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Units

Throughout this document I will employ natural units, where the speed of light, the Planck con-
stant and the Boltzmann constant are set to unity, i.e.

c ≡ ℏ ≡ kB ≡ 1.

Notation

I have denoted "dot" and "prime" as derivatives respect to dynamical time t, and conformal time
η, respectively.
I also have denoted the background of whichever quantity A with a bar Ā.

Convention

Latin subscripts label i : 3D euclidean space R3.
Greek subscripts label µ : 4D space-time M4.
Our signs convention of the metric will be (−,+,+,+).

Conversions

Electronvolt 1 GeV = 1.602×10−19 J
Parsecs 1 pc = 3.085×1016 m
Solar Mass 1 M⊙ = 1.989×1030 kg
Barn 1 b = 10−28 m2

Table 1: Several useful conversions

Acronyms: GR (General Relativity), FLRW (Friedmann-Lemaître-Robertson-Walker), CDM (Cold
Dark Matter), DE (Dark Energy), LSS (Large-Scale Structure), IDE (Interacting Dark Energy), DS
(Dark Scattering), FT (Fourier Transform), NN (Neuronal Network).



CHAPTER 1

MAIN GOAL

In the present project we aim to construct non-linear spectra and validate it through N-body sim-
ulations of structure formation within the Dark Scattering Dark Energy (DS) model. Moreover we
shall include baryonic and neutrino effects in order to compute realistic spectra which we then
contrast with simulated and real data. Such comparison will be performed through Bayesian pa-
rameter estimation of the elements of this model employing a variety of observations of large scale
structure (LSS). Such goal is tackled through novel techniques to generate non-linear solutions
to the matter fluctuations with the aid of the spherical collapse model, in order to predict halo
spectra in dark energy theories. All this is contained in an implementation of the DS model within
the ReACT code.

In a second stage of the project we produce thousands of non-linear matter Power Spectra through
an emulator software in order to speed up the Bayesian analysis of data, comprising large optical
galaxy catalogues and weak lensing data.

In a final stage of the project, we aim to program an emulator for spectra from 21cm intensity
maps, and incorporate simulated sets of data from future surveys to complement the likelihood
and model selection analyses of the DS dark energy model.
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CHAPTER 2

INTRODUCTION

In the near future cosmologist will benefit from the new generation of galaxy surveys, able to map
large-scale structures (LSS) and lensing distortions out to high redshifts. Specifically, the stage
IV surveys will be much bigger and deeper than their predecessors and will observe hundreds of
millions of galaxies over a large fraction of the sky in the optical and radio wavelengths. Thereby,
scientists will be able to probe much larger scales – approaching the size of the Hubble horizon,
and determine the properties of the Universe with unprecedent precision. In particular, the aim is
to elucidate the nature of the enigmatic dark sector components.

The current data is surprisingly compatible with the minimal and simplistic model called ΛCDM
(Λ a cosmological constant + cold dark matter), but requires the existence of two exotic con-
stituents; namely, dark energy – the mysterious substance that is ripping the Universe apart, and
dark matter – the unobserved component that allowed the formation and keeps the stability of
structures in the Universe. For our purposes, we shall focus on the former, which currently domi-
nates the energy density budget of the Universe.

The established ΛCDM model is, however, under continuous scrutinity, due to tension of the
H0 value measured (see [Riess, 2019] a short review), which seems to depend on whether the
observable signatures are based on the early or late Universe. Additionally, there is also a tension
on the amplitude of density fluctuations encoded in the σ8 (see [Douspis et al., 2018]) extrapo-
lated to today. The state-of-the-art clustering and lensing measurements carried out by stage IV
LSS surveys will tell us whether the late Universe’s accelerated expansion is due to a simple cosmo-
logical constant, an evolving scalar field, or a modification of gravity. In the present project, I am
interested in studying the interacting models of the dark sector since they have shown to diminish
such tensions (see [Di Valentino et al., 2020], [Yao & Meng, 2022], [Gao et al., 2021]).

Throughout the PhD program, I have been learning the theory behind simulating the cosmolog-
ical signal and the observations for physically motivated models of interacting dark energy (IDE),
in the spirit of [Bose et al., 2018]. Specifically, I will focus on an interaction consisting of pure
momentum transfer with CDM, named Dark Scattering (DS) model (see [Baldi & Simpson, 2015],
[Pourtsidou & Tram, 2016], [Pourtsidou et al., 2013]). In addition, this project involves comparing
simulation products of large datasets against theoretical predictions through a modified halo model
code. Moreover, I have gained hands-on experience of employing machine learning techniques to
emulate our predictions in terms of the matter spectra, in order to perform very fast statistical tests
by including emulators, specifically model selection and cosmological parameter estimation, with
the aid of available galaxy data measured from recent surveys and galaxy synthetic data. During
this stage, I have helped modifying codes in Python and C/C++, which involve high performance
computing using dedicated facilities at UNAM and Edinburgh. I will also aim to get involved in
large collaborations, where Dr. Alkistis Pourtsidou holds leadership positions.

At this point, as a last objective I will use the acquired experience to provide emulators for
modelling the 21cm signal, expected to be detected in the near future by the forthcoming radio
telescopes.

This document is organized as follows: In chapter 3 I describe the theoretical elements of the
project, such as, cosmological perturbation theory, IDE theory and halo model reaction. Following
in chapter 4, I highlight out the specific objectives for this project. In chapter 5 I will focus on the
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methods and codes that will be employed to compute the theoretical spectra numerically, and to
perform statistical tests. Subsequently, in chapter 6, I will report my current progress and lastly in
chapter 7, I propose the workplan for the rest of this PhD project.
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CHAPTER 3

PRECEDENTS

Throughout this chapter, I will focus on describing in detail the state-of-art of cosmological tools
that will be crucial for developing this PhD project.

3.1 Background cosmology

Cosmology has been evolving throughout the decades in light of new observations provided by
technological advances in telescopes and space satellites, for example, from observations of the
CMB by COBE (1989) and WMAP (2001) missions to the more recent Planck (2009) satellite.
Likewise, galaxy surveys responsible for mapping the Large-Scale Structure (LSS) like SDSS (2000)
and DES (2013) continue evolving, with experiments that start operation in the coming years, such
as DESI, Euclid, LSST, and SKA and its precursor MeerKAT. A wealth of precise measurements,
together with a meticulous treatment of this new information, will adjust or extend predictions
from our cosmological theories about the content, structure, origin and evolution of the Universe.

The main axiom of cosmology is the: Cosmological Principle, which states that "for scales suffi-
ciently large (at least 100-150 Mpc) the distribution of the LSS ought to be statistically isotropic and
homogeneous". Our picture of the CMB is the best proof of concordance with such principle.
In cosmology we often resort to General Relativity (GR) framework to describe the space-time of
the Universe, since GR is the most successful theory that explains gravity, from the Solar system
scales to the size of the Hubble horizon. An exact solution to Einstein’s equations meeting the con-
ditions of the cosmological principle is the Friedmann-Lemaître-Robertson-Walker (FLRW) metric,
with the line element as:

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[
dχ2

1−Kχ2
+ χ2dθ2 + χ2sin2θdφ2

]
, (3.1)

where a(η) is the scale factor and K is the curvature of the space. Interestingly, an important
feature of FLRW solution is the fact that a static Universe requires fine-tunning: the Universe must
be on expanding or contracting depending on the kind of matter that conforms it, and therefore,
the light from distant objects must be redshifted or blueshifted accordingly. So, assuming that each
Universe component can be described as a perfect fluid with density as ρ and pressure as P , then,
the energy-momentum tensor is given by,

Tµν = (ρ+ P )uµuν + Pgµν . (3.2)

The cosmological principle forces the macroscopic velocity to be isotropic, i.e. the 4-velocity
of a comoving observer only has one temporal component, uµ = (1, 0, 0, 0). Thus, the evolution
equations of the metric dictated from Einstein’s field equations with a cosmological constant are:

H2 =

(
ȧ

a

)2

=
8πG

3
ρ+

Λ

3
− K

a2
. Friedmann Equation, (3.3)

with H the rate of expansion or often called as Hubble parameter. Additionally, the trace of Ein-
stein’s field equations yields
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ä

a
= −4πG

3

(
ρ+

3P

c2

)
+
Λ

3
. Raychaudhuri Equation. (3.4)

In order to close the system it is necessary to specify the matter content, so that the number
of degrees of freedom matches the number of equations. This is commonly done by specifying an
equation of state with a parameter as: P = wρ.

The solutions of such equations provide a variety of universes that would be governed by several
ingredients, such as; baryons, cold dark matter (CDM), dark energy, photons, neutrinos, scalar
fields, curvature and so on. Depending on their energy contributions, an universe that fits with
our observations can be predicted, an analogy of this is like identifying a suspect with his/her
fingerprint. Nowadays, we know that the majority of observations support extremely well that the
Universe is mainly is constituted by matter (mostly CDM + baryons), radiation and, in most part,
by the enigmatic dark energy. Remarkably, the dark sector currently accounts for ∼ 95% of the
energy density budget of the Universe (see Figure 3.1). Then, our deepest understanding of the
Universe is captured by a simple, elegant concept, the ultimate model of cosmology, is so-called
ΛCDM. Alternatively, and aiming to better understand the dark energy, there are other approaches
that extend the standard model by a parametrization of its equation of state. The simplest is a
constant w ̸= −1, a model which we name wCDM. Moreover, a Taylor expansion of the equation
of state as a function of redshift yields the minimal expression w(a) = w0 + wa(1− a), well-known
as Chevallier-Polarski-Linder (CPL) model [Chevallier & Polarski, 2001].

Figure 3.1: Pie chart of the cosmic energy budget today. The dark sector mostly dominates the
Universe, whereas the baryonic density (mostly intergalactic gas) amounts to only about 5%. Im-
age courtesy from ESA.

All these models do not come without caveats. Cosmologists are engaged in a tremendous
discussion about constraining the today’s Hubble constant value H0 with values dissimilar from
different observables (see [Di Valentino et al., 2021], [Verde et al., 2019]). This data tension
on the H0 value seems to depend on whether the measurements are based on the early Universe
or more directly measured from the late Universe. The CMB data yields an estimation of H0 =
67.4 ± 0.5 km s−1Mpc−1, whose best fit of ΛCDM parameters are combined to acquire the most
precise H0 estimation of all probes. Whereas the late Universe, for example the project of SH0ES
(Supernovae H0 for the Equation of State) yields an estimation of H0 = 73.5 ± 1.4 km s−1Mpc−1,
which is in 4.2σ tension with the early Universe estimation!
It is likely that our current lack of understanding about the nature dark energy and dark matter
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might be causing this discrepancy, thus giving room to more alternative models of dark sector that
have been extensively proposed in the literature (e.g modified gravity, f(R) models, quintessence
field, scalar field dark matter, Hordenski models, among others). In addition, since in ΛCDM the
dark sector is considered uncoupled is just an ad-hoc assumption of the model, there is another
interesting approach, which are the models we will focus on for this project, called interacting dark
energy (IDE).

3.2 Cosmological Perturbation Theory

We have discussed a statistically homogeneous and isotropic universe, valid only on large scales.
However, this description is not even close to the Universe we live in. The perturbative treatment
has been a powerful tool in physics, while in Cosmology is very accurate in predicting the evolution
of inhomogeneities at some stages. In Cosmological Perturbation Theory (CPT) ([Bernardeau et
al., 2002], [Ellis et al., 2012], [Dodelson & Schmidt, 2020]) approaches the background spacetime
is mostly assumed to be the flat FLRW Universe while the perturbed spacetime is curved, with the
corresponding matter perturbations. Nonetheless, the Newtonian limit is appropriate describing
scales smaller than Hubble horizon (i.e. smaller than super-horizon scales) and also for non-
relativistic matter components. For a rigorous description one must resort to perturbations in the
framework of GR ([Malik & Wands, 2009]).

In this section we followed the same notation from [Bernardeau et al., 2002] in order to obtain
the non-linear perturbations1. The central idea in a perturbed analysis; is to slightly modify each
quantity by a small linear quantity, i.e., Υ (x, η) ≡ Ῡ + δΥ , where Υ can be ρ, P , v, or ϕ. Here
we introduce several important quantities like the density contrast as δ(x, η) ≡ δρ/ρ̄, the peculiar
velocity flow δv ≡ u(x, η) = dx/dη and δϕ ≡ Φ(x, η) the cosmological gravitational potential which
is subject to the Poisson equation (on the Newtonian limit to GR):

∇2
xΦ(x, η) =

3

2
ΩmH2δ(x, η). (3.5)

The Lagrangian for a single particle in a gravitational potential ϕ is

L =
1

2
mṙ2 −mϕ, (3.6)

which implies an equation of motion given by,

u̇ = −Hu−∇rΦ or
∂p

∂η
= −ma∇xΦ, (3.7)

being p = mau.

Vlasov equation.- In physics the Vlasov equation is used to describe dissipative systems of in-
teractive particles by defining the particle number density in the phase-space f(x,p, η). Vlasov
described an infinite chain of self-linking equations for the distribution functions of random vari-
ables (see [Perepelkin et al., 2018]). Thus, the phase-space conservation implies,

df

dη
=
∂f

∂η
+
∂f

∂x
· ∂x
∂η

+
∂f

∂p
· ∂p
∂η

= 0. (3.8)

1Hereafter we are going to take advantage of the comoving coordinates: r = a(t)x, where x is referred to as the
comoving distance, r is simply the physical distance. Similarly, making use of the conformal time η which is related
to the cosmic time t by integrating dη = dt/a(t). In addition, allows us to express the conformal Hubble parameter as
H = aH.
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This is called the Vlasov equation. In terms of (3.7), we obtain,

df

dη
=
∂f

∂η
+

p

ma
· ∂f
∂x

−ma∇xΦ · ∂f
∂p

= 0. (3.9)

The zeroth-order moment relates the phase-space density to the conformal density field through
the next equation, ∫

d3p f(x,p, η) ≡ ρ(x, η). (3.10)

The first moment is related to the velocity field of particles,∫
d3p

p

ma
f(x,p, η) ≡ ρ(x, η)u(x, η). (3.11)

Finally, in order to derive the Euler equation we only integrate upto the second moment,∫
d3p

pipj
m2a2

f(x,p, η) ≡ ρ(x, η)uiuj + σij. (3.12)

The term σij encodes generalized pressure forces, therefore, in the absence of any pressure
perturbation (which is our case for cold pressure-less matter) we obtain σij = 0 (see [Dodelson &
Schmidt, 2020]).

The continuity equation is derived by just p-integrating Eq. (3.9) and applying the definition of
moments (3.10) and (3.11). Thus, in terms of δ(x, η):

∂δ

∂η
+∇x · [(1 + δ)u] = 0. (3.13)

Subsequently, the Euler equations are derived by considering the first moment2 of (3.9) and
reducing terms to obtain the following,

∂u

∂η
+ (u · ∇x)u+Hu+∇xΦ = 0. (3.14)

Applying the divergence and substituting the Poisson equation (3.5),

∂θ

∂η
+∇x · (u · ∇x)u+Hθ + 3

2
ΩmH2δ = 0, (3.15)

where we have introduced the velocity divergence θ ≡ ∇x · u which is common named as the vol-
ume expansion rate (the 3D version of H). Note that on the Euler equation the curl contribution
of the velocity ω ≡ ∇x × u, or the vorticity, has not been included, because the vorticity decays
(ω ∝ 1/a) with the expansion, then it can safely be neglected at late times.

3.2.1 Linear regime

The non-linear equations (3.13) and (3.14), can be linearized by removing the higher orders. The
continuity equation yields,

∂δ

∂η
+ θ = 0, (3.16)

Moreover, we reduce the Euler equation (3.15) at linear order, and working in Fourier space,
where at linear order the k-modes evolve independently, we have

2Bear in mind that the distribution function f evaluated at the boundary vanishes, since f does not include particles
with infinite momentum.
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∂u

∂η
+Hu+∇xΦ = 0, ⇒ ∂θ̃k

∂η
+Hθ̃k − k2Φ = 0 (3.17)

Combing Eqs. (3.5) and (3.16) on Eq. (3.17), we arrive at an equation purely for the density
contrast:

∂2δ̃k(η)

∂η2
+H∂δ̃k(η)

∂η
− 3

2
ΩmH2δ̃k(η) = 0. (3.18)

The two solutions of (3.18) could be expressed as

δ̃k(η) = D+(η)Ak +D−(η)Bk. (3.19)

where D± is the linear growth factor and decay factor respectively, and they depend purely
on the background quantities. Assuming a period of primordial inflation, the decay mode would
vanish due to the accelerating expansion. Thus, we will not consider it. As a result of solution
(3.19), we also solve for θ by using (3.16) and using d/d lnD+ = (Hf)−1d/dη,

θ̃k(η) = −H(η)fAk, (3.20)

where, we have defined one relevant quantity

f =
d lnD+

d ln a
. (3.21)

The so-called growth rate function f . For example, considering on (3.18) an Einstein-de Sitter
(EdS) universe whereΩm = 1 andΩΛ = 0. Then, we would obtain the solution δ̃EdSk (x, η) = Aka(η),
consequently f = 1. So, the growth factor scales as a(η), with the normalization D+(a0) = 1. This
result is very useful for describing an overdensity through a top-hat model, as described later.

3.2.2 Non-linear regime

Presently the linear order is accurate on large scales because the contrast density is in order of
δ ≪ 1. However, from their initial size δ ≈ 10−5 these perturbations will be growing on subhorizon
scales and the scheme will be thoroughly different, the linear regime is no longer valid once δ
approaches to one. Our task now is to extend CPT to the non-linear regime. So, we start moving
to the right-hand the non-linear terms to express the equations as,

δ′ + θ = −δθ − (u · ∇xδ). (3.22)

θ′ +Hθ + 3

2
ΩmH2δ = −(u · ∇x)θ − [∇x(u · ∇x) · u] . (3.23)

As we did before, it is useful to describe the matter fields by resorting to Fourier space. The
convention of the Fourier Transform (FT) applied to any given field Θ is,

Θ̃(k, η) =

∫
d3x exp(−ik · x)Θ(x, η), and Θ(x, η) =

∫
d3k

(2π)3
exp(ik · x)Θ̃(k, η). (3.24)

To extend the solutions beyond the linear order, fields will be expressed as infinite perturbative
series, by setting them in configuration space and Fourier space as follows,

Θ(x, η) =
∞∑
n=1

Θ(n)(x, η), ⇒ Θ̃(k, η) =
∞∑
n=1

Θ̃(n)(k, η). (3.25)
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The subscript (n) establishes the perturbative order, e.g. the density field case δ(1) and θ(1) repre-
sents the fields at linear order. As stated earlier, at very late times, the linear order can be rewritten
as

δ(1)(x, η) = δ0(x)D+(η) (3.26)

Normalized at the present time η0, such that, δ0(x) = δ(x, η0) and th velocity field is given by
Eq. (3.20). We will follow the standard approach (see [Dodelson & Schmidt, 2020]) to solve the
non-linearities. From the non-linear terms of equations (3.22) and (3.23).

∞∑
n=1

δ′(n) +
∞∑
n=1

θ(n) =−
∞∑
n=1

∞∑
k=1

δ′(n)θ(k) −
∞∑
n=1

∞∑
k=1

(
u(n) · ∇xδ

(k)
)
. (3.27)

∞∑
n=1

θ′(n) +H
∞∑
n=1

θ(n) +
3

2
ΩmH2

∞∑
n=1

δ(n) =−
∞∑
n=1

∞∑
k=1

(u(n) · ∇x)θ
(k)

−
∞∑
n=1

∞∑
k=1

[
∇x(u

(n) · ∇x) · u(k)
]
. (3.28)

Following the perturbative order hierarchy, each term of the equation is going to be truncated
depending on the order imposed, as follows:

1st order: δ′(1) + θ(1) = 0. (3.29)

θ′(1) +Hθ(1) + 3

2
ΩmH2δ(1) = 0. (3.30)

2nd order: δ′(2) + θ(2) =− δ(1)θ(1) − u(1) · ∇xδ
(1). (3.31)

θ′(2) +Hθ(2) + 3

2
ΩmH2δ(2) =− (u(1) · ∇x)θ

(1) −
[
∇x(u

(1) · ∇x) · u(1)
]
. (3.32)

3rd order: δ′(3) + θ(3) =− δ(2)θ(1) − δ(1)θ(2) − u(2) · ∇xδ
(1) − u(1) · ∇xδ

(2). (3.33)

θ′(3) +Hθ(3) + 3

2
ΩmH2δ(3) =− (u(2) · ∇x)θ

(1) − (u(1) · ∇x)θ
(2) −

[
∇x(u

(2) · ∇x) · u(1)
]

−
[
∇x(u

(1) · ∇x) · u(2)
]
. (3.34)

...

Note that the Poisson equation holds at each order, because it is a linear relation between fields.
Then, we can write3 yields

∇2
xΦ

(n)(x, η) =
3

2
ΩmH2δ(n)(x, η), ⇒ Φ̃(n)(k, η) = −3

2
Ωm

H2

k2
δ̃(n)(k, η). (3.35)

For illustrative purposes, we explore only at 2nd order. So, working in Fourier space on
Eqs. (3.31) and (3.32), where we have applied the convolution theorem and Dirac delta δD prop-
erties, one obtains,

3Similarly, the peculiar velocity at 1st order would be given by: ũ(1)(k, η) = i
k

k2
Hf(η)δ̃(1)(k, η).
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δ̃′(2)(k, η) + θ̃(2)(k, η) =

∫
d3k1
(2π)3

∫
d3k2 δD(k− k1 − k2)

[
1 +

(k1 · k2)

k21

]
×
[
Hf(η)δ̃(1)(k1, η)δ̃

(1)(k2, η)
]
, (3.36)

θ̃′(2) +Hθ̃(2) + 3

2
ΩmH2δ̃(2) =

∫
d3k1
(2π)3

∫
d3k2 δD(k− k1 − k2)

[
(k1 · k2)

k21
+

(k1 · k2)
2

k21k
2
2

]
×
[
(Hf(η))2δ̃(1)(k1, η)δ̃

(1)(k2, η)
]
. (3.37)

Rewriting the derivatives as ∂/∂ lnD+ = (Hf)−1∂/∂η and rescaling the velocity field like ϑ̃(2) ≡
θ̃(2)/(Hf), in order to simplify equations, we have,

∂δ̃(2)(k, D+)

∂ lnD+

+ ϑ̃(2)(k, D+) =D
2
+I1(k), (3.38)

∂ϑ̃(2)(k, D+)

∂ lnD+

+

[
3

2

Ωm

f 2
− 1

]
ϑ̃(2)(k, D+) +

3

2

Ωm

f 2
δ̃(2)(k, D+) =D

2
+I2(k). (3.39)

where I1 and I2 are the non-linear integrals respectively that only depend on k. In gen-
eral for dark energy cosmologies with similar expansion histories, it turns out that the quantity
Ωm(η)/f

2(η) is very close to 1 throughout time. Thus, the only terms in Eqs. (3.38) and (3.39)
that depend explicitly on time (via D+) are the source terms. This leads us to make the following
power-law ansatz:

δ̃(2) = C1(k)D
m
+ , and ϑ̃(2) = C2(k)D

m
+ . (3.40)

Then,

mC1D
m
+ + C2D

m
+ =D2

+I1(k), (3.41)

mC2D
m
+ +

1

2
C2D

m
+ +

3

2
C1D

m
+ =D2

+I2(k). (3.42)

Clearly, the only solution is given by the case m = 2 and,

C1 =+
5

7
I1(k)−

2

7
I2(k), (3.43)

C2 =− 3

7
I1(k) +

4

7
I2(k). (3.44)

Finally, we can write the solutions at second order in terms of η,

δ̃(2)(k, η) = D2
+

∫
d3k1
(2π)3

∫
d3k2 δD(k− k1 − k2)F2(k1,k2)δ0(k1)δ0(k1), (3.45)

ϑ̃(2)(k, η) =−D2
+

∫
d3k1
(2π)3

∫
d3k2 δD(k− k1 − k2)G2(k1,k2)δ0(k1)δ0(k1). (3.46)

where F2 and G2 are the symmetrized kernels at second order,
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F2(k1,k2) =
5

7
+

2

7

(k1 · k2)
2

k21k
2
2

+
1

2
(k1 · k2)

(
k1
k2

+
k2
k1

)
, (3.47)

G2(k1,k2) =
3

7
+

4

7

(k1 · k2)
2

k21k
2
2

+
1

2
(k1 · k2)

(
k1
k2

+
k2
k1

)
. (3.48)

This approach is extended to higher orders, and the n-th order solution would be written as,

δ̃(n)(k, η) = Dn
+

[
n∏

i=1

∫
d3ki
(2π)3

]
(2π)3δD

(
k−

n∑
i=1

ki

)
Fn(k1, . . . ,kn)δ0(k1) · · · δ0(kn), (3.49)

ϑ̃(n)(k, η) =−Dn
+

[
n∏

i=1

∫
d3ki
(2π)3

]
(2π)3δD

(
k−

n∑
i=1

ki

)
Gn(k1, . . . ,kn)δ0(k1) · · · δ0(kn). (3.50)

Certainly F1 = 1 and G1 = 1. A strategy to determine the kernels Fn and Gn is by resorting
to recurrence formulae or solve them numerically. This result allows us to explicitly calculate
how structure in the universe evolves nonlinearly. This however, is limited to only dark matter,
and does not take into account shell crossing stages, halo formation, or baryonic effects (galaxy),
among others.

3.2.3 Power spectrum

The most important aspect of CPT is that allows us to connect the evolved pertubations to statistics
of quantities that are deemed cosmological observables. We will focus on describing the statistics
of the linear field δ0(r) (here subscribed by 0) in order to yield the Matter Power spectrum P(k).
A good starting point is thinking about the probability of find one particle, galaxy or halo within a
volume dV1, as P1 = n̄dV1, where n̄ = ⟨ρ⟩ is the mean density. Whereas, the probability of finding
another one in dV2, separated by a distance r would be written as:

P2(r) = n̄ [1 + ξ(r)] dV1dV2. (3.51)

The probability excess ξ(r) is well-known as the two-point correlation function (2PCF). Fur-
thermore, under Inflation prediction, the distribution of the primordial density fluctuations are
Gaussian is directly inherited up to the matter fields. This allows us to describe δ(r) as Gaussian
fields that were produced by some random process in the early universe. Then, the 2PCF4 can be
defined in terms of the density contrast5,

ξ(r) ≡ ⟨δ0(r′)δ0(r′ + r)⟩. (3.52)

There are several theoretical models to estimate the 2PCF via comparing it to a random sample
(see [Kerscher et al., 2000]). Now, we can set the 2PCF in Fourier representation in order to define
the matter power spectrum P(k),

PL(k) ≡
∫
d3r ξ(r) exp(−ik · r). (3.53)

4A clear disadvantage of the 2PCF is that it does not show the full description for non-Gaussian fields. In such case
one must resort to higher-order statistics (for example a candidate for the statistical estimator beyond 2PCF is the
3PCF).

5Notice, ⟨·⟩ denotes an ensemble average. For instance, means the average overdensity at for many realizations of
the random process.
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Finally, also due to isotropy symmetry (rotation invariance) PL(k) = PL(k) and considering
homogeneity (translation invariance) the power spectra is usually expressed as,

⟨δ0(k)δ0(k′)⟩ = (2π)3δD(k+ k′) PL(k). (3.54)

As result of Inflation theory, the initial condition of the power spectrum is predicted in a power-
law form like,

P(k) = As

(
k

k∗

)ns−1

· T 2(k), (3.55)

where As is the primordial scalar amplitude, k∗ = 0.05 Mpc is the pivot scale guarantees ho-
mogeneity and isotropy, ns represents the spectral index and T 2(k) is the transfer function that
contains messy physics of evolution of density perturbations. Conventionally, a dimensionless
power spectra is often more useful, given by,

∆(k) =
k3P(k)

2π2
. (3.56)

Regarding its the statistical meaning, from Eq (3.54) we deduce the power spectrum is an
approach to estimate the variance of density distribution, since the mean of δ0 must be zero. Thus,
we can calculate the variance σ2(R) for a smoothed density field as follows,

σ2(R) =

∫
d ln k |W (kR)|2∆(k). (3.57)

Popular choice of the smoothing window function W (rR) is a top-hat filter in real space, then

in Fourier space is W (kR) = 3j1(kR)/kR with a characteristic smoothing scale R = (3M/4πρ̄)
1
3 .

So, indeed! We can generate observables from cosmological perturbations as we just illustrated on
the matter power spectrum. Another interesting observable is named σ8 and is basically evaluating
the (3.57) at R = 8 Mpc,

σ8 ≡ σ (R = 8 Mpc, z = 0) . (3.58)

This quantity is also fairly relevant nowadays, on giving information about structure formation.
However, unfortunately this quantity carries a data tension as well. Particularly on both parameters
(Ωm, σ8) or more often find in literature as S8 ≡ σ8

√
Ωm/0.3. From Planck 2018 CMB measure-

ments ([Aghanim et al., 2020]) is estimated to be S8 = 0.825 ± 0.011, whereas DES collaboration
([Abbott et al., 2022]) derives an estimation of S8 = 0.776± 0.017 and KiDS-1000 (see [Heymans
et al., 2021]) reports a value of S8 = 0.766+0.020

−0.014 for low-redshift, thus, discrepancies are around
2− 2.5σ respect to Planck. Although such discrepancies could be belonged from systematic causes
that cannot entirely be ruled out.

Regarding of obtaining an accurate prediction on the matter distribution, we further extend our
analysis by inserting all correlations of the non-linear matter field δ(x, η) to construct the non-linear
correction on the matter power spectrum, like

⟨δ(k, η)δ(k′, η)⟩ =
∞∑
n

∞∑
m

⟨δ(n)(k, η)δ(m)(k′, η)⟩. (3.59)

Making use of the Wick’s theorem, and the fact that δ is assumed to be Gaussian, thus, if
n+m = odd, the contribution is zero, otherwise it will be taken into account, so we have,

⟨δ(k, η)δ(k′, η)⟩ = ⟨δ(1)(k, η)δ(1)(k′, η)⟩+ ⟨δ(2)(k, η)δ(2)(k′, η)⟩+ 2⟨δ(1)(k, η)δ(3)(k′, η)⟩+ · · · (3.60)
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The non-linear correction can be obtained directly by inserting the solution. Thus, depending
on truncated order after a finite number of terms, the non-linear regime can be exploited to provide
better accuracy. However, in context of the perturbative expansion we would stop over in what is
called 1-loop6 contribution, by the following expression,

Pδ(k, z) = PL(k, z) + P1-loop(k, z). (3.61)

Being the contributions to the 1-loop,

P1-loop(k, z) = 2P(1,3)(k, z) + P(2,2)(k, z). (3.62)

For project purposes, the 1-loop contribution will be more than adequate and it is going to be
relevant on reaction formalism due to it connects the non-linear regime with the modified halo
model.

3.3 Halo model

In this section we aim to describe the standard halo model theory (see [Cooray & Sheth, 2002] for
a review). This approach took inspiration from products of very large simulations (see e.g. The
Millennium Simulation Project or CAMELS) that exhibit with a high-resolution the gravitational
evolution of galaxies clustering and dark matter field, culminating in a cosmic web of filaments
and nodes. Such nodes are deemed as dark matter halos, whose description is highly non-linear.
In this model, the key assumption consists that all matter density is confined inside of those halos,
then, the matter density at position x is given by a superposition of each halo contribution as
follows,

ρm(x) =
all halos∑

i

ρh(x− xi|Mi). (3.63)

where xi is located at center-of-mass and Mi is the mass contained in the i-th halo. The fol-
lowing expressions depends on z, however, the redshift does not play a role in calculations, so we
avoid it. Typically, density profile of the halo ρh is normalised as u(x− xi|Mi) ≡ ρh(x− xi|Mi)/Mi.

In the halo model, the fully non-linear matter power spectrum is composed by the sum of two
terms,

P(k) = P1h(k) + P2h(k). (3.64)

The 1-halo involves the correlation by galaxy pairs within a single halo and dominates on small
scales, whereas, the 2-halo term counts galaxy pairs from different halos and becomes important
on large scales, see schematically Figure 3.2.

So now, let us focus on the 2PCF of (3.63),

⟨ρm(x)ρm(x+ r)⟩ =
∑
i

∑
j

⟨MiMju(x− xi|Mi)u(x1 − xj|Mj)⟩ , (3.65)

where x1 = x+r. We split this in two parts: if i = j means 1-halo contributions otherwise i ̸= j
is 2-halo. In integral form the 1-halo correlation function is written as:

ξ1h(r) = ⟨δm(x)δm(x+ r)⟩1h =

∫
dMM2n(M)× ⟨u(x− x′|M)u(x1 − x′|M)⟩ . (3.66)

6The loop word involves a closely analogy of diagrammatic representation from quantum field theory.
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Figure 3.2: Illustration of the contributions to the halo model power spectrum. The P1h(k) term
considers correlations in isolated halos, while P2h(k) term accounts for correlations between dif-
ferent halos. Image credits to Ivan Miranda.

We have introduced the halo mass function n(M), which is a counting of the halos of mass M
per volume unit.

ξ1h(r) =
1

ρ̄2

∫
dMM2n(M)

∫
d3x′u(x− x′|M)u(x1 − x′|M). (3.67)

Unlike 1-halo, in 2-halo the correlation comes from different halos, so this induces a linear halo
bias b(M). This means that halos are biased tracers of the underlying dark matter density field and
are connected by the relation δh = b(M)δm. So, now the correlation function is given by,

ξhh(r|M1,M2) = b(M1)b(M2)ξ
L
mm(r), (3.68)

where ξLmm(r) is the linear matter-matter 2PCF. This leads to obtain the 2PCF for the 2-halo
term as,

ξ2h(r) =
1

ρ̄2

∫
dM1M

2
1 b(M1)n(M1)

∫
dM2M

2
2 b(M2)n(M2) ×∫

d3x′
∫
d3x′′u(x− x′|M1)u(x1 − x′′|M2)ξ

L
mm(x

′ − x′′). (3.69)

By spherical symmetry u(x − xi|M) = u(r,M). Finally, the 2PCFs (3.67) and (3.69) can be
converted into terms of the power spectrum (3.64) through Fourier transform and returning the
redshift dependency,

P1h(k, z) =

∫ ∞

0

dMn(M, z)

(
M

ρ̄

)2

|u(k,M)|2, (3.70)

P2h(k, z) = PL(k, z)

[∫ ∞

0

dMn(M, z)

(
M

ρ̄

)
b(M)u(k,M)

]2
. (3.71)
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Where u(k,M) corresponds to density profile in the Fourier space truncated at rvir,

u(k,M) = 4π

∫ rvir

0

dr u(r,M)r2sinc(kr). (3.72)

The cut-off rvir is called virial radius, thus this set a spherical region with a mass,

Mvir =
4π

3
r3vir∆virρ̄. (3.73)

This represents the mass of the halo. The virial overdensity is given by,

∆vir = [1 + δ(avir)]

(
acol
avir

)3

. (3.74)

Since halos formed from regions in the initial density field which were sufficiently dense that
they later collapsed, we are going to follow the evolution of a spherical top-hat overdensity in
order to approximate the halo formation. We assume an initial condition at ai as

δ(r, a) =
(ri
r

)3
(1 + δi)− 1 . (3.75)

Spherical Collapse.- In order to solve the non-linear collapse of a top-hat overdensity,

ρ =

{
ρ̄(1 + δ) r ≤ R,

ρ̄ R ≤ r.
(3.76)

We can relate (3.13) and (3.14) in order to obtain a second order equation (see, e.g., [Schmidt
et al., 2009]). The evolution of the non-linear density results in,

δ̈ + 2Hδ̇ − 4

3

δ̇2

(1 + δ)
=

(1 + δ)

a2
∇2Φ . (3.77)

Lastly we could use (3.75) to get

r̈

r
= −4πG

3
[ρ̄CDM + (1 + 3ωDE)ρ̄DE)]−

4πG

3
ρ̄CDMδ. (3.78)

So, notising we need to solve the spherical collapse in order determinate the virialised quanti-
ties.

Density profile.- In this approach the density profile of the dark matter halos is modelled through
NFW (Navarro-Frenk-White) profiles,

u(r,M) =
ρh(r,M)

M
=
ρs
M

1

(r/rs)(1 + r/rs)2
, (3.79)

where rs is the separation between core-halo. The normalization constant ρs is obtained from
integrating M =

∫
dx3ρh(r,M), resulting that,

ρs = ρcrit
Ωm(z)∆vir

3

[
ln(1 + c)− c

1 + c

]−1

. (3.80)

In which allow us to define the concentration parameter c ≡ rvir/rs.

15



Halo mass function.- We denoted n(M, z) as the comoving number density of bound halos which
estimates the population of virialized dark matter halos. The comoving number density of halos
with mass in the range [M,M + dM ] is given by:

n(M, z) ≡ dn

d lnM
= ρ̄ νf(ν)

d ln ν

d lnM
. (3.81)

We have further defined the halo mass function dn/d lnM , where ν is the peak-height and the
function νf(ν) is known as the multiplicity function. A simple Gaussian distribution to adjust such
function was provided by Press and Schechter, however, simulations have been applied to calibrate
([Sheth et al., 2001]) the halo mass function, hence, finding that the Sheth-Tormen distribution7

is more accurate than Press-Schechter, which is the following,

νf(ν) = A

√
2

π
qν2
[
1 + (qν2)−p

]
exp(−qν2/2). (3.82)

The peak-height is ν ≡ δ2sc/σ
2(M, z), where δsc is the critical density from spherical halo collapse

extrapolated to z = 0 and σ2(M, z) is the mass variance obtained from Eq. 3.57. The best fitted
parameters from simulations is A = 0.3222, q = 0.75 and p = 0.3.

Concentration-mass relation.- To find the rs value, the concentration-mass (c-M) relation is
used,

cvir(Mvir, z) =
c0

1 + z

(
Mvir

M∗

)−α
fDE(z → ∞)

fΛCDM(z → ∞)
. (3.83)

Fixing c0 = 0.9 and α = 0.13, and M∗ is obtained by ν(M∗) = 1.

Halo bias.- Lastly, as a result of considering Sheth-Tormen distribution, the peak-background
split formalism predicts a linear halo bias as:

b(M) = 1− 1

δc

(
1− qν2 +

2p

1 + (qν2)p

)
. (3.84)

In light of simulations and observations this expression is also in well agreement (see [Sheth &
Tormen, 1999]) with them.

We had obtained all components to calculate the fully non-linear spectra (3.64) within the
Halo model approach for ΛCDM, nevertheless, we aim to extended this formalism to alternatives
theories.

3.3.1 Halo model reaction

The halo model reaction formalism is an extension of the previous standard halo model but applied
into beyond ΛCDM theories (see [Cataneo et al., 2019], [Bose et al., 2020] and [Cataneo, 2022]).
The beyond ΛCDM non-linear spectrum PNL(k, z) (denoted as “real”) is the product of the reaction
R(k, z) times a pseudo non-linear spectrum as follows

Preal
NL (k, z) ≡ R(k, z) · Ppseudo

NL (k, z) . (3.85)

7Within this formalism is considered halos with an ellipticity.
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The “pseudo” term refers a ΛCDM cosmology whose initial condition by exactly matching of
Preal

L (k) = Ppseudo
L (k) in order to target the modified cosmology. The reaction is defined as follows8.:

R(k, z) =
[(1− E) exp(−k/k⋆) + E ]Preal

L (k, z) + Preal
1h (k, z)

Preal
L (k, z) + Ppseudo

1h (k, z)
. (3.86)

Here k⋆ and E are not free parameters. So, first the k⋆ scale is in charge of the transition rate
from the linear to the non-linear scales, and is determined by solving at each redshift the following
equation:

R(k0, z) =
Preal

L (k0, z) + Preal
1−loop(k0, z) + Preal

1h (k0, z)

Ppseudo
L (k0, z) + Ppseudo

1−loop(k0, z) + Ppseudo
1h (k0, z)

. (3.87)

Here the scale of k0 = 0.06 h/Mpc represents the maximum scale where CPT would be reliable.
While E(z) is obtained via the limit,

E(z) = lim
k→0

Preal
1h (k, z)

Ppseudo
1h (k, z)

. (3.88)

The behaviour of Eq. (3.86) on the spectrum is shown in Figure 3.3.

10 3 10 1 101

k   [h/Mpc]

10 1

100

101

102

103

104

P N
L(k

)

Figure 3.3: The halo model reaction behaviour on the spectrum (exeplified for a realization of the
IDE model). In green, the range k ≤ 0.01 h/Mpc is primarily controlled by the linear spectrum,
when, in Eq. (3.86), R = 1. The black line 0.01 h/Mpc ≤ k ≤ 0.1 h/Mpc is well described by CPT,
while the yellow region 0.1 h/Mpc ≤ k ≤ 1 h/Mpc is controlled by the halo mass reaction function
ratio. Finally, the rest of the scales in red (k ≥ 1 h/Mpc) is approximated via R ≈ Preal

1h /Ppseudo
1h .

Note that there is an excellent match with the results of simulations, given by cyan stars.

In addition, the modifications on gravity enter directly through the Poisson equation.

8Notice that the 2-halo term is absent. According to [Cataneo et al., 2019], the improper integral in (3.71) can be
set to unity without a measurable impact on the halo model reaction
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∇2Φ = 4πG(1 + F), (3.89)

where F encodes the information of modified theory. In summary, the reaction provides a new
framework to map accurate the non-linear matter power spectrum in ΛCDM to other alternative
theory (this is already tested on wCDM, CPL, f(R) gravity and nDGP, see [Cataneo et al., 2019]
for more details regarding the accuracy results).

3.4 Full spectra

In the previous sections, we have shown that we can model the matter power spectrum on non-
linear scales through the halo model reaction. However that works only for dark matter, in order
to get a full prediction for the matter power spectrum that is relevant for observations, we need to
include the effects of baryon feedback and massive neutrinos, which substantially alter the power
spectrum on small scales.

3.4.1 Presence of Neutrinos

Following Cataneo et al. [2020], massive neutrinos have been implemented to reaction formalism
through their matter perturbations in the halo model (see also [Massara et al., 2014]). The sum
of all matter contributions would be given by,

δm = (fcδc + fbδb) + fνδν . (3.90)

Being fa = ρa/ρm. Since the matter power spectrum is proportional as P ∝ δ2m, then it reads as,

P(m)(k) = (1− fν)
2P(cb)(k) + 2fν(1− fν)P(cbν)(k) + f 2

νP(ν)(k), (3.91)

where (m) = (cb + ν) establishes the sum of CDM (c), baryons (b) and neutrinos (ν). Given
that, the formula of the reaction R(k, z) with massive neutrinos now is written as the following
form,

R(k) =
(1− fν)

2P(cb)
HM (k) + 2 fν(1− fν)

2P(cbν)
HM (k) + f 2

νP
(ν)
L (k)

P(m)
L (k) + Ppseudo

1h (k)
, (3.92)

with P()
HM = [(1− E) exp(−k/k⋆) + E ]P()

L + P()
1h.

3.4.2 Baryonic feedback

For a complete description of the non-linear matter spectrum, we resort to include the contribu-
tions caused by the baryons within the Active Galactic Nuclei (AGN) surrounded by dark matter
halo. Building through the standard halo model prescription ([Chisari et al., 2019]), the baryonic
model encodes 6 parameters that takes into account effects from AGN feedback and star formation.
However, that model was fitted to the BAHAMAS simulations [McCarthy et al., 2017] to obtain a
1-parameter model, which depends only on the temperature of AGN, via θ ≡ log10(TAGN/K). Such
baryonic feedback is taken into account by an extra boost factor, B(k, z), defined by the ratio
between the full power spectrum and the DM-only spectrum, as follows,

B(k, z) = Pfull

Pc

. (3.93)
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Therefore, to obtain a full power spectrum within the halo model reaction framework, we
combine baryonic and reaction prescriptions to obtain,

PNL(k, z) = R(k, z) · B(k, z) · Ppseudo
c (k, z). (3.94)

With this prescription we can readily predict the non-linear matter power spectrum in the
presence of baryon feedback effects.

3.5 Interacting Dark Energy models

In the realm of the ΛCDM model, the dark matter and dark energy always remain uncoupled.
Theoretically, nothing prohibits to allow the gravitationally interaction between these dark com-
ponents9. This captivating statement sheds light to model interacting dark energy (IDE) with dark
matter, although there is a rich selection about the kind of interaction (e.g. interacting scalars
field, interacting fluids, interacting in f(R) and so forth), these models have been the key to ex-
plain some irregularities that currently occur in the ΛCDM model, for example, the coincidence
problem (see [Caldera-Cabral et al., 2009]) or to alleviate the data tension, particularly with S8,
which is the growth rate of the structure (see [Carrilho, Moretti, & Pourtsidou, 2022], [Di Valentino
et al., 2017], [Mancini Spurio & Pourtsidou, 2022] ). The addition of the dark interaction can slow
down the growth of dark matter density fluctuations, thus reducing their amplitude at late times.

The coupling is modelled by a current Qν that represents the energy and momentum exchange
between dark energy and dark matter, therefore, the energy-momentum tensors of dark matter
and dark energy are no longer separately conserved,

∇µT
µν
c = Qν , ⇐⇒ ∇µT

µν
DE = −Qν . (3.95)

Nonetheless, the total momentum-energy tensor is clearly conserved, ∇µT
µν
c + ∇µT

µν
DE = 0. A

formal approach of describing the coupled dark sector is through the Lagrangian,

L = −1

2
gµν∂µϕ∂νϕ− V (ϕ)−m (ϕ) ψ̄ψ + L [ψ] , (3.96)

where ϕ is an evolving scalar field of the dark energy named quintessence and ψ is considered
as a scalar field dark matter (SFDM) with a mass10 m(ϕ), in this approach the coupling current is
defined as,

Qν ≡ ρc∂νϕ
∂ lnm (ϕ)

∂ϕ
. (3.97)

The form of the coupling current is a phenomenological choice. Now, focusing on the back-
ground contribution of Q̄ν → (Q0(η), 0, 0, 0), resulting the equation for SFDM as,

∂ρ̄c
∂η

+ 3Hρ̄c = Q0, (3.98)

and for DE equation as,

∂ρ̄ϕ
∂η

+ 3Hρ̄DE(ωDE + 1) = −Q0, (3.99)

where the form Q0 is fairly diversified (see e.g. [Caldera-Cabral et al., 2009], [Bertolami et al.,
2012], [Tarrant et al., 2012], [Amendola et al., 2012]). However, the most popular IDE models are

9Note that this statement assumes the standard model is not coupled to the dark sector.
10If the mass depends only on the SFDM there would be no interaction with DE, i.e. only a self-interaction.
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just described by a ϕ-quintessence explicitly coupled to pressure-less DM, i.e CDM. The coupling
could be simple (only 1 extra parameter) such that permits to adapt well to CMB or LSS data due
to its simplicity. This project will be involved in such models within the pull-back formalism (see
[Pourtsidou et al., 2013] for details) in the GR framework coupled to an adiabatic fluid. In this
context this description might provide fundamental insights at the level of the action on how such
coupling could emerge in order to built general models of coupled IDE with the aim by exploring
whether those models has a limit to phenomenological case or not. The total action has the form,

S =

∫
d4x

√
−g R−

∫
d4x

√
−gL(n, ϕ,X, Z) , (3.100)

in which n is the CDM number density, X = 1
2
gµν∂µϕ∂νϕ is the kinetic term and Z = uµ∇µϕ is

the coupling of the CDM velocity to the gradient of ϕ. Doing the variation on the action (3.100),
where we have

δL =
∂L

∂n
δn+

∂L

∂ϕ
δϕ+

∂L

∂X
δX +

∂L

∂Z
δZ. (3.101)

• Varying with the scalar field:
δS
δϕ

= 0. One would obtain the equations of the scalar field,

∇µ

(
∂L
∂X

∇µϕ+
∂L
∂Z

uµ

)
=
∂L
∂ϕ

(3.102)

• Varying with the metric:
δS
δgµν

= 0, resulting in Einstein equations with the total energy-

momentum tensor as,

Tµν =
∂L
∂X

∂µϕ∂νϕ+

(
n
∂L
∂n

− Z
∂L
∂Z

)
uµuν +

(
n
∂L
∂n

− L
)
gµν . (3.103)

• Varying with the number density:
δS
δn

= 0. We find the conservation law of the fluids,

∇µ(nu
µ) = 0. (3.104)

According to Pourtsidou et al. [2013], with the above equations in hand these IDE models
can be further classified via three types from their Lagrangian L = F + f , where F stands for
ϕ-quintessence contributions and f is for CDM contributions.

Type I.- The Lagrangian of these models does not depend on Z and has the following convenient
separated form:

L = F (X,ϕ) + f(n, ϕ) = X + V (ϕ) + f(n, ϕ). (3.105)

The CDM density and pressure can be identified by Eq. (3.2) like,

ρc = f, Pc = n
∂f

∂n
− f = 0. (3.106)

Being set f(n, ϕ) = n exp [α(ϕ)], where α(ϕ) is a free function. From the Eq (3.102), in Type I
case the scalar field equation becomes,
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∇µ

(
∂F

∂X
∂µϕ

)
=
∂L
∂ϕ

+ ρ
∂α

∂ϕ
. (3.107)

From the Eq (3.103), we only obtain the energy-momentum tensor for ϕ,

T (ϕ)
µν =

∂F

∂X
∂µϕ∂νϕ− Fgµν . (3.108)

Hence, coupling current is given by Qν = −∇µT
(ϕ)µ
ν , then we find that,

Q(I)
ν = −ρc

∂α

∂ϕ
∇νϕ, (3.109)

where we have made use of Eqs. (3.107) and (3.108). This coupling involves the transfer of
energy and momentum.

Type II.- The coupling of these models introduces a transfer of energy and momentum as well
due to the energy-momentum tensors are shared from the Type I case. The Lagrangian is set as
follows,

L = F (X,ϕ) + f(n, Z) = X + V (ϕ) + f(n, Z). (3.110)

While f(n, Z) = nh(Z). Unlike before, it is introduced a new coupling function β(Z), which is
obtained via h(Z) = exp

(∫
ds β

1+βs

)
in order to follow a similar proceed of the previous case, thus,

we find the coupling current like,

Q(II)
ν = ∇µ (ρcβu

µ)∇νϕ. (3.111)

With density term as ρc = f − Z ∂f
∂Z

.

Type III.- Lastly, these class of models will be part of our interest for this project, their coupling
is set through the following Lagrangian:

L = F (X,Z, ϕ) + f(n) = X + V (ϕ) + Z + f(n). (3.112)

Likewise, we again follow a similar proceed in order to find the coupling current, resulting in

Q(III)
ν = −∇µ

(
∂F

∂Z
uµ
)
ϕ̂ν +

∂F

∂Z
DνZ + Z

∂F

∂Z
uµ∇µuν . (3.113)

Here the projector tensor qµν was used into Dν = qνµ∇ν and ϕ̂ν = Dνϕ. Surprisingly, type 3
models are particularly special because their coupling involves pure transfer of momentum and
highlighting no coupling Q̄ = 0 at the background level.

3.5.1 Dark Scattering

Throughout the development of the PhD project, the model we are interested in studying is named
as Dark Scattering (DS) model (first explored by Simpson [2010]), consisting of an analogy with
Thomson’s scattering between electrons and photons by identifying dark sector species like,
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QT = −4
3
σTaργne(ue − uγ), (3.114)
↓

QDS = −(1 + wDE)σDSaρDEnc(uc − uDE). (3.115)

This is an elastic interaction that assumes the pure exchange of momentum exclusively between
the perturbations of the dark sector. Therefore, it might be part of Type III models but we are going
to discuss it later in this section. In the meantime let us define the interaction term as follows,

A ≡ ξ (1 + wDE)
3ΩDE

8πG
H. (3.116)

Clearly, the strength of the interaction term depends on background quantities and parameter
ξ ≡ σDS/mc ≥ 0 in units [b/GeV], where σDS is the interaction cross section and mc is CDM particle
mass. Moreover, DS model can be considered as an extension of wCDM models, and also has a
well-defined limit ΛCDM when wDE → −1 we have A = 0, see Figure 3.4.
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Figure 3.4: Interaction strength ξ as a function of redshift, for a range of constant equation of state
parameter values.

The DS formulation has been simulated to the non-linear level in Baldi & Simpson [2015] for
different values of the coupling parameter ξ and Baldi & Simpson [2017] considered modified
cosmologies, as result of that the interaction is always linear in the dark matter velocity, therefore
allowing us to extrapolate its effect for the equation of motion of individual particles as

u̇ = −(1 + A)Hu−∇rΦ. (3.117)

Remarkably, the effect of the interaction acts as an additional frictional force on the CDM of
dragging or expanding, depending on sign(A).

As we mentioned above, the DS interaction only implies CDM velocity and not its density,
then this model could be mapped to a subset of Type III models. In Baldi & Simpson [2017] was
showed that this could be done approximately, by assuming a Lagrangian of the type F ∝ exp(−Z).
Alternatively, Skordis et al. [2015] developed a parametrisation based on Post-Friedmann approach
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in order to introduce all posibble type of terms that can appear in a coupled theory by reducing
the large parameter space of free functions and coupling types to small set of constants.

Parameterised Post-Friedmann.- The Parameterised Post-Friedmann (PPF) formalism consists
of linearised the perturbations of the coupling current Qν = Q̄ν + δQν which are separated in these
variables,

q ≡ δQ0, and ∇iS ≡ δQi. (3.118)

Turning them now to a linear combination of all other perturbations (fluid and metric variables)
with new coefficients An, Bn and Cn. In addition obeying gauge transformations and making use of
gauge invariants, this can be extended into general description for generalized fields (see [Skordis
et al., 2015] for full expressions). Nonetheless, for project purposes we remain in the special case
of CDM and the Dark Energy fluid under Newtonian gauge, thus the expressions are reduced into,

q = Q0Ψ − 6A1Φ− 6A2(Φ̇+HΨ) + A3δDE + A4δc + A5θDE + A6θc, (3.119)

S = −6B1Φ− 6B2(Φ̇+HΨ) +B3δDE +B4δc +B5θDE +B6θc. (3.120)

In this context the coupling current of Type III models (3.113) takes the following form,

Q(III) = B3∇δDE +B5uDE +B6uc. (3.121)

Whereas An = 0 and Q
(III)
0 = 0, we would expect that, since the Type III models produce

couplings of pure momentum exchange up-to linear order in CPT. On the other hand, the DS
coupling current (3.115) requires B3 = 0, as a consequence DS coupling would not be possible to
map exactly to Type III because fixing B3 = 0 translates to set F independent of Z (i.e. ∂F

∂Z
= 0). In

other words from (3.113) results, it is clearly to see that the model becomes completely uncoupled.
Not all is lost, however, we still can connect DS model to Type III case by considering the sound

speed c2s = 1, therefore, DE perturbations could be vanished δDE = uDE = 0, so that, making
those type 3 models have a similar form to the DS case (see [Baldi & Simpson, 2017]). While just
remaining the time-dependence of B6 that can be matched as,

B6 = −(1 + wDE)σDSaρDEnc. (3.122)
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CHAPTER 4

SPECIFIC OBJECTIVES

In this brief chapter, the project objectives will be sequentially exposed.

Completed work

1. From Section 3.2, one objective of this project is extending the CPT (see e.g. [Aviles &
Cervantes-Cota, 2017]), particularly to the domain of DS model from subsection 3.5.1, and
then implementing the required modifications in the halo model reaction in order to compute
the DS non-linear matter power spectrum.

2. Subsequently, we sought a validation for our power spectrum prediction, to do that, we
compared products of simulations (from [Baldi & Simpson, 2017]) to our halo model reaction
prediction provided by the code ReACT which has been implemented in the DS contributions.

3. At the level of the full spectrum in Eq. (3.94), now we focused on determining whether a de-
generacy exists between DS and baryonic feedback parameters. Likewise, we assert whether
the neutrino effects can mimic the interaction contribution. To that end, we attempted to fit
a non-interacting model with varying baryonic/neutrinos feedback to an interacting model
with fixed baryonic/neutrinos feedback.

Ongoing work

1. Furthermore, we are planning to make use of ReACT to generate thousands of DS non-linear
spectra (∼ 105) as a training set in order to create an accelerated trained emulator. Such DS
emulator is provided by CosmoPower , a tool that is based on Machine Learning.

2. Adapting these fast emulators to cosmology is a novel technique for statistical purposes. In
order to estimate and infer parameters in a more efficient way of working in cosmo-statistics,
hence, we want to integrate the DS emulator in our pipeline by using the bayesian analysis
code called Cobaya .

Future work

1. The bayesian analysis will be oriented to describe clustering and lensing observables with
simulated (Euclid-like) and real data from the KiDS-1000 ([Heymans et al., 2021]).

2. Consequently, employing the Bayesian Evidence for different DE equations of state within the
DS model in order to pin down which model is more preferable by the data.

3. Despite these can be used for galaxy clustering studies (see [Moresco et al., 2022] for more
extensions), it further can be turned to 21cm intensity maps. The use of CosmoPower might
allow to generate, for example, a quick 21cm power spectrum prediction by interpolating
training data.

4. Lastly, we plan to explore the Power Spectrum Multipoles expansion for HI intensity mapping
following e.g [Pourtsidou, 2022] and [Cunnington et al., 2020].
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CHAPTER 5

METHODOLOGY AND REQUIRED TECHNIQUES

Now we show the computational tools needed to reach our specific objectives.

5.1 Methodology

A deep understanding of CPT, halo model and IDE are essential to lead the way on the use of
sophisticated statistical tools, emulators, and simulations for this project. This PhD project builds
on the tools and expertise available and aims at providing novel tools and results that will be useful
for forthcoming cosmological surveys. Furthermore this project stipulates a dedicated program of
training on the use of state-of-the-art computational and statistical tools. The sequence of methods
is as follows:

5.1.1 Simulations and dataset

Unfortunately at full non-linear level, our modelling does not converge to the real evolution of
inhomogeneities, and it is thus necessary resort to the N-body or hydrodynamical cosmological
simulations. Motivated by that, one main methodology within this project was the validation
of our power spectrum prediction against cosmological N-body simulations and exploring their
deviations from ΛCDM.

Parameter Value
h 0.678
Ωc 0.2598
Ωb 0.0482
As 2.115× 10−9

ns 0.966

Table 5.1: Our baseline cosmological parameters.

To measure power spectra, we have worked with available N-body simulations products pro-
vided by Marco Baldi. They were performed by a modified version of the GADGET-2 [Springel,
2005]. Moreover, all simulations share the base cosmological parameters given in Table 5.1 and
were set up to 10243 CDM particles evaluated at zi = 99 and trace it up to z = 0 within a box of 1
Gpc/h per side. Additionally, they all share the same initial seeds so that we can divide-out cosmic
variance by taking ratios of power spectra (see [Baldi & Simpson, 2017] for a more extended de-
scription of the simulations).
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5.2 ReACT

Recently Bose et al. [2020] have written the reaction formalism in a publicly available C++ code,
called ReACT . In addition, the code has the advantage of including a Python wrapper, which allow
us to run ReACT within Python interpreter (e.g. Jupyter notebook). In order to obtain the reaction,
ReACT requires an input that has the cosmological model parameters in Table 5.1, takes the linear
power spectrum provided by CAMB or CLASS and the modified theory with its respective extra
parameters, see the flowchart in Figure 5.1 for details.

Pseudo spectrum.- Since the pseudo spectrum is based on ΛCDM model that follows the stantard
halo model approach. Then, the pseudo power spectrum can be obtained via HMCode [Mead
et al., 2021]. The required inputs are the value of σ8(z = 0) derived from the cosmological
parameters and also the linear spectrum given by CLASS ([Lesgourgues, 2011]) or CAMB ([Lewis
et al., 2000]).

Figure 5.1: An overview of the computation of the non-linear power spectrum in ReACT , discussed
in the text. Image taken from [Bose et al., 2020].

In [Bose et al., 2021] has proven the reaction by using ReACT to be a method capable to reach
an accuracy of 5% against simulations at k < 10 h/Mpc and more recently ([Bose et al., 2022]) by
improving to 2%. Here a modification of ReACT will be presented, where the effects of the DS will
be included by modulating the parameter ξ. In spirit of [Bose et al., 2021], we also plan to include
the effects generated from baryon feedback and massive neutrinos.
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5.2.1 ReACT with neutrinos + baryons

Neutrinos.- Currently, the inclusion of neutrino in reaction (3.92) has been added in ReACT (see
[Bose et al., 2021]). The effects of neutrinos are modulated through their mass: Mν =

∑Nν

i mνi ∼
Nνm̄ν . Their contribution on the energy budget of the Universe is,

Ων =
Mν

93.14h2
. (5.1)

Massive neutrinos induce a suppression on the power spectrum, since they do not cluster as
efficiently as cold matter on sufficiently small scales (see [Agarwal & Feldman, 2011]).

Baryons.- For this case we include the effects of baryonic feedback in the computation of the
pseudo power spectrum. As we mentioned before, the baryonic model is modulated through the
temperature of AGN: θ ≡ log10(TAGN/K), and was validated in the range 7.6 ≤ θ ≤ 8.3 (see [Mead
et al., 2021] for more details). The module that provides the baryonic boost (3.93) is available
within the interfaz of HMCode2020_feedback .
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Figure 5.2: The variation of the feedback parameter θ in the colorbar. The effects on the B(k)
of wCDM cosmology at z = 0 (top) and z = 1 (bottom). Note that at intermediate scales, the
feedback shows a suppression of power, while for non-linear scales it is a booster.

The baryonic feedback induces suppression on the power spectrum on intermediate scales, due
to gas expulsion from AGN feedback, and an enhancement on smaller scales due to star formation,
as is shown in Figure 5.2.

5.3 CosmoPower

Nowadays, the implementation of Neuronal Networks (NN) for machine learning techniques on
frontier science has had an impressive impact, and their utilization on cosmology is not lagging
behind. During this stage, I have been learning to use CosmoPower , which is a Python-based
library for Machine Learning. This code helps to emulate the power spectra through a trained
NN with a very high-dimensional parameter spaces. The trained thing is so-called emulator that
might be replacing Boltzmann codes (either CLASS or CAMB ), since they easily generates spectra
much faster than Boltzmann codes. Consequently, this novel technique also promise to accelerate
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Bayesian inference by orders-of-magnitude (see e.g. [Spurio Mancini et al., 2022] for CMB and
LSS analysis by using ΛCDM emulators and in [Mancini Spurio & Pourtsidou, 2022] used an IDE
emulator for weak lensing analysis).

Currently, CosmoPower permits only two methods to created a trained NN for emulating matter
or CMB spectra. Firstly cosmopower_NN , see Figure 5.3, where the n-nodes of NN are set in a se-
quential hidden layers to learn in how to map between cosmological parameters and power spectra
(similar to classify images) by associating them a weight Wn and bias parameter bn, whose linear
combination is passed through a non-linear activation function (see [Mancini Spurio & Pourtsidou,
2022] for details on the activation function). Secondly, cosmopower_PCAplusNN incorporates the
Principal Component Analysis (PCA) method to match coefficients of the power spectra. Although,
at least for our purposes we will employ the first method.

Figure 5.3: The routine of cosmopower_NN . The NN is composed by a set of stacked layers, each
composed of multiple nodes (blue circles). The input cosmological parameters are mapping to the
spectra Pλ(θ;w), so that, the NN learns through the non-linear activation function. Image taken
from CosmoPower §.

In a nutshell, CosmoPower basically requires a training set of the cosmological parameters θ
and the associated training set of log-power spectra. The outcome trained emulator can be also
tested to validate its accuracy which depends on the number of samples for training.

5.4 Cobaya

In order to perform a cosmological parameter estimation, we use an user-friendly code for bayesian
analysis known as Cobaya (Code for bayesian analysis), which has been adapted from other
sources, such as CosmoMC and MultiNest . In statistical framework, Cobaya permits to explore
our priors and likelihoods by performing just a likelihood evaluation (this is useful for testing)
or a Markov Chain Monte Carlo (MCMC) (using a advanced MCMC sampler from CosmoMC ) or
nested sampling (see [Ashton et al., 2022]) with a sampler called PolyChord . In addition, it is
included automatic installers for using cosmological codes1 CAMB or CLASS , as well as likelihoods
of cosmological experiments, such as Planck, SDSS, DES among others. It also supports MPI
parallelization.

1This is very convenient for including in a modified version of them.
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The information in the input that Cobaya reads is contained in a text file based on YAML
format, which consists of a Python dictionary specifying 5 different blocks: theory, likelihood,
params, sampler and output, with various options in each block. Here is an input example of
considering DES year 1 data ([Abbott et al., 2018]) in the likelihood, also setting CLASS and
MCMC sampler:

1 theory:
2 classy:
3 path: ./class_public
4 extra_args:
5 non linear: hmcode
6 N_ncdm: 1
7 N_ur: 2.0328
8

9 likelihood:
10 #DES Y1 -- Clustering data
11 des_y1.clustering:
12 path: ./Clustering/data/des_data
13 des_y1.shear:
14 path: ./Shear/data/des_data
15 des_y1.galaxy_galaxy:
16 path: ./Galaxy/data/des_data
17

18 params:
19 logA:
20 prior:
21 min: 2.97
22 max: 3.11
23 ref:
24 dist: norm
25 loc: 3.05
26 scale: 0.001
27 latex: \log(10^{10} A_\mathrm{s})
28 drop: true
29

30 A_s:
31 value: 'lambda logA: 1e-10*np.exp(logA)'
32 latex: A_\mathrm{s}
33

34 n_s:
35 prior:
36 min: 0.94
37 max: 0.98
38 ref:
39 dist: norm
40 loc: 0.965
41 scale: 0.004
42 latex: n_\mathrm{s}
43

44 H0:
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45 prior:
46 min: 67
47 max: 69
48 latex: H_0
49

50 omega_b:
51 prior:
52 min: 0.02
53 max: 0.025
54 ref:
55 dist: norm
56 loc: 0.02212
57 scale: 0.0005
58 latex: \Omega_\mathrm{b} h^2
59

60 omega_cdm:
61 prior:
62 min: 0.12
63 max: 0.15
64 ref:
65 dist: norm
66 loc: 0.1206
67 scale: 0.001
68 latex: \Omega_\mathrm{cdm} h^2
69

70 sampler:
71 mcmc:
72 #Number of discarded burn-in samples
73 burn_in: 10000
74

75 #Maximum number of accepted steps
76 max_samples: .inf
77

78 # - "auto" (cosmology runs only): will be looked up in a library
79 covmat: auto
80

81 #Convergence checks of the MCMC run.
82 #Gelman-Rubin R-1 on means
83 Rminus1_stop: 0.01
84

85 #Gelman-Rubin R-1 on std deviations
86 Rminus1_cl_stop: 0.2
87

88 #A second check is also performed on the bounds of
89 #the Rminus1_cl_level \% confidence level interval.
90 Rminus1_cl_level: 0.95
91

92 output: chains/cosmo_mcmc

Afterwards the posteriors of the sampling can be analysed with GetDist .
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The relevant softwares mentioned in this section are publicly available:

• The linear spectrum can be obtained from either CLASS § or CAMB §.

• The version included the DS modification in ReACT §.

• The modified DS linear spectrum from DS-CLASS §.

• The DM-only pseudo power spectrum and the baryonic feedback correction are provided by
the HMCode §.

• The emulators generator CosmoPower §.

• For statistical analysis is Cobaya §.

• The advanced nested sampler is Polychord §.
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CHAPTER 6

PROGRESS

The most relevant progress so far in the PhD project is separated by sections below.

6.1 Implementation of the DS in ReACT

We aim to incorporate the DS formulation of subsection 3.5.1 into the code ReACT afterwards
as we mentioned before we will validate our modelling against simulations products from [Baldi
& Simpson, 2017]. Following [Baldi & Simpson, 2015], the equation of motion in terms of our
perturbations variables (subtracting the background) with considering a new friction term is given
by,

∂p

∂η
= −AHp−ma∇xΦ, (6.1)

which is quite similar to that one from (3.7) just by an extra interacting term. Hence, we just
follow-up the previous steps done in Section 3.2 in order to re-acquire the evolution equations for
dark sector fluctuations. At zeroth-order moment

∂δ

∂η
+∇x · [(1 + δ)u] = 0 (6.2)

Surprisingly, notising that the Continuity equation is unaltered by the interaction. Followed by
the Euler equations,

∂uj
∂η

+ ui∇xi
uj +Huj +∇xj

Φ+
1

ρ
∇xi

(σij) = −AHuj. (6.3)

Simplifying, we finally obtain the second order non-linear equation for δ that we are looking
for,

δ̈
Acceleration

+(2H + A)δ̇
Friction

−4

3

δ̇2

(1 + δ)
=

(1 + δ)

a2
∇2Φ
Force

. (6.4)

Noticing that the interacting term has appeared and acting like friction term. Furthermore, we
can reduce it at linear order and changing into Fourier space

δ̈ + (2H + A)δ̇ =
1

a2
∇2Φ. (6.5)

Then we are able to modify the spherical collapse as,

r̈

r
+ AH

ṙ

r
= −4πG

3
[ρ̄c + (1 + 3ω)ρ̄DE)] + AH2 − 4πG

3
ρ̄cδ. (6.6)

As shown previously, the effect of the dark sector interaction is to generate an additional friction
force on dark matter particles. Within the approximations used in this work, this friction force is
clearly not conservative and it cannot be included in the traditional potential term of the virial
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theorem. Therefore, we must add a non-conservative force Ffric = −mAHx′
i to the standard

expression

2⟨T ⟩+ ⟨W ⟩+
all particles∑

i

⟨Ffric
i · ri⟩ = 0 , (6.7)

where T is the total kinetic energy and W is the potential term of the system. Following [Cataneo
et al., 2019], we write the contributions to the Virial theorem in terms of the normalised comoving
radius y ≡ (r/ri)− (a/ai) and in units of E0 ≡ 3

10
M (H0ri)

2. The expressions in this case are:

WN

E0

= −Ωm

(
a−1

a2i

)
y2(1 + δ) , (6.8)

WDE

E0

= −H
2

H2
0

(1 + 3wDE)ΩDE

(
a

ai

)2

y2 , (6.9)

WDS

E0

= −2A
H2

H2
0

(
a

ai

)2

y
dy

d ln a
. (6.10)

For completeness, we present also the total kinetic energy of the top hat, T ,

T

E0

=
H2

H2
0

[
a

ai

(
dy

d ln a
+ y

)]2
. (6.11)

To summarize, the equation that must be solved to find the virialisation time avir, as well as the
corresponding overdensity ∆vir, is

2T +WN +WDE +WDS = 0 . (6.12)

Regarding including other non-CDM species in our modelling, one expects the effective strength
of the interaction to be modulated by the dark matter fraction of the total matter, fc = ρc/ρm. To
explore that we split those species into CDM and non-CDM at the linear level, with the latter
including baryons and massive neutrinos. We then define the total matter velocity divergence
θm ≡ fcθc + fbνθbν and the velocity difference ∆θ ≡ θc − θbν . Since ∆θ is expected to be small,
we can approximate the solution for the ∆θ equation by its equilibrium solution (i.e. the solution
which gives ∆θ′ = 0), that yields into the next equation,

θ′m = −H
(
1 +

Afc
1 + Afbν

)
θm −∇2Φ . (6.13)

This demonstrates that the total matter evolves with an effective coupling function that depends
on the relative amount of dark matter in the Universe. While this coupling function has a slightly
modified time-dependence relative to the standard coupling function, A, we have verified with a
numerical solution from our modified version of CLASS that it is a very good approximation to
evaluate the denominator at z = 0, so that we can define an effective coupling constant ξ̄, given by

ξ̄ =
fc

1 + A0(1− fc)
ξ . (6.14)

At the non-linear level, this approximation assumes that we can put together the clustering species
when computing the halo model prediction by using this effective coupling. These modifications
are then applied to the calculation of the halo model reaction using ReACT . Then, this results
in predictions for the DS non-linear power spectrum that can be compared to simulations. We
perform this validation in the next section.
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6.2 Validation of DS modelling

In Table 6.1 is summarised a subset of the simulations presented in [Baldi & Simpson, 2017] in
which there are three models: ΛCDM, wCDM and CPL with a different ξ interaction strength. We
must look for deviations from ΛCDM model in order to ensure that alternatives are well tested, to
avoid false detections.

Model w0 wa ξ [b/GeV] σ8(z = 0)
ΛCDM -1.0 0.0 0 0.8261
wCDM+ -0.9 0.0 10 0.7939
wCDM− -1.1 0.0 10 0.8512

CPL -1.1 0.3 50 0.7898

Table 6.1: A summary of the simulations tested for validation.

wCDM + DS case.- We begin by validating our results for the cases of wCDM in Figure 6.1, where
we show the ratio between the power spectra for the Dark Scattering model and the corresponding
ΛCDM model at three redshifts in comparison with simulation measurements. Evidently, we place
our reaction predictions within a modified version of ReACT in which the DS model is implemented
for cosmologies with w0 = −0.9 and w0 = −1.1, the cosmological parameters of Table 5.1 and a
coupling parameter value of ξ = 10 b/GeV. While the pseudo power spectra were obtained by
HMCode that takes as input the linear power spectrum provided by CAMB .
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Figure 6.1: Top: Ratios of Dark Scattering spectra to ΛCDM, for a coupling strength of ξ =
10 b/GeV. The blue curves are for w0 = −0.9, where crosses, dash-dotted lines, dotted lines
and thin dashed-lines are measurements from simulations, the halo model reaction prediction, the
pseudo spectrum prediction and the linear theory prediction, respectively. In purple, we show the
results for w0 = −1.1 where the same quantities as before are represented. Bottom: The residuals
in percentage, ∆ = 100% ·

(
1− P̂prediction/P̂N-body

)
, for the reaction and pseudo spectrum pedic-

tions, where P̂ = PDS/PΛCDM is the ratio shown in the top plot.
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As it can be inferred from Eq. (3.116) the interaction parameter A depends on whether the
value of w lies above or below −1. Provoking that these two cases have opposite effects; the case
w0 = −0.9 (A > 0) impacts in a suppression over ΛCDM spectrum, whereas w0 = −1.1 (A < 0)
results in an enhancement at intermediate scales. Unlike on highly non-linear scales, in which
presents much stronger and opposite effect, as the additional friction for w > −1 causes structures
to lose energy and collapse to deeper potential wells, thus forming denser structures, with the
inverse happening for w < −1.

In addition as seen in Figure 6.1, at linear scales the effects of the DS are appreciable, on
the other hand the non-linear are fairly small within the scales that we model accurately. This is
particularly true at z = 0, where the size of the effect is sub-percent at k < 1 h/Mpc. Ignoring
the interaction in the calculation of the reaction typically doubles the errors relative to simulations
around k ∼ 1 h/Mpc. Due to the non-linear effects arise both from the pseudo spectrum and
from the reaction. With the large linear effects, the pseudo spectrum shows enhanced non-linear
effects on intermediate scales, which are then compensated by the reaction. Thus, even when the
interaction produces non-linear effects that are small, their modelling is only accurate when the
coupling is fully taken into account.
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Figure 6.2: Top: Ratio of Dark Scattering spectrum (CPL: w0 = −1.1, wa = 0.3) with a value of
ξ = 50 b/GeV to ΛCDM. Points are measurements from the simulations whereas solid lines are
the halo model reaction prediction. Dotted lines are the pseudo spectrum and dashed lines are
the linear theory prediction. Bottom: The residuals, as defined in Figure 6.1, for the reaction
and pseudo spectrum predictions. Note that there is a sustained 0.5% discrepancy on large scales.
The reason for this is that the N-body simulations ([Baldi & Simpson, 2017]) have been found
to capture linear growth with differing accuracy depending on the value of ξ, so that the ratio
between DS and ΛCDM is slightly modified with respect to the prediction. This is noticeable here
and not in Figure 6.1, because of the much larger coupling.

CPL + DS case.- Afterwards, we validate the CPL parametrisation with a varying equation of
state. We show our results for that case with w0 = −1.1, wa = 0.3 and ξ = 50 b/GeV at z = 0, 0.5, 1
in Figure 6.2. This case is interesting because the effective coupling, A, changes sign at z = 0.5,
first being positive and suppressing linear growth at high redshift, and later enhancing it as redshift
goes to 0. The biggest difference comes in the form of a change of shape on the smallest scales,
visible in the results at z = 0, at which the interaction dampened most of the previous non-linear

35



amplification. All of these non-linear effects are enhanced here because we study the much larger
interaction strength of ξ = 50 b/GeV. In spite of this, the prediction of the halo model reaction is
1% accurate up to scales of k ≈ 0.8 h/Mpc at z = 0, reaching k ≈ 1.5 h/Mpc at higher redshift. In
addition, at z = 0, the errors are never larger than 4% for the entire range of scales available from
the simulations.

In summary, the fact that our predictions are accurate for a substantial range of scales and
redshifts, particularly for large interaction strengths, demonstrates that the reaction formalism is
effective at modelling the non-linear effects of DS and can be used for the analysis of real data to
constrain the interaction strength. For that to be fully realised, however, we need to understand
all the contributions to the power spectrum on small scales, including those generated by baryon
feedback and massive neutrinos. We analyse that in the next section.

6.3 Including baryons and neutrinos

Throughout this section, we employ the effective coupling approximation of (6.14), as there would
be no realistic scenario for which only CDM is present.

Neutrinos degeneracy.- We now aim to investigate the degeneracy between massive neutrinos
and the dark sector interaction. The effect of massive neutrinos is fully included in the reaction for-
malism in Eq. (3.92), and available implemented in ReACT . Here, we isolate the scale-dependent
non-linear effects that we are interested in, instead of comparing the full power spectra, we match
instead spectra normalized to their large scale value as,

QNL ≡ PNL

PNL(k∗)
, (6.15)

where k∗ ≪ kNL so that PNL(k∗) ≈ PL(k∗).
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Figure 6.3: Residuals of the comparison between the Dark Scattering predictions for ξ̄ = 50 b/GeV
(ξ = 60 b/GeV), Mν = 0.1 eV and the non-interacting case with a suitable neutrino mass (best-
fit case: Mν,best−fit = 0.12 eV), at three different redshifts z = 1 (solid), z = 0.5 (dashed), and
z = 0 (dotted). All plots pertain the CPL case: w0 = −1.1, wa = 0.3. The residual is defined by
∆ν = 100% ·

(
1−Qfid

NL/Q
best−fit
NL

)
.

We begin by considering a fiducial spectrum with ξ̄ = 50 b/GeV (ξ = 60 b/GeV), w0 = −1.1,
wa = 0.3, we then generate results with no-interaction (ξ = 0), while varying neutrino mass
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until we are able to find a value Mν,best−fit which minimises the residuals between this case and
the fiducial spectra. We fit all three redshift bins together and we consider only the scales for
which our predictions from the halo model reaction have an accuracy of ∆ ≤ 1% (displayed in
Figure 6.2), ensuring that the neutrino contribution is not mimicking incorrect effects, which is
shown in Figure 6.3. We found a neutrino mass of Mν = 0.12 eV with absence of interaction in the
dark sector, that best fits the fiducial. We clearly see that a dark sector momentum exchange at
the level of ξ̄ = 50 b/GeV cannot be mimicked by massive neutrinos alone, even if a single redshift
slice is considered in isolation, therefore the case of massive neutrinos, no significant degeneracy
is found. However, it should be remarked that we use a single set of dark energy parameters to test
both degeneracies, and it is conceivable that a very different dark energy evolution would change
these conclusions.

Baryonic feedback degeneracy.- We proceed in the same way as before, attempting to find a
value for the baryonic feedback for which QNL mimics that of the interacting cosmology. We
consider again our fiducial spectrum with ξ̄ = 50 b/GeV (ξ = 60 b/GeV), w0 = −1.1, wa = 0.3,
adding a baryon boost with θ = 7.8 and thus computing Qfid

NL.
The results from this procedure are illustrated in Figure 6.4, where we show the residuals

between the fiducial and best fit cases. As seen there the best-fit value is θbest−fit = 8.01, which is
substantially different from the fiducial value of 7.8. It is also clear in the figure that modulating
the feedback strength can mimic the effect of the interaction, as it reduced the residuals to below
1% on scales up to k = 1 h/Mpc, in which we trust our modelling fully.
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Figure 6.4: Residuals of the comparison between the Dark Scattering predictions for ξ̄ = 50 b/GeV
(ξ = 60 b/GeV), θ = 7.8 and the non-interacting case with the best-fit baryonic feedback (θbest−fit =
8.01), at three different redshifts z = 1 (solid), z = 0.5 (dashed), and z = 0 (dotted). In all
cases we consider the CPL case: w0 = −1.1, wa = 0.3. The residual is defined by ∆feedback =
100% ·

(
1−Qfid
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best−fit
NL

)
.

While these simplified tests already reveal some potential degeneracies between baryons feed-
back and DS effects, a more thorough MCMC analysis would enable us to exactly pin them down,
as well as allowing us to fully validate our non-linear modelling. The presence of this degeneracy
highlights the importance of using a combined analysis with spectroscopic clustering to constrain
IDE (as analysed by Carrilho et al. [2021]), as their relative independence of baryonic feedback
would help in breaking this degeneracy. We aim to fully explore that with photometric surveys in
next stages of this project, where we will also be able to precisely define the range of applicability
of our modeling as well as forecast the observability of the DS effects shown here.
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6.4 First publication

As a result of the previous progress, during the first year of the PhD program, I collaborated as a
co-author on an article publication (see [Carrilho, Carrion, et al., 2022]) based on the validation re-
sults. In this article, we generated the DM-only pseudo power spectrum from a Python-based code
called EuclidEmulator2 § ([Knabenhans et al., 2021]) by giving as input a scalar amplitude As,
corrected by the appropriate growth factors using evogrowthpy §, i.e. D2

DS(z)/D
2
ΛCDM(z), thus

ensuring the match to the linear power spectrum of the DS case, resulting in being slightly more
accurate than HMCODE on intermediate scales. The article is already published in an international
journal with arbitration.

6.5 Creating a fast DS emulator

In light of a well validation against simulations with percent-level accuracy of DS non-linear spec-
trum. We plan now to create a DS emulator trained by CosmoPower .

In order to get familiar with CosmoPower , as a first test, I successfully created a DS CMB
emulator CDS

ℓ . Then, we considered next to make a pipeline in order to generate DS non-linear
spectra from ReACT . Such pipeline is parametrised in terms of just 9 parameters, given by,

θDS = {Ωb, Ωcdm, ns, ln 10
10As, h, w0, ξ,mν , z}. (6.16)

We considered a 5σ interval of the cosmological parameters from Planck 2018 ([Aghanim et
al., 2020]) best-fit, as follows,

Parameter Range of validity
Ωb [0.0477, 0.04890]
Ωcdm [0.2830,0.3391]
h [0.6556, 0.6975]
ns [0.9475, 0.9855]

ln1010As [2.977, 3.117]
mν [0, 0.2] eV
w0 [-0.85, -1.15]
ξ [0, 20] b/GeV
z [0, 5]

Table 6.2: The range of validity of the DS emulator.

So, I had to resort to parallelization methods to generate 150, 000 spectra samples by separat-
ing them ∼ 90% for training and ∼ 10% for testing. Here, I want to acknowledge the usage of
Chacaltzingo, a computing cluster from ICF-UNAM facilities, in which I make use of 10 CPU cores
and the Python package called multiprocessing to generate the spectra samples. Afterwards,
we prepared our NN, then the samples for training are passed through the four hidden layers.
Then, the trained DS emulator was put in testing against the testing samples, resulting in a desired
accuracy as is shown in Figure 6.5.

While using ReACT to generate 105 samples took around 5 days by parallelising into 10 CPU
cores, the DS emulator just needs ∼ 1 minute and that is incredibly impressive. For that reason,
our purposes for the DS power spectra emulator is to implement it into the bayessian analysis by
considering real cosmological data from experiments or simulated data, in contemplation of being
tested against the accuracy requirements for the analysis of next-generation cosmological surveys.
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Figure 6.5: Preliminary accuracy of the first DS emulator against 2× 104 spectra of the testing set.
The dark blue, blue and cyan areas enclose the 68, 95 and 99 percentiles of the fractional absolute
emulator error, respectively.

6.6 Adapting Cobaya to emulators

Our motivation now is the fact that, in cosmology, an accurate parameter estimation are turning
very expensive. For example, in a typical MCMC the power spectra provided by Boltzmann codes
are evaluated more than 104 on the likelihood, thus the runtime requires a long time. This has
led to the replacement of the Boltzmann codes to emulators in order to speed-up the inference
pipeline.

In this stage, I implemented in Cobaya a ΛCDM emulator of CMB spectra which works with
the six parameters:

θΛCDM = {Ωbh
2, Ωcdmh

2, h, τreio, ns, ln 10
10As}. (6.17)

Subsequently, I employed a MCMC analysis by considering the Planck 2018 likelihood incorpo-
rated within Cobaya , resulting in Figure 6.6, where the convergence of Gelman-Rubin criterion
of 0.01 value is reached. Afterwards, in Figure 6.7 I compare ΛCDM linear emulator to CLASS by
using a DES year 1 likelihood of clustering.

Currently, I have been working on creating a better DS emulator for non-linear spectrum that
contains a wider range of parameters, here I acknowledge use of the Cuillin computing cluster of
the Royal Observatory, University of Edinburgh.
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Figure 6.6: Implementation of the CMB emulator in Cobaya , where I reproduced posteriors similar
to those from the paper [Spurio Mancini et al., 2022] as a first test.
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CHAPTER 7

WORKPLAN

Proposed schedule of activities to complete the project.

TODAY

Year: | 2021 | | 2022 | | 2023 | | 2024 |

Semester: 1 2 3 4 5 6 7 8

50% completePhD project:

100% completeHalo model

ReACT

100% completeBaryonic feedback

100% completeInteracting Dark Energy

100% complete1º article

CosmoPower

100% completeEmulators

75% completeCosmo-statistics

Cobaya

50% completeWeak Lensing

0% complete2º article

0% complete21 cm

0% completeHI intensity mapping

0% completeResearch stay

0% complete3º article

25% completeThesis writing

Project concluded

finish-to-start

finish-to-start

start-to-start
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