Numerical Methods

José-Alberto Vázquez

ICF-UNAM / Kavli-Cambridge
In progress
August 12, 2021

Review of Calculus

Definition: A function f defined on a set X of real numbers has the limit L at x_{0}, written

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} f(x)=L, \tag{1.1}
\end{equation*}
$$

if, given any real number $\epsilon>0$, there exists a real number $\delta>0$ such that $|f(x)-L|<\epsilon$, whenever $x \in X$ and $0<\left|x-x_{0}\right|<\delta$.

Definition: Let f be a function defined on a set X of real numbers and $x_{0} \in X$. Then f is continuos at x_{0} if

$$
\begin{equation*}
\lim _{x \rightarrow x_{0}} f(x)=f\left(x_{0}\right), \tag{1.2}
\end{equation*}
$$

The function is continuous on the set X if it is continuous at each number in X.
$C(X)$ denotes the set of all functions that are continuous in X.

Definition: Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be an infinite sequence of real or complex numbers. The sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ has the limit \mathbf{x} (converges to \mathbf{x}) if, for any $\epsilon>0$, there exists a positive integer $N(\epsilon)$ such that $\left|x_{n}-x\right|<\epsilon$, whenever $n>N(\epsilon)$. The notation

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=x, \quad \text { or } \quad x_{n} \rightarrow x \quad \text { as } \quad n \rightarrow \infty \tag{1.3}
\end{equation*}
$$

means that the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ converges to x.

Theorem: If f is a function defined on a set X of real numbers and $x_{0} \in X$, then the following statements are equivalent:

- f is continuous at x_{0}
- If $\left\{x_{n}\right\}_{n=1}^{\infty}$ is any sequence in X converging to x_{0}, then $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=f\left(x_{0}\right)$.

Definition: Let f be a function defined in an open interval containing x_{0}. The function f is differentiable at x_{0} if

$$
\begin{equation*}
f^{\prime}\left(x_{0}\right)=\lim _{x \rightarrow x_{0}} \frac{f(x)-f\left(x_{0}\right)}{x-x_{0}} \tag{1.4}
\end{equation*}
$$

exists. The number $f^{\prime}\left(x_{0}\right)$ is called the derivative of f at x_{0}. A function that has a derivative at each number in a set X is differentiable on X. The derivative of f at x_{0} is the slope of the tangent line to the graph of f at $\left(x_{0}, f\left(x_{0}\right)\right)$.

Theorem: If the function f is differentiable at x_{0}, then f is continuous at x_{0}.
The set of all function that have n continuous derivatives on X is denoted $C^{n}(X)$.

The next theorems are of fundamental importance in deriving methods for error estimation.

Rolle's Theorem

Suppose $f \in C[a, b]$ and f is differentiable on (a, b). If $f(a)=f(b)$, then a number c in (a, b) exists with $f^{\prime}(x)=0$.

Mean Value Theorem

If $f \in C[a, b]$ and f is differentiable on (a, b), then a number c in (a, b) exists with

$$
\begin{equation*}
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} . \tag{1.5}
\end{equation*}
$$

Extreme Value Theorem

If $f \in C[a, b]$, then $c_{1}, c_{2} \in[a, b]$ exist with $f\left(c_{1}\right) \leq f(x) \leq f\left(c_{2}\right)$, for all $x \in[a, b]$. In addition, if f is differentiable on (a, b), then the numbers c_{1} and c_{2} occur either at the endpoints of $[a, b]$ of where f^{\prime} is zero.

Definition: The Riemann integral of the function f on the interval $[a, b]$ is the following limit, provided it exists:

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{\max \Delta x_{i} \rightarrow 0} \sum_{i=1}^{n} f\left(z_{i}\right) \Delta x_{i} \tag{1.6}
\end{equation*}
$$

where the numbers $x_{0}, x_{1}, \ldots, x_{n}$ satisfy $a=x_{0} \leq x_{1} \leq \ldots \leq x_{n}=b$, and where $\Delta x_{i}=$ $x_{i}-x_{i-1}$, for each $i=1,2, \ldots, n$ and z_{i} is arbitrarily chosen in the interval $\left[x_{i-1}, x_{i}\right]$.

Every continuous function f on $[a, b]$ is Riemann integrable on $[a, b]$. This permits us to choose, for computational convenience, the points x_{i} to be equally spaced in $[a, b]$, and for each
$i=1,2, \ldots, n$, to choose $z_{i}=x_{i}$. In this case,

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow 0} \frac{b-a}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \tag{1.7}
\end{equation*}
$$

where the numbers are $x_{i}=a+i(b-a) / n$.

Weighted Mean Value Theorem for Integrals

Suppose $f \in C[a, b]$, the Riemann integral of g exists on $[a, b]$, and $g(x)$ does not change sign on $[a, b]$. Then there exists a number c in (a, b) with

$$
\begin{equation*}
\int_{a}^{b} f(x) g(x) d x=f(c) \int_{a}^{b} g(x) d x \tag{1.8}
\end{equation*}
$$

When $g(x)=1$, is the usual Mean Value Theorem for Integrals. It gives the average value of the function f over the interval $[a, b]$ as

$$
\begin{equation*}
f(c)=\frac{1}{b-a} \int_{a}^{b} f(x) d x \tag{1.9}
\end{equation*}
$$

Intermediate Value Theorem

If $f \in C[a, b]$ and K is any number between $f(a)$ and $f(b)$, then there exists a number in (a, b) for which $f(c)=\mathrm{K}$.

Example: $x^{5}-2 x^{3}+3 x^{2}-1=0$ has a solution in the interval $[0,1]$?
Consider

$$
\begin{equation*}
f(0)=-1<0<1=f(1) \tag{1.10}
\end{equation*}
$$

and f is continuous, then the Intermediate Value Theorem implies that a number x exists with $0<x<1$, for which $x^{5}-2 x^{3}+3 x^{2}-1=0$.

Taylor's Theorem

Suppose $f \in C^{n}[a, b]$, that $f^{(n+1)}$ exists on $[a, b]$, and $x_{0} \in[a, b]$. For every $x \in[a, b]$, there exists a number $\xi(x)$ between x_{0} and x with

$$
\begin{equation*}
f(x)=P_{n}(x)+R_{n}(x), \tag{1.11}
\end{equation*}
$$

where
$P_{n}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2!} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}+\cdots+\frac{1}{n!} f^{(n)}\left(x_{0}\right)\left(x-x_{0}\right)^{n}=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}$
and

$$
\begin{equation*}
R_{n}(x)=\frac{f^{(n+1)}(\xi(x))}{(n+1)!}\left(x-x_{0}\right)^{n+1} \tag{1.13}
\end{equation*}
$$

Here $P_{n}(x)$ is called the nth Taylor polynomial for f about x_{0}, and $R_{n}(x)$ is called the remainder term (or truncation error) associated with $P_{n} x$. In the case $x_{0}=0$, the Taylor polynomial is often called a Maclaurin polynomial.

The term truncation error refers to the error involved in using a truncated, or finite, summation to approximate the sum of an infinite series.

