 wa

Original ΛCDM - 0.678±0.039 −− −− 14.502
CPL - 0.703±0.064 −1.223±0.447 −0.061±1.075 14.290
CPL + Planck 0.673±0.046 −0.867±0.326 −0.325±0.824 14.638

FFNN ΛCDM - 0.698±0.057 −− −− 0.176
CPL - 0.703±0.071 −1.072±0.431 −0.179±1.025 0.042
CPL + Planck 0.713±0.059 −0.962±0.337 −0.485±0.890 0.120

FFNN+MC-DO ΛCDM - 0.699±0.063 −− −− 0.346
CPL - 0.689±0.078 −1.014±0.450 −0.227±1.003 0.284
CPL + Planck 0.726±0.063 −1.029±0.355 −0.377±0.897 0.808

Datasets: f σ8 −2lnLmax

h w0 wa σ8

Original ΛCDM - 0.648±0.147 −− −− 0.787±0.115 11.932
CPL - 0.638±0.135 −0.742±0.264 −0.144±0.468 0.777±0.111 11.908
CPL + Planck 0.648±0.062 −0.801±0.229 −0.225±0.254 0.771±0.109 11.944

FFNN ΛCDM - 0.650±0.144 – −− 0.694±0.172 0.292
CPL - 0.648±0.142 −0.701±0.271 −0.290±0.540 0.777±0.111 0.284
CPL + Planck 0.628±0.046 −0.657±0.172 −0.493±0.265 0.756±0.109 0.374

FFNN+MC-DO ΛCDM - 0.651±0.147 −− −− 0.652±0.170 0.984
CPL - 0.632±0.140 −0.674±0.270 −0.156±0.489 0.775±0.110 0.960
CPL + Planck 0.622±0.046 −0.673±0.183 −0.364±0.221 0.756±0.103 1.038

Datasets: JLA −2lnLmax

h w0 wa

Original ΛCDM - 0.638±0.146 −− −− 33.214
CPL - 0.652±0.141 −0.901±0.238 −0.216±0.899 32.354
CPL + Planck 0.695±0.021 −0.880±0.140 −0.606±0.696 30.528

FFNN ΛCDM - 0.645±0.144 −− −− 14.670
CPL - 0.640±0.137 −1.092±0.277 0.287±0.957 13.888
CPL + Planck 0.704±0.025 −1.061±0.178 −0.018±0.811 14.808

FFNN+MC-DO ΛCDM - 0.643±0.142 −− −− 16.446
CPL - 0.641±0.135 −1.037±0.248 −0.245±0.996 16.274
CPL + Planck 0.712±0.026 −0.994±0.165 −0.395±0.802 16.504

Table 5.1: Parameter estimation using Bayesian inference with datasets from different sources: original,
FFNN alone and FFNN using Monte Carlo dropout.

64



CHAPTER 5. NON-PARAMETRIC COSMOLOGICAL RECONSTRUCTIONS 65

Datasets: CC+JLA −2lnLmax

h w0 wa

Original ΛCDM - 0.690±0.030 −− −− 47.822
CPL - 0.687±0.030 −0.980±0.173 −0.156±0.939 47.830
CPL + Planck 0.687±0.018 −0.946±0.137 −0.232±0.592 47.918

FFNN ΛCDM - 0.705±0.037 −− −− 14.846
CPL - 0.695±0.037 −1.010±0.165 0.315±0.715 14.096
CPL + Planck 0.708±0.021 −1.031±0.150 −0.167±0.688 15.478

FFNN+MC-DO ΛCDM - 0.703±0.038 −− −− 16.808
CPL - 0.698±0.039 −0.968±0.155 −0.046±0.859 16.688
CPL + Planck 0.717±0.019 −0.957±0.141 −0.563±0.669 17.252

Datasets: CC+JLA+ f σ8 −2lnLmax

h w0 wa σ8

Original ΛCDM - 0.695±0.032 −− −− 0.795±0.115 60.244
ΛCDM +Planck 0.690±0.013 −− −− 0.790±0.109 60.33
CPL - 0.692±0.029 −0.933±0.086 0.009±0.476 0.763±0.111 59.840
CPL + Planck 0.685±0.015 −0.961±0.057 −0.122±0.194 0.763±0.112 59.832

FFNN ΛCDM - 0.721±0.034 −− −− 0.786±0.117 16.278
ΛCDM +Planck 0.704±0.013 −− −− 0.7500±0.105 19.191
CPL - 0.712±0.032 −0.916±0.065 0.150±0.432 0.786±0.114 15.076
CPL + Planck 0.712±0.015 −0.941±0.057 −0.417±0.246 0.733±0.100 17.044

FFNN+MC-DO ΛCDM - 0.713±0.035 −− −− 0.775±0.116 18.096
ΛCDM +Planck 0.702±0.012 −− −− 0.753±0.100 20.842
CPL - 0.706±0.037 −0.925±0.068 0.222±0.443 0.763±0.105 17.734
CPL + Planck 0.711±0.017 −0.970±0.055 −0.318±0.247 0.723±0.097 19.034

Ω1 Ω2 −2lnLmax

Original PolyCDM - 0.693±0.029 0.089±0.416 0.034±0.302 0.788±0.108 59.832
PolyCDM +Planck 0.696±0.017 0.147±0.238 −0.020±0.071 0.779±0.107 59.972

FFNN PolyCDM - 0.712±0.035 0.110±0.444 0.048±0.302 0.776±0.109 15.186
PolyCDM +Planck 0.736±0.021 0.272±0.194 −0.092±0.058 0.781±0.105 16.422

FFNN+MC-DO PolyCDM - 0.707±0.036 −0.054±0.435 0.134±0.302 0.775±0.114 17.730
PolyCDM +Planck 0.732±0.019 0.173±0.195 −0.062±0.057 0.762±0.105 18.936

Table 5.2: Parameter estimation using Bayesian inference with combinations of datasets from different
sources: original, FFNN alone and FFNN using Monte Carlo dropout.



CHAPTER 6

RECONSTRUCTION OF COVARIANCE MATRIX

6.1 Introduction

This chapter is devoted to the treatment, commented in the Chapter 5, to the reconstruction
of the covariance matrix of a SNeIa compilation dataset and is a further explanation on the
appendix of [5].

Variational autoencoders are widely used in image processing and our developed method
is a first approach to use VAE for numerical purposes and, in particular, to reconstruct
covariance matrices, so further mathematical formality is a pending task.

A covariance matrix has certain similarities with an image file, such as both are two-
dimensional matrices and the neighborhood of points has correlations. In an image, this
neighborhood manifests itself in shapes or colors, i.e., for objects to be recognizable,
between two neighboring points the color or shape does not change drastically. On the
other hand, in covariance matrices the relationship between two points is effectively the
covariance or correlation of the measurements; moreover, they also follow some patterns,
for example, they are symmetric and often the elements of the diagonal (the variance terms)
have higher values than the rest. Because of these similarities, we have proposed that a
neural network, in particular a variational autoencoder (VAE), models a covariance matrix.
We use the binned version of the JLA compilation of SNeIa that has a covariance matrix
C jla ∈ R31×31 related to both statistical and systematic measurement errors [46].
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6.2 Methodology

Our first problem is that, in order to feed a neural network, it is necessary to have a
dataset of covariance matrices, which is difficult when the covariance matrix includes
both systematic and statistical errors. In general, for a given measurement dataset, there
is only one covariance matrix, and these matrices usually include correlations of various
nature, such as experimental calibration. So, is it possible to generate a dataset to train a
neural network that can generate a new covariance matrix for the interpolated measurement
values? Our intention has just been to propose a way to answer this question.

To have a dataset to train our VAE, we generate thousands of matrices by adding
Gaussian noise of the same order of magnitude for each entry of the original covariance
matrix.

The left panel of Figure 6.1 shows the chosen architecture for the VAE, where µ and σ

represent two layers that lie between the last encoder layer and the latent space; in this case
both layers have a single neuron (the same dimension as the latent space). We have used a
batch size of 32 and the hyperbolic tangent as the activation function. For practicality, since
we are interested in mapping the distribution of the distance modulus to the latent space,
we designed the VAE with a 1-dimensional latent space, so its mean µ and variance σ are
also 1-dimensional.

Figure 6.1: VAE architecture designed to generate synthetic covariance matrices from a
point in the latent space.
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With the created dataset of covariance matrices we train the autoencoder over 1000
epochs; the loss function plot (see Eq. 2.28) is shown in the right panel of Figure 6.1.

Once the VAE is trained, we can use the decoder part to generate new covariance
matrices that traverse the latent space. In addition, we can explore the mean and variance
layers by stepping through the entire set of training covariance matrices (Figure 6.2) and
appreciate the distribution of the sampled latent space by variational inference with the
sigma and mean layers (Figure 6.3).

Figure 6.2: Samples of the mean and variance layers.

To generate covariance matrices from the predictions of the modular distances coming
from the FFNNs, using their means and standard deviations we have assigned them a
Gaussian distribution (Figure 6.4). We have related the original measurements to the most
likely region of the latent space, and the deviations from the original measurements can be
linearly mapped to the latent space to generate a new covariance matrix as shown in Figure
6.5. Once the VAE is trained, each element of the training set generates a value in the mean
layer and in the variance layer.

It is worth commenting that if the predicted distance modulus distribution has a larger
deviation from the original measurements, then the VAE sampling method must be adapted
using a larger standard deviation. To illustrate this issue, in the following Python code for
this method, the argument stddev should be incremented as required.
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Figure 6.3: Sampled distribution of the latent space.

Figure 6.4: Comparison between the distributions assigned for the modular distances from
different sources, these distributions are mapped into the latent space to generate a new
covariance matrix with the VAE decoder.

def sampling(args):

z_mean, z_log_sigma = args

epsilon = K.random_normal(shape=(K.shape(z_mean)[0],

latent_dim),

mean=0.0, stddev=0.05)

return z_mean + K.exp(z_log_sigma) * epsilon
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Figure 6.5: Left: Original covariance matrix with systematic errors from JLA compilation (binned version).
Covariance matrices predicted by the VAE (Middle) and VAE with MC-DO (Right).

In summary, with the modulus distance predictions from the FFNN trained with the
JLA SNeIa compilation (previous chapter), we compute the mean and standard deviation
and assume a Gaussian distribution to map it into latent space. Then, using the decoder part
of the VAE we obtain a new covariance matrix (an similar output to that in Figure 6.5).

6.3 Results

The developed method could be used to reconstruct covariance matrices of any origin.
In our particular case, when using it for cosmological observations from supernovae, the
parameter estimation shown in Chapter 6 shows that these matrices were consistent with
the original ones and that they did not have any drawbacks. It is worth mentioning that at
all times, before performing the full Bayesian analysis of the previous chapter, we had to
test several synthetic matrices with Bayesian inference using few data and simple models
to check their consistency.

The covariance matrix used in this work consisted of 31×31 = 961 elements and the
linear arrangement of the VAE layers were effective. However, we could observe that for
higher dimensional covariance matrices it would be necessary to employ convolutional
layers and thus also dabble in the use of convolutional neural networks for numerical
computations. In fact, this is a work on which we are already working.
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CHAPTER 7

FINAL COMMENTS

With the work developed in this thesis, we have noticed that neural networks obtain very
good results in non-linear modeling. Both in the calculation of likelihood and in the
modeling of observational data sets. However, a crucial part is training and validation of
results, especially when the available data sets are not very large.

We have observed that by correctly calibrating neural networks and not using them as
"black boxes", a lot of useful numerical and statistical information can be extracted. In
this way, its incorporation into the traditional Bayesian inference analysis is very useful.
Furthermore, the non-parametric inference obtained with neural networks is also quite
competent.

Regarding the cosmological part, we have discovered the great capacity that neural
networks can offer for data analysis. With the analysis in Chapter 5, some of the current
tensions in cosmology were observed without the need to involve any theoretical models
beforehand. In the future we want to apply these techniques with different cosmological
models to complement other types of analysis that have been carried out so far.

We have a lot of work to do to apply this type of method to more complex data or larger
datasets. Also, the study of covariance matrices under this scheme is just beginning. In
general, we believe that, for the data analysis methods discussed in this thesis, there are
good research opportunities in the too near future.
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LIST OF ABBREVIATIONS

ΛCDM Lambda Cold Dark Matter.

AE Autoencoder.

ANN Artificial Neural Network.

BAO Baryon Acoustic Oscillations.

CC Cosmic chronometers.

CMB Cosmic Microwave Background.

DE Dark Energy.

DO dropout.

FFNN Feed-forward Neural Network.

iid independent and identically distributed.

JLA Joint Light-curve Analysis.

MC-DO Monte Carlo dropout.

MSE Mean Squared Error.

PCA Principal Component Analysis.

RELU Rectified Linear Unit.

SNeIa Supernovae IA.
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