

Neural networks in cosmological data analysis

Isidro Gómez-Vargas¹ and José Alberto Vázquez¹

¹Instituto de Ciencias Físicas, UNAM.

OVERVIEW

We present our recent insights in different cosmological contexts. We show a methodology for neural networks to perform model-independent reconstructions of cosmological functions. In addition, we suggest using genetic algorithms to find their hyperparameters. Furthermore, we include some applications for N-body simulations. Finally, we propose a method to accelerate Bayesian inference using neural networks.

N-BODY SIMULATIONS

Classification and regression applications using information from N-body simulations.

Chacón, J., Gómez-Vargas, I., et al (2023). arXiv:2303.09098. Accepted in Phys. Rev. D.

NEURAL RECONSTRUCTIONS

Model-independent reconstructions for cosmological functions with neural networks and Monte Carlo Dropout for small observational datasets, without any statistical or theoretical assumptions.

ACCELERATING BAYESIAN INFERENCE

We employ neural networks to accelerate the real-time execution of nested sampling. We use dlogz_start as a criterion to start the training of the ANN using only the current set of live points. Optionally, genetic algorithms can generate the first live points or find the ANN architecture.

Pseudocode

```
using_neuralike == False
if livegenetic == True (optional) then
    Define genetic operators Generate a population P with Nind individuals
    Evolve population through Ngen generations
else
    Generate Nlive live points
```


A correct selection of the hyperparameters in a neural network is crucial. A bad neural model could suggest meaningless physical interpretations.

