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Abstract

In this poster, based on the article [1], we briefly introduce the Multi Scalar Field Dark Matter model. Using a modified version of the CLASS code we obtained the evolution of the background, Matter Power Spectrum and CMB Power Spectrum for three potentials
in particular. Also, using a modified version of Monte Python we present the constraints for the scalar field parameters using Ly-alpha, BAO and SN data.

1 Introduction
We know that the ΛCDM model, considered as the standard model of Cosmology, still has problems to solve.
For this, alternatives such as the Scalar Field Dark Matter model have been proposed. However, this model
also has problems. For example, the mass value is different depending on the observations used to constrain
it. To alleviate these discrepancies, in this work, we open up the possibility that dark matter is made up of
different types of scalar fields each with a different potential. We study the background dynamics and the
linear perturbations of the model. As a first approximation we consider the scalar fields are spatially homoge-
neous, real and with no interaction among each other. The evolution is obtained with a modified version of the
CLASS code for the background, mass power spectrum and CMB power spectrum for different combinations
of potentials. We show too the model constraints obtained with a modified version of Monte Python code
using Ly-alpha, BAO and SN data.

2 Background dynamics
We base our analysis on a flat Universe filled up with the standard components: baryons, dark energy in the
form of a cosmological constant (Λ), photons and neutrinos as relativistic species and dark matter (DM). As-
suming a Friedmann-Lemaitre-Robertson-Walker metric, the equations of motion for the background dynamics
are
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ϕ̈i = −3Hϕ̇i − ∂ϕiVi(ϕi) . (1c)

The Klein-Gordon equations (1c), for each of the fields, can be written in a more manageable form by using
the following polar transformation with the potential variables y1i and y2i
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where Ωϕi ≡ κ2ρϕi/3H
2 represents the dimensionless density parameter, and similarly θi is an angular degree

of freedom directly related to the equation of state (EoS) for each one of the fields, wϕi ≡ pϕi/ρϕi = − cos θi.
We focus our study on the following potentials
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and their possible combinations. Then, for each field, the associated Klein-Gordon equation (1c) is represented
by the following set of coupled equations

θ′i = −3 sin θi + y1i , (4a)
Ω′
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with wtot =
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I ΩIwI +
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iΩiwi, where ΩI ≡ κ2ρI/3H
2 and wI = pI/ρI . The prime denotes derivative

with respect to the number of e-folds N = ln a, and for any given variable q we have the relationship q̇ = Hq′.
Where y21i = 4
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H2 − 2λϕiΩϕi and y2i = λϕiy1i. Defining λϕi = 3/κ2f2i we can compress the information of
the three potentials in a single system of equations with λϕi > 0 describe the cosine potential and λϕi < 0
the cosh potential, whereas the quadratic case corresponds to λϕi = 0.

3 Linear density perturbations
We consider the linear perturbations for the scalar fields by expanding the field to the leading order, with
ϕi (x⃗, t) = ϕi (t) +φi (x⃗, t), where ϕi(t) are the background fields and φi are the field linear perturbations. In
Fourier space, the perturbed Klein-Gordon equation for each field is given by
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Following the idea presented for the background, we use a polar variables and the new quantities to rewrite
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where αi and ϑi are the new perturbation quantities and the density contrast is δϕi ≡ δρϕi/ρϕi = δ0i, then
the perturbed Klein-Gordon equation (5) can be rewritten as
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4 Numerical Results
We obtain the background evolution, mass power spectrum (MPS) and CMB power spectrum for different
combinations of potentials, using a modified version of the CLASS code. We use the ratio R = Ωϕ1,0/ΩDM,0
to parameterize the energy density of the scalar fields, where ΩDM,0 = Ωϕ1,0 + Ωϕ2,0 + Ωcdm,0 represents
the current total dark matter contribution from the scalar fields sector. In general for the background, we

found slight differences at early times with respect to ΛCDM, where the oscillations presented could give us
information about how light the scalar fields masses can be. We found too a cut-off at small scales in the mass
power spectrum that differentiates our model from the CDM, and the shape below the cut-off depends on the
multi-field dynamics. Regarding the CMB spectrum, for masses greater than mϕi > 10−26 eV the same CMB
power spectrum is obtained as for ΛCDM regardless of the value of λϕ or R. See Fig. 1 and Fig. 2 for an
example.
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Figure 1: Evolution of the density parameters Ω (left) and the linear matter power spectrum (right) at z = 0, for a double field
model. The potential for both fields is the quadratic one V (ϕ) = 1

2m
2
ϕϕ

2, and R represents the ratio of the fields contribution to
the total DM. The red, cyan, orange and magenta solid curves represent CDM, baryons, dark energy and relativistic species, respec-
tively. As reference, the green, black and blue solid lines represent the evolution for a single scalar field with quadratic potential for
mϕ = 10−24, 10−22 and 10−20 eV respectively.
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Figure 2: The CMB power spectrum (upper panel) and the ratio (lower panel) using ΛCDM as reference (solid red lines),
for V (ϕ1,2) = 1
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5 Cosmological constraints
With the numerical study we found that the main difference throughout the models rests on the mass power
spectrum at small scales, hence we use a modified version of Monte Python code with the 3D matter power
spectrum inferred from Lyman-α data from BOSS and eBOSS collaboration. We also use the Ly-α BAO
from eBOSS DR14, the Galaxy BAO from DR12, 6dFGS and SDSS DR7, and the SNe Ia survey Pantheon to
improve the constraining power. For the interested readers, all references used to develop this work can be seen
in [1]. In Figure 3 we show the posteriors for the combinations V (ϕ1) = 1/2m2

ϕ1ϕ
2
1 with V (ϕ2) = 1/2m2

ϕ2ϕ
2
2,

V (ϕ1) = 1/2m2
ϕ1ϕ

2
1 with V (ϕ2) = m2

ϕ2f
2 [1 + cos(ϕ2/f )] and V (ϕ1,2) = m2

ϕ1,2f
2
[
1 + cos(ϕ1,2/f )

]
.

0 0.0592 0.118 0.177 0.237

Ωφ1

quad1 + quad2

quad1 + cos2

cos1 + cos2

0 0.0597 0.119 0.179 0.239

Ωφ2

-22 -21 -20 -19 -18

log10(mφ1/eV)

-22 -21 -20 -19 -18

log10(mφ2/eV)
1.66 2.58 3.5 4.42 5.34

log10(λφ1)
1.66 2.58 3.5 4.42 5.34

log10(λφ2)

Figure 3: 1D posterior distribution for the two SFDM with the potentials V (ϕ1,2) = 1/2m2
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6 Conclusions
The main result of this work is that adding more scalar fields does not affect the known cosmology. So the
MSFDM can be an alternative candidate to dark matter that can explain the observations at the cosmological
and astrophysical levels. The results presented here can be generalized to a greater number of fields with
different potentials.

References
[1] L. O. Téllez-Tovar, Tonatiuh Matos, and J. Alberto Vázquez. Cosmological constraints on the Multi Scalar

Field Dark Matter model. 12 2021.


