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1
Optimization

Root location and optimization are related in the sense that both involve guessing and search-

ing for a point on a function. In fact, some optimization methods seek to find an optima by

solving the root problem: f ′(x) = 0. Optimization typically deals with finding the ’best result’,

or optimum solution, of a problem.

Distinguishing a global from a local extremum can be a very difficult problem for the general

case. In some problems (usually the large ones), there may be no practical way to ensure that

you have located a global optimum.

Single-variable optimization has the goal of finding the value of x that yields an extremum,

either a maximum or minimum of f(x).
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1. OPTIMIZATION

1.1 Golden-Section search

As with bisection, we can start by defining an interval that contains a single answer. That is,

the interval should contain a single maximum, and hence is called unimodal.

Specifically, if in the neighborhood of the minimum we can find three points x0 < x1 < x2

corresponding to f(x0) > f(x1) < f(x2), then there exists a minimum between x0 and x2. To

search for this minimum, we can choose another point x3 between x1 and x2 as shown in the

figure below, with the following two possible outcomes:

If f(x3) = f3a > f(x1), the minimum is inside the interval x3 − x0 = a + c associated with

three new points x0 < x1 < x3, i.e., x2 is replaced by x3. If f(x3) = f3b < f(x1), the minimum

is inside the interval x2 − x1 = b associated with three new points x1 < x3 < x2, i.e., x0 is

replaced by x1.

In either case, the new search interval x3−x0 = a+ c or x2−x1 = b is smaller than the old

one x2 − x0 = a + b, i.e., such an iteration is guaranteed to converge.

We therefore choose x3 in such a way that the two resulting search intervals will always be

the same:

a + c = b, c = b− a

The search interval should always be partitioned into two sections with the same ratio:

a + b

b
=

a + c

a
=

b

a
or

a + b

b
=

b

b− c
=

b

a

we get

a2 + ab− b2 = 0

solving this quadratic equation for a in terms of b we get

a =
−1±

√
5

2
b = (0.618,−1.618)b

This is the golden ratio between the two sections a and b of the search interval.
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1.2 Newton’s

1.2 Newton’s

A similar open approach can be used to fi nd an optimum of f(x) by defining a new function,

g(x) = f ′(x). Thus, we can use the following (py: do it)

xi+1 = xi −
f ′(xi)

f ′′(xi)

http://scipy-lectures.org/advanced/mathematical optimization/index.html

1.3 Multidimentional Optimization

The approaches that do not require derivative evaluation are called nongradient, or direct,

methods. Those that require derivatives are called gradient, or descent (or ascent), methods.

1.4 Direct Methods

1.4.1 Random Search

This simple brute force approach works even for discontinuous and nondifferentiable functions.

Furthermore, it always finds the global optimum rather than a local optimum. Its major short-

coming is that as the number of independent variables grows, the implementation effort required

can become onerous.

More sophisticated search techniques are available. These are heuristic approaches that were

developed to handle either nonlinear and/or discontinuous problems that classical optimization

cannot usually handle well, if at all. Simulated annealing, tabu search, artificial neural networks,

and genetic algorithms are a few. The most widely applied is the genetic algorithm. (here: ver
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1. OPTIMIZATION

notas/art geneticos)

(py: do grid, notas MCMC)

1.5 Gradient Methods

Gradient methods explicitly use derivative information to generate efficient algorithms to locate

optima. – The Gradient, the Hessian.

1.5.1 Steepest Ascent Method

You could walk a short distance along the gradient direction. Then you could stop, reevaluate

the gradient and walk another short distance. By repeating the process you would eventually

get to the top of the hill.

1. determining the ’best’ direction to search

2. determining the ’best value’ along that search direction

(here: ver notas ANN)

(hw: f(x, y) = −8x + x2 + 12y + 4y2 − 2xy using initial guesses x = 0 and y = 0.)
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1.5 Gradient Methods

-5-


	1 Optimization
	1.1 Golden-Section search
	1.2 Newton's
	1.3 Multidimentional Optimization
	1.4 Direct Methods
	1.4.1 Random Search

	1.5 Gradient Methods
	1.5.1 Steepest Ascent Method



