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Curve Fitting

Data are often given for discrete values along a continuum. However, you may require estimates

at points between the discrete values.

1. Any individual data point may be incorrect, we make no effort to intersect every point.
Rather, the curve is designed to follow the pattern of the points taken as a group: least-

squares regression.

2. These data are known to be very precise, the basic approach is to fit a curve or a series

of curves that pass directly through each of the points: interpolation.

Two types of applications are generally encountered when fitting experimental data: trend

analysis and hypothesis testing.

e Trend analysis may be used to predict or forecast values of the dependent variable. This
can involve extrapolation beyond the limits of the observed data or interpolation within

the range of the data.

e Hypothesis testing: an existing mathematical model is compared with measured data. If
the model coefficients are unknown, it may be necessary to determine values that best fit
the observed data. Often, alternative models are compared and the ’best’ one is selected

on the basis of empirical observations.



1. CURVE FITTING
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1.1 Simple Statistics

The arithmetic mean () of a sample is defined as the sum of the individual data points (y;)
divided by the number of points (n), or
2 Yi

y= )
n

The most common measure of spread for a sample is the standard deviation (s,) about

the mean

> (Wi —9)°

S =
Y n—1

or the variance:
&2 — >y —9)°
n—1

with n — 1 degrees of freedom.

To compute the standard deviation

2 SR (S w)?/n

v n—1

S

Notice that it does not require precomputation of .



1.2 The Normal Distribution

1.2 The Normal Distribution

The shape with which these data are spread around the mean. A histogram provides a simple

visual representation of the distribution.

If a quantity is normally distributed, the range defined by y — s, to y + s, will encompass
approximately 68 percent of the total measurements. Similarly, the range defined by y —2s, to
y + 2s, will encompass approximately 95 percent.

Because we 7infer” properties of the unknown population from a limited sample, the endeavor
is called statistical inference. Because the results are often reported as estimates of the

population parameters, the process is also referred to as estimation.
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The probability that the true mean of y, u, falls within the bound from L to U is 1 — a.

kurtosis, skewness, etc.

1.3 Interpolation

You will frequently have occasion to estimate intermediate values between precise data points.
For n + 1 data points, there is one and only one polynomial of order n that passes through all

the points.

f((E) :ao+a1x+a2x2+...++an$n’

Polynomial interpolation consists of determining the unique nth-order polynomial that fits

n + 1 data points.



1. CURVE FITTING

(a) (b) (c)

1.3.1 Linear Interpolation

The simplest form of interpolation is to connect two data points with a straight line.

fi(@) = flwo) _ fla1) = f(wo) (1.1)

x — xo 1 —xo

which can be rearranged to yield

fz1) = f(@o0)

— (x — xq), (1.2)
I o

fi(@) = f(zo) +

f1(z) designates that this is a first-order interpolating polynomial

1.3.2 Quadratic Interpolation

If three data points are available, this can be accomplished with a second-order polynomial

(also called a quadratic polynomial or a parabola)

fQ(ZZ?) Zbo+b1(13—xo)—i-bg(l‘—xo)(l‘—l‘l), (13)



1.4 Lagrange Polynomial

can be expressed as

fa(x) = ag + a1z + aza’ (1.4)
where
ang = bg - bll‘o + b21‘01‘1, (15)
aq = bl - bgl‘o — bgl‘l, (16)
Ay = bg. (17)

To determine the values of the coefficients

bo = f(wo), (1.8)
by = M7 (1.9)
r1 — o

f(x2)=f(x1) _ flz1)—f(zo)

by = $2—$1x2 — Tito (1.10)

Similar to the finite-divided-difference approximation of the second derivative.

1.3.3 General Form of Newton’s Interpolating Polynomials
1.4 Lagrange Polynomial

The problem of determining a polynomial of degree one that passes through the distinct points

(z0,y0) and (z1,y1) is the same as approximating a function f for which f(z¢) = yo and

f (581) =Y
We define the functions

(1.11)

and define

P(z) = Lo(x) f(z0) + L1(x) f(x1). (1.12)

To generalize the concept of linear interpolation, consider the construction of a polynomial

of degree at most n that passes through the n + 1 points.



1. CURVE FITTING

First Second Third
x f(x)  divided differences divided differences divided differences
Xo f1Xo] I :
fligyxy) = LEI =] ";1":;*0. l
p
xflxl flxu..rhxz]:f_u%éw
Sl = LT Slxo, X1, X2, X3] = f[xhx;.x_‘-] = f(Xo, X1, Xa)
X=X f[j x]_f[x j} Xy —Xp
) f[le f[1|. X2, x;] = _2_"_:3__;_;__|_'_§_
flxl- X!l = f_[x_‘jl _"f_[le f[x|.x;, X3, X;l = f—-[;r_zl.x_l.'x‘] - f[X1 X I‘]
X3 = X2 ~ [x r] Xe—1,
n flxl Sx2, X3, x4] = %
flxs, xq) = M 1%, X3, X4y X5) = Slx3, x4, x5) = flx3, X3, 24)
Xqg— X3 [j x]_f[x xl Xs — X3
2 f1x) flx3, Xe, X5) = f_‘__.:-:;:g_lL
ey xg) = L1 S
Xg = Xq
x5 fxs)
YA y
y=f
n=f(x) T
Y=/
= T = P(x
yo = flxp) y (x) T
K not M =
Theorem: If xy,z;,...,2, are n + 1 distinct numbers and f is a function whose values

are given at these numbers, then a unique polynomial P(z) of degree at most n exists with
f(z) = P(xy), for each £k =0,1,...,n.
The polynomial is given by

k=0



1.5 Splines

where, for each £k =0,1,... n.

(@ —2o)(@ — 1) - (& — 2p—1)(F — Tpy1) - (¥ — @)
(xr —xo) (@) — 1) -+ (T — 1) (@ — Thogr) - -+ (T — 1)

n

= I === (1.15)

Th —Ti
i=0,i#£k k v

Ly (z) (1.14)

for cases where the order of the polynomial is unknown, the Newton method has advantages
because of the insight it provides into the behavior of the different-order formulas. Lagrange
version is somewhat easier to program. Because it does not require computation and storage of
divided differences, the Lagrange form is often used when the order of the polynomial is known

a priori.

1.5 Splines

In the previous sections, nth-order polynomials were used to interpolate between n 4+ 1 data
points. An alternative approach is to apply lower-order polynomials to subsets of data points.

Such connecting polynomials are called spline functions.

1.6 Quadratic Splines

The objective in quadratic splines is to derive a second-order polynomial for each interval

between data points. The polynomial for each interval can be represented generally as
fi(z) = a;z® 4+ bz + ¢,

For n 4+ 1 data points, there are n intervals and, consequently, 3n unknown constants to
evaluate. Therefore, 3n equations or conditions are required to evaluate the unknowns. These

are:
1. The function values of adjacent polynomials must be equal at the interior knots.

ai_1$?_1+bi_1ci_1+ci_1 = f(-Ti—l) (116)

aixl{l —|—bixi,1 +c = f(iifl). (117)

for i = 2 to n. Because only interior knots are used, each equation provides n—1 conditions

for a total of 2n — 2 conditions.



1. CURVE FITTING

If f€C'a,b)and xo, ..., x, € [a, b] are distinct, the unique polynomial of least degree
agreeing with f and f' at xg, ..., x, is the Hermite polynomial of degree at most 2n + |
given by

Hyny(x) = Z fx;)Hy j(x) + Z f'(x)Hy (),
j=0 j=0

where
H, j(x) = [1 = 2(x — x;)L,, ;(x))IL} ;(x)
and

Hy j(x) = (x = x;)L} (x).

In this context, L, ;(x) denotes the jth Lagrange coefficient polynomial of degree n de-
fined in Eq. (3.2).
Moreover, if f € C**?[a, b], then

(x =x0)%...(x = x5 )°
(2n +2)!

f(x) = Hyppi(x) 4 fE ),

for some & witha < £ < b, n

2. The first and last functions must pass through the end points.

alx% +bzo+er = flxo) (1.18)
anmi +opxn +en = flzn) (1.19)
(1.20)

total of 2n — 2 + 2 = 2n conditions.

3. The first derivatives at the interior knots must be equal.

2a;_11;_1 +bi_1 = 2a;xi_1 + b; (121)



1.6 Quadratic Splines

for i = 2 to n. This provides another n — 1 conditions for a total of 2n +n —1=3n — 1.

Because we have 3n unknowns.
4. Assume that the second derivative is zero at the first point.

a; = 0. (1.22)



1. CURVE FITTING

o y
flx) ay~ + byx + ¢

y
A + bax + 3

.
ax” + bx + ¢

flx)
flxy)

Interval 1 Interval 2 Interval 3

1.6.1 Bilinear Interpolation

1.7 Least-Squares Regression

Where substantial error is associated with data, polynomial interpolation is inappropriate and

may yield unsatisfactory results when used to predict intermediate values.

A more appropriate strategy for such cases is to derive an approximating function that fits

the shape or general trend of the data without necessarily matching the individual points.

One way to do this is to derive a curve that minimizes the discrepancy between the data
points and the curve. A technique for accomplishing this objective, called least- squares regres-

sion

1.7.1 Linear Regression

The simplest example of a least-squares approximation is fitting a straight line to a set of paired

observations

Yy=ap+arxr+e

-10-



1.7 Least-Squares Regression
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The error, or residual, is the discrepancy between the true value of y and the approximate

value, predicted by the linear equation.
There are several criteria to minimize of the residual errors.
Minimize the sum of the squares of the residuals between the measured y and the y calculated

with the linear model

n n

n
2 2 2
Sr = § € = E (yi,measured - yi,model) = E (yz —ap — alxi)
i=1 =1

i=1

Determining the values of ag and a; that minimizes this equation.

1.7.2 Least-Squares Fit of a Straight Line

oS,
dag = —22(%‘ —ap — a1z;) (1.23)
95,
day = _22[(% —ap — a12;)T] (1.24)

Setting these derivatives equal to zero will result in a minimum S,..

-11-



1. CURVE FITTING

0 = Zyz — Zao — Zalxi (125)
0 = Zyixi — Zaoxi — Zalx?] (1.26)

Now, realizing that > ag = nag

nag + a1 (Z xl> = Zyl (1.27)
ag (Z mi> + ay (Z a:f) Zyixi (1.28)

These are called the normal equations, and can be solved simultaneously

YTy = YT )Y
ny o — (3 xi)?

ayp =

and

ag =Y — a1T.

This is called the maximum likelihood principle in statistics.

The standard error of the estimate

S
n—2

Sy/z =
quantifies the spread around the regression line. This concept can be used to quantify the
”goodness” of our fit.

The difference between the two quantities, Sy — S, quantifies the improvement or error

reduction due to describing the data in terms of a straight line rather than as an average value.

St = X2 (yi — 9)°]

Sy — S
2 t r
rT = St

2 is called the coefficient of determination and r is the correlation coefficient For a

where 7
perfect fit, S, = 0 and r = 1, signifying that the line explains 100 percent of the variability of

the data. For r =0, S, = S; and the fit represents no improvement.

-12-



1.7 Least-Squares Regression

S, : Spread around the mean

S, Spread around the regression line

Pearson correlation coefficient

ny wiyi — Qo m) (X vi)
Ve — ()2 vl — (Cv)?)

0.4 0 0.4 0.8
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1.7.3 Linearization of Nonlinear Relationships

In some cases, techniques such as polynomial regression, are appropriate. For others, transfor-
mations can be used to express the data in a form that is compatible with linear regression.

One example is the exponential model

y=ae”

Another example of a nonlinear model is the simple power equation

-13-



1. CURVE FITTING

y = aza’

E=Y (y-be™), inthecaseof Eq. (84), Iny=Inb+ax, inthecaseof Eq (8.4),

or and

E=

s

| (= bx{)’,  inthe case of Eq. (8.5). Iny=1Inb+alnx, inthe case of Eq.(8.5).

No exact solution to either of these systems in a and b can generally be found.

¥ = o el

(a) (b)

Linearization

Linearization

log v x

Slope = 8,

‘ Z -

Intercept = log «,

(d) (e) (b)

Slope = 8,

Intercept = In a,

1.7.4 Polynomial Regression

The least-squares procedure can be readily extended to fit the data to a higher-order polynomial.

For example, suppose that we fit a second-order polynomial or quadratic

y:a0+a1x+a2x2—|—e

n

n

2 2\2

S, = E e; = E (yi — ap — a1; — agxy)
i=1

i=1

-14-



1.7 Least-Squares Regression

oS,

Dag = =2 E (yi —ao —ar1x; — a2xi2)
oSy Z

aal = —2 [(yl —ap — a1x; — G/Zx?)xi]
oS,

s = -2 E (yi —ao — a12; — (12%2)%2]

nag + a1 (Z xz) + (Z 2ay =
ao (Z xl> + a1 (Z x?) + (Z xf)ag =
ag (Z wf) +ay (Z J;f’) + (Z tHay =

Z Yi
Z YiZsg

(1.29)
(1.30)

(1.31)

(1.32)
(1.33)

(1.34)

The coeflicients of the unknowns can be calculated directly from the observed data. And in

general, for a polynomial of order n, we have : (py: the quadratic case in HW.)

EI +H|Zx +agZx 4 +anix{‘:

i=] i=] i=]

“(]Z-xf‘Jf‘“IZx -lez +auz =

i=1 i=] fml|

i=1

1.7.5 Multiple Linear Regression

Two or more independent variables

Yy=y=ap+a1r+ axxr2+e

m
0
S

i=]

=Y il

f=|

m
>yl

=1

For this two-dimensional case, the regression ”line” becomes a ”plane”.

-15-



1. CURVE FITTING
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1.8 Pade

A rational funcion r of degree N has the form

()

where p(z) and ¢(x) are polynomial whose degrees sum to N. The rational function whose

() p(z)

Q

numerator and denominator have the same or nearly the same degree generally produce ap-

proximation results superior to polynomial methods for the same amount of computation effort.

Suppose r is a rational function of degree N = n + m of the form

r(z) = p(x) _ potprz+---+paz”
q(x) g+ qr -+t gpam

that is used to approximate a function f on a closed interval I containing zero.

The Pade approximation technique, which is the extension of Taylor polynomial ap-
proximation to rational functions, choses the N + 1 parameters so that f*)(0) = (*)(0), for
each k =0,1,...,N. When n = N and m = 0, the Pade approximation is just the Nth Maclau-
rin polynomial.

Consider de difference

e pla) @) —ple) S S gt = S
@) =r@) = 1) =5 e 4@

and suppose f has the Maclaurin series expansion f(z) = E;’io a;z*. Then
Dic0 @it Yty ¢iwt — Yo pi’

q(x)

f(x) —r(z) =

-16-



1.8 Pade

The object is to choose the constants ¢;, qo, - .., ¢y and po, p1, ..., pn so that

F®0) —r®0) =0 for each k =0,1,...,N.

So, the rational function for Pade approximation results from the solution of the NV + 1

linear equations
k
Zaiqk—i:pka k:0717N
i=0

in the N + 1 unknowns q1, o, - - - ¢m, Po, P1; - - - Pn-

(here: do it) The Maclaurin series expansion for e™* if » > (_nl!)n z". To find the Pade

approximation to e™” of degree 5 with n = 3 and m = 2, we need to choose:

2,3
(l—x+%—g+-")(1+'?|x+t?2x2)—(P0+P1I+P212+p3-¥3)-

Expanding and collecting terms produces

’ . L2 =0 i s —qia@=p
x7: —e——t —q1 — zq2= 0, Pz T q1+g2= P2
120 T 247 T T 2
! : Lot + 2 0 : 1+ p
X" -z =q2 = U, x . - 1 = P1s
24 6‘2! 20 q
1 1
3 . 0. _
x” —— 4+ =g — 7 = P3; x“ 1 = Do
6 2?1 q P3
giving
{ 3 3 1 2 and o = 1
Po = 'Pl-—"-g. p2_20' pP3 = 60" q:—ss 02—20-
x e~ Ps(x) le™ — Ps(x)| r(x) le™™ — r(x)|
0.2 0.81873075 0.81873067 8.64 x 10~ 0.81873075 7.55 x 10~°
0.4 0.67032005 0.67031467 5.38 x 10~ 0.67031963 4.11 x 1077
0.6 0.54881164 0.54875200 5.96 x 10~5 0.54880763 4.00 x 10~¢
0.8 0.44932896 0.44900267 3.26 x 1077 0.44930966 1.93 x 103
1.0 0.36787944 0.36666667 1.21 x 1072 0.36781609 6.33 x 1073

So the Pade approximation is (py: do it)

_3 3.2 _ 1.3
L 60~

r(z) =
(@) 1+ 2z + a2

-17-



1. CURVE FITTING

(hw: Determine all degree 3 Pade approximations for f(x) = xIn(x + 1). Compare the
results at x; = 0.2¢ for ¢ = 1,2,3,4,5 with the actual values f(z;))
Although the rational-function approximation gave results superior to the polynomial approxi-
mation of the same degree, the approximation has a wide variation in accuracy. This accuracy
variations is expected because the Pade approximation is based on a Taylor polynomial repre-

sentation, and the Taylor representation has a wide variation of accuracy.

Suppose we want to approximate the function f by an N—th degree rational function r

written in the form

o ZZ:O P Tl (1’)

= h N = d =1
EZL:() qka(a:) where n—+m and qq

r(z)

Writing f (x) in a series involving Chebysheyv polynomials as
o0
fx) =" aTx)
k=0

gives

oo n
Zk:(} PrTr(x)

_ — T _
Fex) = rx) ;—.:0: aTi(n) - P

or

Y reo@rTe(x) 20 o qeTi(x) — 3 p_o PeTe(x)
D i Gk Te(x) '

f(x)—rx) =
& 5]

f(x) = Zakn(x).
k=0

then the orthogonality of the Chebyshev polynomials implies that

1 1
w=t [ LD 4 and a=2 [ LDEO

T Joy A1 = x? m ) 1 =x2

where k > 1.

Figure 1.1: Summary of the .

-18-



1.8 Pade

Ps(x)[To(x) + g, Ti(x) + g2T2(x)] — [poTo(x) + p1T1(x) + paTa(x) + paTa(x)].

Using the relation (8.18) and collecting terms gives the equations

+0.005474T,(x) = 0,000543T5(x),

Ps(x) = 1.266066Ty(x) = 1.1303187,(x) + 0.271495T;(x) = 0.044337T3(x)

Ty : 1.266066 — 0.565159g, + 0.1357485g2 = py,
Ty : —1.130318 + 1.401814q, — 0.587328g, = p,,
T 0.271495 — 0.587328q, + 1.268803g; = pa,
7y : —0.044337 4 0.138485q, — 0.565431q; = p3,
Ty : 0.005474 — 0.022440g, + 0.135748g, = 0,
Ts :  —0.000543 + 0.002737g; — 0.022169g, = 0.

The solution to this system produces the rational function

1.055265T) (x) — 0.613016T; (x) + 0.077478T (x) — 0.0045067(x)

rr(x) = To(x) + 0.3783317)(x) + 0.022216T>(x)
Figure 1.2: Summary of the numerical methods covered in this course.
0977787 — 0.599499x + 0.154956x* — 0.018022x">

rr(x) = 0.977784 4 0.378331x 4 0.044432x2 '

X e rix) le™* = r(x)] rr(x) [e™ = rr(x)
0.2 0.81873075 0.81873075 7.55 x 10~° 0.81872510 5.66 x 107°
04 0.67032005 0.67031963 4.11 x 1077 0.67031310 6.95 x 1076
0.6 0.54881164 0.54880763 4.00 x 107 0.54881292 1.28 x 106
0.8 0.44932896 0.44930966 1.93 x 10°% 0.44933809 9.13 x 107¢
1.0 0.36787944 0.36781609 6.33 x 1079 0.36787155 7.89 x 1076

-19-
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Orthogonal Polynomials and Least

Squares Approximation

Suppose f € C[a,b] and that a polynomial P,z of degree at most n is requires that will minimize

the error

b
[ 1#@) = Puo)Pdo )

To determine a least squares approximating polynomial; that is, a polynomial to minimize

this expression, let
n
Po(2) = apx™ 4+ ap_12" 4 -+ a1z +ap = Z apzh, (2.2)
k=0
and define,

_ — ’ _ - k i
e =ce(agp,ay,...,an) —/ (f(x) Zakx ) dx. (2.3)
a k=0

Let II,, be the set of all polynomials of degree at most n.

21



2. ORTHOGONAL POLYNOMIALS AND LEAST SQUARES
APPROXIMATION

The problem is to find real coefficients ag, a,, . . ., a, that will minimize E. A neces-
sary condition for the numbers ag, a,, ..., a, to minimize E is that

dE

— =0, foreach j=0,1,....n.
aﬂj d

Hence, to find P,(x), the (n + 1) linear normal equations

n ] b
Zakf Xt dx = f x’ f(x)dx, foreach J=0.1,..., n, (8.6)
k=0 a a

must be solved for the (n + 1) unknowns a;. The normal equations always have a unique
solution provided f € Cla, b]. (See Exercise 15.)

929-



If {¢o(x), P1(x), ..., du(x)) is a collection of linearly independent polynomials in [],,
then any polynomial in [], can be written uniquely as a linear combination of ¢y(x),

¢|(x.l'u ooy Pa(X). .

An integrable function w is called a weight function on the interval / if w(x) > 0, for all
x in [, but w(x) # 0 on any subinterval of /. .

Suppose {¢o, @1, ..., ¢x) is a set of linearly independent functions on [a,b], u' is a
weight function for [a, b), and, for f € C[a, b], a linear combination

P(x) =) au(x)
=0
is sought to minimize the error

b n 2
E(ag, ..., a,) =f w(x)[f{x) -zﬂuﬁ{ﬂ] dx.

k=)

This problem reduces to the situation considered at the beginning of this section in the
special case when w(x) = 1 and ¢y (x) = x*, foreachk =0,1,...,n.
The normal equations associated with this problem are derived from the fact that for

each j=0,1,...,n,

aE b n
0=-—= 2[ w(x)[fu} - ):am{x)]qb,m dx.
4j o k=0

-23-



2. ORTHOGONAL POLYNOMIALS AND LEAST SQUARES
APPROXIMATION

The system of normal equations can be written

b ’
[ w(x)f(x)p;(x) dx = Zm[ w(x)dg(x)p;(x)dx, for j=0,1.....n.
il

va k=0

If the functions ¢y, ¢, . .., ¢, can be chosen so that

’ 0, hen j # k
f w{xw.uw,cz)dml when J # X, (8.7)

a; >0, whenj =k,

then the normal equations reduce to
b

b
f w(x) f(x)g;(x) dx = "’f w(x)[¢; () dx = aja,,
foreach j = 0,1, ..., n, and are easily solved to give
1 b
a; = —f w(x) f(x)¢;(x) dx.
@; Ja
Hence the least squares approximation problem is greatly simplified when the functions

do.dr, ..., ¢, are chosen to satisfy the orthogonaliry condition in Eq. (8.7). The remainder
of this section is devoted to studying collections of this type.

-24-



Table 10.3  Orthogonal Polynomials Generated by Gram-Schmidt Orthogonalization
ofu,(x)=x",n=0,1,2,...

Weighting
Polynomials Interval function wix) Standard normalization
] 3 2
Legendre ~1<x<1 1 P, dx = ——
gen X f_ll (X)) dx a1
1
Shifted Legend 0<x<1 1 P ()P dx =
ifte gendre X .l;[ W ()] dx ]
1 T 2
B 212 [Tn(x)] _|miz. m#0
Chebyshev 1 l=x =<1 (1=x") .L1ﬁ::ﬂﬂidx . n=0
L) m/2 n=0
Shifted Chebyshev I 0=x<1 x(1—x))1/2 "—d.r:{ '
! bt I b x(1 =x)]'/2 . n=0
! n
Chebyshev 11 “1<x<]1 (1—x3H1/2 f (U (P =2 Py = 3
_ch. 2
Laguerre O=x<no et f [Lyx)]<e " dx =1
0
oo [
Associated Laguerre 0 <x <00 ake=x f Ly Pk e™ dx = e ;;Hl
i nng ] !
Hermite —00 <X <00 e f [H,,{.t)lzr"' dx = 2" 2y

o0
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2. ORTHOGONAL POLYNOMIALS AND LEAST SQUARES
APPROXIMATION
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Fourier Approximations

Fourier approximation represents a systematic framework for using trigonometric series for this

purpose. We will use the cosine

f(t) = AO + Cl COS(’wot + 0)

For a function f € C[~m, ), we want to find the continuous least squares approxi-
mation by functions in 7, in the form

a n=|
,I, Su(x) = - + @, COS X + Z(“* COSkx + by sinkx).
I — l 2 el
| 1
1 2 s
; - P P oo Since the set of functions {¢y, ¢y, ... , ¢-1) is orthogonal on (-, 7] with respect to

w(x) = 1, it follows from Theorem 8.6 that the appropriate selection of coefficients is

l h
= ﬂk=;[ f(x)coskx dx, foreachk=012... n,

=
A\ By sin (aqgt)

0N / and

\}/ A, cos (@)

1 I
=u|r b;c=—f f(x)sinkx dx, foreachk=12...,n~1
ﬂ' -

()
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3. FOURIER APPROXIMATIONS

To determine the trigonometric polynomial from 7;, that approximates
f(x)=|x|, for —m <x <m,

requires finding

1 n 1 0 1 " 2 n
ap = — x| dx = —— xdx + — xdx = — xdx =m,
nJon T Jon T Jo T Jo

1 " 2 [ 2
ak:;[ |x|coskxdx=—-f xcoskxdx:;}—z[{-—l)k—l],

7 T Jo

foreachk =1,2,... , n, and

l m
b :—f |x|sinkx dx =0, foreachk=1,2,...,n-1.
w ).

m

2 Oa (- 1)k -1
S,,[x):-g—ju—z%mskx.

T = )

Figure 3.1: Summary of the numericalmethods covered in this course.

3.1 Least-Squares Fit of a Sinusoid

Thus, our goal is to determine coefficient values that minimize

S, = Z{% [A 4 A cos(wot) + By sin(wot;)]}>

or

PR o
2

A = NZ cos(wot) (3.2)
2

B, = NZysm wot) (3.3)
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3.1 Least-Squares Fit of a Sinusoid

N Ycos(wyl) 2sin(wyl) Ay
Ycos(wyl) Scos*(wyl) Ycos(wyl) sin(wyl) | § A,
Ssin(wylt) 2 cos(wyl) sinfwyl) Ssin’ (wot) By

P

= ¢ 2ycos(wyl)
2y sin(wgl)

5
A, = =3 v cos( jwyt)
N = { Jey,

-
B,= —Svysin( jwy)
N = (Jeoy

!

The least squares trigonometric polynomial is, consequently,

2
[
S3(z) = |:-§E + ay cos 3z 4 E (ay cos kz + by sin kz):| s
k=1

where

ay =

-

9
S r(i+ %)coskzj, fork =0,1,2,3,
J=0

and

9
by = é;f(l +;—j)sinkzj. fork = 1,2.
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3. FOURIER APPROXIMATIONS

Error Match of Number of
Associated  Individual Points Matched Programming
Method with Data Data Points  Exactly Effort Comments
Regression
linear regression Large Approximate 0 Easy
Polynomial regression large Approximate 0 Moderate Round-off emor becomes pro-
nounced for higher-order versions
Muliiple linear regression  large Approximate 0 Moderate
MNeorlinear regression large Approximate 0 Difficult
Interpclation
MNewton's Small Exact n+ 1 Easy Usually preferred for exploratory
divideddifference analyses
palynomials
logrange polynomials Small Exact n+ 1 Easy Usually preferred when order
is known
Cubic splines Small Exact Piecewise fit of Moderate First and second derivatives equal
data points at knots
Interpretation
Methed Formulation Graphical Errors
Linear y=a+ aix y
regression nZxy — Zx 2y
where o) = ——————-
nZx — (Ex
Gy=Yy—ax
Polynomial y=a+ax+:+anx"
regression [Evaluation of a's equivalent to solution
of m + 1 linear algebraic equations)
Multiple Yy =g+ auq + o+ On¥n
linear [Evaluation of as equivalent to solution
regression of m + 1 linear algebraic equations)
Newon's hlx = bo + bilx — xdl + balx — xollx — x) ¥ L)
ddet . where by = fx) R = b sl — sl l
difference by = flxi, %] or
interpolatin by = fixs, x1, %0
pgmol? |f[ 2 %1, %] . By = x— xgllx — x][x — Xzflr[’fa- X3, %1, X
lagrange B X—x\ x—x ¥y Fm[ﬂ
interpolating hlx = ﬂx:’](xo _ x1)(,¢0 _ Xz) R = Ix— xllx — x)lx— x3) 3
polynomial™ or
x = X = x
)
X| — Xo/\X — X2

Cubic splines

RIS
Xy T X S\Xp T
A cubic:
ax’ + bl + cx + d,
is fit o each interval between knots.

First and second derivatives are
equal at each knot

-

YV a, ¥ ebyxt+c,x+d,

knot

3% + by x? + x4 dy

X

Rz = 1x = o)l = 31} (x = xalf 33, 2, 31, 0]
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