
Numerical Methods

Theory

 10

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000

l(
l+

1
)C

lT
T
/2
!

 (
!

k
2
)

l

"bh
2

0.01 0.04

Observation

 100

 1000

 10000

 0 500 1000 1500 2000 2500 3000

l(
l+

1
)C

lT
T
/2
!

 (
!

k
2
)

l

TT

WMAP
BICEP
QUAD

CBI
ACT
SPT

Compare

−0.4−0.2 0 0.2

0.5 1

−0.02−0.01 0 0.01
Ωk,0

Ω
Λ
,0

−0.4−0.2 0 0.2
0.4
0.6
0.8
1

1.2

ΩX,0

Ω
k,
0

−0.4−0.2 0 0.2

−0.02
−0.01

0
0.01

Ω
Λ,0

0.5 1

−0.02
−0.01

0
0.01

Bayesian
Analysis

José-Alberto Vázquez

ICF-UNAM / Kavli-Cambridge

In progress

August 12, 2021

mailto:javazquez@icf.unam.mx
http://www.kicc.cam.ac.uk/

-ii-

1
Numerical Analysis

• Computer arithmetic is not the same as ’pencil and paper’ arithmetic.

• A hand calculation will usually be short, whereas a computer calculation can involve

millions of steps. Tiny errors that would be negligible in a short calculation can be

devastating when accumulated over a long calculation.

Only rational numbers (not all) can be represented exactly: (py: (
√

3)2)

1.0.1 Example 1

ex = 1 + x+
x2

2!
+
x3

3!
+ · · · (1.1)

Figure 1.1: (hw: WH- Do the table)

1

1. NUMERICAL ANALYSIS

1.0.2 Example 2

The derivative of f at x is defined by

f ′(x) ' f(x+ h)− f(x)

h
≡ ∆hf(x)

Compute f ′(x)|x=1.

Figure 1.2: (hw: WH- Do the table)

1.0.3 Example 3

Solve the system (here: Do it now)

0.780x+ 0.563y = 0.217 (1.2)

0.457x+ 0.330y = 0.127 (1.3)

we get the solution

x = 1.71 y = −1.98

and put them back we get a the rhs 0.00206, 0.00107. And the exact solution should be 1,−1

1.1 Approximations and Round-off Errors

The significant digits of a number are those that can be used with confidence (the known to

be correct). They correspond to the number of certain digits plus one estimated digit. It

is conventional to set the estimated digit at one-half of the smallest scale division on the

-2-

1.2 Accuracy and Precision

measurement device.

Ascertain the significant figures of a number, some cases can lead to confusion: zeros are

not always significant figures because they may be necessary just to locate a decimal point

The numbers 0.00001845, 0.0001845, and 0.001845 all have four significant figures.

The number 45,300 may have three, four, or five significant digits, depending on whether

the zeros are known with confidence.

Numerical methods yield approximate results. we might decide that our approxi-

mation is acceptable if it is correct to certain significant figures.

π, e,
√

7 represent specific quantities, they cannot be expressed exactly by a limited

number of digits: such numbers can never be represented exactly. The omission of the remaining

significant figures is called round-off error. (8.49 universidad)

1.2 Accuracy and Precision

• Accuracy refers to how closely a computed or measured value agrees with the true

value (is governed by the errors in the numerical approximation).

• Precision refers to how closely individual computed or measured values agree with each

other (is governed by the number of digits being carried in the numerical calculations).

• Inaccuracy (also called bias) is defined as systematic deviation from the truth.

• Imprecision (also called uncertainty), on the other hand, refers to the magnitude of the

scatter.

We will use the collective term error to represent both the inaccuracy and the imprecision

of our predictions.

1.3 Errors

(here: Error estimates.ipynb)

1. Errors in the parameters of the problem (units, assumed nonexistent).

-3-

1. NUMERICAL ANALYSIS

2. Algebraic errors in the calculations (assumed nonexistent).

3. Iteration errors.

4. Approximation errors (truncation or round off).

5. Roundoff errors.

True value = approximation + error

rearranging

Et = true value − approximation

something absolute value. Et is designated the ’true’ (absolute) error.

It is not taking into account the order of magnitude, hence, normalize the error to the true

value.

True fractional relative error =
true error

true value
.

The true percent relative error:

εt =
true error

true value
× 100%.

However, in real-world applications, we will obviously not know the true answer a priori.

The error of the approximation

εa =
approximate error

approximation
× 100%.

-4-

1.4 Round-off errors

Certain numerical methods use an iterative approach to compute answers. This process

is performed repeatedly, or iteratively, to successively compute (we hope) better and better

approximations.

εa =
current approximation − previous approximation

current approximation
× 100%.

We are interested in whether the percent absolute value is lower than a prespecified

percent tolerance εs.

|εa| < εs.

It is also convenient to relate these errors to the number of significant figures (n) in the

approximation (Scarborough, 1966).

εs = (0.5× 102−n%)

1.4 Round-off errors

Numbers such as π, e,
√

7 cannot be expressed by a fixed number of significant figures. Therefore,

they cannot be represented exactly by the computer (py: 0.1+0.2).

Computers use a base-2 representation, they cannot precisely represent certain exact base-

10 numbers.

Number Systems. A number system is merely a convention for representing quantities

The base 10 system uses the 10 digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 to represent numbers. For

larger quantities, combinations of these basic digits are used, with the position or place value

specifying the magnitude. For example, if we have the number 86,409 (here: do it base 10) then

we have eight groups of 10,000, six groups of 1000, four groups of 100, zero groups of 10, and

nine more units, or

(8× 104) + (6× 103) + (4× 102) + (0× 101) + (9× 100) = 86409

This type of representation is called positional notation.

-5-

1. NUMERICAL ANALYSIS

The fact that the primary logic units of digital computers are on/off electronic compo-

nents. Hence, numbers on the computer are represented with a binary, or base-2, system.

The number 11 is equivalent to (1 × 21) + (1 × 20) = 2 + 1 = 3 (here: do it), (hw: -175 in

binary)

1.5 Integer representation

The signed magnitude method: the first bit of a word to indicate the sign, with a 0 for

positive and a 1 for negative. The remaining bits are used to store the number. For instance

the number -173 on a 16 bit computer.

Exercise: Determine the range of integers in base-10 that can be represented on a 16-bit

computer. (here: do it) – Cual es el numero mas grande que puede ser escrito en una computa-

dora como estas?

-6-

1.6 Floating-Point Representation.

The first bit holds the sign. The remaining 15 bits can hold binary numbers from 0 to

111111111111111, which is

(1× 214) + (1× 213) + · · ·+ (1× 21) + (1× 20) = 32767

can be simplified to 215 − 1.

Hence, can store decimal integers ranging from -32,767 to 32,767. However, zero is already

defined as 0000000000000000 (1000000000000000, minus zero). The range is from -32,768 to

32,767.

(here: do it.) In a 32 binary digits, the largest integer is 231−1 = 2, 147, 647 and the smallest

−231.

1.6 Floating-Point Representation.

The number is expressed as a fractional part, called a mantissa or significand, and an integer

part, called an exponent or characteristic, as in

m · be

where m the mantissa, b the base of the number system being used, and e the exponent. For

instance, the number 156.78 could be represented as 0.15678 × 103 in a floating-point base-10

system.

The first digit in the mantissa be non-zero (this is called normalization) to avoid ambigu-

ity (1.000× 1000 = 0.100× 1001).

In a 32 binary digits or bits (IEEE Standard), 24 bits are for the mantissa, 8 for the expo-

nent.

The 64-bit : 11bit for the exponent, 52 bit for the mantissa (52 binary corresponds to 16/17

decimal digits.). Larger 2−1023(1 + 2−52) ∼ 10−308, smaller 21024(2 + 2−52) ∼ 10308.

Several aspects of floating-point representation:

-7-

1. NUMERICAL ANALYSIS

• There Is a Limited Range of Quantities That May Be Represented. overflow (goes outside

the range) / underflow (the calculation result is too close to zero) error.

• There Are Only a Finite Number of Quantities That Can Be Represented within the

Range. (here: 0.1 + 0.2)

The actual approximation is accomplished in either of two ways: chopping or round-

ing. The value of π = 3.14159265358 . . . is to be stored on a base- 10 number system

carrying seven significant figures. Therefore, chop off, the eighth and higher terms, as in

π =3.141592, with the introduction of an associated error of

εt = 0.00000065

Rounding yields a lower absolute error than chopping. Computers that use IEEE format

allow 24 bits to be used for the mantissa, which translates into about seven significant base-10

digits of precision1 with a range of about 10−38 to 10−39.

Machine epsilon: The smallest floating point number we can addd to 1.0 and obtain a

floating point results larger than 1.0. εmach = 0.001 = 1.000 × 103 on a 4 digit machine, or

εmach = 0.0005 is it is rounded.

1.7 Arithmetic manipulation of Computer Numbers

1.7.1 Arithmetic Operations

Because of their familiarity, normalized base-10 numbers will be employed to illustrate the effect

of round-off errors on simple addition, etc..

To simplify the discussion, we will employ a hypothetical decimal computer with a 4-digit man-

tissa and a 1-digit exponent. In addition, chopping is used. Rounding would lead to similar

though less dramatic errors.

When two floating-point numbers are added, the mantissa of the number with the

smaller exponent is modified so that the exponents are the same. This has the effect

of aligning the decimal points. This has the effect of aligning the decimal points.

-8-

1.7 Arithmetic manipulation of Computer Numbers

For example, adding 0.1557 · 101 + 0.4381 · 10−1. First

0.4381 · 10−1 → 0.004381 · 101

0.1557 · 101

0.004381 · 101

0.160081 · 101

Because is a computer with a 4-digit mantissa, we’re losing information. Even more dramatic

results would be obtained when the numbers are very close, as in

0.7642 · 103

−0.7641 · 103

0.0001 · 103

which would be converted to 0.1000 · 100 = 0.1000. Thus, for this case, three nonsignificant

zeros are appended.

Multiplication and division are somewhat more straightforward than addition or subtraction.

The exponents are added and the mantissas multiplied.

0.1363 · 103 × 0.6423 · 10−1 = 0.08754549 · 102

the result is normalized

0.08754549 · 102 → 0.8754549 · 101

and chopped to give

0.8754 · 101

Consequently, even though an individual round-off error could be small, the cumulative

effect over the course of a large computation can be significant.

-9-

1. NUMERICAL ANALYSIS

https://numpy.org/doc/stable/user/basics.types.html

see overflow-errors on how errors come out for very long numbers.

1.7.2 Adding a Large and Small Number

Using a hypothetical computer with the 4-digit mantissa and the 1-digit exponent. Adding 4000

and 0.0010

0.4000 · 104

0.0000001 · 104

0.4000001 · 104

which is chopped to 0.4000 · 104. Thus, we might as well have not performed the addition!

(py: Cumulative effect)

1.8 Taylor Series

Then e10 and e−10.

(hw: do it) Use

e−x =
1

ex
=

1

1 + x+ x2

2! + · · ·

the problem was with the algorithm we choose. (py: do it)

Solve the quadratic equation a=1, b=3000.001, c=3. The true roots are x1 = −0.001 and

x2 = −3000 (py: do it)

Here, b2 is much larger than 4ac, so the numerator in the calculation for x1 involves the sub-

traction of nearly equal numbers. To obtain a more accurate four-digit rounding approx

for x1, we change the form of the quadratic formula by rationalizing the numerator

x1 =
−b+

√
b2 − 4ac

2a

(
−b−

√
b2 − 4ac

−b−
√
b2 − 4ac

)
=

b2 − (b2 − 4ac)

2a(−b−
√
b2 − 4ac)

(1.4)

which simplifies to

x1 =
−2c

b+
√
b2 − 4ac

. (1.5)

-10-

https://numpy.org/doc/stable/user/basics.types.html

1.9 Numerical Differentiation

Compute the four roots of x4−4x3+8x2−16x+15.99999999 (hw: do it). is (x−2)2 = ±10−4

and has roots x1 = 2.01, x2 = 1.99. However if the machine epsilon > 10−10 the constant will

be rounded to 16, and the problem would be

(x− 2)4 = 0,

with a 0.5% difference.

1.9 Numerical Differentiation

Finite divided difference:

f ′(xi) =
f(xi+1)− f(xi)

xi+1 − xi
+O(xi+1 − xi) (1.6)

or

f ′(xi) =
∆fi
h

+O(h) (1.7)

∆fi is referred to as the first forward difference and h is called the step size More accu-

rate approximations of the first derivative can be developed by including higher-order terms of

the Taylor series.

Backward Difference Approximation of the First Derivative

The Taylor series can be expanded backward to calculate a previous value on the basis of a

present value

f(xi−1) = f(xi)− f ′(xi)h+
f ′′(xi)

2!
h2 − · · · (1.8)

Truncating this equation after the first derivative and rearranging yields

f ′(xi) '
f(xi)− f(xi−1)

h
=
∇fi
h

first backward difference, where the error is O(h).

Centered Difference Approximation

-11-

1. NUMERICAL ANALYSIS

Subtract eq. (??) from forward Taylor:

f(xi+1) = f(xi) + f ′(xi)h+
f ′′(xi)

2!
h2 − · · · (1.9)

to yield

f(xi+1) = f(xi−1) + 2f ′(xi)h+
2f (3)(xi)

3!
h2 − · · · (1.10)

which can be solved for

f ′(xi) =
f(xi+1)− f(xi−1)

2h
−O(h2) (1.11)

Is a centered difference representation of the first derivative. Notice that the truncation error

is of the order of h2 in contrast to the forward and backward approximations that were of the

order of h.

Halving the step size approximately halves the error of the backward and forward differences

and quarters the error of the centered difference. (py: do it)

Higher Derivatives

We write a forward Taylor series expansion for f(xi+2) in terms of f(xi).

f(xi+2) = f(xi) + f ′(xi)(2h) +
f ′′(xi)

2!
(2h)2 − · · · (1.12)

Eq, (??) can be multiplied by 2 and subtracted from the previous one to give

f(xi+2)− 2f(xi+1) = −f(xi) + f ′′(xi)h
2 − · · · (1.13)

which can be solved for (second forward finite divided difference)

f ′′(xi) =
f(xi+2)− 2f(xi+1) + f(xi)

h2
+O(h) (1.14)

(a backward version)

f ′′(xi) =
f(xi)− 2f(xi−1) + f(xi−2)

h2
+O(h) (1.15)

(a centered version)

f ′′(xi) =
f(xi+1)− 2f(xi) + f(xi−1)

h2
+O(h2) (1.16)

-12-

1.10 Total numerical error

Alternatively can be expressed as

f ′′(xi) =
f(xi+1)−f(xi)

h − f(xi)−f(xi−1)
h

h
(1.17)

The second derivative is a derivative of a derivative.

1.10 Total numerical error

The total numerical error is the summation of the truncation and round-off errors. The trun-

cation error can be reduced by decreasing the step size. (py: in the polynomial, reduce h by

10.)

-13-

	1 Review of Calculus

