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1
Ordinary Differential Equations

1.0.1 Euler’s Method

d2θ

dt2
+
g

L
sin θ = 0.

dy

dt
= f(t, y), a ≤ t ≤ b, y(a) = α

We make the stipulation that the mesh points are equally distributed throughout the interval

[a, b].

ti = a+ ih i = 0, 1, 2, ..., N

The common distance between the points h = (b− a)/N is called the step size.

We use Taylor’s theorem to derive Euler’s method.

y(ti+1) = y(ti) + (ti+1 − ti)y′(ti) +
(ti+1 − ti)2

2
y′′(ξi)

Since h = ti+1 − ti and y(t) satisfies the differential equation

yt+i = y(ti) + hf(ti, y(ti)) +
h2

2
y′′(ξi)

Euler’s method constructs wi ≈ y(ti) by deleting the remainder term.

w0 = α (1.1)

wi+1 = wi + hf(ti, wi), for i = 0, 1, ...N − 1. (1.2)
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1. ORDINARY DIFFERENTIAL EQUATIONS

1.0.2 Extending Euler

Since Euler’s method was derived by using Taylor’s theorem with n = 1, we extend this tech-

nique to n.

dy

dt
= f(t, y), a ≤ t ≤ b, y(a) = α

y(ti+1) = y(ti) + hy′(ti) +
h2

2
y′′(ti) + · · ·+ hn

n!
y(n)(ti) + g(ξ)

Substituting

y(ti+1) = y(ti) + hf(ti, y(ti)) +
h2

2
f ′(ti, y(ti)) + · · ·+ hn

n!
f (n−1)(ti, y(ti)) + g(ξ)
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1.1 Runge-Kutta Methods

1.0.3 Taylor method of order n

w0 = α (1.3)

wi+1 = wi + hT (n)(ti, wi) (1.4)

where

T (n)(ti, wi) = f(ti, wi) +
h

2
f ′(ti, wi) + · · ·+ hn−1

n!
f (n−1)(ti, wi)

1.1 Runge-Kutta Methods

The disadvantage of Taylor is requiring the computation and evaluation of the derivatives of

f(t, y). Runge-Kutta methods have the high-order local truncation error while eliminating the

need to compute and evaluate derivatives of f(t, y).
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1. ORDINARY DIFFERENTIAL EQUATIONS

The first step in deriving a Runge-Kutta is to determine a1f(t+α1, y+β1) that approximates

T (2)(t, y) = f(t, y) +
h

2
f ′(t, y)

Since,

f ′(t, y) =
df

dt
(t, y) =

∂f

∂t
(t, y) +

∂f

∂y
(t, y)y′(t) and y′(t) = f(t, y)

this implies

T (2)(t, y) = f(t, y) +
h

2

∂f

∂t
(t, y) +

h

2

∂f

∂y
(t, y)f(t, y)

Expanding f(t+ α1, y + β1) in Taylor

a1f(t+ α1, y + β1) = a1f(t, y) + a1α1
∂f

∂t
(t, y) + a1β1

∂f

∂y
(t, y) + a1R1 (1.5)

Matching the coefficients of f , gives

a1 = 1, a1α1 =
h

2
, a1β1 =

h

2
f(t, y)

Therefore

a1 = 1, α1 =
h

2
, β1 =

h

2
f(t, y)

So,

T (2)(t, y) = f

(
t+

h

2
, y +

h

2
f(t, y)

)
−R1(O(h2))

1.1.1 Midpoint Method

w0 = α (1.6)

wi+1 = wi + hf

(
ti +

h

2
, wi +

h

2
f(ti, wi)

)
(1.7)

The most appropriate four-parameter form for approximating

T (3)(t, y) = f(t, y) +
h

2
f ′(t, y) +

h2

6
f ′′(t, y)

is

a1f(t, y) + a2f(t+ α2, y + δ2f(t, y))
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1.2 Adaptative Runge-Kutta Methods

1.1.2 Modified Euler Method

Given the flexibility of choosing parameters, a1 = a2 = 1
2 and α2 = δ2 = h

w0 = α (1.8)

wi+1 = wi +
h

2
[f(ti, wi) + f(ti+1, wi + hf(ti, wi))] (1.9)

1.1.3 Heun’s Method

a1 = 1
4 , a2 = 3

4 and α2 = δ2 = 2
3h

w0 = α (1.10)

wi+1 = wi +
h

4
[f(ti, wi) + 3f(ti +

2

3
h,wi +

2

3
hf(ti, wi))] (1.11)

Both are classified as Runge-Kutta methods of order two.

1.1.4 RK-4

Figure 1.1: fig1

1.2 Adaptative Runge-Kutta Methods

Methods that have been presented so far employ a constant step size. For a significant number

of problems, this can represent a serious limitation.
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1. ORDINARY DIFFERENTIAL EQUATIONS

Figure 1.2: figure

Adaptive methods that adjust step size can give great advantage because they ’adapt’ to

the solution’s trajectory. Implementation of such approaches requires that an estimate of the

local truncation error (LTE) be obtained at each step, which serves as a basis for adjusting step

size.

(Remember the Richardson interpolation). The local truncation error (LTE) is estimated as

the difference between two predictions using different- order Runge-Kutta methods.
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1.3 Multi-step methods

Figure 1.3: fig 2

1.3 Multi-step methods

The methods of Euler, Heun, and Runge-Kutta that have been presented so far are called single-

step methods, because they use only the information from one previous point to compute the

successive point After several points have been found, it is feasible to use several prior points

in the calculation. This is the basis of multistep methods.
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1. ORDINARY DIFFERENTIAL EQUATIONS

A desirable feature of multistep methods is that the local truncation error (LTE) can be

determined and a correction term can be included, which improves the accuracy of the answer

at each step. Also, it is possible to determine if the step size is small enough to obtain an

accurate value for yi+1, yet large enough so that unnecessary and time-consuming calculations

are eliminated.

1.3.1 Derivation

Integrate

y′(x) = f(x, y(x))

fron xi to xi+2 to get

∫ xi+2

xi

y′(x)dx =

∫ xi+2

xi

f(x, y)dx (1.12)

y(xi+2)− y(xi) = (1.13)

yi+2 − yi = (1.14)

Now the step-size h = xi+2 − xi+1 = xi+1 − xi, gives xi+2 − xi = 2(xi+1 − xi) = 2h.

if we approximate the integral by Simpson’s 1/3 rule

∫ xi+2

xi

f(x, y)dx =
xi+2 − xi

6
(f(xi, yi) + 4f(xi+1, yi+1) + f(xi+2, yi+2)).

This is a two-step method rather than a one-step method.

1.3.2 General Form of Linear Multi-step Methods (LMMs)

Given a sequence of equally spaced step levels xi = x0 + ih with step size h, the general k-step

LMM can be written as

k∑
j=0

αjyi+j = h

k∑
j=0

βjfi+j

with fi ≡ f(xi, yi), and parameters αj and βj . Given the approximate solution up to xi+k−1

we obtain the approximate solution yi+k at the new step level xi+k

-8-



1.3 Multi-step methods

If βk = 0 then the scheme is explicit since yi+k can be evaluated directly without the need

to solve yi+k. If βk 6= 0 the scheme is implicit since we need to solve yi+k each step.

Note that to get started, the k-step LMM needs to the first k step levels of the approximate

solution, y0, y1, ...yk−1 to be specified. The ODE IVPs only give so something extra has to be

done.

1.3.3 Adams-Bashforth Formulas

Rewrite a forward Taylor series expansion

yi+1 = yi + hfi +
h2

2!
f ′i +

h3

3!
f ′′i + · · ·

and a 2nd-order backward expansion

fi−1 = fi − hf ′i +
h2

2!
f ′′i +R3

can be used to approximate the derivative, and we get the 2nd-order Adams-Bashforth

formula

yi+1 = yi +
3h

2
fi −

h

2!
fi−1 +

5h3

12
f ′′i +O(h4)

Higher-order Adams-Bashforth formulas can be developed by substituting higher-difference

approximations into eqn

yi+1 = yi + h

n−1∑
k=0

βkfi−k +O(hn+1)

Using the same technique as Adams-Bashforth (but using the backward Taylor series ex-

pansion around xi+1)
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1. ORDINARY DIFFERENTIAL EQUATIONS

yi+1 = yi +
h

2
(fi + fi+1)− h3

12
f ′′i +O(h4)

and in general

yi+1 = yi + h
n−1∑
k=0

βkfi+1−k +O(hn+1)

1.3.4 Milne’s method

Milne’s method is based on Newton-Cotes integration formulas and uses the three-point Newton-

Cotes open formula as a predictor

y0i+1 = ymi−3 +
4h

3
(2fmi − fmi−1 + 2fmi−2)

and the three-point Newton-Cotes closed formula (Simpson’s 1/3 rule) as a corrector

yji+1 = ymi−1 +
h

3
(fmi−1 + 4fmi + f j−1i+1 )

where j is an index representing the number of iterations of the modifier.
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1.4 Variable Step-Size Multistep Methods

1.4 Variable Step-Size Multistep Methods
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1. ORDINARY DIFFERENTIAL EQUATIONS

1.5 Higher-Order Equation and Systems of Differential

Equations

An mth-order system of first-order initial-value problem has the form

du1
dt

= f1(t, u1, u2, . . . , um), (1.15)

du2
dt

= f2(t, u1, u2, . . . , um), (1.16)

. (1.17)

dum
dt

= fm(t, u1, u2, . . . , um). (1.18)

(1.19)

for a ≤ t ≤ b, with the initial conditions

u1(a) = α1, u2(a) = α2, . . . , um(a) = αm

Let an integer N > 0 be chosen and set h = (b − a)/N . Partition the interval [a, b] into N

subintervals with the mesh points

tj = a+ jh, for each j = 0, 1, . . . , N.
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1.6 The shooting Method

For the initial conditions, set

w1,0 = α1, w2,0 = α2, . . . , wm,0 = αm

Suppose that the values w1,j , w2,j , . . . , wm,j have been computed. We obtain w1,j+1, w2,j+1, . . . , wm,j+1

by first calculating

k1,i = hfi(tj , w1,j , w2,j , . . . , wm,k) for each i = 1, 2, . . . ,m (1.20)

k2,i = hfi

(
tj +

h

2
, w1,j +

1

2
k1,1, w2,j +

1

2
k1,2, . . . , wm,k +

1

2
k1,m

)
(1.21)

k3,i = hfi

(
tj +

h

2
, w1,j +

1

2
k2,1, w2,j +

1

2
k2,2, . . . , wm,k +

1

2
k2,m

)
(1.22)

k4,i = hfi (tj + h,w1,j + k3,1, w2,j + k3,2, . . . , wm,k + k3,m) (1.23)

(1.24)

and then

wi,j+1 = wi,j +
1

6
(k1,j + 2k2,i + 2k3,i + k4,i)

for each i = 1, 2, . . . ,m.

(py: Double-pendulum, Lorentz)

1.6 The shooting Method

The shooting method is based on converting the boundary-value problem into an equivalent

initial-value problem. A trial-and-error approach is then implemented to solve the initial-value

version.
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