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1
Linear Systems

This chapter deals with simultaneous linear algebraic equations that can be represented gener-

ally as

1.0.1 The graphical method

A graphical solution is obtainable for two equations by plotting them on Cartesian coordinates

with one axis corresponding to x1 and the other to x2.

a11x1 + a12x2 = b1 (1.1)

a21x1 + a22x2 = b2 (1.2)

Both equations can be solved for x2:

x2 = −
(
a11
a12

)
x1 +

b1
a12

(1.3)

x2 = −
(
a21
a22

)
x1 +

b2
a22

(1.4)
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1. LINEAR SYSTEMS

Thus, the equations are now in the form of straight lines; that is, x2 = (slope) x1 + intercept.

These lines can be graphed on Cartesian coordinates with x2 as the ordinate and x1 as the

abscissa. The values of x1 and x2 at the intersection of the lines represent the solution.

Example

3x1 + 2x2 = 18 (1.5)

−x1 + 2x2 = 2 (1.6)

For three simultaneous equations, each equation would be represented by a plane in a three-

dimensional coordinate system. The point where the three planes intersect would represent the

solution.

By a sequence of operation, a linear system can be transformed to a more easily solved

linear system that has the same solutions.

E1 : x1 + x2 + 3x4 = 4,
E2 : 2x1 + x2 − x3 + x4 = 1,
E3 : 3x1 − x2 − x3 + 2x4 = −3,
E4 : −x1 + 2x2 + 3x3 − x4 = 4,
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will be solved for x1, x2, x3 and x4. We use E1 to eliminate the unknown x1 from E2, E3

and E4 by performing (E2 − 2E1) → (E2), (E3 − 3E1) → (E3) and (E4 + E1) → (E4). The

resulting system is

E1 : x1 + x2 + 3x4 = 4,
E2 : − x2 − x3 − 5x4 = −7,
E3 : − 4x2 − x3 − 7x4 = −15,
E4 : + 3x2 + 3x3 + 2x4 = 8,

In the new system, E2 is used to eliminate x2 from E3 and E4 by performing (E3 = 4E2)→

(E3) and (E4 + 3E2)→ (E4)

E1 : x1 + x2 + 3x4 = 4,
E2 : − x2 − x3 − 5x4 = −7,
E3 : 3x3 + 13x4 = 13,
E4 : − 13x4 = −13,

The system of equations is now in triangular (or reduced) form and can be solved for

the unknowns by a backward-substitution process. The solution is therefore x4 = −1, x2 =

2, x3 = 0 and x4 = 1.

The only variation from system to system occurred in the coefficients of the unknowns and

in the values on the right side. For this reason, a linear system is often replaced by a matrix.

Definition: An n×m matrix is a rectangular array of elements with n rows and m columns.

The notation for an n×m matrix will be capital letter such as A for the matrix and lowercase

letter with double subscripts, such as aij to refer to the entry at the intersection of the ith row

and jth columns.

A = aij =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm


The 1× n matrix

A =
[
a11 a12 · · · a1n

]
is called an n-dimensional row vector, and an n× 1 matrix
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1. LINEAR SYSTEMS

A =


a11
a21
...
an1


is called an n-dimensional column vector.

An n× (n+ 1) matrix can be used to represent the linear system

a11x1 + a12x2 + · · ·+ a1nxn = b1, (1.7)

a21x1 + a22x2 + · · ·+ a2nxn = b2, (1.8)

...
... (1.9)

an1x1 + an2x2 + · · ·+ annxn = bn, (1.10)

by first constructing

A =


a11 a12 · · · a1m
a21 a22 · · · a2m
...

...
. . .

...
an1 an2 · · · anm

 and b =


b1
b2
...
bn


and then combining these matrices to form the augmented matrix

[A, b] =


a11 a12 · · · a1m

... b1

a21 a22 · · · a2m
... b2

...
...

. . .
...

...
...

an1 an2 · · · anm
... bn


So the matrix in the example:


1 1 0 3

... 4

2 1 −1 1
... 1

3 −1 −1 2
... −3

−2 2 3 −2
... 4

→


1 1 0 3
... 4

0 −1 −1 −5
... −7

0 0 3 13
... 13

0 0 0 −13
... −13


The procedure involved is called Gaussian elimination with backward substitution.

The general Gaussian procedure: first form the augmented matrix Ã
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Ã =


a11 a12 · · · a1n

... a1,n+1

a21 a22 · · · a2n
... a2,n+1

...
...

. . .
...

...
...

an1 an2 · · · ann
... an,n+1


Provided a11 6= 0, the operations corresponding to (Ej−(aj1/a11)E1)→ (Ej) are performed

for each j = 2, 3, · · · , n to eliminate the coefficient of x1 in each of these rows. With this

in mind, we follow the sequential procedure for i = 2, 3, · · · , n and perform the operation

(Ej − (aji/aii)Ei)→ (Ej) for each j = i+ 1, i+ 2, · · · , n.

The resulting matrix has the form

˜̃A =


a11 a12 · · · a1n

... a1,n+1

0 a22 · · · a2n
... a2,n+1

...
...

. . .
...

...
...

0 · · · · · · 0 ann
... an,n+1


where the values of aij are not expected to agree with those in the original matrix Ã. For

these linear system, a backward substitution can be performed. Solving the nth equation for

xn gives

xn =
an,n+1

ann

Solving the (n− 1)st equation for xn−1 and using xn yields

xn−1 =
an−1,n+1 − an−1,nxn

an−1,n−1

Continuing this process, we obtain

xi =
ai,n+1 − ai,nxn − ai,n−1xn−1 − · · · − ai,i+1xi+1

aii
=
ai,n+1 −

∑n
j=i+1 aijxj

aii

for each i = n− 1, n− 2, · · · , 2, 1.

The Gaussian elimination procedure can be presented more precisely

The procedure will fail if one of the elements a
(1)
11 , a

(2)
22 , a

(3)
33 , · · · , a

(n−1)
n−1,n−1, a

(n)
nn is zero because

the step (
Ei −

a
(k)
i,k

a
(k)
kk

Ek

)
→ Ei

cannot be performed.
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1. LINEAR SYSTEMS

Example:

E1 : x1 − x2 + 2x3 − x4 = −8,
E2 : 2x1 − 2x2 − 3x3 − 3x4 = −20,
E3 : x1 + x2 + x3 = −2,
E4 : x1 − x2 + 4x3 + 3x4 = 4,

Ã = Ã(1) =


1 −1 2 −1

... −8

2 −2 3 −3
... −20

1 1 1 0
... −2

1 −2 4 3
... 4


and performing the operations

(E2 − 2E1)→ (E2), (E3 − E1)→ (E3), and (E4 − E1)→ (E4)

gives

Ã(2) =


1 −1 2 −1

... −8

0 0 −1 −1
... −4

0 2 −1 1
... 6

0 0 2 4
... 12


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Since a
(2)
22 , called the pivot element, is zero, the procedure cannot continue in its present

form. Since a
(2)
32 6= 0, the operation (E2)↔ (E3) is performed to obtain a new matrix

Ã(2)
′

=


1 −1 2 −1

... −8

0 2 −1 1
... 6

0 0 −1 −1
... −4

0 0 2 4
... 12


Ã(3) will be Ã(2)

′

, and the computations continue with the operation (E4 + 2E3) → (E4),

giving

Ã(2)
′

=


1 −1 2 −1

... −8

0 2 −1 1
... 6

0 0 −1 −1
... −4

0 0 0 2
... 4


Finally, the backward substitution is applied

x4 =
4

2
= 2, (1.11)

x3 =
[−4− (−1)x4]

−1
= 2, (1.12)

x2 =
[6− x4 − (−1)x3]

2
= 3, (1.13)

x1 =
−8− (−1)x4 − 2x3 − (−1)x2

1
= −7, (1.14)

If a
(k)
pk = 0 for each p, it can be shown (Thm) that the linear system does not have a unique

solution and the procedure stops.

The first system has an infinite number of solutions, and the second leads to a contradiction,

hence no solution exists.

https://numpy.org/doc/stable/reference/routines.linalg.html

https://docs.scipy.org/doc/scipy/reference/linalg.html

(hw: from a geometrical standpointx1 +2x2 = 3, 2x1 +4x2 = 6. Using Gaussian elimination

with backward sustitution: 4x1 − x2 + x3 = 8, 2x1 + 5x2 + 2x3 = 3, x1 + 2x2 + 4x3 = 11.

)
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1. LINEAR SYSTEMS

First we require (n−i) divisions. The replacement of Ej by (Ej−mijEi) requires (n−i)(n−

i+1) multiplications. Then each term is subtracted, which requires (n−i)(n−i+1) subtractions.

Multiplications/divisions

(n− i) + (n− i)(n− i+ 1) = (n− i)(n− i+ 2)

Additions/subtractions

(n− i)(n− i+ 1)

Multiplications/divisions

n−1∑
i=1

(n− i)(n− i+ 2) =
2n3 + 3n2 − 5n

6

Additions/subtractions

n−1∑
i=1

(n− i)(n− i+ 1) =
n3 − n

3
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For the backward substitution, requires (n− i) multiplications and (n− i− 1) additions for

each summation term, and one subtraction and one division.

Multiplications/divisions

1 +

n−1∑
i=1

((n− i) + 1) =
n2 + n

2

Additions/subtractions

n−1∑
i=1

((n− i− 1) + 1) =
n2 − n

2

Giving a total number

Multiplications/divisions

2n3 + 3n2 − 5n

6
+
n2 + n

2
=
n3

3
+ n2 − n

3

Additions/subtractions

n3 − n
3

+
n2 − n

2
=
n3

3
+
n2

2
− 5n

6

1.0.2 Gauss-Jordan

The GJ method requires: Multiplications/divisions

n3

3
+

3n2

2
− 5n

6

Additions/subtractions
n3

2
− n

2

(hw: make a table comparing the required operation for n = 3, 10, 50, 100. Which method

requires less computation?)
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1. LINEAR SYSTEMS

(hw: solve:

0.003000x1 + 59.14x2 = 59.17 (1.15)

5.291x1 − 6.130x2 = 46.78 (1.16)

)

1.1 Pivoting Strategies

To reduce roundoff error, it is often necessary to perform row interchanges even when the pivot

elements are not zero. If a
(k)
kk is small in magnitude compared to a

(k)
jk , the magnitude of the

multiplier

mjk =
a
(k)
jk

a
(k)
kk

will be much larger that 1. Also, when performing the backward substitution.

The linear system

0.003000x1 + 59.14x2 = 59.17 (1.17)

5.291x1 − 6.130x2 = 46.78 (1.18)
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1.1 Pivoting Strategies

has exact solution x1 = 10.00 and x2 = 1.000. Performing (E2 − m21E1) → (E2) and the

appropriate rounding gives

0.003000x1 + 59.14x2 = 59.17 (1.19)

−104300x2 = −104400 (1.20)

The disparity in the magnitudes of m21a13 and a23 has introduced roundoff error, but the

roundoff error has not yet been propagated. Backward substitution yields

x2 = 1.001,

and

x1 ≡
59.17− (59.14)(1.001)

0.003000
= −10.00,

To avoid this problem, pivoting is performed by selecting a larger element a
(k)
pq for the pivot

and interchanging the kth and qth columns, if necessary. We determine the smallest p ≥ k such

that

|a(k)pk |maxk≤i≤n|akik|,

and perform (Ek)↔ (Ep).

Consider the same example. The pivoting procedure just described results in first finding

max
{
|a(1)11 |, |a

(1)
21 |
}

= max{|0.003000|.|5.291|} = |5.291| = |a(1)21 |.

The operation (E2)↔ (E1) is then performed to give the system

5.291x1 − 6.130x2 = 46.78 (1.21)

0.003000x1 + 59.14x2 = 59.17, (1.22)

which reduces to

5.291x1 − 6.130x2 = 46.78 (1.23)

59.14x2 = 59.14 (1.24)

The correct values x1 = 10.00 and x2 = 1.000. This technique is called partial pivoting

or maximal column pivoting.
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1. LINEAR SYSTEMS

1.2 Linear Algebra and Matrix Inversion

Equal matrices, sum, multiplication by scalar, matrix product, transpose,

An upper-triangular n× n matrix U = (uij) has, for each j = 1, 2, · · · , n, the entries

uij = 0, for each i = j + 1, j + 2, · · · , n

and a lower-triangular matrix L = (lij) has, for each j = 1, 2, · · · , n, the entries

lij = 0, for each i = j + 1, j + 2, · · · , n

An n× n matrix A is said to be nonsingular (or invertible) if an n× n matrix A−1 exist

with AA−1 = A−1A = I. The matrix A−1 is called the inverse of A.

If we have the inverse of A, we can easily solve a linear system of the form Ax = b.

 1 2 −1
2 1 0
−2 1 2

x1x2
x3

 =

2
3
4


and then multiply both sides by the inverse, gives the solution x1 = 7/9, x2 = 13/9 and

x3 = 5/3.

Even though it is easier to solve a linear system of the form Ax = b if A−1 is known, it is not

computationally efficient to determine A−1 in order to solve the system.

To determine the inverse of the matrix

 1 2 −1
2 1 0
−2 1 2


let us first consider the product AB, where B is an arbitrary 3× 3 matrix.
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1.3 Matrix Factorization

Notice that the coefficients in each of the systems of equations are the same, the only change

in the systems occurs on the right side of the equations, therefore


1 2 −1

... 1 0 0

2 1 0
... 0 1 0

−2 1 2
... 0 0 1


First performing (E2 − 2E1)→ (E2) and (E3 +E1)→ (E3), followed by (E3 +E2)→ (E3)

produces


1 2 −1

... 1 0 0

0 −3 2
... −2 1 0

0 3 1
... 1 0 1

 and


1 2 −1

... 1 0 0

0 −3 2
... −2 1 0

0 0 3
... −1 1 1


Backward substitution gives (three systems of eqns.)

A−1 =

− 2
9

5
9 − 1

9
4
9 − 1

9
2
9

− 1
3

1
3

1
3


As we saw in that example, it is convenient to set up a larger augmented matrix, [A

...I].

Upon performing the elimination in accordance, we obtain an augmented matrix of the form

[U
...L].

1.3 Matrix Factorization

The steps used to solve a system of the form Ax = b can be used to factor a matrix. The

factorization is particularly useful when it has the form A = LU .

If A has been factored into the triangular form A = LU , then we can solve for x more easily

by using a two-step process. First we let y = Ux and solve the system Ly = b for y. Since

L is triangular, determining y from this equation requires only O(n2) operations. Once y is

known, the upper triangular system Ux = y requires only an additional O(n2) to determine

the solution x. Then, the number of operations is reduced from O(n3) to O(n2).
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1. LINEAR SYSTEMS

The linear system

x1 + x2 + 3x4 = 4,
2x1 + x2 − x3 + x4 = 1,
3x1 − x2 − x3 + 2x4 = −3,
−x1 + 2x2 + 3x3 − x4 = 4,

The system can be converted to the triangular system

x1 + x2 + 3x4 = 4,
− x2 − x3 − 5x4 = −7,

3x3 + 13x4 = 13,
− 13x4 = −13,

The multipliers mij and the upper triangular matrix produce the factorization

A =


1 1 0 3
2 1 −2 1
3 −1 −1 2
−1 2 3 −1

 =


1 0 0 0
2 1 0 0
3 4 1 0
−1 −3 0 1




1 1 0 3
0 −1 −1 −5
0 0 3 13
0 0 0 −13

 = LU

A matrix A is positive definite if its symmetric and if xtAx > 0 for every n-dimensional

vector x 6= 0.

The matrix A is positive definite if and only if A can be factored in the form LDLt, where

L is lower triangular with 1’s on its diagonal and D is a diagonal matrix with positive diagonal

entries.
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1.4 Iterative techniques in Matrix Algebra

The matrix A is positive definite if and only if A can be factored in the form LLt, where

L is lower triangular with nonzero diagonal entries.

They offer computational advantages because only half the storage is needed and, in most cases,

only half of the computation time is required for their solution.

1.4 Iterative techniques in Matrix Algebra

1.4.1 Gauss-Seidel

Suppose that for conciseness we limit ourselves to a 3 × 3 set of equations. The equations to

solve yield (Ax = b):

x1 =
b1 − a12x2 − a13x3

a11
(1.25)

x2 =
b2 − a21x1 − a23x3

a22
(1.26)

x3 =
b3 − a31x1 − a32x2

a33
(1.27)

Now, we can start the solution process by choosing guesses for the x’s. A simple way to obtain

initial guesses is to assume that they are all zero. These zeros can be substituted into Eqs.

which can be used to calculate a new value for x1 = b1/a11. Example:

3x1 − 0.1x2 − 0.2x3 = 7.85
0.1x1 + 7x2 − 0.3x3 = −19.3,
0.3x1 − 0.2x2 + 10x3 = 71.4,
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1. LINEAR SYSTEMS

Solve each of the equations for its unknown on the diagonal

x1 =
7.85 + 0.1x2 + 0.2x3

3
(1.28)

x2 =
−19.3− 0.1x1 + 0.3x3

7
(1.29)

x3 =
71.4− 0.3x1 + 0.2x2

10
(1.30)

By assuming that x2 and x3 are zero, the first Eq. can be used to compute

x1 =
7.85 + 0 + 0

3
= 2.616667

This value, along with the assumed value of x3 = 0, can be substituted into the second to

calculate

x2 =
−19.3− 0.1(2.616667) + 0

7
= −2.794524

and then use both of them to compute x3 and so on. The true solution is x1 = 3, x2 =

−2.5, x3 = 7.

The diagonal coefficient in each of the equations must be larger that the sum of the absolute

values of the other coefficients in the equation.
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1.4 Iterative techniques in Matrix Algebra

(hw: Tarea)

**Find α’s such that has no solution, infinite number of solutions, the solution.

x1 − x2 + αx3 = −2 (1.31)

−x1 + 2x2 − αx3 = 3 (1.32)

αx1 + x2 + x3 = 2 (1.33)

Prove:

• The product of two symmetric matrices is symmetric

• The product of two n× n lower (upper) triangular matrix is lower (upper) triangular.

***Find all values of α that make the matrix singular

A =

1 −1 α
2 2 1
0 α −3/2


**Find α so that is positive definite

A =

 2 α −1
α 2 1
−1 1 4


**Find all values of α and β s.t. is singular, strictly diagonally dominant, symmetric, positive

definite.

A =

α 1 0
β 2 1
0 1 2


a) Factor the following matrix into LU decomposition
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