CMB Perturbations

J. Alberto Vázquez

ICF - UNAM

Perturbaciones
June 11-13, 2018

IV TALLER DE MÉTODOS NUMÉRICOS Y ESTADÍSTICOS EN cosmolocía

30, 31 DE JULIO Y 1 DE AGOSTO

Cuernavaca, Morelos
ICF-UNAM

INVITADOS

- Miguel Aragón	(OAN-UNAM)	- Data science
- Axel De la Macorra	(IF-UNAM)	- DESI
- Omar López	(INAOE)	$-21-\mathrm{cm}$
- Elizabeth Martínez	(ITAM)	- Astroestadistica
- Andrés Plazas	(ASP)	- DES
- Andrés Sandoval	(IF-UNAM)	- HAWC
- Octavio Valenzuela	(IA-UNAM)	- Simulaciones

wuw.fis.unam.mx/taller cosmo.php

COMITÉ ORGANIZADOR

J Alberto Vázquez (ICF-UNAM) Sebastien Fromenteau (ICF-UNAM) Alma X. González (UGTO) Luis Ureña (UGTO)

VI TALLER DE GRAVITACIÓN Y COSMOLOGÍA ICF-UNAM, Cuernavaca, Morelos, 2 y 3 de agosto, 2018 Segunda Circular

26/05/2018
El objetivo del presente taller es servir como foro para discutir características y consecuencias de los trabajos recientes en los temas de gravitación, cosmología y áreas afines. Este taller también pretende establecer nuevas colaboraciones entre los participantes que trabajan en dichas áreas ampliando con ello las redes de investigación dentro de la comunidad científica mexicana.

PARTICIPANTES

La inscripción al evento sigue abierta para investigadores y estudiantes que contribuyan al taller. Por el momento tenemos confirmada la participación de los siguientes investigadores.

MIGUEL ASPEITIA
NORA BRETON
KAREN CABALLERO MORA
JOSÉ ANTONIO GONZÁLEZ CERVERA
FRANCISCO S. GUZMÁN
ALFREDO HERRERA AGUILAR
GERMAN IZQUIERDO
ANDRÉS PLAZAS

ESTUDIANTES

Los estudiantes interesados en participar deberán estar inscritos en un programa de posgrado, ser estudiantes regulares y enviar carta de apoyo (recomendacion) de su supervisor.

Enviar resumen de plática (dado el caso) y carta de recomendación a más tardar el día viernes 8 de junio de 2018 a Juan Carlos Hidalgo al correo hidalgo@fis.unam.mx

HOSPEDAJE PARA ESTUDIANTES Y POSTDOCS
Habrá apoyo en forma de hospedaje y alimentos para estudiantes y postdocs. Se dará preferencia a quienes presenten plática corta.

SEDE DEL EVENTO
La sede del Taller será el auditorio del Instituto de Ciencias Físicas de la Universidad Nacional Autónoma de México, ubicado en el Campus de la Universidad Autónoma del Estado de Morelos, en la ciudad de Cuernavaca, Morelos.

Outline

Cosmic Microwave Background

The Hot Big Bang:
Recombination, Decoupling, Last Scattering
Black body radiation
Boltzmann equation
Temperature, Polarization,
Line of sight strategy
Perturbations - Talacha -
CMB Power Spectrum
Acoustic peaks
Codes
Observations
What else, Running, Non-gaussianity, Primordial Gravitational waves ...

Motivation

A must do!

- The cosmic microwave background (CMB) is the thermal radiation left over from the "Big Bang", also known as "relic radiation".
- The CMB is a snapshot of the oldest light in our Universe, imprinted on the sky when the Universe was just 380,000 years old, dating to the epoch of recombination.
- With a traditional optical telescope, the space between stars and galaxies is completely dark. However, a sufficiently sensitive radio telescope shows a faint background glow, almost exactly the same in all directions. This glow is strongest in the microwave region.

Motivation

It shows tiny temperature fluctuations that correspond to regions of slightly different densities, representing the seeds of all future structure:
the stars and galaxies of today.

The Hot Big Bang

The Hot Big Bang

Event	time t	redshift z	temperature T
Inflation	$10^{-34} \mathrm{~s}(?)$	-	-
Baryogenesis	$?$	$?$	$?$
EW phase transition	20 ps	10^{15}	100 GeV
QCD phase transition	$20 \mu \mathrm{~s}$	10^{12}	150 MeV
Dark matter freeze-out	$?$	$?$	$?$
Neutrino decoupling	1 s	6×10^{9}	1 MeV
Electron-positron annihilation	6 s	2×10^{9}	500 keV
Big Bang nucleosynthesis	3 min	4×10^{8}	100 keV
Matter-radiation equality	60 kyr	3400	0.75 eV
Recombination	$260-380 \mathrm{kyr}$	$1100-1400$	$0.26-0.33 \mathrm{eV}$
Photon decoupling	380 kyr	$1000-1200$	$0.23-0.28 \mathrm{eV}$
Reionization	$100-400 \mathrm{Myr}$	$11-30$	$2.6-7.0 \mathrm{meV}$
Dark energy-matter equality	9 Gyr	0.4	0.33 meV
Present	13.8 Gyr	0	0.24 meV

The Hot Big Bang

- Once Big Bang Nucleosynthesis is over, at time $t \sim 300$ s and temperature $T \sim 8 \times 10^{8} \mathrm{~K}$, the Universe is a thermal bath of photons, protons, electrons, in addition to neutrinos and the unknown dark matter particle(s).

The key to understanding the thermal history of the universe is the comparison between the rate of interactions Γ and the rate of expansion H.

- $\Gamma \gg H$, Local thermal equilibrium is then reached before the effect of the expansion becomes relevant.
- As the universe cools, the rate of interactions may decrease faster than the expansion rate
- At $\Gamma \sim H$ the particles decouple from the thermal bath.

Different particle species may have different interaction rates and so may decouple at different times.

Fermi-Dirac (+) and Bose-Einstein (-)

$$
f(p)=\frac{1}{e^{(E-\mu) / T \pm 1}}
$$

Recombination

Photons were tightly coupled to the electrons via Compton scattering, which in turn strongly interacted with protons via Coulomb scattering.

When the temperature became low enough, the electrons and nuclei combined to form neutral atoms (recombination), and the density of free electrons fell sharply.

a Before recombination

b After recombination

Saha equation

$\mathrm{T}>1 \mathrm{eV}$, when baryons and photons were still in equilibrium through electromagnetic reactions such as

$$
e^{-}+p^{+} \rightleftharpoons H+\gamma
$$

$$
n_{i}=g_{i}\left(\frac{m_{i} T}{2 \pi}\right)^{3 / 2} \exp \left(\frac{\mu_{i}-m_{i}}{T}\right)
$$

We wish to follow the firee electron fraction defined as the ratio

$$
X_{e} \equiv \frac{n_{e}}{n_{b}}
$$

$$
\left(\frac{1-X_{e}}{X_{e}^{2}}\right)_{\mathrm{eq}}=\frac{2 \zeta(3)}{\pi^{2}} \eta\left(\frac{2 \pi T}{m_{e}}\right)^{3 / 2} e^{B_{H} / T}
$$

The Saha approximation correctly identifies the onset of recombination, but it is clearly insufficient if the aim is to determine the relic density of electrons after freeze-out.

$$
m_{i ?} \mu_{\gamma ?}
$$

Recombination

Let us define the recombination temperature Trec as the temperature where $\mathrm{Xe}=10^{-1}$, i.e. when 90% of the electrons have combined with protons to form hydrogen.

$$
T_{\mathrm{rec}} \approx 0.3 \mathrm{eV} \simeq 3600 \mathrm{~K}
$$

Using $T_{\text {rec }}=T_{0}\left(1+z_{\text {rec }}\right)$, with $\mathrm{T} 0=2.7 \mathrm{~K}$, gives the redshift of recombination: $z_{\text {rec }} \approx 1320$

Since matter-radiation equality is at zeq $\simeq 3500$, then recombination occurred in the matter-dominated era. Using $\mathrm{a}(\mathrm{t})=(\mathrm{t} / \mathrm{t} 0)^{2 / 3}$, the time of recombination

$$
t_{\mathrm{rec}}=\frac{t_{0}}{\left(1+z_{\mathrm{rec}}\right)^{3 / 2}} \sim 290000 \mathrm{yrs}
$$

Recombination was not an instantaneous process but proceeded relatively quickly nevertheless, with the fractional ionisation decreasing from $X=0.9$ to $X=0.1$ over a time interval $\Delta t \sim 70000 y r s$.

Photon Decoupling

Photons are most strongly coupled to the primordial plasma through their interactions with electrons, through Thomson scattering

$$
e^{-}+\gamma \rightleftharpoons e^{-}+\gamma
$$

Thomson scattering is that it introduces polarization along the direction of motion of the electron

The mean free path for photons (the mean distance travelled between scatterings) is $\quad \lambda=\frac{1}{n_{e} \sigma_{T}}$, and therefore the interaction rate at which a photon undergoes scattering $\quad \Gamma_{\gamma} \approx n_{e} \sigma_{T}$,
Γ_{γ} decreases as the density of free electrons drops, and hence photons and electrons decouple when

$$
\Gamma_{\gamma}\left(T_{\mathrm{dec}}\right) \sim H\left(T_{\mathrm{dec}}\right) . \quad X_{e}\left(T_{\mathrm{dec}}\right) T_{\mathrm{dec}}^{3 / 2} \sim \frac{\pi^{2}}{2 \zeta(3)} \frac{H_{0} \sqrt{\Omega_{m}}}{\eta \sigma_{T} T_{0}^{3 / 2}}
$$

$$
\text { Using the Saha equation for } \mathrm{Xe}(\mathrm{Tdec}) \quad T_{\mathrm{dec}} \sim 0.27 \mathrm{eV} . z_{\mathrm{dec}} \sim 1100, \quad t_{\mathrm{dec}} \sim 380000 \mathrm{yrs} .
$$

resultado?

Last Scattering Surface

After their last scattering off an electron, photons were able to travel unimpeded through the Universe. These are the Cosmic Microwave Background photons we receive today, still with their blackbody distribution, now redshifted by a factor of 1100 .

They constitute a last scattering surface, or more appropriately a last scattering layer

Isotropic CMB

- The CMB radiation was discovered in 1965 by Arno Penzias and Robert Wilson, while trying to identify sources of noise in microwave satellite communications.
- Their discovery was announced alongside the interpretation of the CMB as relic thermal radiation from the

Big Bang by Robert Dicke and collaborators.

- Interestingly, the possibility of a cosmic thermal background were first entertained by Gamow, Alpher and Herman
in 1948 as a consequence of Big Bang nucleosynthesis, but the idea was so beyond the experimental

1941	Andrew McKellar was attempting to measure the average temperature of the interstellar medium, and reported the observation of an average bolometric temperature of 2.3 K ased on the study of interstellar absorption lines.
1946	Robert Dicke predicts ".. radiation from cosmic matter" at <20 K but did not refer to background radiation ${ }^{\text {[1] }}$
1948	George Gamow calculates a temperature of 50 K (assuming a 3-billion-year old Universe), commenting it ".. is in reasonable agreement with the actual temperature of interstellar space", but does not mention background radiation.
1948	Ralph Alpher and Robert Herman estimate "the temperature in the Universe" at 5 K . Although they do not specifically mention microwave background radiation, it may be inferred. ${ }^{[2]}$
1950	Ralph Alpher and Robert Herman re-estimate the temperature at 28 K .
1953	George Gamow estimates 7 K .
1955	Émile Le Roux of the Nançay Radio Observatory, in a sky survey at $\lambda=33 \mathrm{~cm}$, reported a near-isotropic background radiation of 3 kelvins, plus or minus 2.
1956	George Gamow estimates 6 K .
1957	Tigran Shmaonov reports that "the absolute effective temperature of the radioemission background \ldots is $4 \pm 3 \mathrm{~K}$ ". It is noted that the "measurements showed that radiation intensity was independent of either time or direction of observation... it is now clear that Shmaonov did observe the cosmic microwave background at a wavelength of 3.2 cm "
1960s	Robert Dicke re-estimates a MBR (microwave background radiation) temperature of 40 K
1964	A. G. Doroshkevich and Igor Novikov publish a brief paper, where they name the CMB radiation phenomenon as detectable.
1964-65	Arno Penzias and Robert Woodrow Wilson measure the temperature to be approximately 3 K. Robert Dicke, P. J. E. Peebles, P. G. Roll, and D. T. Wilkinson interpret this radiation as a signature of the big bang.
1983	RELIKT-1 Soviet CMB anisotropy experiment was launched.
1990	FIRAS on COBE measures the black body form of the CMB spectrum with exquisite precision.
1992	Scientists who analyzed data from COBE DMR announce the discovery of the primary temperature anisotropy.
1999	First measurements of acoustic oscillations in the CMB anisotropy angular power spectrum from the TOCO, BOOMERANG, and Maxima Experiments.
2002	Polarization discovered by DASI.
2004	E-mode polarization spectrum obtained by the CBI.
2005	Ralph A. Alpher is awarded the National Medal of Science for his groundbreaking work in nucleosynthesis and prediction that the universe expansion leaves behind background radiation, thus providing a model for the Big Bang theory.
2006	Two of COBE's principal investigato s, George Smoot and John Mather, received the Nobel Prize in Physics in 2006 for their work on precision measurement of the CMBR.

Property	Value
Temperature, T_{CMB}	2.7255 K
Peak Wavelength, $\lambda_{\text {peak }}$	0.106 cm
Number density of CMB photons, $n_{\gamma, 0}$	$411 \mathrm{~cm}^{-3}$
Energy density of CMB photons, $u_{\gamma, 0}$	$0.26 \mathrm{eV} \mathrm{cm}^{-3}$
Average photon energy, $\left\langle h \nu_{\mathrm{CMB}}\right\rangle$	$6.34 \times 10^{-4} \mathrm{eV}$
Photon/Baryon ratio, $1 / \eta$	1.64×10^{9}

The original detection by Penzias and Wilson was at a wavelength of 73.5 mm , this being the wavelength of the telecommunication signals they were working with; this wavelength is two orders of magnitude longer than $\lambda_{\text {peak }}=1.1 \mathrm{~mm}$ of a $\mathrm{T}=2.7255 \mathrm{~K}$ blackbody.

$$
\langle T\rangle=\frac{1}{4 \pi} \int T(\theta, \phi) \sin \theta d \theta d \phi=2.7255 \pm 0.0006 K
$$

The deviations from this mean temperature from point to point on the sky are tiny.

$$
\frac{\delta T}{T}(\theta, \phi)=\frac{T(\theta, \phi)-\langle T\rangle}{\langle T\rangle}
$$

$$
\left\langle\left(\frac{\delta T}{T}\right)\right\rangle^{1 / 2}=1.1 \times 10^{-5}
$$

Linear Perturbations

J.C. Hidalgo

Unperturbed

Perturbed

Linear Perturbations

$$
\text { Metric perturbations } g_{\mu \nu} \rightarrow \bar{g}_{\mu \nu}+a^{2} h_{\mu \nu},
$$

The most general perturbation to the background metric is given by

$$
h_{\mu \nu} d x^{\mu} d x^{\nu}=-2 A d \eta^{2}-2 B_{i} d \eta d x^{i}+2 H_{i j} d x^{i} d x^{j} .
$$

$$
\text { SVT } H_{i j}=\underbrace{H_{L} \gamma_{i j}+\partial_{\langle i} \partial_{j} H_{T}}_{\text {scalar part }}+\underbrace{\partial_{(i} H_{j)}^{(V)}}_{\text {vector part }}+\underbrace{H_{i j}^{(T)}}_{\text {tensor part }},
$$

The Gauge Problem

change of the time coordinate can introduce a fictitious density perturbation

$$
\rho(\eta) \rightarrow \rho\left(\eta+\xi^{0}(\eta, \mathbf{x})\right) \quad \eta \rightarrow \eta+\xi^{0}(\eta, \mathbf{x})
$$

$$
Q^{(1)} \rightarrow Q^{(1)}+\mathcal{L}_{X} \bar{Q}
$$

$$
\begin{aligned}
A & \rightarrow A-\frac{a^{\prime}}{a} T-T^{\prime}, \\
B & \rightarrow B+L^{\prime}+k T, \\
H_{L} & \rightarrow H_{L}-\frac{a^{\prime}}{a} T-\frac{k}{3} L, \\
H_{T} & \rightarrow H_{T}+k L, \\
\delta & \rightarrow \delta+3(1+w) \frac{a^{\prime}}{a} T, \\
v & \rightarrow v+L^{\prime}, \\
\pi_{L} & \rightarrow \pi_{L}-\frac{\bar{p}^{\prime}}{\bar{p}} T=\pi_{L}+3(1+w) \frac{c_{\mathrm{s}}^{2}}{w} \frac{a^{\prime}}{a} T,
\end{aligned}
$$

Where Ψ and Φ are gauge-invariant quantities, called Bardeen potentials

$$
\Psi \equiv A-\frac{a^{\prime}}{a} k^{-1} \sigma-k^{-1} \sigma^{\prime}, \quad \Phi \equiv H_{L}+\frac{1}{3} H_{T}-\frac{a^{\prime}}{a} k^{-1} \sigma .
$$

Perturbed Einstein's and conservation equation

$$
\begin{aligned}
k^{2} \Phi+3 \frac{a^{\prime}}{a}\left(\Phi^{\prime}-\frac{a^{\prime}}{a} \Psi\right) & =4 \pi G a^{2} \bar{\rho} \delta, & -\delta^{\prime} & =(1+w)\left[k v+3 \Phi^{\prime}\right]+3 \frac{a^{\prime}}{a} w \Gamma+3 \frac{a^{\prime}}{a} \delta\left(c_{s}^{2}-w\right), \\
k\left(\frac{a^{\prime}}{a} \Psi-\Phi^{\prime}\right) & =4 \pi G a^{2} v(\bar{\rho}+\bar{p}), & v^{\prime} & =\frac{a^{\prime}}{a}\left(3 c_{s}^{2}-1\right) v+k \Psi+\frac{k c_{s}^{2}}{1+w} \delta+\frac{k w}{1+w}\left[\Gamma-\frac{2}{3} \Pi\right], \\
-k^{2}(\Phi+\Psi) & =8 \pi G a^{2} \bar{p} \Pi, & &
\end{aligned}
$$

The Boltzmann equation

Describes the statistical behaviour of a thermodynamic system not in a state of equilibrium

$$
\frac{d f}{d \eta}=C[f]
$$

The Boltzmann equation

The distribution function of the cosmic microwave background with temperature T is

$$
\bar{f}=\left[\exp \left(\frac{E}{\bar{T}}\right)-1\right]^{-1}
$$

We see that \bar{f} depends just upon the energy E of a photon. Writing $T=T_{0} a^{-1}$, we see that \bar{f} is a function of $a E$ only:

$$
\begin{equation*}
\bar{f}(a E)=\left[\exp \left(\frac{a E}{\bar{T}_{0}}\right)-1\right]^{-1} \tag{3.2}
\end{equation*}
$$

for observers in the unperturbed background at rest $E=-a p, \bar{f}$ depends solely of $P=a^{2} p$:

Let us split the spatial momentum into its magnitude \mathbf{p} and the unit vector of photon $p^{i} \equiv p n^{i}$ momentum n

$$
f=f(\eta, \mathbf{x}, P, \mathbf{n})
$$

The complete distribution function for each species can be split into background plus a perturbation part:

$$
\begin{equation*}
f(\eta, \mathbf{x}, P, \mathbf{n})=\bar{f}(P)+F(\eta, \mathbf{x}, P, \mathbf{n}), \tag{3.5}
\end{equation*}
$$

The Boltzmann equation

The evolution of perturbations in the universe is quantified by the Boltzmann equation:

$$
\left(\frac{\partial f}{\partial \eta}\right)_{P}+\frac{\partial f}{\partial x^{i}} \frac{\partial x^{i}}{\partial \eta}+\frac{\partial f}{\partial P} \frac{\partial P}{\partial \eta}+\frac{\partial f}{\partial n^{i}} \frac{\partial n^{i}}{\partial \eta}=C[f, G]
$$

Relates the effects of gravity on the photon distribution function f to the rate of interactions with other species, given by the collision term C[f,G].

To describe the electromagnetic wave $\boldsymbol{E}=\left(a_{1} e^{i \delta_{1}} \boldsymbol{\epsilon}_{1}+a_{2} e^{i \delta_{2}} \boldsymbol{\epsilon}_{2}\right) e^{i p n \boldsymbol{x}-i \omega t}$.

The Stokes parameters are then defined by

$$
\begin{aligned}
I & \equiv\left\langle\boldsymbol{E} \boldsymbol{E}^{\star}\right\rangle=a_{1}^{2}+a_{2}^{2} \\
Q & \equiv\left\langle\boldsymbol{E}_{1} \boldsymbol{E}_{1}^{\star}-\boldsymbol{E}_{2} \boldsymbol{E}_{2}^{\star}\right\rangle=a_{1}^{2}-a_{2}^{2} \\
U & \left.\left.\equiv\langle | \frac{\boldsymbol{E}_{1}+\boldsymbol{E}_{2}}{\sqrt{2}}\right|^{2}-\left|\frac{\boldsymbol{E}_{1}-\boldsymbol{E}_{2}}{\sqrt{2}}\right|^{2}\right\rangle \\
& =2 a_{1} a_{2} \cos \left(\delta_{1}-\delta_{2}\right)
\end{aligned}
$$

The Stokes parameters can be express as frequency-independent fractional thermodynamic equivalent temperatures.
The previous distribution applies to polarization as well by simply replacing $\mathrm{F} \rightarrow \mathrm{G}$ (we use G to denote the linear polarization distribution function) and $\overline{\mathrm{f}}=\overline{\mathrm{f}}^{-1} \rightarrow 0$

The Boltzmann equation

$$
\left(\frac{\partial f}{\partial \eta}\right)_{P}+\frac{\partial f}{\partial x^{i}} \frac{\partial x^{i}}{\partial \eta}+\frac{\partial f}{\partial P} \frac{\partial P}{\partial \eta}+\frac{\partial f}{\partial n^{i}} \frac{\partial n^{i}}{\partial \eta}=C[f, G]
$$

The last term vanishes, because it is of second order in perturbation theory: \boldsymbol{f}^{-}does not depend on n^{i} and hence $\partial \mathrm{f} / \partial n^{\mathrm{i}}$ is a perturbation. In addition $\partial \mathrm{n}^{\mathrm{i}} / \partial \eta$, is a change in photon direction.
effect?

The third term can be computed from the geodesic equation

$$
\frac{\partial f}{\partial P} \frac{\partial P}{\partial \eta}=-P \bar{f}_{, P}\left\{i \mu k[\Phi+\Psi]+2 \Phi^{\prime}\right\}, \quad \quad p^{0} \frac{d p^{\mu}}{d \eta}+\Gamma_{\alpha \beta}^{\mu} p^{\alpha} p^{\mu}=0
$$

The second term

$$
\frac{\partial f}{\partial x^{i}} \frac{\partial x^{i}}{\partial \eta}=i \mu k F(\eta, \mathbf{x}, P, \mathbf{n})
$$

Collecting the terms involving the background only $\quad\left(\frac{\partial f}{\partial \eta}\right)_{P}=0$
the preservation of the background black body spectrum

$$
\left(\frac{\partial F}{\partial \eta}\right)_{P}+i \mu k F-P \bar{f}_{, P}\left\{i \mu k[\Phi+\Psi]+2 \Phi^{\prime}\right\}=C[f, G]
$$

Finally, making the substitution $\mathrm{F} \rightarrow \mathrm{G}, \mathrm{f}^{-1} \rightarrow 0$, we get the simple evolution equation for the linear polarization G

$$
\left(\frac{\partial G}{\partial \eta}\right)_{P}+i \mu k G=C_{G}[f, G]
$$

Perturbed temperature

Writing the temperature function T in terms of the photon brightness temperature perturbation $\Delta \equiv \Delta T / \bar{T}$, we have

$$
\begin{equation*}
T(\eta, \mathbf{x}, \mathbf{n})=\bar{T}(\eta)[1+\Delta(\eta, \mathbf{x}, \mathbf{n})] \tag{3.13}
\end{equation*}
$$

and therefore F and Δ are connected via

$$
F(\eta, \mathbf{x}, P, \mathbf{n})=-P \frac{\partial \bar{f}}{\partial P} \Delta(\eta, \mathbf{x}, \mathbf{n}) . \quad G(\eta, \mathbf{x}, P, \mathbf{n})=-P \frac{\partial \bar{f}}{\partial P} \mathcal{Q}(\eta, \mathbf{x}, \mathbf{n}) .
$$

The simplify Boltzmann equation becomes

$$
\Delta^{\prime}+i k \mu \Delta=-i \mu k[\Phi+\Psi]-2 \Phi^{\prime}+\hat{C}[f, G]
$$

The Collision Term

The dominant term for the coupling of photons to the baryons is via inverse Compton scattering

$$
e^{-}(\mathbf{q})+\gamma(\mathbf{p}) \rightleftharpoons \mathbf{e}^{-}\left(\mathbf{q}^{\prime}\right)+\gamma\left(\mathbf{p}^{\prime}\right)
$$

The amplitude can be calculated from the Feynman rules.

$$
\begin{array}{r}
C[f, G]=a n_{e} \sigma_{T} \bar{f}_{, P} P\left\{i \mu v_{b}+\Delta(\eta, \mathbf{x}, \mathbf{n})-\frac{1}{4} \int_{-1}^{1} \Delta\left(\eta, \mathbf{x}, \mathbf{n}^{\prime}\right)\left[P_{2}(\lambda) P_{2}(\mu)+2\right] d \lambda\right. \\
\left.-\frac{1}{4} \int_{-1}^{1} \mathcal{Q}\left(\eta, \mathbf{x}, \mathbf{n}^{\prime}\right) P_{2}(\mu)\left[-2 \sqrt{6 \pi 5}{ }_{2} Y_{2}^{0}(\lambda)\right] d \lambda\right\}
\end{array}
$$

The expansion of the temperature perturbation (Δ) and polarisations (Q and U), in terms of spherical harmonics $Y^{m}(n)$

$$
\Delta(\eta, \mathbf{x}, \mathbf{n})=\sum_{l}(-i)^{l} \Delta_{l}(k, \eta) P_{l}(\hat{\mathbf{k}} \cdot \mathbf{n}), \quad(Q \pm i U)(\eta, \mathbf{x}, \mathbf{n})=\sum_{l=2}(-i)^{l}\left(E_{l}^{0} \pm i B_{l}^{0}\right) \sqrt{\frac{4 \pi}{2 l+1} \mp 2 Y_{l}^{0}(\mathbf{n}),}
$$

$$
C[f, G]=a n_{e} \sigma_{T} \bar{f}_{, P} P\left\{i \mu v_{b}+\Delta(\eta, \mathbf{k}, \mathbf{n})+\frac{1}{10} \Delta_{2} P_{2}(\mu)-\Delta_{0}-\frac{\sqrt{6}}{10}\left[E_{2}-\Delta_{2}\right]\right\}
$$

The Boltzmann equation thus yields to the evolution equation of temperature perturbations

$$
\Delta^{\prime}+i k \mu \Delta+\kappa^{\prime} \Delta=-i \mu k[\Phi+\Psi]-2 \Phi^{\prime}+\kappa^{\prime}\left\{\frac{1}{4} \delta_{\gamma}-\Phi-i \mu v_{b}+\frac{1}{10} P_{2}(\mu)\left[\sqrt{6} E_{2}-\Delta_{2}\right]\right\}
$$

$$
Q^{\prime}+i k \mu Q+\kappa^{\prime} Q=\frac{\kappa^{\prime}}{10}\left\{P_{2}(\mu)-1\right\}\left[\sqrt{6} E_{2}-\Delta_{2}\right] .
$$

$$
\begin{gathered}
\kappa^{\prime} \equiv a n_{e} \sigma_{T} \text { is the differential optical depth } \\
\mu=k^{-1} \mathbf{k} \cdot \mathbf{n} \text { the direction cosine. }
\end{gathered}
$$

We have use the expressions for the first few moments of the distribution function

$$
T_{\nu}^{\mu}=\int \sqrt{-g} \frac{p^{\mu} p_{\nu}}{\left|p_{0}\right|} f(p, x) d^{3} p \quad \delta=4 \Phi+\frac{1}{\pi} \int \Delta(\mathbf{n}) \mathbf{d} \Omega
$$

We notice that is not manifestly gauge-invariant,
however by defining the gauge invariant temperature perturbation

$$
\mathcal{M}=\Delta+2 \Phi
$$

$$
\mathcal{M}(\eta, \mathbf{x}, \mathbf{n})=\sum_{l}(-i)^{l} \mathcal{M}_{l}(\eta, \mathbf{k}) P_{l}(\mathbf{n}),
$$

$$
\mathcal{M}^{\prime}+i k \mu \mathcal{M}+\kappa^{\prime} \mathcal{M}=i \mu k[\Phi-\Psi]+\kappa^{\prime}\left\{\frac{1}{4} D_{g}^{\gamma}-i \mu v_{b}+\frac{1}{10} P_{2}(\mu)\left[\sqrt{6} E_{2}-\mathcal{M}_{2}\right]\right\} .
$$

Solving

$$
\mathcal{M}^{\prime}+i k \mu \mathcal{M}+\kappa^{\prime} \mathcal{M}=i \mu k[\Phi-\Psi]+\kappa^{\prime}\left\{\frac{1}{4} D_{g}^{\gamma}-i \mu v_{b}+\frac{1}{10} P_{2}(\mu)\left[\sqrt{6} E_{2}-\mathcal{M}_{2}\right]\right\}
$$

The procedure is as follows: For each Legendre polynomials P_{l}

- replace $\mathcal{M}(\eta, \mu)$ by its multipole expansion
- multiply by $P_{l}(\mu)$
- integrate both l.h.s. and r.h.s. of the new equation over $\mu: \int_{-1}^{1} d \mu$
- use the orthogonality relation $\int_{-1}^{1} d \mu P_{l}(\mu) P_{n}(\mu)=2 \delta_{l n} /(2 l+1)$

$$
\begin{aligned}
\mathcal{M}_{0}^{\prime} & =-\frac{k}{3} V_{\gamma} \\
\mathcal{M}_{1}^{\prime} & =\kappa^{\prime}\left(V_{b}-V_{\gamma}\right)+k(\Psi-\Phi)+k\left(\mathcal{M}_{0}-\frac{2}{5} \mathcal{M}_{2}\right), \\
\mathcal{M}_{2}^{\prime} & =-\kappa^{\prime}\left(\mathcal{M}_{2}-\mathcal{C}\right)+k\left(\frac{2}{3} V_{\gamma}-\frac{3}{7} \mathcal{M}_{3}\right), \\
\mathcal{M}_{l}^{\prime} & =-\kappa^{\prime} \mathcal{M}_{l}+k\left(\frac{l}{2 l-1} \mathcal{M}_{l-1}-\frac{l+1}{2 l+3} \mathcal{M}_{l+1}\right), \quad l>2, \\
E_{2}^{\prime} & =-\frac{k \sqrt{5}}{7} E_{3}-\kappa^{\prime}\left(E_{2}+\sqrt{6} \mathcal{C}\right), \\
E_{l}^{\prime} & =k\left(\frac{2 \kappa_{l}}{2 l-1} E_{l-1}-\frac{2 \kappa_{l+1}}{2 l+3} E_{l+1}\right)-\kappa^{\prime} E_{l}, \quad l>2 .
\end{aligned}
$$

Massless neutrinos follow the same multipole hierarchy as M, however without polarisation

$$
\begin{aligned}
\mathcal{N}_{0}^{\prime} & =-\frac{k}{3} V_{\nu} \\
\mathcal{N}_{0}^{\prime} & =k(\Psi-\Phi)+k\left(\mathcal{N}_{0}-\frac{2}{5} \mathcal{N}_{2}\right) \\
\mathcal{N}_{l}^{\prime} & =k\left(\frac{l}{2 l-1} \mathcal{N}_{l-1}-\frac{l+1}{2 l+3} \mathcal{N}_{l+1}\right), \quad l>1
\end{aligned}
$$

The Line of Sight Strategy

So usually, we are interested in $\mathbf{M}(\boldsymbol{\eta} 0, \mu)$.
Inspecting, one notices that the l.h.s can be written as

$$
\mathcal{M}^{\prime}+i k \mu \mathcal{M}+\kappa^{\prime} \mathcal{M}=
$$

$$
e^{-i \mu k \eta} e^{-\kappa(\eta)} \dot{L} \quad \quad \text { where } \quad L \equiv e^{i \mu k \eta} e^{\kappa(\eta)} \mathcal{M}
$$

Hence, the Boltzmann equation translates into

$$
\dot{L}=e^{i \mu k \eta} e^{\kappa(\eta)}\left[i \mu k(\Phi-\Psi)+\kappa^{\prime}\left(\frac{1}{4} D_{g}^{\gamma}-i \mu V_{b}-\frac{1}{2}\left(3 \mu^{2}-1\right) \mathcal{C}\right)\right]
$$

and integrated over conformal time

$$
L\left(\eta_{0}\right)=\int_{0}^{\eta_{0}} d \eta e^{i \mu k \eta} e^{\kappa(\eta)}\left[i \mu k(\Phi-\Psi)+\kappa^{\prime}\left(\frac{1}{4} D_{g}^{\gamma}-i \mu V_{b}-\frac{1}{2}\left(3 \mu^{2}-1\right) \mathcal{C}\right)\right]
$$

The photon perturbation today is given by

$$
\begin{equation*}
\mathcal{M}\left(\mu, \eta_{0}\right)=\int_{0}^{\eta_{0}} d \eta e^{i \mu k\left(\eta-\eta_{0}\right)} e^{\kappa(\eta)-\kappa\left(\eta_{0}\right)} \times\left[i \mu k(\Phi-\Psi)+\kappa^{\prime}\left(\frac{1}{4} D_{g}^{\gamma}-i \mu V_{b}-\frac{1}{2}\left(3 \mu^{2}-1\right) \mathcal{C}\right)\right] \tag{3.47}
\end{equation*}
$$

The visibility function

The product $g \equiv \kappa^{\prime} \exp \left(\kappa(\eta)-\kappa\left(\eta_{0}\right)\right)$ plays an important role and is called the visibility function. Its peak defines the epoch of recombination.

$$
\begin{equation*}
\mathcal{M}\left(\mu, \eta_{0}\right)=\int_{0}^{\eta_{0}} d \eta e^{i \mu k\left(\eta-\eta_{0}\right)} e^{\kappa(\eta)-\kappa\left(\eta_{0}\right)} \times\left[i \mu k(\Phi-\Psi)+\kappa^{\prime}\left(\frac{1}{4} D_{g}^{\gamma}-i \mu V_{b}-\frac{1}{2}\left(3 \mu^{2}-1\right) \mathcal{C}\right)\right] \tag{3.47}
\end{equation*}
$$

Each term in the above Equation containing factors of μ, can be integrated by parts, order to get rid of μ Applying this procedure to all terms involving μ yields

$$
\mathcal{M}\left(\mu, \eta_{0}\right)=\int_{0}^{\eta_{0}} e^{1 \mu k\left(\eta-\eta_{0}\right)} S_{T}(k, \eta) d \eta
$$

$$
\begin{aligned}
S_{T} & =-e^{\kappa(\eta)-\kappa\left(\eta_{0}\right)}\left[\Phi^{\prime}-\Psi^{\prime}\right]+g^{\prime}\left[\frac{V_{b}}{k}+\frac{3}{k^{2}} \mathcal{C}^{\prime}\right]+g^{\prime \prime} \frac{3}{2 k^{2}} \mathcal{C} \\
& +g\left[\frac{1}{4} D_{g}^{\gamma}+\frac{V_{b}^{\prime}}{k}-(\Phi-\Psi)+\frac{\mathcal{C}}{2}+\frac{3}{2 k^{2}} \mathcal{C}^{\prime \prime}\right],
\end{aligned}
$$

$$
S_{T}=-e^{\kappa(\eta)-\kappa\left(\eta_{0}\right)}\left[\Phi^{\prime}-\Psi^{\prime}\right]+g^{\prime}\left[\frac{V_{b}}{k}+\frac{3}{k^{2}} \mathcal{C}^{\prime}\right]+g^{\prime \prime} \frac{3}{2 k^{2}} \mathcal{C}+g\left[\frac{1}{4} D_{g}^{\gamma}+\frac{V_{b}^{\prime}}{k}-(\Phi-\Psi)+\frac{\mathcal{C}}{2}+\frac{3}{2 k^{2}} \mathcal{C}^{\prime \prime}\right]
$$

The density contrast $\mathbf{D}_{\mathbf{g}} \gamma$ is the main contribution, driving the spectrum towards the oscillatory behaviour.

The $(\Phi-\Psi)$ term arises from the gravitational redshift when climbing out of the potential well at last scattering.

The combination $D_{g} \gamma / 4-(\Phi-\Psi)$ is known as the ordinary Sachs-Wolfe effect (SW).
This gives the main contribution on scales that at decoupling were well outside the horizon
The Doppler shift, Vb-term, describes the blueshift caused by last scattering electrons moving towards the observer.
The term involving time derivatives of the potentials, $\left(\Phi^{\prime}-\Psi^{\prime}\right)$, the integrated Sachs-Wolfe effect (ISW).
It describes the change of the CMB photon energy due to the evolution of the potentials along the line of sight.

CMB Spectrum

II \& III

Updated Cosmology

José-Alberto Vázquez
ICF-UNAM / Kavli Institute for Cosmology
In progress

Outline

Cosmic Microwave Background

The Hot Big Bang:
Recombination, Decoupling, Last Scattering
Black body radiation
Boltzmann equation
Temperature, Polarization,
Line of sight strategy
Perturbations - Talacha -
CMB Power Spectrum
Acoustic peaks
Codes
Observations
What else, Running, Non-gaussianity, Primordial Gravitational waves ...

IV TALLER DE MÉTODOS NUMÉRICOS Y ESTADÍSTICOS EN cosmolocía

30, 31 DE JULIO Y 1 DE AGOSTO

Cuernavaca, Morelos
ICF-UNAM

INVITADOS

- Miguel Aragón	(OAN-UNAM)	- Data science
- Axel De la Macorra	(IF-UNAM)	- DESI
- Omar López	(INAOE)	$-21-\mathrm{cm}$
- Elizabeth Martínez	(ITAM)	- Astroestadistica
- Andrés Plazas	(ASP)	- DES
- Andrés Sandoval	(IF-UNAM)	- HAWC
- Octavio Valenzuela	(IA-UNAM)	- Simulaciones

wuw.fis.unam.mx/taller cosmo.php

COMITÉ ORGANIZADOR

J Alberto Vázquez (ICF-UNAM) Sebastien Fromenteau (ICF-UNAM) Alma X. González (UGTO) Luis Ureña (UGTO)

VI TALLER DE GRAVITACIÓN Y COSMOLOGÍA ICF-UNAM, Cuernavaca, Morelos, 2 y 3 de agosto, 2018 Segunda Circular

26/05/2018
El objetivo del presente taller es servir como foro para discutir características y consecuencias de los trabajos recientes en los temas de gravitación, cosmología y áreas afines. Este taller también pretende establecer nuevas colaboraciones entre los participantes que trabajan en dichas áreas ampliando con ello las redes de investigación dentro de la comunidad científica mexicana.

PARTICIPANTES

La inscripción al evento sigue abierta para investigadores y estudiantes que contribuyan al taller. Por el momento tenemos confirmada la participación de los siguientes investigadores.

MIGUEL ASPEITIA
NORA BRETON
KAREN CABALLERO MORA
JOSÉ ANTONIO GONZÁLEZ CERVERA
FRANCISCO S. GUZMÁN
ALFREDO HERRERA AGUILAR
GERMAN IZQUIERDO
ANDRÉS PLAZAS

ESTUDIANTES

Los estudiantes interesados en participar deberán estar inscritos en un programa de posgrado, ser estudiantes regulares y enviar carta de apoyo (recomendacion) de su supervisor.

Enviar resumen de plática (dado el caso) y carta de recomendación a más tardar el día viernes 8 de junio de 2018 a Juan Carlos Hidalgo al correo hidalgo@fis.unam.mx

HOSPEDAJE PARA ESTUDIANTES Y POSTDOCS
Habrá apoyo en forma de hospedaje y alimentos para estudiantes y postdocs. Se dará preferencia a quienes presenten plática corta.

SEDE DEL EVENTO
La sede del Taller será el auditorio del Instituto de Ciencias Físicas de la Universidad Nacional Autónoma de México, ubicado en el Campus de la Universidad Autónoma del Estado de Morelos, en la ciudad de Cuernavaca, Morelos.
*Fecha límite: 29, Junio Habrá un número limitado de becas

Ariadna Montiel (ICF-UNAM) Mariana Vargas-Magaña (IF-UNAM) Tonatiuh Matos (CINVESTAV)

CMB Spectrum

moon angle?
sun-angle?

$$
S_{T}=-e^{\kappa(\eta)-\kappa\left(\eta_{0}\right)}\left[\Phi^{\prime}-\Psi^{\prime}\right]+g^{\prime}\left[\frac{V_{b}}{k}+\frac{3}{k^{2}} \mathcal{C}^{\prime}\right]+g^{\prime \prime} \frac{3}{2 k^{2}} \mathcal{C}+g\left[\frac{1}{4} D_{g}^{\gamma}+\frac{V_{b}^{\prime}}{k}-(\Phi-\Psi)+\frac{\mathcal{C}}{2}+\frac{3}{2 k^{2}} \mathcal{C}^{\prime \prime}\right]
$$

Fisicas

CMB as a BAO

$$
\mathbf{v}=\left(\begin{array}{c}
\omega_{b} \\
\omega_{c b} \\
D_{M}(1090) / r_{d}
\end{array}\right)
$$

Statistics of Random Fields

Consider a random field $f(x)$ - i.e. at each point $f(x)$ is some random number with zero mean, $\langle\mathrm{f}(\mathrm{x})\rangle=0$.

$$
\langle T\rangle=\frac{1}{4 \pi} \int T(\theta, \phi) \sin \theta d \theta d \phi=2.7255 \pm 0.0006 K
$$

The probability of realising some field configuration is a functional $\operatorname{Pr}[\mathrm{f}(\mathrm{x})]$.

The two point correlator is

$$
\xi(\mathbf{x}, \mathbf{y}) \equiv\langle f(\mathbf{x}) f(\mathbf{y})\rangle=\int \mathcal{D} f \operatorname{Pr}[f] f(\mathbf{x}) f(\mathbf{y})
$$

functional integral (or path integral) over field configurations

Statistical homogeneity means that the statistical properties of the translated field,

$$
\hat{T}_{\mathbf{a}} f(\mathbf{x}) \equiv f(\mathbf{x}-\mathbf{a}), \text { are the same as the original field } \quad \operatorname{Pr}[\mathrm{f}(\mathrm{x})]=\operatorname{Pr}\left[\mathrm{T}_{\mathrm{a}} \mathrm{f}(\mathrm{x})\right]
$$

$$
\begin{aligned}
& \xi(\mathbf{x}, \mathbf{y}) \\
& \Rightarrow \quad \xi(\mathbf{x}-\mathbf{a}, \mathbf{y}-\mathbf{a}) \quad \forall \mathbf{a} \\
& \Rightarrow \quad \xi(\mathbf{x}, \mathbf{y})=\xi(\mathbf{x}-\mathbf{y})
\end{aligned}
$$

The two-point correlator only depends on the separation of the two points

Statistics of Random Fields

Statistical isotropy mean that the statistical properties of the rotated field

$$
\hat{R} f(\mathbf{x}) \equiv f\left(\mathrm{R}^{-1} \mathbf{x}\right),
$$

are the same as the original field, i.e. $\operatorname{Pr}[f(x)]=\operatorname{Pr}\left[\mathrm{R}^{\wedge} \mathrm{f}(\mathrm{x})\right]$.

$$
\xi(\mathbf{x}, \mathbf{y})=\xi\left(\mathrm{R}^{-1} \mathbf{x}, \mathrm{R}^{-1} \mathbf{y}\right) \quad \forall \mathrm{R}
$$

Combining statistical homogeneity and isotropy gives

$$
\begin{aligned}
\quad \xi(\mathbf{x}, \mathbf{y}) & =\xi\left(\mathrm{R}^{-1}(\mathbf{x}-\mathbf{y})\right) \quad \forall \mathrm{R} \\
\Rightarrow \quad \xi(\mathbf{x}, \mathbf{y}) & =\xi(|\mathbf{x}-\mathbf{y}|),
\end{aligned}
$$

The two-point correlator depends only on the distance between the two points

Statistics of Random Fields

To constrain the form of the correlators in Fourier space

Note that for real fields, $\mathrm{f}(\mathrm{k})=\mathrm{f}^{*}(-\mathbf{k}) . \quad f(\mathbf{k})=\int \frac{d^{3} \mathbf{x}}{(2 \pi)^{3 / 2}} f(\mathbf{x}) e^{-i \mathbf{k} \cdot \mathbf{x}} \quad$ and $\quad f(\mathbf{x})=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3 / 2}} f(\mathbf{k}) e^{i \mathbf{k} \cdot \mathbf{x}}$.

Under translations

$$
\begin{aligned}
& \hat{T}_{\mathbf{a}} f(\mathbf{k})=\int \frac{d^{3} \mathbf{x}}{(2 \pi)^{3 / 2}} f(\mathbf{x}-\mathbf{a}) e^{-i \mathbf{k} \cdot \mathbf{x}} \\
&=\int \frac{d^{3} \mathbf{x}^{\prime}}{(2 \pi)^{3 / 2}} f\left(\mathbf{x}^{\prime}\right) e^{-i \mathbf{k} \cdot \mathbf{x}^{\prime}} e^{-i \mathbf{k} \cdot \mathbf{a}} \\
&=f(\mathbf{k}) e^{-i \mathbf{k} \cdot \mathbf{a}} . \\
& \Rightarrow \quad\left\langle f(\mathbf{k}) f^{*}\left(\mathbf{k}^{\prime}\right)\right\rangle=\left\langle f(\mathbf{k}) f^{*}\left(\mathbf{k}^{\prime}\right)\right\rangle e^{-i\left(\mathbf{k}-\mathbf{k}^{\prime}\right) \cdot \mathbf{a}} \quad \forall \mathbf{a} \\
& \Rightarrow \quad\left\langle f(\mathbf{k}) f^{*}\left(\mathbf{k}^{\prime}\right)\right\rangle=F(\mathbf{k}) \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right),
\end{aligned}
$$

For some (real) function $\mathrm{F}(\mathrm{k})$
Different Fourier modes are uncorrelated

$$
\begin{aligned}
\hat{R} f(\mathbf{k}) & =\int \frac{d^{3} \mathbf{x}}{(2 \pi)^{3 / 2}} f\left(\mathrm{R}^{-1} \mathbf{x}\right) e^{-i \mathbf{k} \cdot \mathbf{x}} \\
& =\int \frac{d^{3} \mathbf{x}}{(2 \pi)^{3 / 2}} f\left(\mathrm{R}^{-1} \mathbf{x}\right) e^{-i\left(\mathbf{R}^{-1} \mathbf{k}\right) \cdot\left(\mathbf{R}^{-1} \mathbf{x}\right)} \\
& =f\left(\mathrm{R}^{-1} \mathbf{k}\right),
\end{aligned}
$$

R is a rotation matrix

$$
\left.\left\langle\hat{R} f(\mathbf{k})\left[\hat{R} f\left(\mathbf{k}^{\prime}\right)\right]^{*}\right\rangle=\left\langle f\left(\mathrm{R}^{-1} \mathbf{k}\right)\right)^{*}\left(\mathbf{R}^{-1} \mathbf{k}^{\prime}\right)\right\rangle=F\left(\mathbf{R}^{-1} \mathbf{k}\right) \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right)=F(\mathbf{k}) \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) .
$$

Statistics of Random Fields

Define the power spectrum, $\mathbf{P f}_{\mathbf{f}}(\mathbf{k})$, of a homogeneous and isotropic field,

$$
\begin{aligned}
& \left\langle f(\mathbf{k}) f^{*}\left(\mathbf{k}^{\prime}\right)\right\rangle=\frac{2 \pi^{2}}{k^{3}} \mathcal{P}_{f}(k) \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right) . \\
& \begin{array}{l}
\langle f(\mathbf{x}) f(\mathbf{y})\rangle=\int \frac{d^{3} \mathbf{k}}{(2 \pi)^{3 / 2}} \frac{d^{3} \mathbf{k}^{\prime}}{(2 \pi)^{3 / 2}} \underbrace{}_{\frac{2 \pi^{2} \mathcal{P}_{f}(k) \delta\left(\mathbf{k}-\mathbf{k}^{\prime}\right)}{\left\langle f(\mathbf{k}) f^{*}\left(\mathbf{k}^{\prime}\right)\right\rangle} e^{i \mathbf{k} \cdot \mathbf{x}} e^{-i \mathbf{k}^{\prime} \cdot \mathbf{y}}} \quad \xi(\mathbf{x}, \mathbf{y})=\int \frac{d k}{k} \mathcal{P}_{f}(k) j_{0}(k|\mathbf{x}-\mathbf{y}|) . \\
=\frac{1}{4 \pi} \int \frac{d k}{k} \mathcal{P}_{f}(k) \int d \Omega_{\mathbf{k}} e^{i \mathbf{k} \cdot(\mathbf{x}-\mathbf{y})} . \\
\text { Gaussian random fields } \quad \operatorname{Pr}(\mathbf{f}) \propto \frac{e^{-f_{i} \xi_{i j}^{-1} f_{j}}}{\sqrt{\operatorname{det}\left(\xi_{i j}\right)}} .
\end{array} \text { } l
\end{aligned}
$$

Since different Fourier modes are uncorrelated, they are statistically independent for Gaussian fields.

$$
\begin{array}{rlr}
\left\langle f(\hat{\mathbf{n}}) f\left(\hat{\mathbf{n}}^{\prime}\right)\right\rangle & =\sum_{l m} \sum_{l^{\prime} m^{\prime}} \underbrace{\left\langle f_{l m} f_{l l^{\prime}} f_{l^{\prime} m^{\prime}}^{*}\right\rangle Y_{l m}(\hat{\mathbf{n}}) Y_{l^{\prime} m^{\prime}}^{*}\left(\hat{\mathbf{n}}^{\prime}\right)}_{l^{\prime}} \quad C_{l}=2 \pi \int_{-1}^{1} d \cos \theta C(\theta) P_{l}(\cos \theta) . \\
& =\sum_{l} C_{l} \underbrace{\sum_{l u m} Y_{l m}(\hat{\mathbf{n}}) Y_{l m}^{*}\left(\hat{\mathbf{n}}^{\prime}\right)}_{\frac{2 l+1}{4 \pi} P_{l}\left(\hat{\mathbf{n}} \cdot \hat{\mathbf{n}}^{\prime}\right)}=C(\theta), &
\end{array}
$$

CMB power spectrum

The primary anisotropies carried out by physical effects before the recombination epoch, encoded in the fractional temperature perturbation, are expanded in terms of the spherical harmonics on the lls by

$$
\frac{\Delta T}{\bar{T}}\left(\eta_{0}, \mathbf{x}_{\mathbf{0}}, \mathbf{n}\right)=\sum_{l, m} a_{l m} Y_{l m}(\mathbf{n})
$$

Assuming the $a_{l, m}$'s are Gaussian random fields, the two-point correlator gives $\left\langle a_{l m} a_{l^{\prime} m^{\prime}}^{*}\right\rangle=C_{l} \delta_{l l^{\prime}} \delta_{m m^{\prime}}$.

The angular CMB power spectrum C^{TT} is computed through the two-point correlation function

$$
C(\theta) \equiv\left\langle\frac{\Delta T(\mathbf{n})}{\bar{T}} \frac{\Delta T\left(\mathbf{n}^{\prime}\right)}{\bar{T}}\right\rangle=\sum_{l} \frac{2 l+1}{4 \pi} C_{l} P_{l}\left(\mathbf{n} \cdot \mathbf{n}^{\prime}\right) .
$$

where $n \cdot n^{\prime}=\cos \theta$. The initial conditions Φ ini $=R$. Because the evolution equations for Δ are independent of the direction k , we may write

$$
\Delta_{l}\left(\eta_{0}, \mathbf{k}, \mathbf{n}\right)=\Phi_{\mathrm{ini}}(\mathbf{k}) \Delta_{l}\left(\eta_{0}, k, \mathbf{n}\right)
$$

$$
C_{l}^{X Y}=\frac{4 \pi}{(2 l+1)^{2}} \int \frac{d^{3} k}{(2 \pi)^{3}} \mathcal{P}_{\mathcal{R}}(k) \Delta_{l}^{X}(k) \Delta_{l}^{Y}(k)
$$

Primordial power spectrum

$$
C_{l}^{X Y}=\frac{4 \pi}{(2 l+1)^{2}} \int \frac{d^{3} k}{(2 \pi)^{3}} \mathcal{P}_{\mathcal{R}}(k) \Delta_{l}^{X}(k) \Delta_{l}^{Y}(k)
$$

$\mathrm{PR}(\mathrm{k})$ is the power spectrum of the initial curvature perturbations

$$
\mathcal{P}_{\mathcal{R}}(k)=A_{\mathrm{s}}\left(\frac{k}{k_{*}}\right)^{n_{\mathrm{s}}-1+\frac{1}{2} \mathrm{~d} n_{\mathrm{s}} / \operatorname{dn} k \ln \left(k / k_{\mathrm{k}}\right)+\frac{1}{6} \frac{\mathrm{~d}^{2} n_{\mathrm{s}}}{\operatorname{dnn} k^{2}}\left(\ln \left(k / k_{\mathrm{k}}\right)\right)^{2}+\ldots}
$$

The spectrum is a featureless power law with scalar spectral index ns.
scale-invariant?

$$
\mathcal{B}_{n_{\mathrm{run}}, n_{\mathrm{s}}}=+2.0 \pm 0.3
$$

mstruro
CIIN
FíNICAS
FiSAS

Cl's Scalar

$$
C_{l}^{X Y}=\frac{4 \pi}{(2 l+1)^{2}} \int \frac{d^{3} k}{(2 \pi)^{3}} \mathcal{P}_{\mathcal{R}}(k) \Delta_{l}^{X}(k) \Delta_{l}^{Y}(k)
$$

The moments obtained from the line of sight integration method, in terms of the spherical Bessel functions

$$
\begin{aligned}
\Delta_{l}^{T}= & (2 l+1) \int d \eta j_{l}\left(k\left[\eta-\eta_{0}\right]\right) S_{T}(k, \eta), & S_{T} & =-e^{\kappa(\eta)-\kappa\left(\eta_{0}\right)}\left[\Phi^{\prime}-\Psi^{\prime}\right]+g^{\prime}\left[\frac{V_{b}}{k}+\frac{3}{k^{2}} \mathcal{C}^{\prime}\right]+g^{\prime \prime} \frac{3}{2 k^{2}} \mathcal{C} \\
\Delta_{l}^{E} & =(2 l+1) \sqrt{\frac{(l-2)!}{(l+2)!}} \int_{0}^{\eta_{0}} d \eta S_{E}(k, \eta) j_{l}(x), & & +g\left[\frac{1}{4} D_{g}^{\gamma}+\frac{V_{b}^{\prime}}{k}-(\Phi-\Psi)+\frac{\mathcal{C}}{2}+\frac{3}{2 k^{2}} \mathcal{C}^{\prime \prime}\right]
\end{aligned}
$$

The hierarchy for the tensor multipoles, temperature $\sim \sim \mathrm{T}_{1}$, polarisation $\Delta^{\sim} \mathrm{P}$ and cross-correlation $\Delta^{\sim} \mathrm{T}, \mathrm{P}$

$$
C_{X Y ; l}^{\text {tens }}=\frac{4 \pi}{(2 l+1)^{2}} \int \frac{d^{3} k}{(2 \pi)^{3}} \mathcal{P}_{\mathcal{T}}(k) \Delta_{X ; l}^{\text {tens }}(k) \Delta_{Y ; l}^{\text {tens }}(k),
$$

where PT (k) is the initial tensor pow er spectrum

$$
\mathcal{P}_{\mathcal{T}}(k)=A_{\mathrm{t}}\left(\frac{k}{k_{0}}\right)^{n_{\mathrm{t}}}
$$

$$
\begin{aligned}
r(k) & \equiv \frac{\mathcal{P}_{\mathcal{T}}(k)}{\mathcal{P}_{\mathcal{R}}(k)}=64 \pi\left(\frac{\dot{\phi}^{2}}{H^{2}}\right)_{k=a H} \\
n_{\mathrm{t}} & =-r_{\mathrm{s}} / 8
\end{aligned}
$$

Cl's Tensor

$$
C_{X Y ; l}^{\mathrm{tens}}=\frac{4 \pi}{(2 l+1)^{2}} \int \frac{d^{3} k}{(2 \pi)^{3}} \mathcal{P}_{\mathcal{T}}(k) \Delta_{X ; l}^{\mathrm{tens}}(k) \Delta_{Y ; l}^{\mathrm{tens}}(k),
$$

$$
\begin{aligned}
\Delta_{T ; l}^{\mathrm{tens}} & =\sqrt{\frac{(l+2)!}{(l-2)!}} \int_{0}^{\eta_{0}} d \eta S_{T}^{\mathrm{tens}}(k, \eta) \frac{j_{l}(x)}{x^{2}} \\
\Delta_{E, B ; l}^{\mathrm{tens}} & =\int_{0}^{\eta_{0}} d \eta S_{E, B}^{\mathrm{tens}}(k, \eta) j_{l}(x)
\end{aligned}
$$

where h is the longitudinal-scalar part of tensor decomposition
with the sources

$$
\psi=\frac{1}{10} \tilde{\Delta}_{0}^{T}+\frac{1}{7} \tilde{\Delta}_{2}^{T}+\frac{3}{70} \tilde{\Delta}_{4}^{T}-\frac{3}{5} \tilde{\Delta}_{0}^{P}+\frac{6}{7} \tilde{\Delta}_{2}^{P}-\frac{3}{70} \tilde{\Delta}_{4}^{P}
$$

$$
\begin{aligned}
S_{T}^{\text {tens }}(k, \eta)= & h^{\prime} \exp (-\kappa)+g \psi \\
S_{E}^{\text {tens }}(k, \eta)= & g\left\{\psi-\frac{\psi^{\prime \prime}}{k^{2}}+\frac{2 \psi}{x^{2}}-\frac{\psi^{\prime}}{k x}\right\} \\
& -g^{\prime}\left\{\frac{2 \psi^{\prime}}{k^{2}}+\frac{4 \psi}{k x}\right\}-2 g^{\prime \prime} \frac{\psi}{k^{2}} \\
S_{B}^{\text {tens }}(k, \eta)= & g\left\{\frac{4 \psi}{x}+\frac{2 \psi^{\prime}}{k}\right\}+2 g^{\prime} \frac{\psi}{k}
\end{aligned}
$$

$$
\begin{aligned}
\tilde{\Delta}_{0}^{T} & =-k \tilde{\Delta}_{1}^{T}-\kappa^{\prime}\left[\tilde{\Delta}_{0}^{T}-\psi\right]-h^{\prime}, \\
\tilde{\Delta}_{0}^{P} & =-k \tilde{\Delta}_{2}^{T}-\kappa^{\prime}\left[\tilde{\Delta}_{1}^{T}+\psi\right], \\
\tilde{\Delta}_{l}^{T, P} & =\frac{k}{2 l+1}\left[l \tilde{\Delta}_{l-1}^{T, P}-(l+1) \tilde{\Delta}_{l+1}^{T, P}\right]-\kappa^{\prime} \tilde{\Delta}_{l}^{T, P} ;
\end{aligned}
$$

Solving ...

The slow way would be to get the Cl's directly from the (vast) multipole hierarchy of the photon distribution and the multipole hierarchy up to $1 \equiv 3000$

In contrast, the line of sight integration gets the Δ l's by folding the source term S with the spherical Bessel functions jl.

While the Bessel functions oscillate rapidly in this convolution, the source term is most of the time rather slowly changing.

It thus suffices to calculate the sources at few (cleverly chosen) points and interpolate between
voilal

Codes

The Boltzmann hierarchy is nowadays solved numerically with software packages such as

```
1995/Fortran 77
1996/Fortran 77
2000/Fortran 90
- CAMB: Code for Anisotropies in the Microwave Background.
    * Antony Lewis, Anthony Challinor and Anthony Lasenby.
    arXiv:astro-ph/9911177
    http://camb.info/
2003/ C++
- CMBEASY: an Object Oriented Code for the Cosmic Microwave Background
    * Michael Doran arXiv:astro-ph/0302138v2
        http://www.thphys.uni-heidelberg.de/ robbers/cmbeasy/index.html
    2001 Davis Anisotropy Shortcut (DASh)
    DASh incorporates many analytic and semianalytic approximations that have been presented
    elsewhere in the literature and also some new ones. The Astrophysical Journal, 578:665-674, 2002
```

TABLE I. Comparison between CMB Codes

	CAMB	CLASS	CMBEASY	CMBquick	CosmoLib -
Language	F90	C	C++	Mathematica	F90
gauge ${ }_{\text {d }}$	syn.	syn./Newt. e	syn./gauge-inv.	Newt.	Newt.
open/close universe	Yes	No	No	No	No
massive neutrinos	Yes	Yes	Yes	Yes	No
tensor perturb.	Yes	Yes	Yes	Yes	Yes
CDM isocurvature mode	Yes	Yes	Yes	Yes	Yes
dark energy perturb.	Yes	Yes	Yes	No	Yes
nonzero $c_{n, b}^{2}$	Yes	Yes	Yes	No	Yes
dark energy EOS.	constant	$w_{0}+w_{a}(1-a)$	arbitrary	-1	arbitrary
non-smooth primordial power	No	No	No	No	Yes
MCMC driver	Yes	No	Yes	No	Yes
periodic proposal density	No	No	No	No	Yes
data simulation	No	No	No	No	Yes
second-order perturb. ${ }_{\text {r }}$	No	No	No	Yes	No ${ }_{\text {g }}$

${ }^{\text {a }}$ Here we do not include CMBFast, which is no longer supported by its authors or available for download.

CAMB Web Interface

Supports the January 2011 Release

Most of the configuration documentation is provided in the sample parameter file provided with the application.
This form uses JavaScript to enable certain layout features, and it uses Cascading Style Sheets to control the layout of all the form components. 1 either of these features are not supported or enabled by your browser, this form will NOT display correctly.

Actions to Perform

Scalar C'sVector Ci'sDo Lensing
(-) Linear
O Non-linear Matter Power (HALOFIT)Tensor CisTransfer FunctionsNon-linear CMB Lensing (HALOFIT)

Vector C's are incompatible with Scalar and Tensor Ci's. The Transfer functions require Scalar and/or Tensor C's.s.
The HEALpix synfast program is used to generate maps from the resultant spectra. The random number seed governs the phase of the aim's generated by synfast The default of zero causes synfast to generate a new see from the system time with each run. Specifying a fixed nonzero value will return fixed phases with successive runs.

Maximum Multipoles and k *eta

Cosmological Parameters

| Use Physical Parameters? Yes $:$
 70 Hubble Constant
 2.725 T_{cmb} |
| :--- | :--- |

Tensor	
1500	$I_{\text {max }}$
3000	$\mathrm{k}^{*} \mathrm{eta}_{\text {max }}$

0.0226	$8 \mathrm{~m} \mathrm{~h}^{2}$
0.114	Ωh^{2}
0	Ω, h^{2}
0	Ω k
Neutrino mass splittings	

0.24	Helium Fraction
3.04	Massless Neutrinos
0	Massive Neutrinos
-1	Eqn. of State
1	Comoving Sound Speed

SimpleMC

DR11 arXiv:1411.1074

DR12 - arXiv:1607.03155

To perform the analysis we built a simple and fast MCMC code: Simple MC
https://github.com/ja-vazquez/april
with A. Slosar

Figure 4.3: Total CMB temperature-spectrum and its different contributions: Sachs-Wolfe (SW) $D_{g}^{\gamma} / 4-(\Phi-\Psi)$; Doppler effect V_{b}^{γ}; and the integrated Sachs-Wolfe effect (ISW) coming from evolution of the potential along the line of sight. Figure from Challinor [?]

The I = 0 term of the correlation function (the monopole) vanishes if the mean temperature has been de defined correctly

not l=1 ?

The I = 1 (the dipole) reflects the motion of the Earth through space. We are seeing the effect of the Earth's motion relative to the local comoving frame of reference.

The Earth is moving with a velocity $v=369 \mathrm{kms}^{-1}$ towards a
 point on the boundary of the constellations of Crater and Leo.

. The Sachs-Wolfe effect $\left(\mathbf{l}<\mathbf{1 0} \mathbf{n}^{\mathbf{0}}\right)$ - The gravitational effects are the dominan contributions at large angular scales.

$$
\int_{0}^{\infty} j_{l}^{2}(x) d x=\frac{1}{2 l(l+1)}
$$

$$
\frac{l(l+1) C_{l}}{2 \pi}=\frac{1}{25} A_{s}
$$

is approximately constant, shown as a flat plateau at low multipoles.

Primordial spectrum that varies as a power-law in \mathbf{k} gives $\quad C_{l} \sim \frac{\Gamma\left(l+n_{s} / 2-1 / 2\right)}{\Gamma\left(l-n_{s} / 2+5 / 2\right)}$

- Intermediate scales ($100<1<1000$) - Perturbations inside the horizon have evolved causally and produced the anisotropy at the last scattering epoch (lhor ≈ 200). The balance between the gravitational force and radiation pressure is presented as series of characteristic peaks called acoustic oscillations.
$C_{l}^{X Y}=\frac{4 \pi}{(2 l+1)^{2}} \int \frac{d^{3} k}{(2 \pi)^{3}} \mathcal{P}_{\mathcal{R}}(k) \Delta_{l}^{X}(k) \Delta_{l}^{Y}(k)$,

- Small scales ($\mathbf{l}>\mathbf{1 0 0 0}$) - The thickness of the last scattering surface leads to a damping of $\mathrm{C}_{1}{ }^{\mathrm{T}} \sim 1^{-4}$ at the highest multipoles, commonly called the Silk effect.

The total mean-squared distance that a photon will have moved by such a random walk by the time $\eta *$ is therefore
which defines a damping scale $\quad \int_{0}^{\eta_{*}} \frac{d \eta^{\prime}}{a n_{e} \sigma_{T}} \sim \frac{1}{k_{D}^{2}}$

- At these scales, important contributions are also provided by secondary anisotropies:
gravitational lensing, Rees-Sciama effect (RS), Sunyaev-Zel'dovich effect (SZ), kinetic Sunyaev-Zel'dovich effect, Ostriker-Vishniac effect (OV), foregrounds from discrete sources

Inverse Compton scattering by energetic electrons in the intracluster medium of massive galaxy clusters alters the blackbody spectrum of CMB photons travelling through the cluster

Caused by a time dependent gravitational potential during the nonlinear stages of evolution.

COSMOLOGICAL PARAMETERS

The whole structure of the CMB depends strongly on the initial conditions emerging from the inflationary era (PR, T), on the matter-energy content $(\Omega \mathrm{i}, 0)$, and on the expansion rate history $(\mathrm{H} 0)$.

These parameters, commonly called standard parameters, are considered as the principal quantities used describe the universe.

They are not, however, predicted by any fundamental theory, rather we have to fit them by hand in order to determine which combination best describes
the current astrophysical observations

PARAMETERS

$$
\begin{aligned}
& d_{\mathrm{A}}(z) \approx 2 \frac{c}{H_{0}} \frac{1}{\Omega_{\mathrm{m}, 0} z} \\
& \theta_{\mathrm{hor}, \mathrm{~s}} \simeq \frac{1}{\sqrt{3}}\left(\frac{\left(1-\Omega_{\mathrm{k}, 0}\right)}{z_{\mathrm{dec}}}\right)^{1 / 2}=0.017 \text { radians } \sim 1^{\circ}
\end{aligned}
$$

The increase in baryon inertia reduces the sound speed, shifting the acoustic peaks in temperature and polarization to smaller scales (larger I).

The increase in the number density of electrons in the plasma reduces the photon mean-free path, Ip , reducing the amount of diffusion damping and so increasing power on small scales.

Inflation

$$
\begin{aligned}
\mathcal{P}_{\mathcal{R}}(k) & =A_{\mathrm{s}}\left(\frac{k}{k_{0}}\right)^{n_{\mathrm{s}}-1} \\
\mathcal{P}_{\mathcal{T}}(k) & =A_{\mathrm{t}}\left(\frac{k}{k_{0}}\right)^{n_{\mathrm{t}}} \\
n_{\mathrm{s}}-1 & \simeq-6 \epsilon_{\mathrm{v}}(\phi)+2 \eta_{\mathrm{v}}(\phi) \\
n_{\mathrm{t}} & \simeq-2 \epsilon_{\mathrm{v}}(\phi) \\
r & \simeq 16 \epsilon_{\mathrm{v}}(\phi)
\end{aligned}
$$

B-mode polarisation only produced by tensor perturbations.

measurements of B-modes are important tests for the existence of primordial gravitational waves.

Degeneracies

The existence of strong degeneracies amongst different combinations of parameters is also noticeable. In particular the well-known geometrical degeneracy involving $\Omega_{\mathrm{m}}, \Omega \Lambda$ and the curvature parameter $\Omega_{\mathrm{k}}=1-\Omega_{\mathrm{m}}-\Omega \Lambda$.

Supernova Cosmology Project

Observations

Model	Abbreviation	Parameters
Cosmological constant	$\Lambda \mathrm{CDM}$	Ω_{k}, Ω_{m}
Constant w	$w \mathrm{CDM}$	$\Omega_{k}, \Omega_{m}, w$
Varying w (CPL)	CPL	$\Omega_{k}, \Omega_{m}, w_{0}, w_{a}$
Generalized Chaplygin Gas	GCG	$\Omega_{k}, A_{s}, \alpha$
Dvali-Gabadadze-Porrati	DGP	Ω_{k}, Ω_{m}
Modified Polytropic Cardassian	MPC	$\Omega_{k}, \Omega_{m}, q, n$
Interacting Dark Energy	IDE	$\Omega_{k}, \Omega_{m}, w_{x}, \delta$
Early Dark Energy	EDE	$\Omega_{k}, \Omega_{m}, \Omega_{e}, w_{0}$

Observations

Rapid advance in the development of powerful observational-instruments has led to the establishment of precision cosmology.

COBE
Satellite experiments:
Wilkinson Microwave Anisotropy Probe
Planck

Observations

Ground-based telescopes:

- The Background Imaging of Cosmic Extragalactic Polarization
- The Quest (Q and U Extra-Galactic Sub-mm Telescope) at DASI (Degree Angular Scale Interferometer)
- The Atacama Cosmology Telescope [ACT
- The South Pole Telescope [SPT

Ballon-borne experiments: • Balloon Observations Of Millimetric Extragalactic Radiation
AND Geophysics[BOOMERanG

more Observations

BB

Constraints on inflationary models

Forecast

Here, we aim to explore future constraints coming from experiments
we need to simulate these experiments by generating mock data of the $\mathrm{C}^{\wedge} \mathrm{XY}$,s from a $\chi^{2} 1+1$
distribution with variances

$$
\begin{aligned}
\left(\Delta \hat{C}_{l}^{X X}\right)^{2} & =\frac{2}{(2 l+1) f_{\text {sky }}}\left(C_{l}^{X X}+N_{l}^{X X}\right)^{2} \\
\left(\Delta \hat{C}_{l}^{T E}\right)^{2} & =\frac{2}{(2 l+1) f_{\text {sky }}}\left[\left(C_{l}^{T E}\right)^{2}+\left(C_{l}^{T T}+N_{l}^{T T}\right)\left(C_{l}^{E E}+N_{l}^{E E}\right)\right]
\end{aligned}
$$

fsky is the fraction of the observed sky. $\quad \mathrm{N}^{X Y}$ the instrumental noise spectra for each experiment.

In experiments with multiple frequency channels c , the noise spectrum is approximated

$$
N_{l}^{X}=\left(\sum_{c} \frac{1}{N_{l, c}^{X}}\right)^{-1}, \quad N_{l, c}^{X}=\left(\sigma_{\mathrm{pix}} \theta_{\mathrm{fwhm}}\right)^{2} \exp \left[l(l+1) \frac{\theta_{\mathrm{fwhm}}^{2}}{8 \ln 2}\right] \delta_{X Y}
$$

The noise per pixel $\sigma_{\text {pix }}^{X}$ (and $\sigma_{\text {pix }}^{P}=\sqrt{2} \sigma_{\text {pix }}^{T}$) depends on the instrumental parameters; $\theta_{\text {fwhm }}$ full width at half maximum (FHWM) of the Gaussian beam.

Cosmic Variance

$$
\begin{aligned}
\left(\Delta \hat{C}_{l}^{X X}\right)^{2} & =\frac{2}{(2 l+1) f_{\text {sky }}}\left(C_{l}^{X X}+N_{l}^{X X}\right)^{2} \\
\left(\Delta \hat{C}_{l}^{T E}\right)^{2} & =\frac{2}{(2 l+1) f_{\text {sky }}}\left[\left(C_{l}^{T E}\right)^{2}+\left(C_{l}^{T T}+N_{l}^{T T}\right)\left(C_{l}^{E E}+N_{l}^{E E}\right)\right]
\end{aligned}
$$

Planck

For the Planck experiment, we include three channels with frequencies ($100 \mathrm{GHz}, 143 \mathrm{GHz}, 217 \mathrm{GHz}$) and noise levels per beam $\left(\sigma_{p} T_{i x}\right)^{2}=\left(46.25 \mu K^{2}, 36 \mu K^{2}, 171 \mu K^{2}\right)$. The FHWM of the three channels are $\theta \mathrm{fwhm}=(9.5,7.1,5.0)$ arc-minute.

MCMC Example

They are not, however, predicted by any fundamental theory, rather we have to fit them by hand in order to determine which combination best describes
the current astrophysical observations

Parameters	Description	Prior range
Background		
$\Omega_{\mathrm{b}, 0} h^{2}$	Physical baryon density	$[0.01,0.03]$
$\Omega_{\mathrm{dm}, 0} h^{2}$	Physical cold dark matter density	$[0.01,0.3]$
θ	Ratio of the sound horizon to	
	the angular diameter distance	$[1,1.1]$
τ	Reionization optical depth	$[0.01,0.3]$
Inflationary		
$\log \left[10^{10} A_{\mathrm{s}}\right]$	Curvature perturbation amplitude	$[2.5,4]$
n_{s}	Spectral scalar index	$[0.5,1.2]$
$\operatorname{Secondary}$		$[0,3]$
A_{SZ}	Sunyaev-Zel'dovich amplitude	$[0,20]$
A_{c}	Total Poisson power	$[0,30]$
A_{p}	Amplitude of the clustered power	

MCMC Example

Description		Flat $\Lambda \mathrm{CDM}$	Non-flat $\Lambda \mathrm{CDM}$
	$\Omega_{\mathrm{b}, 0} h^{2}$	0.02206 ± 0.00042	0.0221 ± 0.00043
	$\Omega_{\mathrm{dm}, 0} h^{2}$	0.1130 ± 0.0028	0.112 ± 0.0041
Base	θ	1.039 ± 0.0019	1.039 ± 0.0020
parameters	τ	0.082 ± 0.013	0.083 ± 0.014
	n_{s}	0.956 ± 0.010	0.957 ± 0.011
	$\log \left[10^{10} A_{\mathrm{s}}\right]$	3.21 ± 0.035	3.21 ± 0.039
Derived	$\Omega_{k, 0}$	-	-0.0022 ± 0.0058
parameters	$\Omega_{\mathrm{m}, 0}$	0.282 ± 0.015	0.285 ± 0.018
	$\Omega_{\Lambda, 0}$	0.717 ± 0.015	0.717 ± 0.016
	H_{0}	69.2 ± 1.27	68.7 ± 2.13
	$\mathrm{Age}(\mathrm{Gyrs})$	13.84 ± 0.086	13.93 ± 0.27
Bayes factor	$-2 \ln \mathcal{L}_{\mathrm{max}}$	8240.46	8240.80
오,$\Lambda+\Omega_{k}$	$+1.6 \pm 0.4$	-	
Dataset consistency	\mathcal{B}_{R}	$+5.06 \pm 0.4$	$+5.07 \pm 0.4$

Future

$\mathrm{r}<10^{\wedge}\{-3\}$ at 5 standard deviations

Constraints on inflationary models

Tensor perturbations

Non-Gaussianity

Examen sorpresa!

