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INTRODUCTION

In this poster we present our recent insights in different cosmological con-
texts. In particular, we show a methodology for using neural networks to

perform model-independent reconstructions of cosmological functions and
a suggested use of genetic algorithms to find their hyperparameters. In
addition, we present a method to speed up a Bayesian inference process
with neural networks.

NEURAL RECONSTRUCTIONS

Model-independent reconstructions for cosmological functions with neu-
ral networks and Monte Carlo Dropout for small observational datasets,

without any statistical or theoretical assumptions.
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T'UNNING WITH GENETIC ALGORITHMS

A correct selection of the hyperparameters in a neural network is crucial.
A bad neural model could suggest meaningless physical interpretations.
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ACCELERATING BAYESIAN INFERENCE

We use neural networks and genetic algorithms to speed up the execu-
tion of real-time nested sampling. Genetic algorithms generate the first
live points to ensure an idea of the maximum likelihood value, and then
neural networks are used to learn the likelihood function and replace its,
sometimes computationally expensive, analytical evaluation.
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Generate the initial live points with GA

for i in range(iteration) do

if dlogz; < dlogz then

Train ANN with live points

if loss function <criterton then
L=LANN

if 1 %oneval == 0 then

Sampling samples with original.

if Originals are similar to neuronals then
| Continue
else
L = »Coriginal
Break
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else
|  continue with NS

end

Example: Around 120,000 likelihood evaluations with 1000 live points.

Il Original likelihood
GA | 1.42% faster
Bl GA+NN dlogz=500 | 55.1 % faster, but very inaccurate.
Bl GA+NN dlogz=100 | 51.6% faster, but inaccurate.
Bl GA+NN dlogz=10 | 40.7 % faster and reasonably similar.
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CONCLUSION

ANNs can be a good complement in the cosmological data analysis,
whether to model data or to optimize computational times. One must be
careful with the selection of its hyperparameters. They are not substitutes
for traditional methods, but they can be an interesting alternative.
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