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1
Roots of equations

Although there were equations like this that could be solved directly, there were many more that

could not. For example, even an apparently simple function such as f(x) = ex − x cannot be

solved analytically. In such instances, the only alternative is an approximate solution technique.

By definition, a function given by y = f(x) is algebraic if it can be expressed in the form

fny
n + fn−1y

n−1 + · · ·+ f1y + f0 = 0 (1.1)

where fi = an ith-order polynomial in x. Polynomials are a simple class of algebraic func-

tions.

A transcendental function is one that is nonalgebraic. These include trigonometric, expo-

nential, logarithmic, and other, less familiar, functions.

f(x) = lnx2 − 1.

1.1 Graphical Methods

To make a plot of the function and observe where it crosses the x axis.

Graphical techniques are of limited practical value because they are not precise. However,

graphical methods can be utilized to obtain rough estimates of roots. (py: roots, sin)
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1. ROOTS OF EQUATIONS

1.2 Bracketing Methods

For a function that typically changes sign in the vicinity of a root. These techniques are called

bracketing methods because two initial guesses for the root are required.

1.3 The Bisection Method

Alternatively called binary chopping, interval halving, or Bolzano’s method. Is a search

method in which the interval is always divided in half.

Suppose f is a continuous function defined on the interval [a, b], with f(a) and f(b) of

opposite sign:

f(a)f(b) < 0

By the Intermediate Value Theorem, there exists a number p in (a, b) with f(p) = 0. We

assume, for simplicity that the root in this interval is unique.

1. Find middle point c = (a+ b)/2.

2. If f(c) == 0, then c is the root of the solution.

3. Else f(c)! = 0

(a) If value f(a) ∗ f(c) < 0 then root lies between a and c. So we recur for a and c

(b) Else If f(b) ∗ f(c) < 0then root lies between b and c. So we recur b and c.

(c) Else given function doesn’t follow one of assumptions.

INPUT: endpoints a, b; tolerance TOL; maximum number of iterations N0

To star the Bisection algorithm, an interval [a, b] must be found with f(a)f(b) < 0. At each

step the length of the interval known to contain a zero of f is reduced by a factor of 2; hence

it is advantageous to choose the initial interval as small as possible.

improvement: For f(x) = 2x3− x2 + x− 1. Starting on [0, 1] instead of [−4, 4] will reduce

by 3 the number of iterations required to achieve a specified accuracy.
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1.3 The Bisection Method

Figure 1.1: Summary of the numericalmethods covered in this course.

1.3.1 Termination criteria

Consider the equation f(x) = x3 + 4x2 − 10 = 0 has a root in [1, 2].

Theorem: Suppose that f ∈ C[a, b] and f(a)f(b) < 0. The Bisection method generates a
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1. ROOTS OF EQUATIONS

sequence {pn}∞n=1 approximating a zero p of f with

|pn − p| ≤
b− a

2n
, when n ≥ 1. (1.2)

(py: exercise) (hw: determine de number of iterations necessary to solve f(x) = x3 + 4x2 −

10 = 0 with accuracy 10−3 - using the code and the theorem.) (hw: same with f(x) = lnx2− 1.

on the interval [0.1, 5]).

To determine which subinterval of [an, bn] contains a root of f , it is better to make use of

the signum function. The test

sign(f(an))sign(f(pn)) < 0 insteadof f(an)f(pn) < 0 (1.3)

gives the same result, but avoids the possibility of overflow or underflow in the multiplication.

The Bisection method, is slow to converge, however it always converges to a solution: thus

it is often used as a starter for the more efficient methods.
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1.4 False-Position Method

Figure 1.2: Possible Issues when using this method.

1.4 False-Position Method

A shortcoming of the bisection method is that, in dividing the interval from a to b into equal

halves, no account is taken of the magnitudes of f(a) and f(b). For example, if f(a) is much

closer to zero than f(b), it is likely that the root is closer to a than to b.

The intersection of this line with the x axis represents an improved estimate of the root. It

is also called the linear interpolation method.

Steps

1. Write equation of the line connecting the two points.

y − f(a) =
f(b)− f(a)

b− a
(x− a) (1.4)
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1. ROOTS OF EQUATIONS

Now we have to find the point which touches x axis. For that we put y = 0. So,

x =
af(b)− bf(a)

f(b)− f(a)
(1.5)

This will be our c that is c = x.

2. If f(c) == 0, then c is the root of the solution.

3. Else f(c)! = 0

(a) If value f(a)f(c) < 0 then root lies between a and c. So we recur for a and c

(b) Else If f(b)f(c) < 0 then root lies between b and c. So we recur b and c.

(c) Else given function doesn’t follow one of assumptions.

For the method of false position, one of the initial guesses may stay fixed throughout the

computation as the other guess converges on the root.

If there’s a stuck, then the function value at the stagnant bound can be divided in half. This

is called the modified false position method.

(hw: how many iterations needed to solve f(x) = x10 − 1? (39?))

(hw: 5 sinx2 − 8 cos5 x = 0 for the root in the interval [0.5,1.5])

(hw: perform the modified false-position method)
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1.5 Open Methods

1.5 Open Methods

The bracketing methods are said to be convergent because they move closer to the truth as the

computation progresses.

Open methods are based on formulas that require only a single starting value of x (or two

starting values) that do not necessarily bracket the root. As such, they sometimes diverge or

move away from the true root as the computation progresses. However, when the open methods

converge, they usually do so much more quickly than the bracketing methods.
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1. ROOTS OF EQUATIONS

1.6 Fixed-Point iteration

A number p is a fixed point for a given function g if g(p) = p.

Root finding problems and fixed-point problems are equivalent classes in the following sense.

Given a root-finding problem f(p) = 0, we can define functions g with a fixed point at p in a

number of ways, for example, g(x) = x − f(x). Conversely, if the function g has a fixed point

at p, then the function defined by f(x) = x− g(x) has a zero at p.

x2 − 2x+ 3 = 0, x =
x2 + 3

2
(1.6)

Fixed point form is easier to analyze.

(here: find the fix points of g(x) = x2 − 2 for −2 ≤ x ≤ 3) (-1, 2)

(py: f(x) = ex − x roots, same as fixed-point of e−x)

Theorem:

1. If g ∈ C[a, b] and g(x) ∈ [a, b] for all x ∈ [a, b], then g has a fixed point in [a, b].

2. If, in addition, g′(x) exists on (a, b) and a positive constant k < 1 exists with

|g′(x)| ≤ k, forall x ∈ (a, b)

then the fixed point in [a, b] is unique.
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1.6 Fixed-Point iteration

Theorem

Let g ∈ C[a, b] be such that g(x) ∈ [a, b] for all x in [a, b]. Suppose, in addition, that g′ exists

on (a, b) and that a constant 0 < k < 1 exists with

|g′(x)| ≤ k for all x ∈ (a, b)

Then, for any number p0 in [a, b], the sequence defined by

pn = g(pn−1), n ≥ 1

converges to the unique fixed point p in [a, b].

To approximate the fixed point of a function g, we choose an initial approximation p0 and

generate the sequence {pn}∞n=0 by letting pn = g(pn−1), for each n ≤ 1. If the sequence converges

to p and g is continuos, the is a solution to x = g(x). Called the fixed-point iteration.
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1. ROOTS OF EQUATIONS

(hw: The equation x3 + 4x2 − 10 = 0 has a unique root in [1, 2]. Use... to find the solution

1.365230013 (how many evaluations?) )

Corollary: If g satisfies the hypotheses of Theorem, the bounds for the error involved in

using pn to approximate p are given by

|pn − p| ≤ max{p0 − a, b− p0}

and

|pn − p| ≤
kn

1− k
|p1 − p0|, for all n ≥ 1.

1.7 Newton’s Method

Newton’s (or the Newton-Raphson) method is one of the most powerful and well-known nu-

merical methods for solving a root-finding problem.

Suppose that f ∈ C2[a, b]. Let x̄ ∈ [a, b] be a approximation to p such that f ′(x̄) 6= 0 and

|p− x̄| is ’small’. Consider the first Taylor polynomial for f(x) expanded about x̄,

f(x) = f(x̄) + (x− x̄)f ′(x̄) +
(x− x̄)2

2
f ′′(ξ(x))

Since f(p) = 0 and |p− x̄| is small

0 ≈ f(x̄) + (p− x̄)f ′(x)

Solving for p gives

p ≈ x̄− f(x̄)

f ′(x̄)
.

This sets the stage for Newton’s method, which starts with an initial approximation p0 and

generates the sequence {pn}∞n=0 by

pn = pn−1 −
f(pn−1)

f ′(pn−1)
, for n ≥ 1.
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1.7 Newton’s Method

INPUT: initial approximation p0; tolerance TOL; maximum number of iterations N . (py:

do it.)

-11-



1. ROOTS OF EQUATIONS

1. Compute values of func(x) and derivFunc(x) for given initial x

2. Compute h: h = func(x) / derivFunc(x)

3. While h is greater than allowed error ε

(a) h = func(x) / derivFunc(x)

(b) x = x - h

Pitfalls

Newton Rahhson may not converge in some cases. Newton Raphson method requires derivative.

Some functions may be difficult to impossible to differentiate. Converges quadratically.
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1.8 Secant

1.8 Secant

By definition

f ′(pn−1) = lim
x→pn−1

f(x)− f(pn−1)

x− pn−1
(1.7)

Letting x = pn−2 (backward differentiate), we have

f ′(pn−1) ≈ f(pn−2)− f(pn−1)

pn−2 − pn−1
=
f(pn−1)− f(pn−2)

pn−1 − pn−2
(1.8)

Using this approximation for f(pn−1) in Newton’s formula

pn = pn−1 −
f(pn−1)(pn−1 − pn−2)

f(pn−1)− f(pn−2)

This technique is called the secant method. Starting with the two initial approximations p0

and p1 (hw: use the secant method and False-position to find a solution x = cosx, p0 = 0.5)

(Brent’s ?)

1.9 Multiple Roots

It can be demonstrated that the Newton-Raphson and secant methods are linearly, rather than

quadratically, convergent for multiple roots.

(hw: resolver con ambos metodos f(x) = x3 − 5x2 + 7x− 3)
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1. ROOTS OF EQUATIONS

Definition: A solution p of f(x) = 0 is a zero of multiplicity m of f is for x 6= p, we can

write f(x) = (x− p)mq(x), where limx→pq(x) 6= 0.

Theorem. f ∈ C1[a, b] has a simple zero at p in (a, b) if and only if f(p) = 0, but f ′(p) 6= 0.

Theorem. The function f ∈ Cm[a, b] has a zero of multiplicity m at p in (a, b) if and only

if

0 = f(p) = f ′(p) = f ′′(p) = · · · = f (m−1)(p), but fm(p) 6= 0.

Consider f(x) = ex − x − 1. Since f(0) = 0 and f ′(0) = 0, but f ′′(0) = 1, f has a zero of

multiplicity two at p = 0.

Method

Define

µ(x) =
f(x)

f ′(x)
.
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1.10 Multi-variable functions

If p is a zero of f of multiplicity m and f(x) = (x− p)mq(x), then

µ(x) =
(x− p)mq(x)

m(x− p)m−1q(x) + (x− p)mq′(x)
(1.9)

= (x− p) q(x)

mq(x) + (x− p)q′(x)
(1.10)

also has a zero at p, and p is a simple zero of µ. Newton’s method can then be applied to µ

to give

g(x) = x− µ(x)

µ′(x)
= x− f(x)/f ′(x)

([f ′(x)]2 − f(x)f ′′(x))/[f ′(x)]2
(1.11)

= x− f(x)f ′(x)

[f ′(x)]2 − f(x)f ′′(x)
(1.12)

Functional iteration to g will be quadratically convergent regardless of the multiplicity of

the zero of f . The only drawback is the additional calculation of f ′′(x).(py: do example)

(hw: solve f(x) = x3 + 4x2 − 10 = 0.)

1.10 Multi-variable functions

Taylor

F (xi+1) ≈ F (xi) +∇F (xi)(xi+1 − xi) (1.13)

1. Solve the linear system J(xi)δ = −F (x) with respect to δ

2. Set xi+1 = xi + δ

(py: do it.) (hw: solve: x2 + xy = 10, y + 3xy2 = 57. )

1.11 Roots of Polynomials

A polynomial of degree n has the form

P (x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0

where the ai’s, called the coefficients of P , are constants and an 6= 0. The zero function P (x) = 0

for all values of x, is considered a polynomial but is assigned no degree.
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1. ROOTS OF EQUATIONS

Fundamental Theorem of Algebra: If P (x) is a polynomial of degree n ≤ 1 with real

or complex coefficients, then P (x) = 0 has at least one (possibly complex) root.

Polynomial Deflation: Remove the found root before proceeding. (here: Divide x2+2x−24

by the factor x− 4.)

When complex roots are possible, the bracketing methods cannot be used because of the

obvious problem that the criterion for defining a bracket does not translate to complex guesses.

Find the real and complex roots of polynomials

Theorem: If z = a + bi is a complex zero of multiplicity m of the polynomial P (x) with

real coefficients, then z̄ = a − bi is also a zero of multiplicity m of the polynomial P (x), and

(x2 − 2ax+ a2 + b2)m is a factor of P (x).

1.12 Muller’s method

Muller’s method takes a similar approach that the secant method, but projects a parabola

through three points

Consider the quadratic polynomial

P (x) = a(x− x2)2 + b(x− x2) + c
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1.12 Muller’s method

that passes through (x0, f(x0)), (x1, f(x1)) and (x2, f(x2)). The constants a, b and c can be

determined from the conditions

f(x0) = a(x0 − x2)2 + b(x0 − x2) + c (1.14)

f(x1) = a(x1 − x2)2 + b(x1 − x2) + c (1.15)

f(x2) = a(0)2 + b(0) + c = c. (1.16)

Then,

c = f(x2) (1.17)

b =
(x0 − x2)2[f(x1)− f(x2)]− (x1 − x2)2[f(x0)− f(x2)]

(x0 − x2)(x1 − x2)(x0 − x1)
(1.18)

c =
(x1 − x2)2[f(x0)− f(x2)]− (x0 − x2)2[f(x1)− f(x2)]

(x0 − x2)(x1 − x2)(x0 − x1)
(1.19)

To determine x3 (a zero of P ), we apply the quadratic formula to P (x) = 0.

x3 = x2 +
−2c

b±
√
b2 − 4ac

(hw: find the roots (4) of 16x4−40x3+5x2+20x+6, with 0.5,−0.5, 0, 0.5, 1.0, 1.5 and 2.5, 2, 2.25.)

Can find imaginary roots. No need to find derivatives.

Other methods: Laguerre’s method, which approximates both real and complex roots and

has cubic convergence, is among the best approaches.

https://docs.scipy.org/doc/scipy/reference/optimize.html
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