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Motivation

• The cosmic microwave background (CMB) is the thermal radiation left over from the “Big 

Bang”, also known as “relic radiation”. 

• The CMB is a snapshot of the oldest light in our Universe, imprinted on the sky when the 

Universe was just 380,000 years old,  dating to the epoch of recombination. 

• With a traditional optical telescope, the space between stars and galaxies is completely 

dark. However, a sufficiently sensitive radio telescope shows a faint background glow, 

almost exactly the same in all directions. This glow is strongest in the microwave region. 

A must do!

hom o iso ?
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It shows tiny temperature fluctuations that correspond to regions of slightly 
different densities, representing the seeds of all future structure: 

the stars and galaxies of today. 

Motivation
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The Hot Big Bang
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The Hot Big Bang
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The Hot Big Bang
• Once Big Bang Nucleosynthesis is over, at time t ∼ 300s and temperature T ∼ 8 × 108K, 

the Universe is a thermal bath of photons, protons, electrons, in addition to neutrinos and 

the unknown dark matter particle(s).

The key to understanding the thermal history of the universe is the comparison between 

the rate of interactions Γ and the rate of expansion H. 

• At                the particles decouple from the thermal bath. � ⇠ H

1. CMB

When � � H, then the time scale of particle interactions is much smaller than the characteristic

expansion time scale:

tc ⌘
1

�
⌧ tH ⌘

1

H
(1.1)

Local thermal equilibrium is then reached before the e↵ect of the expansion becomes relevant.

As the universe cools, the rate of interactions may decrease faster than the expansion rate.

At tc ⇠ tH , the particles decouple from the thermal bath. Di↵erent particle species may have

di↵erent interaction rates and so may decouple at di↵erent times.

Figure 1.1: Thermal History of the Universe

1.2 Recombination

An important event in the history of the early universe is the formation of the first atoms. At

temperatures above about 1 eV, the universe still consisted of a plasma of free electrons and

nuclei. Photons were tightly coupled to the electrons via Compton scattering, which in turn
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•           Local thermal equilibrium is then reached before the effect of the expansion becomes relevant. 

• As the universe cools, the rate of interactions may decrease faster than the expansion rate

Different particle species may have different interaction rates and 

so may decouple at different times. 

Fermi-Dirac (+) and Bose-Einstein (-) 

1.2 Recombination

strongly interacted with protons via Coulomb scattering. There was very little neutral hydrogen.

When the temperature became low enough, the electrons and nuclei combined to form neutral

atoms (recombination), and the density of free electrons fell sharply. The photon mean free path

grew rapidly and became longer than the horizon distance. The photons decoupled from the

matter and the universe became transparent. Today, these photons are the cosmic microwave

background.

Systems in kinetic equilibrium if the particles exchange energy and momentum e�ciently.

Fermi-Dirac (+) and Bose-Einstein (-)

f(p) =
1

e(E�µ)/T±1
(1.2)

where µ is the chemical potential. At low temperatures T < E � µ both reduce to Maxwell-

Boltzmann distribution

f(p) ⇡ e
(E�µ)/T (1.3)

1.2.1 Saha Equilibrium

Let us start at T >1eV, when baryons and photons were still in equilibrium through electro-

magnetic reactions such as

e
� + p

+ ⌦ H + � (1.4)

Since T < mi, i = {e, p, H}, we have the following equilibrium abundaces

ni = gi

✓
miT

2⇡

◆3/2

exp

✓
µi � mi

T

◆
(1.5)

where µp + µe = µH .

We wish to follow the free electron fraction defined as the ratio

Xe ⌘
ne

nb

(1.6)

where nb is the baryon density and ⌘ is the baryon-to-photon ratio. We arrive at the so-called

Saha equation

✓
1 � Xe

X2
e

◆

eq

=
2⇣(3)

⇡2
⌘

✓
2⇡T

me

◆3/2

e
BH/T (1.7)

Fig. (1.2) shows the redshift evolution of the free electron fraction as predicted both by the

Saha approximation and by a more exact numerical treatment (see below). The Saha approxi-

mation correctly identifies the onset of recombination, but it is clearly insu�cient if the aim is

-3-

For T<E? 
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Recombination

Photons were tightly coupled to the electrons via Compton scattering, 

which in turn strongly interacted with protons via Coulomb scattering. 

When the temperature became low enough, the electrons and nuclei combined 

to form neutral atoms (recombination), and the density of free electrons fell sharply. 

Why recom?

Diff Compton Vs Thompson ?
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Saha equation
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The Saha approximation correctly identifies the onset of 

recombination, but it is clearly insufficient if the aim is 
to determine the relic density of electrons after freeze-out. 

T >1eV, when baryons and photons were still in equilibrium through electromagnetic reactions such as 

µ� ??mi
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Recombination
Let us define the recombination temperature Trec as the temperature where Xe = 10−1, 

i.e. when 90% of the electrons have combined with protons to form hydrogen. 

1. CMB

to determine the relic density of electrons after freeze-out.

Figure 1.2: Free electron fraction as a function of redshift.

Let us define the recombination temperature Trec as the temperature where Xe = 10�1, i.e.

when 90% of the electrons have combined with protons to form hydrogen. We find

Trec ⇡ 0.3eV ' 3600K. (1.8)

Using Trec = T0(1 + zrec), with T0 = 2.7K, gives the redshift of recombination,

zrec ⇡ 1320 (1.9)

Since matter-radiation equality is at zeq ' 3500, we conclude that recombination occurred

in the matter-dominated era. Using a(t) = (t/t0)2/3, we obtain an estimate for the time of

recombination

trec =
t0

(1 + zrec)3/2
⇠ 290 000yrs (1.10)

Recombination was not an instantaneous process but proceeded relatively quickly nevertheless,

with the fractional ionisation decreasing from X = 0.9 to X = 0.1 over a time interval �t ⇠

70 000yrs. With the number density of free electrons dropping rapidly, the time when photons

and baryons decoupled follows soon.

-4-
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zeq ?  
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Using                             with T0 = 2.7K, gives the redshift of recombination: 

1. CMB

to determine the relic density of electrons after freeze-out.
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1.3 Photon Decoupling

Using Trec = T0(1 + zrec), with T0 = 2.7K, gives the redshift of recombination,

zrec ⇡ 1320 (1.9)

Since matter-radiation equality is at zeq ' 3500, we conclude that recombination occurred

in the matter-dominated era. Using a(t) = (t/t0)2/3, we obtain an estimate for the time of

recombination

trec =
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(1 + zrec)3/2
⇠ 290 000yrs (1.10)

Recombination was not an instantaneous process but proceeded relatively quickly nevertheless,

with the fractional ionisation decreasing from X = 0.9 to X = 0.1 over a time interval �t ⇠

70 000yrs. With the number density of free electrons dropping rapidly, the time when photons

and baryons decoupled follows soon.

Figure 1.3: Recombination process.

1.3 Photon Decoupling

Photons are most strongly coupled to the primordial plasma through their interactions with

electrons, through Thomson scattering

e
� + � ⌦ e

� + � (1.11)

i.e. the elastic scattering of electromagnetic radiation by a free charged particle. Thomson

scattering is the low-energy limit of Compton scattering and is a valid description in the regime

where the photon energy is much less than the rest-mass energy of the electron. An important

-5-
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Photon Decoupling
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i.e. the elastic scattering of electromagnetic radiation by a free charged particle. Thomson

scattering is the low-energy limit of Compton scattering and is a valid description in the regime

where the photon energy is much less than the rest-mass energy of the electron. An important

feature of Thomson scattering is that it introduces polarization along the direction of motion

of the electron

The mean free path for photons (the mean distance travelled between scatterings) is

� =
1

ne�T

, (1.12)

and therefore the interaction rate at which a photon undergoes scattering, given by

�� ⇡ ne�T , (1.13)

decreases as the density of free electrons drops. Where �T ⇡ 2 ⇥ 10�3 MeV�2 is the Thomson

cross section. Since �� / ne, the interaction rate the interaction rate becomes smaller than the

expansion rate, and hence photons and electrons decouple roughly when

��(Tdec) ⇠ H(Tdec). (1.14)
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1. CMB

we get

Xe(Tdec)T
3/2
dec ⇠

⇡
2

2⇣(3)

H0
p

⌦m

⌘�TT
3/2
0

. (1.15)
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where the photon energy is much less than the rest-mass energy of the electron. An important

feature of Thomson scattering is that it introduces polarization along the direction of motion
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resultado?
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Last Scattering Surface

After their last scattering off an electron, photons were able to travel unimpeded through the 

Universe. These are the Cosmic Microwave Background photons we receive today, still with their 

blackbody distribution, now redshifted by a factor of 1100.

They constitute a last scattering surface, or more appropriately a last scattering layer
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Isotropic CMB

• The CMB radiation was discovered in 1965 by Arno Penzias and Robert Wilson, while trying to identify 

sources of noise in microwave satellite communications. 

nobel?

• Interestingly, the possibility of a cosmic thermal background were first entertained by Gamow, Alpher and Herman 

in 1948 as a consequence of Big Bang nucleosynthesis, but the idea was so beyond the experimental 

• Their discovery was announced alongside the interpretation of the CMB as  relic thermal radiation from the 

Big Bang by Robert Dicke and collaborators. 
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Cosmic microwave background 49

History

Timeline of Observations of the CMB
Important people and dates

1941 Andrew McKellar was attempting to measure the average temperature of the interstellar medium, and reported the observation of an
average bolometric temperature of 2.3 K based on the study of interstellar absorption lines.

1946 Robert Dicke predicts ".. radiation from cosmic matter" at <20 K but did not refer to background radiation[1]

1948 George Gamow calculates a temperature of 50 K (assuming a 3-billion-year old Universe), commenting it ".. is in reasonable agreement
with the actual temperature of interstellar space", but does not mention background radiation.

1948 Ralph Alpher and Robert Herman estimate "the temperature in the Universe" at 5 K. Although they do not specifically mention
microwave background radiation, it may be inferred.[2]

1950 Ralph Alpher and Robert Herman re-estimate the temperature at 28 K.

1953 George Gamow estimates 7 K.

1955 Émile Le Roux of the Nançay Radio Observatory, in a sky survey at λ=33 cm, reported a near-isotropic background radiation of 3
kelvins, plus or minus 2.

1956 George Gamow estimates 6 K.

1957 Tigran Shmaonov reports that "the absolute effective temperature of the radioemission background ... is 4±3K". It is noted that the
"measurements showed that radiation intensity was independent of either time or direction of observation... it is now clear that Shmaonov
did observe the cosmic microwave background at a wavelength of 3.2 cm"

1960s Robert Dicke re-estimates a MBR (microwave background radiation) temperature of 40 K

1964 A. G. Doroshkevich and Igor Novikov publish a brief paper, where they name the CMB radiation phenomenon as detectable.

1964–65 Arno Penzias and Robert Woodrow Wilson measure the temperature to be approximately 3 K. Robert Dicke, P. J. E. Peebles, P. G. Roll,
and D. T. Wilkinson interpret this radiation as a signature of the big bang.

1983 RELIKT-1 Soviet CMB anisotropy experiment was launched.

1990 FIRAS on COBE measures the black body form of the CMB spectrum with exquisite precision.

1992 Scientists who analyzed data from COBE DMR announce the discovery of the primary temperature anisotropy.

1999 First measurements of acoustic oscillations in the CMB anisotropy angular power spectrum from the TOCO, BOOMERANG, and
Maxima Experiments.

2002 Polarization discovered by DASI.

2004 E-mode polarization spectrum obtained by the CBI.

2005 Ralph A. Alpher is awarded the National Medal of Science for his groundbreaking work in nucleosynthesis and prediction that the
universe expansion leaves behind background radiation, thus providing a model for the Big Bang theory.

2006 Two of COBE's principal investigators, George Smoot and John Mather, received the Nobel Prize in Physics in 2006 for their work on
precision measurement of the CMBR.

The cosmic microwave background was first predicted in 1948 by Ralph Alpher, and Robert Herman. Alpher and
Herman were able to estimate the temperature of the cosmic microwave background to be 5 K, though two years
later they re-estimated it at 28 K. This high estimate was due to a mis-estimate of the Hubble constant by Alfred
Behr, which could not be replicated and was later abandoned for the earlier estimate. Although there were several
previous estimates of the temperature of space, these suffered from two flaws. First, they were measurements of the
effective temperature of space and did not suggest that space was filled with a thermal Planck spectrum. Next, they
depend on our being at a special spot at the edge of the Milky Way galaxy and they did not suggest the radiation is
isotropic. The estimates would yield very different predictions if Earth happened to be located elsewhere in the
Universe.[3]

Cosmic microwave background 49

History

Timeline of Observations of the CMB
Important people and dates

1941 Andrew McKellar was attempting to measure the average temperature of the interstellar medium, and reported the observation of an
average bolometric temperature of 2.3 K based on the study of interstellar absorption lines.

1946 Robert Dicke predicts ".. radiation from cosmic matter" at <20 K but did not refer to background radiation[1]

1948 George Gamow calculates a temperature of 50 K (assuming a 3-billion-year old Universe), commenting it ".. is in reasonable agreement
with the actual temperature of interstellar space", but does not mention background radiation.

1948 Ralph Alpher and Robert Herman estimate "the temperature in the Universe" at 5 K. Although they do not specifically mention
microwave background radiation, it may be inferred.[2]

1950 Ralph Alpher and Robert Herman re-estimate the temperature at 28 K.

1953 George Gamow estimates 7 K.

1955 Émile Le Roux of the Nançay Radio Observatory, in a sky survey at λ=33 cm, reported a near-isotropic background radiation of 3
kelvins, plus or minus 2.

1956 George Gamow estimates 6 K.

1957 Tigran Shmaonov reports that "the absolute effective temperature of the radioemission background ... is 4±3K". It is noted that the
"measurements showed that radiation intensity was independent of either time or direction of observation... it is now clear that Shmaonov
did observe the cosmic microwave background at a wavelength of 3.2 cm"

1960s Robert Dicke re-estimates a MBR (microwave background radiation) temperature of 40 K

1964 A. G. Doroshkevich and Igor Novikov publish a brief paper, where they name the CMB radiation phenomenon as detectable.

1964–65 Arno Penzias and Robert Woodrow Wilson measure the temperature to be approximately 3 K. Robert Dicke, P. J. E. Peebles, P. G. Roll,
and D. T. Wilkinson interpret this radiation as a signature of the big bang.

1983 RELIKT-1 Soviet CMB anisotropy experiment was launched.

1990 FIRAS on COBE measures the black body form of the CMB spectrum with exquisite precision.

1992 Scientists who analyzed data from COBE DMR announce the discovery of the primary temperature anisotropy.

1999 First measurements of acoustic oscillations in the CMB anisotropy angular power spectrum from the TOCO, BOOMERANG, and
Maxima Experiments.

2002 Polarization discovered by DASI.

2004 E-mode polarization spectrum obtained by the CBI.

2005 Ralph A. Alpher is awarded the National Medal of Science for his groundbreaking work in nucleosynthesis and prediction that the
universe expansion leaves behind background radiation, thus providing a model for the Big Bang theory.

2006 Two of COBE's principal investigators, George Smoot and John Mather, received the Nobel Prize in Physics in 2006 for their work on
precision measurement of the CMBR.

The cosmic microwave background was first predicted in 1948 by Ralph Alpher, and Robert Herman. Alpher and
Herman were able to estimate the temperature of the cosmic microwave background to be 5 K, though two years
later they re-estimated it at 28 K. This high estimate was due to a mis-estimate of the Hubble constant by Alfred
Behr, which could not be replicated and was later abandoned for the earlier estimate. Although there were several
previous estimates of the temperature of space, these suffered from two flaws. First, they were measurements of the
effective temperature of space and did not suggest that space was filled with a thermal Planck spectrum. Next, they
depend on our being at a special spot at the edge of the Milky Way galaxy and they did not suggest the radiation is
isotropic. The estimates would yield very different predictions if Earth happened to be located elsewhere in the
Universe.[3]

C
os

m
ic

 m
ic

ro
w

av
e 

ba
ck

gr
ou

nd
49

H
is

to
ry

T
im

el
in

e 
of

 O
bs

er
va

tio
ns

 o
f t

he
 C

M
B

Im
po

rta
nt

 p
eo

pl
e 

an
d 

da
te

s

19
41

A
nd

re
w

 M
cK

el
la

r w
as

 a
tte

m
pt

in
g 

to
 m

ea
su

re
 th

e 
av

er
ag

e 
te

m
pe

ra
tu

re
 o

f t
he

 in
te

rs
te

lla
r m

ed
iu

m
, a

nd
 re

po
rte

d 
th

e 
ob

se
rv

at
io

n 
of

 a
n

av
er

ag
e 

bo
lo

m
et

ric
 te

m
pe

ra
tu

re
 o

f 2
.3

 K
 b

as
ed

 o
n 

th
e 

st
ud

y 
of

 in
te

rs
te

lla
r a

bs
or

pt
io

n 
lin

es
.

19
46

R
ob

er
t D

ic
ke

 p
re

di
ct

s "
.. 

ra
di

at
io

n 
fr

om
 c

os
m

ic
 m

at
te

r"
 a

t <
20

 K
 b

ut
 d

id
 n

ot
 re

fe
r t

o 
ba

ck
gr

ou
nd

 ra
di

at
io

n[1
]

19
48

G
eo

rg
e 

G
am

ow
 c

al
cu

la
te

s a
 te

m
pe

ra
tu

re
 o

f 5
0 

K
 (a

ss
um

in
g 

a 
3-

bi
lli

on
-y

ea
r o

ld
 U

ni
ve

rs
e)

, c
om

m
en

tin
g 

it 
"..

 is
 in

 re
as

on
ab

le
 a

gr
ee

m
en

t
w

ith
 th

e 
ac

tu
al

 te
m

pe
ra

tu
re

 o
f i

nt
er

st
el

la
r s

pa
ce

", 
bu

t d
oe

s n
ot

 m
en

tio
n 

ba
ck

gr
ou

nd
 ra

di
at

io
n.

19
48

R
al

ph
 A

lp
he

r a
nd

 R
ob

er
t H

er
m

an
 e

st
im

at
e 

"t
he

 te
m

pe
ra

tu
re

 in
 th

e 
U

ni
ve

rs
e"

 a
t 5

 K
. A

lth
ou

gh
 th

ey
 d

o 
no

t s
pe

ci
fic

al
ly

 m
en

tio
n

m
ic

ro
w

av
e 

ba
ck

gr
ou

nd
 ra

di
at

io
n,

 it
 m

ay
 b

e 
in

fe
rr

ed
.[2

]

19
50

R
al

ph
 A

lp
he

r a
nd

 R
ob

er
t H

er
m

an
 re

-e
st

im
at

e 
th

e 
te

m
pe

ra
tu

re
 a

t 2
8 

K
.

19
53

G
eo

rg
e 

G
am

ow
 e

st
im

at
es

 7
 K

.

19
55

Ém
ile

 L
e 

R
ou

x 
of

 th
e 

N
an

ça
y 

R
ad

io
 O

bs
er

va
to

ry
, i

n 
a 

sk
y 

su
rv

ey
 a

t λ
=3

3 
cm

, r
ep

or
te

d 
a 

ne
ar

-is
ot

ro
pi

c 
ba

ck
gr

ou
nd

 ra
di

at
io

n 
of

 3
ke

lv
in

s, 
pl

us
 o

r m
in

us
 2

.

19
56

G
eo

rg
e 

G
am

ow
 e

st
im

at
es

 6
 K

.

19
57

Ti
gr

an
 S

hm
ao

no
v 

re
po

rts
 th

at
 "t

he
 a

bs
ol

ut
e 

ef
fe

ct
iv

e 
te

m
pe

ra
tu

re
 o

f t
he

 ra
di

oe
m

is
si

on
 b

ac
kg

ro
un

d 
...

 is
 4

±3
K

". 
It 

is
 n

ot
ed

 th
at

 th
e

"m
ea

su
re

m
en

ts
 sh

ow
ed

 th
at

 ra
di

at
io

n 
in

te
ns

ity
 w

as
 in

de
pe

nd
en

t o
f e

ith
er

 ti
m

e 
or

 d
ire

ct
io

n 
of

 o
bs

er
va

tio
n.

.. 
it 

is
 n

ow
 c

le
ar

 th
at

 S
hm

ao
no

v
di

d 
ob

se
rv

e 
th

e 
co

sm
ic

 m
ic

ro
w

av
e 

ba
ck

gr
ou

nd
 a

t a
 w

av
el

en
gt

h 
of

 3
.2

 c
m

"

19
60

s
R

ob
er

t D
ic

ke
 re

-e
st

im
at

es
 a

 M
B

R
 (m

ic
ro

w
av

e 
ba

ck
gr

ou
nd

 ra
di

at
io

n)
 te

m
pe

ra
tu

re
 o

f 4
0 

K

19
64

A
. G

. D
or

os
hk

ev
ic

h 
an

d 
Ig

or
 N

ov
ik

ov
 p

ub
lis

h 
a 

br
ie

f p
ap

er
, w

he
re

 th
ey

 n
am

e 
th

e 
C

M
B

 ra
di

at
io

n 
ph

en
om

en
on

 a
s d

et
ec

ta
bl

e.

19
64

–6
5

A
rn

o 
Pe

nz
ia

s a
nd

 R
ob

er
t W

oo
dr

ow
 W

ils
on

 m
ea

su
re

 th
e 

te
m

pe
ra

tu
re

 to
 b

e 
ap

pr
ox

im
at

el
y 

3 
K

. R
ob

er
t D

ic
ke

, P
. J

. E
. P

ee
bl

es
, P

. G
. R

ol
l,

an
d 

D
. T

. W
ilk

in
so

n 
in

te
rp

re
t t

hi
s r

ad
ia

tio
n 

as
 a

 si
gn

at
ur

e 
of

 th
e 

bi
g 

ba
ng

.

19
83

R
EL

IK
T-

1 
So

vi
et

 C
M

B
 a

ni
so

tro
py

 e
xp

er
im

en
t w

as
 la

un
ch

ed
.

19
90

FI
R

A
S 

on
 C

O
B

E 
m

ea
su

re
s t

he
 b

la
ck

 b
od

y 
fo

rm
 o

f t
he

 C
M

B
 sp

ec
tru

m
 w

ith
 e

xq
ui

si
te

 p
re

ci
si

on
.

19
92

Sc
ie

nt
is

ts
 w

ho
 a

na
ly

ze
d 

da
ta

 fr
om

 C
O

B
E 

D
M

R
 a

nn
ou

nc
e 

th
e 

di
sc

ov
er

y 
of

 th
e 

pr
im

ar
y 

te
m

pe
ra

tu
re

 a
ni

so
tro

py
.

19
99

Fi
rs

t m
ea

su
re

m
en

ts
 o

f a
co

us
tic

 o
sc

ill
at

io
ns

 in
 th

e 
C

M
B

 a
ni

so
tro

py
 a

ng
ul

ar
 p

ow
er

 sp
ec

tru
m

 fr
om

 th
e 

TO
C

O
, B

O
O

M
ER

A
N

G
, a

nd
M

ax
im

a 
Ex

pe
rim

en
ts

.

20
02

Po
la

riz
at

io
n 

di
sc

ov
er

ed
 b

y 
D

A
SI

.

20
04

E-
m

od
e 

po
la

riz
at

io
n 

sp
ec

tru
m

 o
bt

ai
ne

d 
by

 th
e 

C
B

I.

20
05

R
al

ph
 A

. A
lp

he
r i

s a
w

ar
de

d 
th

e 
N

at
io

na
l M

ed
al

 o
f S

ci
en

ce
 fo

r h
is

 g
ro

un
db

re
ak

in
g 

w
or

k 
in

 n
uc

le
os

yn
th

es
is

 a
nd

 p
re

di
ct

io
n 

th
at

 th
e

un
iv

er
se

 e
xp

an
si

on
 le

av
es

 b
eh

in
d 

ba
ck

gr
ou

nd
 ra

di
at

io
n,

 th
us

 p
ro

vi
di

ng
 a

 m
od

el
 fo

r t
he

 B
ig

 B
an

g 
th

eo
ry

.

20
06

Tw
o 

of
 C

O
B

E'
s p

rin
ci

pa
l i

nv
es

tig
at

or
s, 

G
eo

rg
e 

Sm
oo

t a
nd

 Jo
hn

 M
at

he
r, 

re
ce

iv
ed

 th
e 

N
ob

el
 P

riz
e 

in
 P

hy
si

cs
 in

 2
00

6 
fo

r t
he

ir 
w

or
k 

on
pr

ec
is

io
n 

m
ea

su
re

m
en

t o
f t

he
 C

M
B

R
.

Th
e 

co
sm

ic
 m

ic
ro

w
av

e 
ba

ck
gr

ou
nd

 w
as

 f
irs

t p
re

di
ct

ed
 in

 1
94

8 
by

 R
al

ph
 A

lp
he

r, 
an

d 
R

ob
er

t H
er

m
an

. A
lp

he
r 

an
d

H
er

m
an

 w
er

e 
ab

le
 to

 e
st

im
at

e 
th

e 
te

m
pe

ra
tu

re
 o

f 
th

e 
co

sm
ic

 m
ic

ro
w

av
e 

ba
ck

gr
ou

nd
 to

 b
e 

5 
K

, t
ho

ug
h 

tw
o 

ye
ar

s
la

te
r 

th
ey

 r
e-

es
tim

at
ed

 it
 a

t 2
8 

K
. T

hi
s 

hi
gh

 e
st

im
at

e 
w

as
 d

ue
 to

 a
 m

is
-e

st
im

at
e 

of
 th

e 
H

ub
bl

e 
co

ns
ta

nt
 b

y 
A

lfr
ed

B
eh

r, 
w

hi
ch

 c
ou

ld
 n

ot
 b

e 
re

pl
ic

at
ed

 a
nd

 w
as

 la
te

r 
ab

an
do

ne
d 

fo
r 

th
e 

ea
rli

er
 e

st
im

at
e.

 A
lth

ou
gh

 th
er

e 
w

er
e 

se
ve

ra
l

pr
ev

io
us

 e
st

im
at

es
 o

f t
he

 te
m

pe
ra

tu
re

 o
f s

pa
ce

, t
he

se
 s

uf
fe

re
d 

fr
om

 tw
o 

fla
w

s. 
Fi

rs
t, 

th
ey

 w
er

e 
m

ea
su

re
m

en
ts

 o
f t

he
ef

fe
ct

iv
e 

te
m

pe
ra

tu
re

 o
f s

pa
ce

 a
nd

 d
id

 n
ot

 s
ug

ge
st

 th
at

 s
pa

ce
 w

as
 fi

lle
d 

w
ith

 a
 th

er
m

al
 P

la
nc

k 
sp

ec
tru

m
. N

ex
t, 

th
ey

de
pe

nd
 o

n 
ou

r b
ei

ng
 a

t a
 s

pe
ci

al
 s

po
t a

t t
he

 e
dg

e 
of

 th
e 

M
ilk

y 
W

ay
 g

al
ax

y 
an

d 
th

ey
 d

id
 n

ot
 s

ug
ge

st
 th

e 
ra

di
at

io
n 

is
is

ot
ro

pi
c.

 T
he

 e
st

im
at

es
 w

ou
ld

 y
ie

ld
 v

er
y 

di
ff

er
en

t 
pr

ed
ic

tio
ns

 i
f 

Ea
rth

 h
ap

pe
ne

d 
to

 b
e 

lo
ca

te
d 

el
se

w
he

re
 i

n 
th

e
U

ni
ve

rs
e.

[3
]

WMAP?

PLK?



16JAVazquez

The original detection by Penzias and Wilson was at a wavelength of 73.5 mm, this being the wavelength of the 

telecommunication signals they were working with; this wavelength is two orders of magnitude longer than 

λpeak = 1.1mm of a T = 2.7255K blackbody. 

1. CMB

Figure 1.6: Blackbody radiation.

averaged over the whole sky is

hT i =
1

4⇡

Z
T (✓, �) sin ✓d✓d� = 2.7255 ± 0.0006K (1.18)

The deviations from this mean temperature from point to point on the sky are tiny. Defining

the dimensionless T fluctuations:

�T

T
(✓,�) =

T (✓,�) � hT i

hT i
(1.19)

is found that

⌧✓
�T

T

◆�1/2

= 1.1 ⇥ 10�5 (1.20)

Such deviations were first reported in 1992 by the COBE team. Subsequent CMB missions

(WMAP and Planck) have significantly improved the angular resolution and precision in the

mapping of the CMB sky, as illustrated in Figure 1.7.
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WMAP and Planck 

investigators of the COBE and WMAP missions have been awarded some
of the most prestigious prizes in Physics and Astronomy.

Incidentally, the CMB provides the solution to Olbers’ paradox: The sky
at night (or during the day for that matter!) is indeed bright everywhere,
but at the mm wavelengths of CMB photons, rather than the optical wave-
lengths of starlight.

Table 9.2 summarises the most important properties of the CMB.

Table 9.2 CMB parameters

Property Value
Temperature, TCMB 2.7255K
Peak Wavelength, �peak 0.106 cm
Number density of CMB photons, n�,0 411 cm�3

Energy density of CMB photons, u�,0 0.26 eV cm�3

Average photon energy, hh⌫CMBi 6.34 ⇥ 10�4 eV
Photon/Baryon ratio, 1/⌘ 1.64 ⇥ 109

9.4.1 Isotropy of the CMB

At any angular position (✓, �) on the sky, the spectrum of the CMB is a
near-perfect blackbody (see Figure 9.5). The CMB is in fact the closest
approximation we have to an ideal blackbody, much closer than, for ex-
ample, the spectral distribution of stars, and closer than any blackbody

Figure 9.5: The spectral shape of the Cosmic Microwave Background measured by the
COBE satellite is that of a blackbody with temperature T = 2.7255K.
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Linear Perturbations
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Metric perturbations 

2
Linear perturbations

2.1 Metric perturbations

We begin the study of relativistic linear-perturbation theory by introducing a small perturbation

hµ⌫ to the metric, in the form of

gµ⌫ �! ḡµ⌫ + a
2
hµ⌫ , (2.1)

where the unperturbed spacetime ḡµ⌫ is referred as the background, described by the FRW

metric, and hµ⌫ satisfies hµ⌫ ⌧ ḡµ⌫ . In this section, to avoid unnecessary complications, we

shall only consider flat (k = 0) universes and work in terms of the conformal time; e.g. the

conformal Hubble parameter H ⌘ @⌘a/a = aH.

The most general perturbation to the background metric is given by

hµ⌫dx
µ
dx

⌫ = �2Ad⌘
2

� 2Bid⌘dx
i + 2Hijdx

i
dx

j
. (2.2)

The three new functions represent a scalar field A(⌘,x), a vector field Bi(⌘,x) and a symmetric

trace-free tensor field Hij(⌘,x), all of them defined over the background 3-space. One has to

bear in mind, however, that this scalar, vector and tensor quantities are not yet the true scalar,

vector, tensor perturbations, as they can also be decomposed, such as

Bi = @iB|{z}
scalar part

+ B
(V )
i| {z }

vector part

, (2.3)
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2. LINEAR PERTURBATIONS

where the vector part is transverse (divergence free) @
i
Bi = 0. A similar decomposition applies

to tensors:

Hij = HL�ij + @hi@jiHT| {z }
scalar part

+ @(iH
(V )
j)| {z }

vector part

+ H
(T )
ij| {z }

tensor part

, (2.4)

where

@hi@jiH ⌘ @i@jH �
1

3
�ijr

2
H, (2.5)

is trace-free; H
(V )
i

is transverse; and H
(T )
ij

is symmetric, trace-free and transverse �
ik

@kH
(T )
ij

= 0.

This decomposition is unique in Euclidean space for a smooth, bounded Hij that decays at

infinity [? ]. The most general scalar-perturbation of the metric has therefore ten separate

degrees-of-freedom: A (1), Bi (3) and Hij (6). But as discussed earlier, there are only six inde-

pendent Einstein field equations, and hence we must fix the remaining four degrees-of-freedom

by a choice of coordinates or the gauge choice.

2.2 Energy-momentum perturbations

In a similar way we have perturbed the metric, we now introduce a perturbation to the energy-

momentum tensor:

T
µ

⌫
�! T̄

µ

⌫
+ �T

µ

⌫
, (2.6)

where T̄
µ

⌫
represents a perfect fluid with the addition of an anisotropic stress ⇧µ

⌫
, defined on the

FRW background. Considering perturbations up to linear order, the energy-momentum tensor

is thus given by

T
0
0 = �⇢̄(1 + �), (2.7)

T
i

0 = (⇢̄ + p̄)vi ⌘ q
i
, (2.8)

T
0
i

= �(⇢̄ + p̄)(vi + Bi) (2.9)

T
i

j
= p̄[(1 + ⇡L)�i

j
+ ⇧i

j
]. (2.10)

where q
i is defined as the 3-momentum density, ⇧ is the anisotropic-stress tensor with traceless

part ⇡
i

j
= p̄⇧i

j
, ⇧0

0 = ⇧0
i

= ⇧i

0 = 0, and p̄⇡L ⌘ �p. The density perturbation and the velocity

are, respectively, defined by

�(⌘,x) ⌘
⇢ � ⇢̄

⇢̄
, u

i = av
i
. (2.11)
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2.3 Gauge transformations

The Gauge Problem

The metric perturbations aren’t uniquely defined, but depend on our choice of coordinates or

the gauge choice. Making a di↵erent choice of coordinates, can change the values of the pertur-

bation variables. It may even introduce fictitious perturbations.

For example, consider the homogeneous FRW spacetime ds
2 = a

2(⌘)[d⌘
2

� �ijdx
i
dx

j ] and

make the following change of the spatial coordinates, x
i

! x̃
i + ⇠

i(⌘,x) Using dx
i = dx̃

i
�

@⌘⇠
i
d⌘ � @k⇠

i
dx̃

k, then becomes

ds
2 = a

2(⌘)[d⌘
2

� 2⇠
0
i
dx̃

i
d⌘ � (�ij + 2@(i⇠j))dx̃

i
dx̃

j ] (2.12)

We apparently have introduced the metric perturbations Bi = ⇠
0
i
and Êi = ⇠i. But these are

just fictitious gauge modes that can be removed by going back to the old coordinates.

Similar, we can change our time slicing, ⌘ ! ⌘ + ⇠
0(⌘,x). The homogeneous density of the

universe then gets perturbed, ⇢(⌘) ! ⇢(⌘ + ⇠
0(⌘,x)). So even in an unperturbed universe, a

change of the time coordinate can introduce a fictitious density perturbation

�⇢ = ⇢̄
0
⇠
0 (2.13)

Similarly, we can remove a real perturbation in the energy density by choosing the hypersurface

of constant time to coincide with the hypersurface of constant energy density.

These examples illustrate that we need a more physical way to identify true perturbations.

One way to do this is to define perturbations in such a way that they don’t change under a

change of coordinates.

2.3 Gauge transformations

The perturbation of a generic field Q = Q̄ + ✏Q
(1) obeys the gauge transformation law:

Q
(1)

! Q
(1) + LXQ̄, (2.14)

where LX denotes the Lie derivative in direction of the vector field X. Let us consider the

behaviour of hµ⌫ (2.2) under gauge transformations:

hµ⌫ ! hµ⌫ + L⇠ ḡµ⌫ , with ⇠
↵ = (T, L

i), (2.15)
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and Êi = ⇠i. But these are

just fictitious gauge modes that can be removed by going back to the old coordinates.

Similar, we can change our time slicing, ⌘ ! ⌘ + ⇠
0(⌘,x). The homogeneous density of the

universe then gets perturbed, ⇢(⌘) ! ⇢(⌘ + ⇠
0(⌘,x)). So even in an unperturbed universe, a

change of the time coordinate can introduce a fictitious density perturbation

�⇢ = ⇢̄
0
⇠
0 (2.13)

Similarly, we can remove a real perturbation in the energy density by choosing the hypersurface

of constant time to coincide with the hypersurface of constant energy density.

These examples illustrate that we need a more physical way to identify true perturbations.

One way to do this is to define perturbations in such a way that they don’t change under a

change of coordinates.

2.3 Gauge transformations

The perturbation of a generic field Q = Q̄ + ✏Q
(1) obeys the gauge transformation law:

Q
(1)

! Q
(1) + LXQ̄, (2.14)

where LX denotes the Lie derivative in direction of the vector field X. Let us consider the

behaviour of hµ⌫ (3.2) under gauge transformations:

hµ⌫ ! hµ⌫ + L⇠ ḡµ⌫ , with ⇠
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where T (⌘) is a scalar function, and the vector Li(⌘) is decomposed into its scalar and vector

part. At linear order, the scalar, vector and tensor perturbations evolve independently (they

decouple), and it is therefore possible to analyse them separately. Here we concentrate on scalar

perturbations, as they account by far for the largest contributions of anisotropies measured by

today’s experiments, and just quote tensor results at the end of this section. Then, after some

identities from di↵erential geometry, and following ? ] and ? ], we have the gauge transformations

for the scalar metric variables:

A ! A �
a
0

a
T � T

0
, (2.16)

B ! B + L
0 + kT, (2.17)

HL ! HL �
a
0

a
T �

k

3
L, (2.18)

HT ! HT + kL, (2.19)

and similarly for the energy-momentum perturbations:

� ! � + 3(1 + w)
a
0

a
T, (2.20)

v ! v + L
0
, (2.21)

⇡L ! ⇡L �
p̄
0

p̄
T = ⇡L + 3(1 + w)

c
2
s

w

a
0

a
T, (2.22)

where the sound speed is given by c
2
s ⌘ p̄

0
/⇢̄

0.

There is an infinite number of choices for the functions T (⌘) and L(⌘), however it is common

to choose them such that two of the perturbation variables vanish. A popular choice is the

longitudinal or Newtonian gauge1. This gauge chooses kL = �HT and kT = �L
0
� B, so that

HT = B = 0, and the scalar metric perturbation is of the form [? ]

h
(S)
µ⌫

= �2 d⌘
2 + 2��ijdx

i
dx

j
, (2.23)

where  and � are gauge-invariant quantities, called Bardeen potentials [? ]; we shall see that

 plays the role of the gravitation potential. In general they are defined by

 ⌘ A �
a
0

a
k
�1

� � k
�1

�
0
, (2.24)

� ⌘ HL +
1

3
HT �

a
0

a
k
�1

�. (2.25)

1 Two mores gauges will be useful throughout this chapter:

Comoving � orthogonal gauge : qi = B = 0.

Spatially � flat gauge : HL = HT = 0.
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2.4 Perturbed Einstein’s and conservation equation

where � ⌘ k
�1

H
0
T

� B vanishes in the longitudinal gauge.

Choosing a particular gauge may however introduce ‘gauge artifacts’, i.e. degrees of freedom

which are not physical, nevertheless the calculations turn out to be simpler. The gauge invariant

energy-momentum perturbations are defined in Appendix ??.

2.4 Perturbed Einstein’s and conservation equation

Having defined the linear perturbations of the metric and the energy-momentum tensor, we

are now in position to solve the perturbed Einstein’s equations. We derive the equations for

perturbed variables in the longitudinal gauge and just quote the gauge-invariant equations in

Appendix ??.

The first-order perturbed Einstein’s equations give [? ? ]:

k
2�+ 3

a
0

a

✓
�0

�
a
0

a
 

◆
= 4⇡Ga

2
⇢̄�, (2.26)

k

✓
a
0

a
 � �0

◆
= 4⇡Ga

2
v(⇢̄ + p̄), (2.27)

�k
2(�+ ) = 8⇡Ga

2
p̄⇧, (2.28)

and the energy-momentum conservation equations:

��
0 = (1 + w)[kv + 3�0] + 3

a
0

a
w�+ 3

a
0

a
�(c2

s
� w), (2.29)

v
0 =

a
0

a
(3c

2
s

� 1)v + k +
kc

2
s

1 + w
� +

kw

1 + w


��

2

3
⇧

�
, (2.30)

where � ⌘ ⇡L � c
2
s
�/w can be viewed as an entropy production rate. Notice that for perfect

fluids, where ⇧µ

⌫
= 0, we have � = � . We also observe that perturbations vanish for a

cosmological constant component, e.g. �
0
⇤ = 0.

Adiabatic and Isocurvature initial conditions

Adiabaticity requires that matter and radiation perturbations are initially in perfect thermal

equilibrium. This implies that their velocity fields agree
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and the density contrast satisfies the relation
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2. LINEAR PERTURBATIONS

where T (⌘) is a scalar function, and the vector Li(⌘) is decomposed into its scalar and vector

part. At linear order, the scalar, vector and tensor perturbations evolve independently (they

decouple), and it is therefore possible to analyse them separately. Here we concentrate on scalar

perturbations, as they account by far for the largest contributions of anisotropies measured by

today’s experiments, and just quote tensor results at the end of this section. Then, after some

identities from di↵erential geometry, and following ? ] and ? ], we have the gauge transformations

for the scalar metric variables:

A ! A �
a
0

a
T � T

0
, (2.16)

B ! B + L
0 + kT, (2.17)

HL ! HL �
a
0

a
T �

k

3
L, (2.18)

HT ! HT + kL, (2.19)

and similarly for the energy-momentum perturbations:

� ! � + 3(1 + w)
a
0

a
T, (2.20)

v ! v + L
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, (2.21)

⇡L ! ⇡L �
p̄
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2
s

w

a
0

a
T, (2.22)

where the sound speed is given by c
2
s ⌘ p̄

0
/⇢̄

0.

There is an infinite number of choices for the functions T (⌘) and L(⌘), however it is common

to choose them such that two of the perturbation variables vanish. A popular choice is the

longitudinal or Newtonian gauge1. This gauge chooses kL = �HT and kT = �L
0
� B, so that

HT = B = 0, and the scalar metric perturbation is of the form [? ]

h
(S)
µ⌫

= �2 d⌘
2 + 2��ijdx

i
dx

j
, (2.23)

where  and � are gauge-invariant quantities, called Bardeen potentials [? ]; we shall see that

 plays the role of the gravitation potential. In general they are defined by

 ⌘ A �
a
0

a
k
�1

� � k
�1

�
0
, (2.24)

� ⌘ HL +
1

3
HT �

a
0

a
k
�1

�. (2.25)

1 Two mores gauges will be useful throughout this chapter:

Comoving � orthogonal gauge : qi = B = 0.

Spatially � flat gauge : HL = HT = 0.
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The Boltzmann equation 

Describes the statistical behaviour of a thermodynamic system not in a state of equilibrium

df

d⌘
= C[f ]

https://en.wikipedia.org/wiki/Thermodynamic_system
https://en.wikipedia.org/wiki/Thermodynamic_equilibrium
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Figure 3.1: Interactions between the di↵erent forms of matter in the universe.

The distribution function of the cosmic microwave background with temperature T̄ is

f̄ =
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We see that f̄ depends just upon the energy E of a photon. Writing T = T0a
�1, we see that

f̄ is a function of aE only:

f̄(aE) =


exp
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aE

T̄0
� 1
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. (3.2)

for observers in the unperturbed background at rest E = �a p, f̄ depends solely of P = a
2
p,

and therefore use P as an argument for f . In order to do this, let us split the spatial momentum
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The distribution function of the cosmic microwave background with temperature        is 
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3. THE BOLTZMANN EQUATION
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into its magnitude p and the unit vector of photon momentum n. Hence, we arrive at our final

set of variables for f

f = f(⌘,x, P,n) (3.4)

The complete distribution function for each species can be split into background plus a

perturbation part:

f(⌘,x, P,n) = f̄(P ) + F (⌘,x, P,n), (3.5)

3.1 Collisionless Part

The evolution of perturbations in the universe is quantified by the Boltzmann equation:
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which relates the e↵ects of gravity on the photon distribution function f to the rate of interac-

tions with other species, given by the collision term C[f, G]. The previous distribution applies

to polarization as well by simply replacing F ! G (we use G to denote the linear polarization

distribution function) and f̄ = f̄ 0 ! 0

On the Boltzmann equation the last term vanishes, because it is of second order in perturba-

tion theory: f̄ does not depend on n
i and hence @f/@n

i is a perturbation. In addition @n
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is a change in photon direction that can only come from a spatially inhomogeneous scattering

process. So all in all the last term is of second order and we can safely discard it.

The third term can be computed from the geodesic equation
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Collecting the terms involving the background only
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The evolution of perturbations in the universe is quantified by the Boltzmann equation: 

Relates the effects of gravity on the photon distribution function f to the rate of interactions with other species, 

given by the collision term C[f,G].

The Boltzmann equation 
4

equality, when the energy contribution of photons be-
comes less important than that of matter, there are still
many more photons than matter particles. Each matter
particle contributes its large rest mass to the energy bud-
get, whereas photons weigh in by shear number. There
is very little kinetic energy in the matter and the en-
ergy transfer from photons to baryons needed to keep
the baryons at photon temperature is negligible for the
photon gas. Now, the binding energy of hydrogen is

B = (me + mp −mH)c2 = 13.6 eV. (23)

Exercise 6: Calculate the ratio ne np : nH using
equations (22), (20) and (23).

Using equations (22), (20) and (23) yields

ne np

nH
=

(2πmekBT )3/2

(2π!)3
exp

(

− B

kB T

)

(24)

which is roughly speaking the Saha equation. Defining
the total number density of baryons as n = ne + nH and
the ionization fraction of electrons as xe ≡ ne/n, we get
from (24)

nenp

nH
=

x2
en

2

n(1− xe)

= n
x2

e

1− xe
=

(2πmekBT )3/2

(2π!)3
exp

(

− B

kB T

)

(25)

Exercise 7: Remember that !c = 200 Mev fm and
mec2 ≈ 0.5 Mev. Use this and n ≈ 5m−3a−3 =
5m−3(T/T0)3 to rewrite Equation (25).

Using xe = 0.1 to define decoupling, one can now calcu-
late the temperature at decoupling.

Exercise 8: Estimate kBTdec, i.e. the energy scale at
decoupling. Hint: assume that kBTdec is of the order
of 0.1 . . .10 eV and use the logarithm to estimate the
ratio B/(kBT )

So the temperature of decoupling is Tdec = T0zdec ≈
3000−4000K and hence zdec ≈ 1000 . . .1500. Please note
that the Temperature Tdec is by two orders of magnitude
smaller than the Temperature corresponding to 13.6eV
which is T ≈ 13.6eV/kB = 13.6eV × 11000K/eV ≈
150′000K The reason is the vast number of photons per
baryon: there are roughly one billion photons per baryon.
It should also be remarked that the CMB photons com-
pletely dominate the entropy of our Universe: the en-
tropy of the universe per baryon is of the order of 1010.

III. OBSERVATIONS

Observationally, we see that radiation from different
directions on the sky has slightly different intensities and
polarisation. None less than S. Chandrasekhar wrote a
book on radiative transfer and it is due to his influence
that astrophysicists still use notation and to large ex-
tend his derivations. Let us take a look at a beam from
direction n, which we can characterize using so called
Stokes parameters. These describe phases and intensities
of the beam. Pependicular to the beam, on chooses an
orthonormal basis ε1, ε2 to describe the electromagnetic
wave

E =
(

a1e
iδ1ε1 + a2e

iδ2ε2

)

eipn x−iωt. (26)

Let’s briefly use the projections E1 ≡ ε1(Eε1) and like-
wise E2 ≡ ε2(Eε2). The Stokes parameters are then
defined by the long time averages of squares of the peak
amplitudes

I ≡ 〈EE#〉 = a2
1 + a2

2, (27)

Q ≡ 〈E1E
#
1 −E2E

#
2 〉 = a2

1 − a2
2, (28)

U ≡
〈

∣

∣

∣

∣

E1 + E2√
2

∣

∣

∣

∣

2

−
∣

∣

∣

∣

E1 −E2√
2

∣

∣

∣

∣

2
〉

(29)

= 2a1a2 cos(δ1 − δ2).

There is a fourth one, V which describes cirular polarized
light which is not needed here, because Thomson scatter-
ing will not produce V . In words, I is the total intensity,
Q is the linear polarization (comparing intensities along
the axis ε1 to ε2) and U is the linear polarization (com-
paring intensities along axis rotated by 45 degrees). An
important property of Q and U is that under a rotation
of the coordinate system by an angle ψ

ε1 = cos(ψ)ε1 + sin(ψ)ε2 (30)

ε2 = − sin(ψ)ε1 + cos(ψ)ε2 (31)

they transform as

Q̃ = cos(2ψ)Q + sin(2ψ)U (32)

Ũ = − sin(2ψ)Q + cos(2ψ)U (33)

To see this, rotate the axis by ψ and project E onto
these new axis and compute Q̃ and Ũ . Alternativly, as
a quick way to make it plausible consider a rotation by
90 degrees. Then ε̃1 = ε2 and ε̃2 = −ε1. Hence Q̃ =
|ε̃1E|2− |ε̃2E|2 =|ε2E|2− |−ε1E|2 = −Q. So a rotation
by 90 degrees flips sign and one by 180 degrees goes back
to the old state. This tells us that we are looking at a
quantity of spin 2. In the late 1960’s, Newman, Penrose
and Goldberg tackled the problem of functions on the
sphere which under a rotation ψ# = −ψ 3 around the

3 The CMB convention for the rotation is the exact opposite of
what Newman and Penrose chose. The CMB community looks

To describe the electromagnetic wave 
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directions on the sky has slightly different intensities and
polarisation. None less than S. Chandrasekhar wrote a
book on radiative transfer and it is due to his influence
that astrophysicists still use notation and to large ex-
tend his derivations. Let us take a look at a beam from
direction n, which we can characterize using so called
Stokes parameters. These describe phases and intensities
of the beam. Pependicular to the beam, on chooses an
orthonormal basis ε1, ε2 to describe the electromagnetic
wave

E =
(

a1e
iδ1ε1 + a2e

iδ2ε2

)

eipn x−iωt. (26)

Let’s briefly use the projections E1 ≡ ε1(Eε1) and like-
wise E2 ≡ ε2(Eε2). The Stokes parameters are then
defined by the long time averages of squares of the peak
amplitudes
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= 2a1a2 cos(δ1 − δ2).

There is a fourth one, V which describes cirular polarized
light which is not needed here, because Thomson scatter-
ing will not produce V . In words, I is the total intensity,
Q is the linear polarization (comparing intensities along
the axis ε1 to ε2) and U is the linear polarization (com-
paring intensities along axis rotated by 45 degrees). An
important property of Q and U is that under a rotation
of the coordinate system by an angle ψ

ε1 = cos(ψ)ε1 + sin(ψ)ε2 (30)

ε2 = − sin(ψ)ε1 + cos(ψ)ε2 (31)

they transform as

Q̃ = cos(2ψ)Q + sin(2ψ)U (32)

Ũ = − sin(2ψ)Q + cos(2ψ)U (33)

To see this, rotate the axis by ψ and project E onto
these new axis and compute Q̃ and Ũ . Alternativly, as
a quick way to make it plausible consider a rotation by
90 degrees. Then ε̃1 = ε2 and ε̃2 = −ε1. Hence Q̃ =
|ε̃1E|2− |ε̃2E|2 =|ε2E|2− |−ε1E|2 = −Q. So a rotation
by 90 degrees flips sign and one by 180 degrees goes back
to the old state. This tells us that we are looking at a
quantity of spin 2. In the late 1960’s, Newman, Penrose
and Goldberg tackled the problem of functions on the
sphere which under a rotation ψ# = −ψ 3 around the

3 The CMB convention for the rotation is the exact opposite of
what Newman and Penrose chose. The CMB community looks

FIGURE 5. Polarization patterns for an E mode (left) and B mode (right) on a small patch of the sky
for potentials that are locally Fourier modes. The shading denotes the amplitude of the potential and the
headless vectors denote the unsigned direction of the polarization. For the electric pattern the polarization
is aligned with or perpendicular to the Fourier wavevector depending on the sign of the potential; for the
magnetic pattern the polarization is at 45 degrees.

those for the temperature anisotropies, e.g. Elm → ∑m′Dlmm′Elm′. Under the operation
of parity, (Q± iU)(n̂) → (Q∓ iU)(−n̂) so that Elm → (−1)lElm (electric parity) while
Blm → (−1)l+1Blm (magnetic parity).
Rotational and parity invariance in the mean limit the non-zero two-point correlations

between polarization (and temperature) multipoles to

〈ElmE∗
l′m′〉 = δll′δmm′CEl (53)

〈BlmB∗l′m′〉 = δll′δmm′CBl (54)
〈TlmE∗

l′m′〉 = δll′δmm′CTEl , (55)

which define the power spectra CEl , C
B
l and C

TE
l . Note that there is no correlation

between B and either ∆T or E.
Assuming Gaussian statistics, the cosmic variance in the polarization (auto-)power

spectra are
var(ĈEl ) =

2
2l+1

(CEl )2 , var(ĈBl ) =
2

2l+1
(CBl )2 . (56)

For the cross-spectrum, the cosmic variance is only slightly more complicated [45, 46]:

var(ĈTEl ) =
1

2l+1
[

(CTEl )2+CTl C
E
l
]

. (57)

The second term arises from chance correlations between ∆T and E in the single
realisation of the sky that we have available. It is the only term present in the cosmic
variance of estimators for the cross-spectra that vanish in the mean by parity, CTBl
and CEBl . Due to the presence of correlations between the temperature and the electric
polarization, estimates of CTl and C

E
l have non-vanishing covariance, and each is also

correlated with the estimator for CTEl ; see [45, 46] for details.
The form of the higher-order polarization spectra implied by rotational invariance in

non-Gaussian theories is similar to that for temperature and is described in [55].
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The previous distribution applies to polarization as well by simply replacing F → G  (we use G to denote the 
linear polarization distribution function) and f ̄ = f ̄ʹ → 0 

The Stokes parameters can be express as frequency-independent fractional thermodynamic equivalent temperatures.

spin?
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3. THE BOLTZMANN EQUATION

p
i
⌘ pn

i (3.3)

into its magnitude p and the unit vector of photon momentum n. Hence, we arrive at our final

set of variables for f

f = f(⌘,x, P,n) (3.4)

The complete distribution function for each species can be split into background plus a

perturbation part:

f(⌘,x, P,n) = f̄(P ) + F (⌘,x, P,n), (3.5)

3.1 Collisionless Part

The evolution of perturbations in the universe is quantified by the Boltzmann equation:
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@f

@P

@P

@⌘
+

@f

@ni

@n
i

@⌘
= C[f, G], (3.6)

which relates the e↵ects of gravity on the photon distribution function f to the rate of interac-

tions with other species, given by the collision term C[f, G]. The previous distribution applies

to polarization as well by simply replacing F ! G (we use G to denote the linear polarization

distribution function) and f̄ = f̄ 0 ! 0

On the Boltzmann equation the last term vanishes, because it is of second order in perturba-

tion theory: f̄ does not depend on n
i and hence @f/@n

i is a perturbation. In addition @n
i
/@⌘,

is a change in photon direction that can only come from a spatially inhomogeneous scattering

process. So all in all the last term is of second order and we can safely discard it.

The third term can be computed from the geodesic equation

@f

@P

@P

@⌘
= �P f̄,P {iµk[�+ ] + 2�0

}, (3.7)

and the spatial part

@f
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@x
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= iµkF (⌘,x, P,n). (3.8)

Collecting the terms involving the background only
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= 0 (3.9)
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Collecting the terms involving the background only 

3.1 Collisionless Part

Collecting the terms involving the background only

✓
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◆

P

= 0 (3.10)

The change in a distribution function of massless particles which depends solely on P is zero:

the preservation of the background black body spectrum.

As far as the perturbed distribution is concerned, it is much more exciting:
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+ iµkF � P f̄,P {iµk[�+ ] + 2�0
} = C[f, G] (3.11)

Finally, making the substitution F ! G, f̄
0
! 0, we get the simple evolution equation for

the linear polarization G ✓
@G

@⌘

◆

P

+ iµkG = CG[f, G] (3.12)

where CG[f, G] is the collision term for G.

3.1.1 Perturbed temperature

Writing the temperature function T in terms of the photon brightness temperature perturbation

� ⌘ �T/T̄ , we have

T (⌘,x,n) = T̄ (⌘)[1 +�(⌘,x,n)], (3.13)
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and therefore F and � are connected via

F (⌘,x, P,n) = �P
@f̄

@P
�(⌘,x,n). (3.15)

So,

G(⌘,x, P,n) = �P
@f̄

@P
Q(⌘,x,n). (3.16)

Then, the simplify Boltzmann equation becomes

�0 + ikµ� = �iµk[�+ ] � 2�0 + Ĉ[f, G] (3.17)

where Ĉ[f, G] ⌘ C[f, G]/(P f̄,P )
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the preservation of the background black body spectrum

The Boltzmann equation 

The last term vanishes, because it is of second order in perturbation theory: f ̄ does not depend on ni and 

hence ∂f/∂ni is a perturbation. In addition ∂ni/∂η, is a change in photon direction.
effect?
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= 0 (3.10)

The change in a distribution function of massless particles which depends solely on P is zero:

the preservation of the background black body spectrum.

As far as the perturbed distribution is concerned, it is much more exciting:
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3. THE BOLTZMANN EQUATION

3.2 The Collision Term from Compton Scattering

The dominant term for the coupling of photons to the baryons is via inverse Compton scattering

e
�(q) + �(p) ⌦ e�(q0) + �(p0) (3.18)

where we are interested how the photon distribution as a function of momentum p changes

[Thomson scattering is the low-energy limit of Compton scattering]. The amplitude can be

calculated from the Feynman rules.
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The expansion of the temperature perturbation (�) and polarisations (Q and U), in terms

of the spherical harmonics Y
m

l
(n), are

�(⌘,x,n) =
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where E and B are the electric and magnetic modes and the Pl’s represent the Legendre

polynomials. So
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The Boltzmann equation thus yields to the evolution equation of temperature perturbations [?

]:
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0� = �iµk[�+ ]�2�0 +

0
⇢

1

4
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. (3.24)
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0
Q =
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{P2(µ) � 1}
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6E2 ��2

i
. (3.25)

Note that the temperature perturbation �(n) is a function of either �(⌘,x,n) or, in Fourier

space, �(⌘,k,n); 
0
⌘ ane�T is the di↵erential optical depth and µ = k

�1k · n the direction

cosine.
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We have use the expressions for the first few moments of the distribution function
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f(p, x)d3

p (3.26)
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Z
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We notice that (3.24) is not manifestly gauge-invariant, however by defining the gauge

invariant temperature perturbation M = �+ 2�, and its multipole decomposition

M(⌘,x,n) =
X

l

(�i)lMl(⌘,k)Pl(n), (3.28)

the evolution equation (3.24), in gauge-invariant components, becomes:
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The procedure is as follows: For each Legendre polynomials Pl

• replace M(⌘, µ) by its multipole expansion

• multiply by Pl(µ)

• integrate both l.h.s. and r.h.s. of the new equation over µ :
R 1
�1 dµ

• use the orthogonality relation
R 1
�1 dµPl(µ)Pn(µ) = 2�ln/(2l + 1)

After integrating (3.29) for each l and applying orthogonality relations of the Legendre poly-

nomials, the hierarchy for M is hence given by [? ]:
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and similarly for the polarisation
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⇡

Z
�(n)d⌦ (3.27)

We notice that (3.24) is not manifestly gauge-invariant, however by defining the gauge

invariant temperature perturbation M = �+ 2�, and its multipole decomposition

M(⌘,x,n) =
X

l

(�i)lMl(⌘,k)Pl(n), (3.28)

the evolution equation (3.24), in gauge-invariant components, becomes:

M
0 + ikµM + 

0
M = iµk[�� ] + 

0
⇢

1

4
D

�

g
� iµvb +

1

10
P2(µ)

hp
6E2 � M2

i�
. (3.29)

The procedure is as follows: For each Legendre polynomials Pl

• replace M(⌘, µ) by its multipole expansion

• multiply by Pl(µ)

• integrate both l.h.s. and r.h.s. of the new equation over µ :
R 1
�1 dµ

• use the orthogonality relation
R 1
�1 dµPl(µ)Pn(µ) = 2�ln/(2l + 1)

After integrating (3.29) for each l and applying orthogonality relations of the Legendre poly-

nomials, the hierarchy for M is hence given by [? ]:

M
0
0 = �

k

3
V� , (3.30)

M
0
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0(Vb � V�) + k( � �) + k

✓
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◆
, (3.31)
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V� �

3

7
M3

◆
, (3.32)

M
0
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l + 1
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◆
, l > 2, (3.33)

and similarly for the polarisation

E
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3. THE BOLTZMANN EQUATION

3.2 The Collision Term from Compton Scattering

The dominant term for the coupling of photons to the baryons is via inverse Compton scattering

e
�(q) + �(p) ⌦ e�(q0) + �(p0) (3.18)

where we are interested how the photon distribution as a function of momentum p changes

[Thomson scattering is the low-energy limit of Compton scattering]. The amplitude can be

calculated from the Feynman rules.

C[f, G] = ane�T f̄,PP

⇢
iµvb +�(⌘,x,n) �

1

4

Z 1

�1
�(⌘,x,n0)[P2(�)P2(µ) + 2]d� (3.19)

�
1

4

Z 1

�1
Q(⌘,x,n0)P2(µ)[�2

p

6⇡52Y
0
2 (�)]d�

�
(3.20)

The expansion of the temperature perturbation (�) and polarisations (Q and U), in terms

of the spherical harmonics Y
m

l
(n), are

�(⌘,x,n) =
X

l

(�i)l�l(k, ⌘)Pl(k̂ · n), (3.21)

(Q ± iU)(⌘,x,n) =
X

l=2

(�i)l(E0
l

± iB
0
l
)

r
4⇡

2l + 1
⌥2Y

0
l

(n), (3.22)

where E and B are the electric and magnetic modes and the Pl’s represent the Legendre

polynomials. So

C[f, G] = ane�T f̄,PP

(
iµvb +�(⌘,k,n) +

1

10
�2P2(µ) ��0 �

p
6

10
[E2 ��2]

)
(3.23)

The Boltzmann equation thus yields to the evolution equation of temperature perturbations [?

]:

�0 + ikµ�+
0� = �iµk[�+ ]�2�0 +

0
⇢

1

4
�� � �� iµvb +

1

10
P2(µ)[

p

6E2 ��2]

�
. (3.24)

Q
0 + ikµQ + 

0
Q =


0

10
{P2(µ) � 1}

hp
6E2 ��2

i
. (3.25)

Note that the temperature perturbation �(n) is a function of either �(⌘,x,n) or, in Fourier

space, �(⌘,k,n); 
0
⌘ ane�T is the di↵erential optical depth and µ = k

�1k · n the direction

cosine.
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Solving …

3.2 The Collision Term from Compton Scattering

We have use the expressions for the first few moments of the distribution function

T
µ

⌫
=

Z
p

�g
p
µ
p⌫

|p0|
f(p, x)d3

p (3.26)

� = 4�+
1

⇡

Z
�(n)d⌦ (3.27)

We notice that (3.24) is not manifestly gauge-invariant, however by defining the gauge

invariant temperature perturbation M = �+ 2�, and its multipole decomposition

M(⌘,x,n) =
X

l

(�i)lMl(⌘,k)Pl(n), (3.28)

the evolution equation (3.24), in gauge-invariant components, becomes:

M
0 + ikµM + 

0
M = iµk[�� ] + 

0
⇢

1

4
D

�

g
� iµvb +

1

10
P2(µ)

hp
6E2 � M2

i�
. (3.29)

The procedure is as follows: For each Legendre polynomials Pl

• replace M(⌘, µ) by its multipole expansion

• multiply by Pl(µ)

• integrate both l.h.s. and r.h.s. of the new equation over µ :
R 1
�1 dµ

• use the orthogonality relation
R 1
�1 dµPl(µ)Pn(µ) = 2�ln/(2l + 1)

After integrating (3.29) for each l and applying orthogonality relations of the Legendre poly-

nomials, the hierarchy for M is hence given by [? ]:

M
0
0 = �

k

3
V� , (3.30)

M
0
1 = 

0(Vb � V�) + k( � �) + k

✓
M0 �

2

5
M2

◆
, (3.31)

M
0
2 = �

0(M2 � C) + k

✓
2

3
V� �

3

7
M3

◆
, (3.32)

M
0
l

= �
0
Ml + k

✓
l

2l � 1
Ml�1 �

l + 1

2l + 3
Ml+1

◆
, l > 2, (3.33)

and similarly for the polarisation

E
0
2 = �

k
p

5

7
E3 � 

0(E2 +
p

6C), (3.34)

E
0
l

= k

✓
2l

2l � 1
El�1 �

2l+1

2l + 3
El+1

◆
� 

0
El, l > 2. (3.35)
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Z
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We notice that (3.24) is not manifestly gauge-invariant, however by defining the gauge

invariant temperature perturbation M = �+ 2�, and its multipole decomposition

M(⌘,x,n) =
X

l

(�i)lMl(⌘,k)Pl(n), (3.28)

the evolution equation (3.24), in gauge-invariant components, becomes:

M
0 + ikµM + 

0
M = iµk[�� ] + 

0
⇢

1

4
D

�

g
� iµvb +

1

10
P2(µ)

hp
6E2 � M2

i�
. (3.29)

The procedure is as follows: For each Legendre polynomials Pl

• replace M(⌘, µ) by its multipole expansion

• multiply by Pl(µ)

• integrate both l.h.s. and r.h.s. of the new equation over µ :
R 1
�1 dµ

• use the orthogonality relation
R 1
�1 dµPl(µ)Pn(µ) = 2�ln/(2l + 1)

After integrating (3.29) for each l and applying orthogonality relations of the Legendre poly-

nomials, the hierarchy for M is hence given by [? ]:
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Massless neutrinos follow the same multipole hierarchy as M, 

however without polarisation 

3. THE BOLTZMANN EQUATION

Here C = M2 �
p

6E2/10 and 2l =
p

l2 � 4 are combinatorial factors.

Massless neutrinos follow the same multipole hierarchy as M, however without polarisation

and Thompson scattering. Hence, the perturbed neutrino distribution N satisfies [? ]:
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For completeness, we quote the hierarchy for the tensor multipoles, temperature �̃T

l
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l
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where h is the longitudinal-scalar part of tensor decomposition in (2.4), and  is given by

 =
1

10
�̃T

0 +
1

7
�̃T

2 +
3

70
�̃T

4 �
3

5
�̃P

0 +
6

7
�̃P

2 �
3

70
�̃P

4 . (3.42)

3.3 The Line of Sight Strategy

So usually, we are interested in M(⌘0, µ). It turns out that there is a clever way to obtain this

that even highlights the di↵erent contributions towards the final anisotropy. Let us develop this

Line of Sight strategy. Inspecting, one notices that the l.h.s can be written as

e
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e
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L̇ (3.43)
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The product g ⌘ 
0 exp((⌘) � (⌘0)) plays an important role and is called the visibility

function. Its peak defines the epoch of recombination.

Figure 3.2: Visibility function. Its peak at about ⌘ ⇡ 300Mpc defines the epoch of last scattering.
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Each term in the above Equation containing factors of μ, can be integrated by parts, order to get rid of μ 

Applying this procedure to all terms involving μ yields 

3.3 The Line of Sight Strategy

and integrated over conformal time

L(⌘0) =

Z
⌘0

0
d⌘e

iµk⌘
e
(⌘)


iµk(�� ) + 

0
✓

1

4
D

�

g
� iµVb �

1

2
(3µ

2
� 1)C

◆�
(3.46)

The photon perturbation today is given by

M(µ, ⌘0) =

Z
⌘0

0
d⌘e

iµk(⌘�⌘0)e
(⌘)�(⌘0) ⇥


iµk(�� ) + 

0
✓

1

4
D

�

g
� iµVb �

1

2
(3µ

2
� 1)C

◆�

(3.47)

The product g ⌘ 
0 exp((⌘) � (⌘0)) plays an important role and is called the visibility

function. Its peak defines the epoch of recombination.

Figure 3.2: Visibility function. Its peak at about ⌘ ⇡ 300Mpc defines the epoch of last scattering.
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The density contrast Dgγ is the main contribution, driving the spectrum towards the oscillatory behaviour. 

The Doppler shift, Vb-term, describes the blueshift caused by last scattering electrons moving towards the observer. 

The term involving time derivatives of the potentials, (Φʹ −Ψʹ), the integrated Sachs-Wolfe effect (ISW). 

It describes the change of the CMB photon energy due to the evolution of the potentials along the line of sight. 

The (Φ − Ψ) term arises from the gravitational redshift when climbing out of the potential well at last scattering. 

The combination Dgγ /4 − (Φ − Ψ) is known as the ordinary Sachs-Wolfe effect (SW). 

This gives the main contribution on scales that at decoupling were well outside the horizon 
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CMB Spectrum

3.3 The Line of Sight Strategy
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The product g ⌘ 
0 exp((⌘) � (⌘0)) plays an important role and is called the visibility

function. Its peak defines the epoch of recombination.

Figure 3.2: Visibility function. Its peak at about ⌘ ⇡ 300Mpc defines the epoch of last scattering.
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Figure 3.2: Visibility function. Its peak at about ⌘ ⇡ 300Mpc defines the epoch of last scattering.
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Let us examine in more detail the temperature perturbations. The density contrast D
�

g
is

the main contribution, driving the spectrum towards the oscillatory behaviour. It can be seen as
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is clear that such model can, for a sufficiently localized
Gaussian perturbation, fit the low-redshift and CMB data
with sufficient goodness of fit. Given three parameters it
has enough flexibility to also match our z ¼ 2.34 points.
Figure 18 plots the best-fitting model of this form. The
Hubble parameter undergoes an oscillation between z ≈ 4
and z ≈ 0.8, which allows it to match the LyaF and CMASS
values of DH and to change DM at z ¼ 2.34 without
altering the low and high redshift values.
This model reduces the overall χ2 by 6.6 with 3 extra

degrees of freedom, a considerable improvement over any
other model we have investigated (see Fig. 10).
Generically, any small perturbation to the Friedmann
equation that is able to improve fits to our LyaF data runs
afoul of CMB and/or galaxy BAO constraints. This model
works because it is fine-tuned to change distances near z ¼
2 but not upset the distance to the last-scattering surface.
However, the model is physically extreme, as demonstrated
in Fig. 19, where we have converted HðzÞ into an implied
dark energy density via the Friedmann equation. Producing
the desired oscillation in HðzÞ requires a negative ρde
between z ¼ 6 and z ¼ 2 [see Eq. (27)]. The authors of
[101] argue that the BOSS LyaF measurements may be
explained in a modified gravity model that alters the
Friedmann equation itself in a physically motivated way,
but more work is needed to determine whether any such
model can provide a good fit to all of the BAO measure-
ments while satisfying CMB constraints.
The difficulty in finding a well-motivated model that

matches the BOSS LyaF measurements suggests that the
tension with these measurements may be a statistical fluke,
or a consequence of an unrecognized systematic that either
biases the central values of DMðzÞ and DHðzÞ or causes
their error bars to be under estimated. Analyses of the final
BOSS data set will address both of the latter points, as they
will allow more exhaustive investigation of analysis pro-
cedures and tests against larger suites of mock catalogs.

Addressing the first point will require high-redshift BAO
measurements from new data sets, such as the Lyα
emission-line galaxy survey of HETDEX [102] or a much
larger LyaF sample from DESI [103].

VII. COMPARISON TO STRUCTURE
GROWTH CONSTRAINTS

The Planck cosmology papers highlighted a tension
between the predictions of the CMB-normalized ΛCDM
model and observational constraints on matter clustering at
low redshifts, from cluster abundances, weak gravitational
lensing, or redshift-space distortions. We now revisit this
issue with our updated BAO and SN constraints and our
broader set of models, to see whether these tensions persist
and whether they are significantly reduced in some classes
of models.
Low-redshift measurements of cluster abundances and

weak lensing most tightly constrain the parameter combi-
nation σ8Ωα

m with α ≈ 0.4 − 0.6 (see discussions in [35]
and references therein). As representative but not
exhaustive examples of constraints at z ≈ 0 we adopt
σ8ðΩm=0.27Þ0.46 ¼ 0.774þ0.032

−0.041 from tomographic cosmic
shear measurements in the CFHTLens survey [104];
σ8ðΩm=0.27Þ0.5 ¼ 0.86% 0.035 from cosmic shear mea-
surements in the Deep Lens Survey5 [105];
σ8ðΩm=0.27Þ0.57 ¼ 0.77% 0.05 from the combination of
galaxy-galaxy lensing and galaxy clustering in the SDSS
[106]; σ8ðΩm=0.25Þ0.47 ¼ 0.813% 0.013 from the mass
function of x-ray clusters observed with Chandra and
ROSAT [107]; σ8ðΩm=0.25Þ0.41 ¼ 0.832% 0.033 from
stacked weak lensing of clusters in the SDSS [108]; and

FIG. 18 (color online). A “tuned oscillation” model in which a
Gaussian perturbation of the ΛCDM DMðzÞ is introduced to
allow a good simultaneous fit to the galaxy and LyaF BAO data.
Solid lines show the same ΛCDM model plotted in Fig. 1, while
the dashed line shows the perturbed model.

FIG. 19 (color online). Implied variation in the energy density
of the dark energy component for the model shown in Fig. 18.
The dotted line corresponds to the density becoming negative.
These plots illustrate the difficulty of concurrently fitting the
LyaF and galaxy BAO constraints onDM andDH while satisfying
the CMB constraint on DM.

5The authors do not quote their results in this form, so this
constraint has been estimated from their Fig. 25.
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tests of the tails of the error distribution. The systematics
and error estimation of the cross-correlation measurement
have also been less thoroughly examined than those of the
autocorrelation measurement, though continuing investi-
gations within the BOSS Collaboration find good agree-
ment with the errors and covariances reported in the
publications above. On the theoretical side, [54] and
[55] have examined the potential impact of UV background
fluctuations on LyaF BAO measurement, finding effects
that are much smaller than the current statistical errors.
We anticipate significant improvements in the LyaF

analyses of the Data Release 12 sample, thanks to the
larger data set and ongoing work on broadband distortion
modeling, larger mock catalog samples, and spectro-
photometric calibration. For the current paper, we adopt
the BAO likelihood surfaces as reported in [28] and [27].

C. Cosmic microwave background data

In this paper we focus on constraints on the expansion
history of the homogeneous cosmological model. For this
purpose, we compress the cosmic microwave background
(CMB) measurements to the variables governing this
expansion history. This approach greatly simplifies the
required computations, allowing us to fit complex models
that have a simple solution to the Friedmann equation
without the need to numerically solve for the evolution of
perturbations. It is also physically illuminating, making
clear what relevant quantities the CMB determines and
distinguishing expansion history constraints from those
that depend on the evolution of clustering. For some models
or special cases we use more complete CMB results
obtained by running the industry-standard COSMOMC

[56] or by relying on the publicly available Planck
MCMC chains [57]. Note that we use the 2013 Planck
results not the 2015 results, which were not available at the
time of our analysis.
The CMB plays two distinct but important roles in our

analysis. First, we treat the CMB as a “BAO experiment” at
redshift z⋆ ¼ 1090, measuring the angular scale of the
sound horizon at very high redshift. Here we ignore the
small dependence of the last-scattering redshift z⋆ on
cosmological parameters and the fact that the relevant
scale for the CMB is r⋆ rather than the drag redshift rd that
sets the BAO scale in low-redshift structure. We have
checked that both approximations are valid to around 0.1σ
for the case of BAO and Planck data and the ΛCDMmodel.
In its second important role, the CMB calibrates the
absolute length of the BAO ruler through its determination
of ωb and ωcb.
Inspired by the existence of well-known degeneracies in

CMB data [58–60], we compress the CMB measurements
into three variables: ωb, ωcb and DMð1090Þ=rd. The mean
vector and the 3 × 3 covariance matrix are used to describe
the CMB constraints by a simple Gaussian likelihood. In
order to calibrate these variables, we rely on the publicly

available Planck chains. In particular, we use the
BASE_ALENS chains with the PLANCK_LOWL_LOWLIKE
data set corresponding to the Planck data set with low-l
WMAP polarization (referred to in this paper as
PlanckþWP). We find that the data vector

v ¼

0

B@
ωb

ωcb

DMð1090Þ=rd

1

CA ð18Þ

can be described by a Gaussian likelihood with mean

μv ¼

0

B@
0.02245

0.1386

94.33

1

CA ð19Þ

and covariance

Cv ¼

0

B@
1.286× 10−7 −6.033×10−7 1.443× 10−5

−6.033× 10−7 7.542× 10−6 −3.605× 10−5

1.443× 10−5 −3.605×10−5 0.004264

1

CA:

ð20Þ

The fractional diagonal errors on ωb, ωcb, and
DMð1090Þ=rd are 1.5%, 1.9%, and 0.06%, respectively.
We similarly compress the WMAP 9-year data into

μv ¼

0

B@
0.02259

0.1354

94.51

1

CA ð21Þ

and covariance

Cv ¼

0

B@
2.864× 10−7 −4.809×10−7 −1.111× 10−5

−4.809× 10−7 1.908× 10−5 −7.495× 10−6

−1.111× 10−5 −7.495×10−6 0.02542

1

CA:

ð22Þ

For reference in interpreting the cosmological constraints
from CMBþ BAO data, especially in Sec. VI below, note
that the contributions to DMð1090Þ accumulate over a wide
range of redshift, with 14%, 25%, 38%, 47%, 69%, 88%,
and 99% of the integral in Eq. (6) coming from redshifts
z < 0.5, 1.0, 2.0, 3.0, 10, 50, and 640, respectively.
The BASE_ALENS model corresponds to the basic flat

ΛCDM cosmology with explicit marginalization over the
foreground lensing potential. Our decision to use the flat
model was intentional, since we found that in curved
models there is significant non-Gaussian correlation of
ωb and ωm with curvature. Because our BAO data inevi-
tably collapse more complex models to nearly flat ones, use
of the flat data is more appropriate. We have tested the data
compression in a couple of simple cases by comparing
results of BAOþ CMB data to COSMOMC chains and found

COSMOLOGICAL IMPLICATIONS OF BARYON ACOUSTIC … PHYSICAL REVIEW D 92, 123516 (2015)
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Statistics of Random Fields 
Consider a random field f(x) – i.e. at each point f(x) is some random number – 

with zero mean, ⟨f(x)⟩ = 0. 

1. CMB

Figure 1.6: Blackbody radiation.

averaged over the whole sky is

hT i =
1

4⇡

Z
T (✓, �) sin ✓d✓d� = 2.7255 ± 0.0006K (1.18)

The deviations from this mean temperature from point to point on the sky are tiny. Defining

the dimensionless T fluctuations:

�T

T
(✓,�) =

T (✓,�) � hT i

hT i
(1.19)

is found that

⌧✓
�T

T

◆�1/2

= 1.1 ⇥ 10�5 (1.20)

Such deviations were first reported in 1992 by the COBE team. Subsequent CMB missions

(WMAP and Planck) have significantly improved the angular resolution and precision in the

mapping of the CMB sky, as illustrated in Figure 1.7.
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Part-III Cosmology 3

To keep the Fourier analysis simple, we shall only consider flat (K = 0) background
models and we denote comoving spatial positions by x.

1.1.1 Random fields in 3D Euclidean space

Consider a random field f(x) – i.e. at each point f(x) is some random number –
with zero mean, 〈f(x)〉 = 0. The probability of realising some field configuration is a
functional Pr[f(x)]. Correlators of fields are expectation values of products of fields
at different spatial points (and, generally, times). The two point correlator is

ξ(x,y) ≡ 〈f(x)f(y)〉 =

∫

Df Pr[f ]f(x)f(y) , (1.1.1)

where the integral is a functional integral (or path integral) over field configurations.

Statistical homogeneity means that the statistical properties of the translated field,

T̂af(x) ≡ f(x − a) , (1.1.2)

are the same as the original field, i.e. Pr[f(x)] = Pr[T̂af(x)]. For the two-point corre-
lation, this means that

ξ(x,y) = ξ(x − a,y − a) ∀a
⇒ ξ(x,y) = ξ(x − y) , (1.1.3)

so the two-point correlator only depends on the separation of the two points.

Statistical isotropy mean that the statistical properties of the rotated field,

R̂f(x) ≡ f(R−1x) , (1.1.4)

where R is a rotation matrix, are the same as the original field, i.e. Pr[f(x)] =
Pr[R̂f(x)]. For the two-point correlator, we must have

ξ(x,y) = ξ(R−1x, R−1y) ∀R . (1.1.5)

Combining statistical homogeneity and isotropy gives

ξ(x,y) = ξ
(

R
−1(x − y)

)

∀R

⇒ ξ(x,y) = ξ(|x − y|) , (1.1.6)

so the two-point correlator depends only on the distance between the two points. Note
that this holds even if correlating fields at different times, or correlating different fields.

classical, see Keifer & Polarski (2008), available online at http://arxiv.org/abs/0810.0087.
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Part-III Cosmology 4

We can repeat these arguments to constrain the form of the correlators in Fourier space.
We adopt the symmetric Fourier convention, so that

f(k) =

∫
d3x

(2π)3/2
f(x)e−ik·x and f(x) =

∫
d3k

(2π)3/2
f(k)eik·x . (1.1.7)

Note that for real fields, f(k) = f ∗(−k). Under translations, the Fourier transform
acquires a phase factor:

T̂af(k) =

∫
d3x

(2π)3/2
f(x − a)e−ik·x

=

∫
d3x′

(2π)3/2
f(x′)e−ik·x′

e−ik·a

= f(k)e−ik·a . (1.1.8)

Invariance of the two-point correlator in Fourier space is then

〈f(k)f ∗(k′)〉 = 〈f(k)f ∗(k′)〉e−i(k−k′)·a ∀a
⇒ 〈f(k)f ∗(k′)〉 = F (k)δ(k− k′) , (1.1.9)

for some (real) function F (k). We see that different Fourier modes are uncorrelated.
Under rotations,

R̂f(k) =

∫
d3x

(2π)3/2
f(R−1x)e−ik·x

=

∫
d3x

(2π)3/2
f(R−1x)e−i(R−1k)·(R−1x)

= f(R−1k) , (1.1.10)

so, additionally demanding invariance of the two-point correlator under rotations im-
plies

〈R̂f(k)[R̂f(k′)]∗〉 = 〈f(R−1k)f ∗(R−1k′)〉 = F (R−1k)δ(k − k′) = F (k)δ(k − k′) ∀R .
(1.1.11)

(We have used δ(R−1k) = detRδ(k) = δ(k) here.) This is only possible if F (k) = F (k)
where k ≡ |k|. We can therefore define the power spectrum, Pf (k), of a homogeneous
and isotropic field, f(x), by

〈f(k)f ∗(k′)〉 =
2π2

k3
Pf(k)δ(k − k′) . (1.1.12)

The normalisation factor 2π2/k3 in the definition of the power spectrum is conventional
and has the virtue of making Pf(k) dimensionless if f(x) is.

Under translations 
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(We have used δ(R−1k) = detRδ(k) = δ(k) here.) This is only possible if F (k) = F (k)
where k ≡ |k|. We can therefore define the power spectrum, Pf (k), of a homogeneous
and isotropic field, f(x), by

〈f(k)f ∗(k′)〉 =
2π2

k3
Pf(k)δ(k − k′) . (1.1.12)

The normalisation factor 2π2/k3 in the definition of the power spectrum is conventional
and has the virtue of making Pf(k) dimensionless if f(x) is.
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(We have used δ(R−1k) = detRδ(k) = δ(k) here.) This is only possible if F (k) = F (k)
where k ≡ |k|. We can therefore define the power spectrum, Pf (k), of a homogeneous
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The correlation function is the Fourier transform of the power spectrum:

〈f(x)f(y)〉 =

∫
d3k

(2π)3/2

d3k′

(2π)3/2
〈f(k)f ∗(k′)〉
︸ ︷︷ ︸

2π2

k3 Pf (k)δ(k−k′)

eik·xe−ik′·y

=
1

4π

∫
dk

k
Pf (k)

∫

dΩke
ik·(x−y) . (1.1.13)

We can evaluate the angular integral by taking x−y along the z-axis in Fourier space.
Setting k · (x − y) = k|x − y|µ, the integral reduces to

2π

∫ 1

−1

dµ eik|x−y|µ = 4πj0(k|x − y|) , (1.1.14)

where j0(x) = sin(x)/x is a spherical Bessel function of order zero. It follows that

ξ(x,y) =

∫
dk

k
Pf (k)j0(k|x − y|) . (1.1.15)

Note that this only depends on |x − y| as required by Eq. (1.1.6).

The variance of the field is ξ(0) =
∫

d ln kPf(k). A scale-invariant spectrum has
P(k) = const. and its variance receives equal contributions from every decade in k.

1.1.2 Gaussian random fields

For a Gaussian (homogeneous and isotropic) random field, Pr[f(x)] is a Gaussian
functional of f(x). If we think of discretising the field in N pixels, so it is represented by
a N -dimensional vector f = [f(x1), f(x2), . . . , f(xN)]T , the probability density function
for f is a multi-variate Gaussian fully specified by the correlation function

〈fifj〉 = ξ(|xi − xj |) ≡ ξij , (1.1.16)

where fi ≡ f(xi), so that

Pr(f) ∝
e−fiξ

−1
ij fj

√

det(ξij)
. (1.1.17)

Since f(k) is linear in f(x), the probability distribution for f(k) is also a multi-variate
Gaussian. Since different Fourier modes are uncorrelated (see Eq. 1.1.9), they are
statistically independent for Gaussian fields.

Inflation predicts fluctuations that are very nearly Gaussian and this property is pre-
served by linear evolution. The cosmic microwave background probes fluctuations
mostly in the linear regime and so the fluctuations look very Gaussian (see Fig. 2).
Non-linear structure formation at late times destroys Gaussianity and gives the fila-
mentary cosmic web (see Fig. 1). Searching for primordial non-Gaussianity to probe
departures from simple inflation is a very hot topic but no convincing evidence for
primordial non-Gaussianity has yet been found.
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Since f(k) is linear in f(x), the probability distribution for f(k) is also a multi-variate
Gaussian. Since different Fourier modes are uncorrelated (see Eq. 1.1.9), they are
statistically independent for Gaussian fields.

Inflation predicts fluctuations that are very nearly Gaussian and this property is pre-
served by linear evolution. The cosmic microwave background probes fluctuations
mostly in the linear regime and so the fluctuations look very Gaussian (see Fig. 2).
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Since different Fourier modes are uncorrelated, they are statistically independent for Gaussian fields. 
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1.1.3 Random fields on the sphere

Spherical harmonics form a basis for (square-integrable) functions on the sphere:

f(n̂) =
∞
∑

l=0

l
∑

m=−l

flmYlm(n̂) . (1.1.18)

The Ylm are familiar from quantum mechanics as the position-space representation of
the eigenstates of L̂2 = −∇2 and L̂z = −i∂φ:

∇2Ylm = −l(l + 1)Ylm

∂φYlm = imYlm , (1.1.19)

with l an integer ≥ 0 and m an integer with |m| ≤ l. The spherical harmonics are
orthonormal over the sphere,

∫

dn̂Ylm(n̂)Y ∗
l′m′(n̂) = δll′δmm′ , (1.1.20)

so that the spherical multipole coefficients of f(n̂) are

flm =

∫

dn̂ f(n̂)Y ∗
lm(n̂) . (1.1.21)

There are various phase conventions for the Ylm; here we adopt Y ∗
lm = (−1)mYl−m so

that f ∗
lm = (−1)mfl−m for a real field.

What is the implication of statistical isotropy for the correlators of flm? For the two-
point correlator, it turns out that we must have2

〈flmf ∗
l′m′〉 = Clδll′δmm′ , (1.1.22)

where Cl is the angular power spectrum of f . What does this imply for the two-point
correlation function? We have

〈f(n̂)f(n̂′)〉 =
∑

lm

∑

l′m′

〈flmf ∗
l′m′

︸ ︷︷ ︸

Clδll′δmm′

〉Ylm(n̂)Y ∗
l′m′(n̂′)

=
∑

l

Cl

∑

m

Ylm(n̂)Y ∗
lm(n̂′)

︸ ︷︷ ︸

2l+1
4π

Pl(n̂·n̂′)

= C(θ) , (1.1.23)

2A plausibility argument is as follows. Under rotations, the subset of the Ylm with a given l (so
2l + 1 elements) transforms irreducibly so the δll′ form of the correlator is preserved under rotation.
For rotation through γ about the z-axis,

Ylm(θ, φ) → Ylm(θ, φ − γ) = e−imγYlm(θ, φ) ⇒ flm → e−imγflm .

Under rotations,
〈flmf∗

l′m′〉 → e−imγeim′γ〈flmf∗

l′m′〉 ,

so invariance requires the correlator be ∝ δmm′ .
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where n̂ · n̂′ = cos θ and we used the addition theorem for spherical harmonics to
express the sum of products of the Ylm in terms of the Legendre polynomials Pl(x). It
follows that the two-point correlation function depends only on the angle between the
two points, as required by statistical isotropy. Note that the variance of the field is

C(0) =
∑

l

2l + 1

4π
Cl ≈

∫

d ln l
l(l + 1)Cl

2π
. (1.1.24)

It is conventional to plot l(l+1)Cl/(2π) which we see is the contribution to the variance
per log range in l. Finally, we note that we can invert the correlation function to get
the power spectrum by using orthogonality of the Legendre polynomials:

Cl = 2π

∫ 1

−1

d cos θC(θ)Pl(cos θ) . (1.1.25)

1.2 Newtonian structure formation

Newtonian gravity is an adequate approximation of general relativity in cosmology on
scales well inside the Hubble radius and when describing non-relativistic matter (for
which the pressure P is much less than the energy density ρ). Newtonian gravity
underlies all cosmological N -body simulations of the non-linear growth of structure
and is much more intuitive than the full linearised treatment of general relativity (to
be introduced later). In particular, in cosmology we can use the Newtonian treatment
to describe sub-Hubble fluctuations in the cold dark matter (CDM) and baryons after
decoupling.

Consider an ideal, self-gravitating non-relativistic fluid with density (for this section
only, the mass density which, given our assumptions is essentially the total energy
density) ρ, pressure P " ρ and velocity u. Denote the usual Newtonian position
vector by r and time by t. The equations of motion of the fluid are as follows:

Continuity ∂tρ+ ∇r · (ρu) = 0 (1.2.1)

Euler ∂tu + u · ∇ru = −
1

ρ
∇rP − ∇rΦ (1.2.2)

Poisson ∇
2
rΦ = 4πGρ , (1.2.3)

where the gravitational potential Φ determines the gravitational acceleration by g =
−∇rΦ. We can fudge the Poisson equation to get the correct Friedmann equations
(see later) including the cosmological constant Λ by taking

∇
2
rΦ = 4πGρ− Λ . (1.2.4)

Random fields on the sphere 
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CMB power spectrum 
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where X and Y represent the temperature (T ) and polarisations (E or B); PR(k) is the power

spectrum of the initial curvature perturbations

PR(k) = As

✓
k

k0

◆ns�1
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and As the initial scalar amplitude, quoted at a reference scale k0 (one chooses k0 = 0.05Mpc)

and the spectrum is a featureless power law with scalar spectral index ns.

The moments obtained from the line of sight integration method [? ], in terms of the spherical

Bessel functions jl, are given by
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Figure 9. Comparison of the primordial power spectra for the preferred models along with their
Bayesian evidence. We also include the maximum likelihood Lmax for a model with number of
parameters Npar. Each Bayes factor is compared respect to the one-node model (HZ).
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Figure 4: Left panel: 1D and 2D probability posterior distributions for the inflationary
parameters, assuming a power-law with a running parameter (nrun); using both current data
(black line) and future experiments (red for Planck and green for CMBPol). 2D constraints
are plotted with 1� and 2� confidence contours. Right panel: Reconstruction of the scalar
spectrum using present data; lighter regions represent an improved fit. The top label de-
notes the Bayes factor of the nrun-model compared to the power-law ns-model, using current
observations.

parameters As, ns, and rrun and select a prior of the running parameter of nrun = [�0.1, 0.1]
as used by [23].

Figure 4 shows the 1D and 2D marginalised posterior distributions for the inflationary
parameters, using current experiments (black line): ns = 0.985±0.017, nrun = �0.043±0.018
and rrun < 0.324; and Planck (red line) and CMBPol (green line) realisations. The top label
of the figure indicates the Bayes factor using present observations, which in this case and
throughout the paper is compared with respect to the power-law parameterisation. We first
note that in the presence of a tensor component, the bending of the scalar spectrum is en-
hanced through a larger running parameter 2. We also observe that using current experiments
a negative nrun parameter in preferred by more than 2.5� C.L. Hence the necessity to include
a turn-over in the power spectrum. This result is confirmed by noticing the Bayes factor
is significantly favoured compared to the simple power-law model, Bnrun,ns = +2.0 ± 0.3.

2The constraints of the running parameter without tensor components are nrun = �0.028± 0.014.
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The moments obtained from the line of sight integration method, in terms of the spherical Bessel functions 
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The slow way would be to get the Cl’s directly from the (vast) multipole hierarchy of the

photon distribution and the multipole hierarchy up to l ⌘ 3000. In contrast, the line of sight
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where PT (k) is the initial tensor pow

�
er spectrum

which depends on the form of the scalar spectrum, and vice-versa, via the potential of the sin-
gle scalar-field. To place constraints on the amplitude of tensor contributions, it is customary
to define the tensor-to-scalar ratio as

r(k) ⌘ PT (k)
PR(k)

= 64⇡

 
�̇

2

H2

!

k=aH

. (1.3)

The dependence of the scalar spectrum on the tensor spectrum is evident in the Lasenby &
Doran model, where both spectra depend upon the same best-fit parameters. In a previous
paper [31], we found that standard ⇤CDM models with a turn-over in the scalar spectrum are
preferred over a simple power-law parameterisation. In this work, by assuming a power-law
parameterisation of the tensor spectrum, we show that the bending of the scalar spectrum
is enhanced due to the presence of a tensor component. To avoid misleading results due to
the particular choice of parameterisation, the shape of the scalar spectrum is described by
employing a model-independent reconstruction. We then show that current constraints on
the tensor-to-scalar ratio (1.3) are broadened for non-power law PR(k) models. We also dis-
cuss the constraints on r for a massive scalar-field in the Lasenby & Doran model. Finally,
by considering future experiments we present their expected constraints on the inflationary
parameters. For all the models, the Bayes factor is computed in order to perform a model
comparison.

The paper is organised as follows: in the next Section we list the data sets and the
cosmological parameters considered. In Section 3 we study di↵erent models suggested to de-
scribe the form of the scalar spectrum. Then, we show the resulting parameter constraints
on the tensor-to-scalar ratio and the preferred form of the power spectrum using current cos-
mological observations. In the same section we provide future constraints on r expected by
Planck-like and CMB-Pol experiments. Performance assumptions for Planck and CMB-Pol
are taken from [25] and [2]. We present our conclusions in Section 5.

2 Theoretical Framework

Even though the primary parameters in the standard ⇤CDM model have already been tightly
constrained and have little impact on the B-mode spectrum, it is worthwhile to perform a
full parameter-space exploration to determine the tensor-to-scalar ratio constraints in each
model. We assume purely Gaussian adiabatic scalar and tensor contributions in a flat ⇤CDM
model 1 specified by the standard parameters: the physical baryon ⌦bh

2 and cold dark matter
density ⌦ch

2 relative to the critical density (h is the dimensionless Hubble parameter such
that H0 = 100h kms�1Mpc�1), ✓ is 100⇥ the ratio of the sound horizon to angular diameter
distance at last scattering surface, ⌧ denotes the optical depth at reionisation. We consider
the tensor-to-scalar ratio for each model i, as ri = PT (i)(k)/PR(i)(k). Hereafter, we set the
tensor-to-scalar ratio ri = ri(k0), at a scale of k0 = 0.015Mpc�1. A study of the appropriate
scale to use is given by [8]. Aside from the Sunyaev-Zel’dovich (SZ) amplitude ASZ used
by WMAP analyses, the ACT likelihood incorporates two additional nuisance parameters:
the total Poisson power Ap and the amplitude of the clustered power Ac. The parameters
describing the primordial spectra for each model are listed in the next section, together with

1Except for the LD model, which is based on a marginally closed universe ⌦k < 0.
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For the Planck experiment, we include three channels with frequencies (100 GHz, 143 GHz,
217 GHz) and noise levels per beam (�T

pix)
2= (46.25 µK2, 36 µK2, 171 µK2). The FHWM

of the three channels are ✓fwhm =(9.5, 7.1, 5.0) arc-minute. These figures are taken from
the values given in [25]. We combine three channels for the CMBPol experiment [2] with
frequencies (100 GHz, 150 GHz, 220 GHz), noise levels (�T

pix)
2 = (729 nK2, 676 nK2, 1600

nK2) and ✓fwhm = (8, 5, 3.5) arc-minute. Sky coverages of fsky = 0.65, 0.8 are respectively
assumed and integration time of 14 months. In Figure 2, we show the noise levels for these
experiments as a function of multipole number `. The blue line corresponds to the B-mode
power spectrum using the standard power-law parameterisation, with r = 0.1. The lensed
C

B

`
is also shown in the same Figure, which can be treated as a part of the total noise power

spectrum N
B

`
as well as the instrumental noise power spectra [24]. For more information of

the noise and beam profile of each frequency channel, please refer to [22].

3 Primordial power spectra constraints

3.1 Power-law parameterisation

Because slow-roll inflation predicts the spectrum of curvature perturbations to be close to
scale-invariant, the simplest proposal is to assume that the initial spectrum has a power-law
form, parameterised by

PR(k) = As

✓
k

k0

◆
ns�1

, (3.1)

where the spectral index ns is expected to be close to unity. A spectrum where the typical
amplitude of perturbations is identical on all length scales is known as Harrison-Zel’dovich
spectrum (ns = 1), and it has been ruled out by several studies (see for instance [31]). Here,
we assume, for simplicity, that the tensor spectrum is also described by a power-law function:

PT (k) = At

✓
k

k0

◆
nt

, (3.2)

where the tensor amplitude At is related to tensor-to-scalar ratio rs = At/As. For this pa-
rameterisation, we assume that r(k0) and the tensor spectral index nt satisfy the consistency
relation for a single field slow-roll inflation nt = �rs/8 [9]. The power-law parameterisation
thus contains only three free parameters: As, ns, and rs. For these parameters, we assume
a prior As = [1, 50] ⇥ 10�10 for the amplitude, a conservative prior for the spectral index
ns = [0.7, 1.2] and a tensor-to-scalar ratio prior of rs = [0, 1].

Figure 3 shows 1D and 2D marginalised posterior distributions of the scalar spectrum
index ns and the tensor-to-scalar ratio rs, using both current cosmological observations
(black line) and future experiments (red for Planck and green for CMBPol). The bottom
panel shows the limits imposed by current and future experiments. For present observations:
ns = 0.964±0.011 and rs < 0.171 (mean values of 68% C.L. are quoted for two-tailed distribu-
tions, whilst one-tailed distribution only the upper 95% C.L.). These results are in agreement
with previous studies, i.e. [10, 15, 16]. With regards to future constraints, we have used mean
values obtained from current observations as the fiducial model (with fixed rs = 0.1). We
notice that 1� error bars of the spectral index ns, shown in the bottom panel of the same Fig-
ure, reduce by about four times using a Planck-like experiment and five times for a CMBPol
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where we have used x ⌘ k(⌘0 � ⌘) and the visibility function g ⌘ 
0 exp((⌘) � (⌘0)).
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where h is the longitudinal-scalar part of tensor decomposition in (2.4), and  is given by
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The slow way would be to get the Cl’s directly from the (vast) multipole hierarchy of the

photon distribution and the multipole hierarchy up to l ⌘ 3000. In contrast, the line of sight
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The slow way would be to get the Cl’s directly from the (vast) multipole hierarchy of the

photon distribution and the multipole hierarchy up to l ⌘ 3000. In contrast, the line of sight
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The slow way would be to get the Cl’s directly from the (vast) multipole hierarchy of the 

photon distribution and the multipole hierarchy up to l ≡ 3000 

In contrast, the line of sight integration gets the ∆l’s by folding the source term S with 

the spherical Bessel functions jl.  

While the Bessel functions oscillate rapidly in this convolution, the source term is most 

of the time rather slowly changing. 

It thus suffices to calculate the sources at few (cleverly chosen) points and interpolate between 

Solving …
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FIGURE 4. Temperature (black), E-mode (green), B-mode (blue) and T -E cross-correlation (red)

CMB power spectra from scalar perturbations (left) and tensor perturbations (gravitational waves; right).

The amplitude of the tensor perturbations is shown at the maximum amplitude allowed by current data

(r= 0.22 [44]). The B-mode spectrum induced by weak gravitational lensing is also shown in the left-hand
panel (blue; see Sec. 6.1.2).

to constrain gravitational waves since the sampling variance of the dominant scalar

perturbations is large at low l. Fortunately, CMB polarization provides an alternative

route to detecting the effect of gravitational waves on the CMB which is not limited by

cosmic variance [45, 46]; see Sec. 3.

2.7.4. Isocurvature modes

Adiabatic fluctuations are a generic prediction of single-field inflation models. How-

ever, multiple scalar fields typically arise in models inspired by high-energy physics,
such as the axion model [47], curvaton [48] and multi-field inflation [49, 50]. In such

models, if the fields decay asymmetrically and the decay products are unable to reach

chemical equilibrium with each other, an isocurvature contribution to the primordial

perturbation will result. The simplest, and best-motivated, possibility is an isocurva-

ture mode where initially the dominant fractional over-density is in the CDM, with a

compensating (very small) fractional fluctuation in the radiation and baryons [51]. The

amplitude of the CDM isocurvature mode is quantified by the gauge-invariant quantity

S ≡ !c−3!"/4, where !c is the CDM fractional over-density. Generally,S can be cor-

related with the curvature perturbation R, for example in the curvaton and multi-field

models.

In the CDM mode, the photons are initially unperturbed, as is the geometry: !"(0) =
0= #(0) and vb = 0. The different equations of state of the CDM and radiation lead to

the generation of a curvature perturbation. On large scales, R grows like a in radiation

Lecture notes on the physics of cosmic microwave background anisotropies March 30, 2009 18
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Codes 
The Boltzmann hierarchy is nowadays solved numerically with software packages such as

Programar ?
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SimpleMC
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To perform the analysis we built a simple and fast MCMC 
code: Simple MC

https://github.com/ja-vazquez/april

with A. Slosar

https://github.com/ja-vazquez/april
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Part-III Cosmology 50

Figure 6: Contribution of the various terms in Eq. (3.4.22) to the temperature-
anisotropy power spectrum from adiabatic initial conditions: δγ/4+ψ (denoted SW for
Sachs-Wolfe; magenta); Doppler effect from vb (blue); and the integrated Sachs-Wolfe
effect (ISW; green).

behaviour arises since modes with wavenumbers that are not perpendicular to the line
of sight project to angles larger than 2π/(kχ∗).

If we make use of the standard integral
∫ ∞

0

j2
l (x) dx =

1

2l(l + 1)
(3.4.32)

for l > 0, we see that a scale-invariant primordial spectrum, for which PR(k) = As is
a constant, gives a scale-invariant angular power spectrum

l(l + 1)Cl

2π
=

1

25
As . (3.4.33)

More generally, a primordial spectrum that varies as a power-law in k (with some
spectral index ns − 1) gives an angular power spectrum going like

Cl ∼
Γ(l + ns/2 − 1/2)

Γ(l − ns/2 + 5/2)
, (3.4.34)

where Γ(x) is the Gamma function. We see that the CMB power spectrum on large
scales is directly related to the amplitude and slope of the primordial power spectrum11.

11Things are actually a little more complicated because of the integrated Sachs-Wolfe effect.

Tuesday, 19 February 2013 The l  = 0 term of the correlation function 
(the monopole) vanishes if the mean 
temperature has been de defined correctly
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Figure 6: Contribution of the various terms in Eq. (3.4.22) to the temperature-
anisotropy power spectrum from adiabatic initial conditions: ��/4+� (denoted SW for
Sachs-Wolfe; magenta); Doppler e�ect from vb (blue); and the integrated Sachs-Wolfe
e�ect (ISW; green).

behaviour arises since modes with wavenumbers that are not perpendicular to the line
of sight project to angles larger than 2�/(k��).

If we make use of the standard integral
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0

j2
l
(x) dx =

1

2l(l + 1)
(3.4.32)

for l > 0, we see that a scale-invariant primordial spectrum, for which PR(k) = As is
a constant, gives a scale-invariant angular power spectrum

l(l + 1)Cl

2�
=

1

25
As . (3.4.33)

More generally, a primordial spectrum that varies as a power-law in k (with some
spectral index ns � 1) gives an angular power spectrum going like

Cl ⇠
�(l + ns/2 � 1/2)

�(l � ns/2 + 5/2)
, (3.4.34)

where �(x) is the Gamma function. We see that the CMB power spectrum on large
scales is directly related to the amplitude and slope of the primordial power spectrum11.

11Things are actually a little more complicated because of the integrated Sachs-Wolfe e↵ect.
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Figure 4.3: Total CMB temperature-spectrum and its di↵erent contributions: Sachs-Wolfe (SW)

D�
g /4 � (� �  ); Doppler e↵ect V �

b ; and the integrated Sachs-Wolfe e↵ect (ISW) coming from

evolution of the potential along the line of sight. Figure from Challinor [? ]

4.2 Description of fluctuations

• The l = 0 term of the correlation function (the monopole) vanishes if the mean tempera-

ture has been defined correctly.

• The l = 1 (the dipole) reflects the motion of the Earth through space. What we are seeing

is the e↵ect of the Earth’s motion relative to the local comoving frame of reference. The

Earth is moving with a velocity v = 369kms
�1 towards a point on the boundary of the

constellations of Crater and Leo.

• The Sachs-Wolfe e↵ect (l < 100) - The gravitational e↵ects are the dominant contributions

at large angular scales. Cl /
R

d ln kPR(k)j2
l
(k[⌘�⌘0]), and if we make use of the integral

Z 1

0
j
2
l
(x)dx =

1

2l(l + 1)
(4.23)

and assume a nearly scale-invariant scalar spectrum ns ⇡ 1, then

l(l + 1)Cl

2⇡
=

1

25
As (4.24)

is approximately constant, shown as a flat plateau at low multipoles. More generally, a

primordial spectrum that varies as a power-law in k gives an angular power spectrum

going like

Cl ⇠
�(l + ns/2 � 1/2)

�(l � ns/2 + 5/2)
(4.25)

-30-

not l=1 ?
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 The l  = 1 (the dipole) reflects the motion of the Earth 

through space. We are seeing the effect of the Earth's motion 

relative to the local comoving frame of reference. 

Figure 10.3: The CMB dipole, caused by the motion of the Earth relative to the Hubble
flow. The CMB temperature is 3.35mK higher than the mean in the direction with
Galactic coordinates l = 264� and b = +48.4�, and 3.35mK lower in the opposite direction
in the sky. Between these two directions there is a smooth variation between the maximum
and minimum temperatures.

Galaxies, we find that the Local Group is itself being accelerated towards
our nearest supercluster (of which the Virgo cluster is an outlying member)
with a velocity vLG = 630 km s�1.

It is also possible to calculate the net gravitational attraction acting on the
Local Group by mapping the three-dimensional location of galaxies within
a large volume around us (i.e.⇠ 200Mpc) from their celestial coordinates
and redshifts. This exercise produces a dipole that is in good agreement, in
both magnitude and direction, with that of the CMB, lending support to
the interpretation of the CMB dipole as a doppler shift. The mass required
to supply the gravitational attraction inferred corresponds to ⌦m,0 = 0.31±
0.05. The finding that ⌦m,0 ' 6⌦b,0 is another line of evidence for the
existence of non-baryonic dark matter.

10.3 Higher Multipoles

We now return to the power spectrum of the primary temperature fluc-
tuations (TT ) shown in Figure 10.2. The y-axis of this plot shows the
contribution per logarithmic interval in ` to the total temperature fluctua-
tion �T of the CMB. Another way to think of this plot is that it shows the
angular coherence of the temperature fluctuations. The CMB TT power
spectrum shows an obvious peak at an angular scale ✓ ' 1� which, as we

6

The Earth is moving with a velocity                             towards a 

point on the boundary of the constellations of Crater and Leo.
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Sachs-Wolfe; magenta); Doppler e�ect from vb (blue); and the integrated Sachs-Wolfe
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where �(x) is the Gamma function. We see that the CMB power spectrum on large
scales is directly related to the amplitude and slope of the primordial power spectrum11.

11Things are actually a little more complicated because of the integrated Sachs-Wolfe e↵ect.
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b ; and the integrated Sachs-Wolfe e↵ect (ISW) coming from

evolution of the potential along the line of sight. Figure from Challinor [? ]

4.2 Description of fluctuations

• The l = 0 term of the correlation function (the monopole) vanishes if the mean tempera-

ture has been defined correctly.

• The l = 1 (the dipole) reflects the motion of the Earth through space. What we are seeing

is the e↵ect of the Earth’s motion relative to the local comoving frame of reference. The

Earth is moving with a velocity v = 369kms
�1 towards a point on the boundary of the

constellations of Crater and Leo.

• The Sachs-Wolfe e↵ect (l < 100) - The gravitational e↵ects are the dominant contributions

at large angular scales. Cl /
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is approximately constant, shown as a flat plateau at low multipoles. More generally, a

primordial spectrum that varies as a power-law in k gives an angular power spectrum

going like

Cl ⇠
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(4.25)
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• The Sachs-Wolfe effect (l < 10
�

0) - The gravitational effects are the dominant 

contributions at large angular scales.

4. STATISTICS OF RANDOM FIELDS
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Figure 6: Contribution of the various terms in Eq. (3.4.22) to the temperature-
anisotropy power spectrum from adiabatic initial conditions: ��/4+� (denoted SW for
Sachs-Wolfe; magenta); Doppler e�ect from vb (blue); and the integrated Sachs-Wolfe
e�ect (ISW; green).

behaviour arises since modes with wavenumbers that are not perpendicular to the line
of sight project to angles larger than 2�/(k��).
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for l > 0, we see that a scale-invariant primordial spectrum, for which PR(k) = As is
a constant, gives a scale-invariant angular power spectrum

l(l + 1)Cl

2�
=

1

25
As . (3.4.33)

More generally, a primordial spectrum that varies as a power-law in k (with some
spectral index ns � 1) gives an angular power spectrum going like

Cl ⇠
�(l + ns/2 � 1/2)

�(l � ns/2 + 5/2)
, (3.4.34)

where �(x) is the Gamma function. We see that the CMB power spectrum on large
scales is directly related to the amplitude and slope of the primordial power spectrum11.

11Things are actually a little more complicated because of the integrated Sachs-Wolfe e↵ect.
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Figure 4.3: Total CMB temperature-spectrum and its di↵erent contributions: Sachs-Wolfe (SW)
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g /4 � (� �  ); Doppler e↵ect V �

b ; and the integrated Sachs-Wolfe e↵ect (ISW) coming from

evolution of the potential along the line of sight. Figure from Challinor [? ]

4.2 Description of fluctuations

• The l = 0 term of the correlation function (the monopole) vanishes if the mean tempera-

ture has been defined correctly.

• The l = 1 (the dipole) reflects the motion of the Earth through space. What we are seeing

is the e↵ect of the Earth’s motion relative to the local comoving frame of reference. The

Earth is moving with a velocity v = 369kms
�1 towards a point on the boundary of the

constellations of Crater and Leo.

• The Sachs-Wolfe e↵ect (l < 100) - The gravitational e↵ects are the dominant contributions

at large angular scales. Cl /
R

d ln kPR(k)j2
l
(k[⌘�⌘0]), and if we make use of the integral

Z 1

0
j
2
l
(x)dx =

1

2l(l + 1)
(4.23)

and assume a nearly scale-invariant scalar spectrum ns ⇡ 1, then

l(l + 1)Cl

2⇡
=

1

25
As (4.24)

is approximately constant, shown as a flat plateau at low multipoles. More generally, a

primordial spectrum that varies as a power-law in k gives an angular power spectrum

going like

Cl ⇠
�(l + ns/2 � 1/2)

�(l � ns/2 + 5/2)
(4.25)
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Figure 6: Contribution of the various terms in Eq. (3.4.22) to the temperature-
anisotropy power spectrum from adiabatic initial conditions: ��/4+� (denoted SW for
Sachs-Wolfe; magenta); Doppler e�ect from vb (blue); and the integrated Sachs-Wolfe
e�ect (ISW; green).
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is approximately constant, shown as a flat plateau at low multipoles. 

• Intermediate scales (100 < l < 1000) - Perturbations inside the horizon have evolved causally and produced the 

anisotropy at the last scattering epoch (lhor ≈ 200). The balance between the gravitational force and radiation pressure is 

presented as series of characteristic peaks called acoustic oscillations.  

shall now see, corresponds to the sound horizon at the time of decoupling.

Recalling some of the material covered of Lecture 9, at the epoch of recom-
bination the Universe consisted of photons, protons, electrons, He nuclei,
neutrinos and dark matter. The baryons and the photons are tightly cou-
pled by Thomson and Coulomb scattering, while neutrinos (which are not
relevant to our discussion here) and dark matter (which is relevant) are
decoupled as they only interact via the weak nuclear force and gravity re-
spectively. Thus, we speak of a baryon-photon fluid, whose energy density
is dominated by radiation and can thus be treated as a relativistic fluid.1

The key thing here is that the baryon-photon fluid has a pressure, sup-
plied by the photons. The fluid finds itself in gravitational potential wells
(provided mostly by the dark matter); these are the ‘seeds’ that over the
following 13.8Gyr will evolve into the large-scale structure of the Universe.
As gravity tries to compress the fluid, radiation pressure resists, eventually
reversing the compression and causing the fluid to expands until gravity
takes over again. This process results in an oscillating sequence of compres-
sions and rarefactions. By analogy to the process in air where a travelling
compressional wave is perceived as sound, we call these oscillations in the
photon-baryon fluid acoustic oscillations. After all, sound is a travelling
change of pressure.

Figure 10.4: Radiation pressure (represented here by the spring) opposes the pull of grav-
ity on the photon-baryon fluid (represented by the orange balls) falling into the potential
wells of dark matter. (Figure credit: Wayne Hu).

The photon-baryon fluid stops oscillating at decoupling, when the baryons
release the photons. The pattern of maxima and minima in the density is

1Even though we are in the matter dominated era, the energy density of the photons at zdec exceeds
that of the baryons, because ⌦b,0 ' 1/6⌦m,0, and this ratio has remained fixed since baryogenesis at
t ⇠ 10�35 s.
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monics on the surface of last scattering by

�T

T̄
(⌘0,x0,n) =

X

l,m

almYlm(n), (4.3)

where the alm’s define the multipoles of the CMB anisotropy; x0 is our position and ⌘0 the

present conformal time. Assuming the al,m’s are Gaussian random fields, the two-point corre-

lator gives

halma
⇤
l0m0i = Cl�ll0�mm0 . (4.4)

The angular CMB power spectrum C
TT

l
is computed through the two-point correlation function

(4.1) by

C(✓) ⌘

⌧
�T (n)

T̄

�T (n0)

T̄

�
=

X

l

2l + 1

4⇡
ClPl(n · n0). (4.5)

where n ·n0 = cos ✓, and we have used the addition theorem for spherical harmonics to express

the sum of products of Ylm’s in terms of the Legendre polynomials. We consider initial conditions

in terms of the conformal Newtonian gauge potential �ini = R. Because the evolution equations

for � are independent of the direction k, we may write

�l(⌘0,k,n) = �ini(k)�l(⌘0, k,n). (4.6)

Therefore the Cl’s are found to be

C
XY

l
=

4⇡

(2l + 1)2

Z
d
3
k

(2⇡)3
PR(k) �X

l
(k)�Y

l
(k), (4.7)

where X and Y represent the temperature (T ) and polarisations (E or B); PR(k) is the power

spectrum of the initial curvature perturbations

PR(k) = As

✓
k

k0

◆ns�1

(4.8)

and As the initial scalar amplitude, quoted at a reference scale k0 (one chooses k0 = 0.05Mpc)

and the spectrum is a featureless power law with scalar spectral index ns.

The moments obtained from the line of sight integration method [? ], in terms of the spherical

Bessel functions jl, are given by

�T

l
= (2l + 1)

Z
d⌘jl(k[⌘ � ⌘0])ST (k, ⌘), (4.9)

�E

l
= (2l + 1)

s
(l � 2)!

(l + 2)!

Z
⌘0

0
d⌘SE(k, ⌘)jl(x), (4.10)
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Figure 6: Contribution of the various terms in Eq. (3.4.22) to the temperature-
anisotropy power spectrum from adiabatic initial conditions: ��/4+� (denoted SW for
Sachs-Wolfe; magenta); Doppler e�ect from vb (blue); and the integrated Sachs-Wolfe
e�ect (ISW; green).

behaviour arises since modes with wavenumbers that are not perpendicular to the line
of sight project to angles larger than 2�/(k��).

If we make use of the standard integral
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0

j2
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1
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(3.4.32)

for l > 0, we see that a scale-invariant primordial spectrum, for which PR(k) = As is
a constant, gives a scale-invariant angular power spectrum

l(l + 1)Cl

2�
=

1

25
As . (3.4.33)

More generally, a primordial spectrum that varies as a power-law in k (with some
spectral index ns � 1) gives an angular power spectrum going like

Cl ⇠
�(l + ns/2 � 1/2)

�(l � ns/2 + 5/2)
, (3.4.34)

where �(x) is the Gamma function. We see that the CMB power spectrum on large
scales is directly related to the amplitude and slope of the primordial power spectrum11.

11Things are actually a little more complicated because of the integrated Sachs-Wolfe e↵ect.
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4.2 Description of fluctuations

• The l = 0 term of the correlation function (the monopole) vanishes if the mean tempera-

ture has been defined correctly.

• The l = 1 (the dipole) reflects the motion of the Earth through space. What we are seeing

is the e↵ect of the Earth’s motion relative to the local comoving frame of reference. The

Earth is moving with a velocity v = 369kms
�1 towards a point on the boundary of the

constellations of Crater and Leo.

• The Sachs-Wolfe e↵ect (l < 100) - The gravitational e↵ects are the dominant contributions

at large angular scales. Cl /
R

d ln kPR(k)j2
l
(k[⌘�⌘0]), and if we make use of the integral

Z 1

0
j
2
l
(x)dx =

1

2l(l + 1)
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and assume a nearly scale-invariant scalar spectrum ns ⇡ 1, then

l(l + 1)Cl

2⇡
=

1

25
As (4.24)

is approximately constant, shown as a flat plateau at low multipoles. More generally, a

primordial spectrum that varies as a power-law in k gives an angular power spectrum

going like

Cl ⇠
�(l + ns/2 � 1/2)

�(l � ns/2 + 5/2)
(4.25)
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Primordial spectrum that varies as a power-law in k gives 
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• Small scales (l > 1000) - The thickness of the last scattering surface  leads to a damping 

of ClT ∼ l−4 at the highest multipoles, commonly called the Silk effect.  

The total mean-squared distance that a photon will  have moved by such a random walk 

by the time η∗ is therefore  

which defines a damping scale 

4.2 Description of fluctuations

• Intermediate scales (100 < l < 1000) - Perturbations inside the horizon have evolved

causally and produced the anisotropy at the last scattering epoch (lhor ⇡ 200). The

balance between the gravitational force and radiation pressure is presented as series of

characteristic peaks called acoustic oscillations.

• Small scales (l > 1000) - The thickness of the last scattering surface leads to a damping

of C
T

l
⇠ l

�4 at the highest multipoles, commonly called the Silk e↵ect. The total mean-

squared distance that a photon will have moved by such a random walk by the time ⌘⇤ is

therefore Z
⌘⇤

0

d⌘
0

ane�T

⇠
1

k
2
D

(4.26)

which defines a damping scale k
�1
D

.

At these scales, important contributions are also provided by secondary anisotropies:

gravitational lensing, Rees-Sciama e↵ect (RS), Sunyaev-Zel’dovich e↵ect (SZ), kinetic

Sunyaev-Zel’dovich e↵ect, Ostriker-Vishniac e↵ect (OV), foregrounds from discrete sources

[? ].

-31-
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• At these scales, important contributions are also provided by secondary anisotropies:

 gravitational lensing, Rees-Sciama effect (RS), Sunyaev-Zel’dovich effect (SZ), kinetic Sunyaev-Zel’dovich effect, 

Ostriker-Vishniac effect (OV), foregrounds from discrete sources 

Caused by a time dependent gravitational potential during the nonlinear stages of evolution.

Inverse Compton scattering by energetic electrons in the intracluster medium of massive galaxy clusters 

alters the blackbody spectrum of CMB photons travelling through the cluster 
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COSMOLOGICAL PARAMETERS
The whole structure of the CMB depends strongly on the initial conditions emerging from the inflationary 

era (PR,T ), on the matter-energy content (Ωi,0), and on the expansion rate history (H0). 

These parameters, commonly called standard parameters, are considered as the principal quantities 

used describe the universe. 

They are not, however, predicted by any fundamental theory, rather we have to fit them by hand 

in order to determine which combination best describes 

the current astrophysical observations 
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Both parameters principally affect the anisotropies 
through dA and so simply shift the peaks.
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with w = 1/3 for radiation. Thus, cs =
p
1/3 c, and the sound horizon

(proper) at decoupling is therefore:

shor,s '
2p
3

c

H0
⌦�1/2

m,0 (1 + zdec)
�3/2

. (10.14)

The angle on the sky subtended by shor,s depends on the angular diameter
distance:

✓hor,s =
shor,s

dA
(10.15)

and dA in turn depends on the cosmological parameters ⌦m,0, ⌦k,0, and
⌦⇤,0 (with ⌦m,0 + ⌦k,0 + ⌦⇤,0 = 1) as we saw in Lecture 5. For the case
⌦⇤,0 = 0, we already saw in Lecture 9 (Mattig relation) that, at z � 1:

dA(z) ⇡ 2
c

H0

1

⌦m,0 z
. (10.16)

so that:

✓hor,s '
1p
3

✓
(1� ⌦k,0)

zdec

◆1/2

. (10.17)

From the above equation, it can be seen that as ⌦k,0 increases from 0 to 1,
✓hor,s decreases, that is the first acoustic peak moves to larger ` values (see
Figure 10.5).

Figure 10.5: Left: CMB acoustic peaks expected for a cosmology in which ⌦k,0 = 0.
Right, Yellow Curve: CMB acoustic peaks expected for a cosmology in which ⌦k,0 = 0.9.
(Figure credit: Wayne Hu).
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or
shor,prop(zdec) ' 2

c

H0

⌦�1/2

m,0 (1 + zdec)
�3/2

. (9.25)

where shor,prop = a shor,com is the physical (proper) horizon distance at de-
coupling.

The angle on the sky subtended by a length shor,prop is:

✓hor,dec =
shor,prop(zdec)

dA(zdec)
(9.26)

where dA is the angular diameter distance. In Lecture 5.3.3 we saw that
in a flat universe (⌦k,0 = 0) the expression for dA is simplified to:

dA(z) =
c

H0

1

(1 + z)

zZ

0

dz

h
⌦m,0 (1 + z)3 + ⌦⇤,0

i1/2
(9.27)

The elliptical integral is not of straightforward solution. However, in an
open universe with ⌦⇤,0 = 0, ⌦k,0 6= 0, the so-called Mattig relation applies:

dA(z) = 2
c

H0

1

⌦2

m,0 (1 + z)2
⇥

h
⌦m,0z + (⌦m,0 � 2)

⇣p
1 + ⌦m,0z � 1

⌘i

(9.28)
which, for z � 1 reduces to:

dA(z) ⇡ 2
c

H0

1

⌦m,0 z
. (9.29)

Substituting 9.29 and 9.25 into 9.26 we find:

✓hor,dec ⇡
✓

⌦m,0

zdec

◆1/2

=

✓
0.312

1090

◆1/2

= 0.017 radians ⇠ 1� (9.30)

In models with a cosmological constant (⌦m,0 + ⌦⇤,0 = 1, ⌦k,0 = 0)

✓hor,dec ⇡ 1.8�

with a very weak dependence on ⌦m,0 (/ ⌦�0.1
m,0 ).

What this means is that CMB photons coming to us from two directions
separated by more than ⇠ 2� originated from regions which were not in
causal contact at zdec. The fact that the CMB is uniform over much larger
angular scales constitutes what is referred to as the horizon problem.
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5. STATISTICS IN COSMOLOGY

parameterise each of the spectra in terms of a power-law

PR(k) = As

✓
k

k0

◆ns�1

, (5.5)

PT (k) = At

✓
k

k0

◆nt

. (5.6)

where As, At are the spectral amplitudes, and ns, nt the spectral indices or tilt parameters, for

both scalar and tensor perturbations respectively; k0 denotes an arbitrary scale at which the

tilted spectrum pivots, usually fixed to k0 = 0.002 Mpc�1. A scale-invariant spectrum, called

Harrison-Zel’dovich (HZ), has constant variance on all length scales and it is characterised by

ns = 1, nt = 0. Small deviations from scale-invariance are also considered as typical signatures

of inflationary models [? ]. The spectrum of perturbations is said to be blue if ns > 0 (more

power in ultraviolet), and red if ns < 0 (more power in infrared). The spectral indices, ns and

nt, and the tensor-to-scalar ratio r can be expressed in terms of the slow-roll parameters ✏v and

⌘v (??), as:

ns � 1 ' �6 ✏v(�) + 2 ⌘v(�), (5.7)

nt ' �2 ✏v(�), (5.8)

r ' 16 ✏v(�). (5.9)

These parameters are not completely independent each other, but the tensor spectral index is

proportional to the tensor-to-scalar ratio r = �8nt [? ]. This expression is considered as the

consistency relation for slow-roll inflation. Any single-field inflationary model can hence be de-

scribed, to the lowest order in slow-roll, in terms of three independent parameters: the amplitude

of density perturbations As, the scalar spectral index ns, and the tensor-to-scalar ratio r. Varia-

tions of the CMB T -spectrum over di↵erent values of ns are shown in the left panel of Figure 5.3.

In addition to the temperature T and polarisation E spectra, produced by scalar perturba-

tions, there is also the B-mode polarisation only produced by tensor perturbations. Therefore,

measurements of B-modes are important tests for the existence of primordial gravitational

waves. Unfortunately, there is no observational evidence of tensor perturbations yet, and r is

commonly set to zero. The next generation of CMB polarisation experiments will substantially

improve these limits (see Section 5.2.2). Variations of the C
BB tensor spectrum with respect

to the tensor-to-scalar ratio r are displayed in the right panel of Figure 5.3.
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where As, At are the spectral amplitudes, and ns, nt the spectral indices or tilt parameters, for

both scalar and tensor perturbations respectively; k0 denotes an arbitrary scale at which the

tilted spectrum pivots, usually fixed to k0 = 0.002 Mpc�1. A scale-invariant spectrum, called

Harrison-Zel’dovich (HZ), has constant variance on all length scales and it is characterised by

ns = 1, nt = 0. Small deviations from scale-invariance are also considered as typical signatures

of inflationary models [? ]. The spectrum of perturbations is said to be blue if ns > 0 (more

power in ultraviolet), and red if ns < 0 (more power in infrared). The spectral indices, ns and

nt, and the tensor-to-scalar ratio r can be expressed in terms of the slow-roll parameters ✏v and
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These parameters are not completely independent each other, but the tensor spectral index is

proportional to the tensor-to-scalar ratio r = �8nt [? ]. This expression is considered as the

consistency relation for slow-roll inflation. Any single-field inflationary model can hence be de-

scribed, to the lowest order in slow-roll, in terms of three independent parameters: the amplitude

of density perturbations As, the scalar spectral index ns, and the tensor-to-scalar ratio r. Varia-

tions of the CMB T -spectrum over di↵erent values of ns are shown in the left panel of Figure 5.3.

In addition to the temperature T and polarisation E spectra, produced by scalar perturba-

tions, there is also the B-mode polarisation only produced by tensor perturbations. Therefore,

measurements of B-modes are important tests for the existence of primordial gravitational

waves. Unfortunately, there is no observational evidence of tensor perturbations yet, and r is

commonly set to zero. The next generation of CMB polarisation experiments will substantially

improve these limits (see Section 5.2.2). Variations of the C
BB tensor spectrum with respect

to the tensor-to-scalar ratio r are displayed in the right panel of Figure 5.3.
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B-mode polarisation only produced by tensor perturbations. 

measurements of B-modes are important tests for the existence of primordial gravitational waves. 

Inflation
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The existence of strong degeneracies amongst different combinations of parameters is also 

noticeable. In particular the well-known geometrical degeneracy involving Ωm, ΩΛ 

and the curvature parameter Ωk = 1 − Ωm − ΩΛ. 

Degeneracies
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Observations 



62JAVazquez let the observations decide …
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Observations 
Rapid advance in the development of powerful observational-instruments 

has led to the establishment of precision cosmology. 

Satellite experiments: 
COBE

Wilkinson Microwave Anisotropy Probe 

Planck
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Observations 

Ground-based telescopes: 
• The Background Imaging of Cosmic Extragalactic Polarization

• The Quest (Q and U Extra-Galactic Sub-mm Telescope) at DASI 

(Degree Angular Scale Interferometer) 

• The Atacama Cosmology Telescope [ACT 

• The South Pole Telescope [SPT 

Ballon-borne experiments: • Balloon Observations Of Millimetric Extragalactic Radiation

AND Geophysics[BOOMERanG 
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more Observations 
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Constraints on inflationary models
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Here, we aim to explore future constraints coming from experiments 

we need to simulate these experiments by generating mock data of the Cˆ XY ’s  from a χ2l+1 

distribution with variances 

5. STATISTICS IN COSMOLOGY
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Figure 5.5: WMAP, BICEP and QUaD constraints for the B-mode power spectrum. The solid

line represents the theoretical prediction of a r = 0.1.
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where X = T, E and B label the temperature and polarisations; fsky is the fraction of the

observed sky. The C
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’s represent the theoretical spectra and N

XY

l
the instrumental noise

spectra for each experiment. In experiments with multiple frequency channels c, the noise

spectrum is approximated [? ] by
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where the noise spectrum of an individual frequency channel, assuming a Gaussian beam, is
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The pixel noise from temperature and polarisation maps are considered as uncorrelated. The

noise per pixel �
X

pix (and �
P

pix =
p

2�
T

pix) depends on the instrumental parameters; ✓fwhm is the

full width at half maximum (FHWM) of the Gaussian beam.

For the Planck experiment, we include three channels with frequencies (100 GHz, 143 GHz,

217 GHz) and noise levels per beam (�T

pix)
2= (46.25 µK2, 36 µK2, 171 µK2). The FHWM of

the three channels are ✓fwhm =(9.5, 7.1, 5.0) arc-minute. These figures are taken from the values

given in [? ]. We combine three channels for the CMBPol experiment [? ] with frequencies (100
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fsky is the fraction of the observed sky. NXY the instrumental noise spectra for each experiment. 

In experiments with multiple frequency channels c, the noise spectrum is approximated 
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TE

l
)2 =

2

(2l + 1)fsky

h�
C

TE

l

�2
+
�
C

TT

l
+ N

TT

l

� �
C

EE

l
+ N

EE

l

�i
, (5.11)

where X = T, E and B label the temperature and polarisations; fsky is the fraction of the

observed sky. The C
XY

l
’s represent the theoretical spectra and N

XY

l
the instrumental noise

spectra for each experiment. In experiments with multiple frequency channels c, the noise

spectrum is approximated [? ] by

N
X

l
=

 
X

c

1

N
X

l,c

!�1

, (5.12)

where the noise spectrum of an individual frequency channel, assuming a Gaussian beam, is

N
X

l,c
= (�pix ✓fwhm)2 exp


l(l + 1)

✓
2
fwhm

8 ln 2

�
�XY . (5.13)

The pixel noise from temperature and polarisation maps are considered as uncorrelated. The

noise per pixel �
X

pix (and �
P

pix =
p

2�
T

pix) depends on the instrumental parameters; ✓fwhm is the
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For the Planck experiment, we include three channels with frequencies (100 GHz, 143 GHz,

217 GHz) and noise levels per beam (�T

pix)
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Forecast

The noise per pixel                                          depends on the instrumental parameters; 

                 full width at half maximum (FHWM) of the Gaussian beam. 
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where X = T, E and B label the temperature and polarisations; fsky is the fraction of the
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The pixel noise from temperature and polarisation maps are considered as uncorrelated. The

noise per pixel �
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For a given multipole l, we expect to have a variance, 

called the cosmic variance, of the Cl’s given by 

5.3 The concordance ⇤CDM model
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Figure 5.6: Polarisation noise power spectra of forthcoming experiments. Note that these curves

include uncertainties associated with the instrumental beam. The red line shows the B-mode power

spectrum for the standard inflationary model with r = 0.1.

GHz, 150 GHz, 220 GHz), noise levels (�T

pix)
2 = (729 nK2, 676 nK2, 1600 nK2) and ✓fwhm =

(8, 5, 3.5) arc-minute. Sky coverages of fsky = 0.65, 0.8 are respectively assumed and integration

time of 14 months. In Figure 6.6, we show the noise levels for these experiments as a function

of multipole number l. The blue line corresponds to the B-mode power spectrum using the

standard power-law parameterisation with r = 0.1. The lensed C
B

l
is also shown in the same

figure, which can be treated as a part of the total noise power spectrum N
B

l
as well as the

instrumental noise power spectra [? ]. For more information of the noise and beam profile of

each frequency channel, refer to [? ].

At this point it is worthwhile mentioning the existence of an intrinsic uncertainty in the

cosmological measurements. This limitation comes from the fact that we have to do statistics

with only one universe. For a given multipole l, we expect to have a variance, called the cosmic

variance, of the Cl’s given by

(�Cl)
2 =

2

2l + 1
C

2
l
. (5.14)

In real experiments, the error is increased due to the limited sky coverage by f
�1
sky

.

5.3 The concordance ⇤CDM model

CMB measurements by themselves cannot, however, place strong constraints on all the param-

eters because the existence of parameter degeneracies, such as the ⌧ � As and the geometrical

degeneracy. Nevertheless, when CMB observations are combined with other cosmological probes,
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For the Planck experiment, we include three channels with frequencies (100 GHz, 143 GHz, 217 GHz) 

and noise levels per beam (σpTix)2= (46.25 μK2, 36 μK2, 171 μK2). The FHWM of the three channels 

are θfwhm =(9.5, 7.1, 5.0) arc-minute. 

5.3 The concordance ⇤CDM model
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Figure 5.6: Polarisation noise power spectra of forthcoming experiments. Note that these curves

include uncertainties associated with the instrumental beam. The red line shows the B-mode power

spectrum for the standard inflationary model with r = 0.1.
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with only one universe. For a given multipole l, we expect to have a variance, called the cosmic

variance, of the Cl’s given by

(�Cl)
2 =

2

2l + 1
C

2
l
. (5.14)

In real experiments, the error is increased due to the limited sky coverage by f
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5.3 The concordance ⇤CDM model
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degeneracy. Nevertheless, when CMB observations are combined with other cosmological probes,
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Figure 3: Left panel: 1D and 2D probability posterior distributions for the power spectrum
parameters, assuming a simple tilt parameterisation (ns); using both current observations
(black line) and future experiments (red for Planck and green for CMBPol). 2D constraints
are plotted with 1� and 2� confidence contours. Right panel: Reconstruction of the scalar
spectrum using present data; lighter regions represent an improved fit.

experiment. Whereas Planck will be able to distinguish tensor components with an accuracy
of �r = 0.013, this is highly improved by CMBPol data �r = 0.0009. If we consider only
one channel for comparison, e.g. 100 GHz, the constraints on the tensor-to-scalar ratio are
given by �r = 0.02, in agreement with previous results [5]. The top-right panel of Figure 3
illustrates the resulting shape of PR(k) corresponding to the posterior distributions using
present data.

3.2 Running scalar spectral-index

A further extension is possible by allowing the scalar spectral index to vary as a function of
scale, such that ns(k). This can be achieved by including a second order term in the expansion
of the power spectrum

PR(k) = As

✓
k

k0

◆
ns�1+(1/2) ln(k/k0)(dn/d ln k)

, (3.3)

where nrun ⌘ dn/d ln k is termed the running of the tilt and we would expect nrun ⇡ 0 for
standard inflationary models. We have kept the same tensor spectrum as in the simple power-
law parameterisation, with a tensor-to-scalar ratio rrun at a scale of k0 = 0.015 Mpc�1 to
avoid correlations amongst parameters [8]. We maintained the same priors for the inflationary

– 6 –
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MCMC Example

5.3 The concordance ⇤CDM model

Parameters Description Prior range

Background

⌦b,0h
2 Physical baryon density [0.01, 0.03]

⌦dm,0h
2 Physical cold dark matter density [0.01, 0.3]

✓ Ratio of the sound horizon to

the angular diameter distance [1, 1.1]

⌧ Reionization optical depth [0.01, 0.3]

Inflationary

log[1010
As] Curvature perturbation amplitude [2.5, 4]

ns Spectral scalar index [0.5, 1.2]

Secondary

ASZ Sunyaev-Zel’dovich amplitude [0, 3]

Ac Total Poisson power [0, 20]

Ap Amplitude of the clustered power [0, 30]

Table 5.1: Parameter description along with the flat-uniform priors assumed on the standard

⇤CDM.

Table 5.2: The constraints on the cosmological parameters using our dataset II. We report the

mean of the marginalised posterior distribution and 1� confidence levels. The Bayes factor for

models B⇤,⇤+⌦k
, and for datasets BR are also included.

Description Flat ⇤CDM Non-flat ⇤CDM

⌦b,0h
2 0.02206 ± 0.00042 0.0221 ± 0.00043

⌦dm,0h
2 0.1130 ± 0.0028 0.112 ± 0.0041

Base ✓ 1.039 ± 0.0019 1.039 ± 0.0020

parameters ⌧ 0.082 ± 0.013 0.083 ± 0.014

ns 0.956 ± 0.010 0.957 ± 0.011

log[1010
As] 3.21 ± 0.035 3.21 ± 0.039

⌦k,0 - �0.0022 ± 0.0058

⌦m,0 0.282 ± 0.015 0.285 ± 0.018

Derived ⌦⇤,0 0.717 ± 0.015 0.717 ± 0.016

parameters H0 69.2 ± 1.27 68.7 ± 2.13

Age(Gyrs) 13.84 ± 0.086 13.93 ± 0.27

�2 ln Lmax 8240.46 8240.80

Bayes factor B⇤,⇤+⌦k
+1.6 ± 0.4 -

Dataset consistency BR +5.06 ± 0.4 +5.07 ± 0.4
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5.3 The concordance ⇤CDM model

Parameters Description Prior range

Background

⌦b,0h
2 Physical baryon density [0.01, 0.03]

⌦dm,0h
2 Physical cold dark matter density [0.01, 0.3]

✓ Ratio of the sound horizon to

the angular diameter distance [1, 1.1]

⌧ Reionization optical depth [0.01, 0.3]

Inflationary

log[1010
As] Curvature perturbation amplitude [2.5, 4]

ns Spectral scalar index [0.5, 1.2]

Secondary

ASZ Sunyaev-Zel’dovich amplitude [0, 3]

Ac Total Poisson power [0, 20]

Ap Amplitude of the clustered power [0, 30]

Table 5.1: Parameter description along with the flat-uniform priors assumed on the standard

⇤CDM.

Table 5.2: The constraints on the cosmological parameters using our dataset II. We report the

mean of the marginalised posterior distribution and 1� confidence levels. The Bayes factor for

models B⇤,⇤+⌦k
, and for datasets BR are also included.

Description Flat ⇤CDM Non-flat ⇤CDM

⌦b,0h
2 0.02206 ± 0.00042 0.0221 ± 0.00043

⌦dm,0h
2 0.1130 ± 0.0028 0.112 ± 0.0041

Base ✓ 1.039 ± 0.0019 1.039 ± 0.0020

parameters ⌧ 0.082 ± 0.013 0.083 ± 0.014

ns 0.956 ± 0.010 0.957 ± 0.011

log[1010
As] 3.21 ± 0.035 3.21 ± 0.039

⌦k,0 - �0.0022 ± 0.0058

⌦m,0 0.282 ± 0.015 0.285 ± 0.018

Derived ⌦⇤,0 0.717 ± 0.015 0.717 ± 0.016

parameters H0 69.2 ± 1.27 68.7 ± 2.13

Age(Gyrs) 13.84 ± 0.086 13.93 ± 0.27

�2 ln Lmax 8240.46 8240.80

Bayes factor B⇤,⇤+⌦k
+1.6 ± 0.4 -

Dataset consistency BR +5.06 ± 0.4 +5.07 ± 0.4
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5. STATISTICS IN COSMOLOGY

Bk,⇤ = �1.90 ± 0.35
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Figure 5.8: Top: 1D marginalised posterior distributions on the standard ⇤CDM parameters

using current cosmological observations. Bottom: 2D marginalised posterior distributions of non-

flat ⇤CDM parameters; constraints are plotted with 1� and 2� confidence contours.
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r < 10^{-3} at 5 standard deviations

Future
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Constraints on inflationary models

Tensor perturbations
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Non-Gaussianity

Gaussian fluctuations are characterised completely by their two-point correlation
function, or, equivalently, their power spectrum, PR(k). Non-Gaussianity is therefore
measured by considering the connected higher-order correlation functions, i.e. the part
that remains after all possible contractions are subtracted. The connected n-point func-
tions with n > 2 vanish for a Gaussian random field and so the leading non-Gaussian
effect is usually given by the three-point function. To calculate the non-Gaussianity from
inflation, generally one must go beyond linear perturbation theory, expanding the action
to third order to capture all cubic interactions between perturbed quantities [147]. The
primordial 3-point function from inflation is conveniently calculated for quantities ζ
and γi j which are the non-linear generalisations ofR, the linear-theory comoving-gauge
curvature perturbation, and hi j, the linear-theory gravitational wave amplitude, respec-
tively.8 Both ζ and γi j are conserved on super-Hubble scales in the simplest inflation
models. The bispectrum for ζ is defined by

〈ζ (k1)ζ (k2)ζ (k3)〉 = Bζ (k1,k2,k3)δ (k1+k2+k3) . (101)

Three other bispectra with different combinations of ζ and γi j can also be constructed.
Note that the bispectrum depends only on the magnitudes of the three wavevectors as a
consequence of translational, rotational and parity invariance.
The bispectrum is measured by sampling triangles in Fourier space. Much physical

information is contained in the momentum dependence or the shape of the bispectrum.
Ref. [150] presents visualisations of the full scale/shape dependence of the bispectra
for a variety of inflationary scenarios in which significant (observable) amounts of non-
Gaussianity could be potentially produced. While these have complex shapes, fortu-
itously, different physical mechanisms that produce significant non-Gaussianity result
in bispectrum signals that peak on different triangular configurations (e.g. [48, 149, 151,
152, 153, 154]):

• multi-field models peak on squeezed triangles (k3 # k2 ∼ k1);
• models with non-canonical kinetic terms peak on equilateral triangles (k1 ∼ k2 ∼
k3);

• models with non-adiabatic initial vacua peak on flattened/folded triangles (k3 ∼
k2 ∼ 2k1); and

• non-slow-roll models peak on more complex (model dependent) configurations
requiring a matched template for their analysis.

Thus, configuration-dependent studies of non-Gaussianity may become a powerful
probe of ultra-high-energy physics and inflation.
Given a primordial bispectrum, how do we compute the observable bispectrum,Bl1l2l3,

in the CMB (see Eq. 8)? In theories with weak primordial non-Gaussianity, such as

8 These quantities are defined so that the induced line element on comoving hypersurfaces, over which
δΦ= 0, is [147]

3gi jdxidx j ≡ a2e2ζ eγi j . (100)

Here, γi j is trace-free and transverse, ∂iγ i j = 0, so that deteγi j = 1. Note that the true curvature perturbation
of comoving hypersurfaces differs from ζ by terms quadratic in ζ and γi j.
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single-field inflation, this is a difficult task since the non-linear perturbation evolution
and radiative transfer will induce additional non-Gaussianity in the CMB that exceeds
(and distorts) the primordial contribution. Signatures of specific non-linear effects have
been computed, but a full calculation is still lacking (see [155, 156, 157, 158, 159,
160, 161] for some recent progress towards this goal). Things are more straightforward,
though, if the initial level of non-Gaussianity is large enough, since then one can con-
tinue to employ linear perturbation theory to compute the higher-order statistical prop-
erties of the CMB, replacing the bispectrum of the linear-theoryR with Bζ (k1,k2,k3).
Generalising Eq. (22) to include all sources of anisotropy, the multipoles of the

temperature anisotropy, Tlm, can be written in the form

Tlm = 4πil
∫ d3k

(2π)3/2
gl(k)R(k)Y ∗

lm(k̂)eik·xR (102)

in linear theory with adiabatic perturbations. Here, gl(k) is the temperature transfer
functionwhich linearly relates the observed CMB anisotropy to the primordial curvature
perturbation. The observed CMB bispectrum then becomes

Bl1l2l3 =

√

(2l1+1)(2l2+1)(2l3+1)
4π

(

l1 l2 l3
0 0 0

)

bl1l2l3 , (103)

where the reduced bispectrum bl1l2l3 is [162]

bl1l2l3 =
64

(2π)3/2

∫ ∞

0
r2dr

∫ 3

∏
i=1

[

k2i dki gli(ki) jli(kir)
]

Bζ (k1,k2,k3) . (104)

As a simple and well-studied example, we consider the local model of primordial
non-Gaussianity in which ζ is a sum of a Gaussian piece and the square of a Gaussian
in real-space:

ζ (x) = ζG(x)+
3
5
fNL
[

ζ 2G(x)−〈ζ 2G〉
]

. (105)

The factor of 3/5 is conventional and is chosen so that− fNL parameterises the quadratic
contribution to the gravitational potential φ in matter domination (for | fNL|% 1 so fur-
ther non-linear evolution can be ignored).9 Single-field, slow-roll inflation with canoni-
cal kinetic term approximates to the local model, with a very small primordial fNL of the
order of the slow-roll parameters, i.e. ∼ O(0.01) [147] (non-linear effects – e.g. in the
relation between the gravitational potential and ζ – increase the effective observable fNL
to O(1)). Large local non-Gaussianity can be generated in models with multiple fields,
such as the curvaton model. The bispectrum in the local model evaluates to

Bζ (k1,k2,k3) =
3 fNL

5(2π)3/2

(

2π2

k31
PR(k1)

2π2

k32
PR(k2)+perms

)

. (106)

9 Our sign choices and normalisation are consistent with [44]. Note that on large scales, the temperature
anisotropies are skewed negative by a positive fNL.
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Significantly, this is factorisable which makes the integration in Eq. (104) easily
tractable. Numerical examples of the reduced bispectrum in the local model can be
found in Ref. [163]; it displays similar acoustic oscillations to the power spectrum. The
best observational constraints on the local form of non-Gaussianity are from the 3-point
function of the WMAP5 data. With an optimal weighting of the data, Ref. [164] find
no evidence for non-zero fNL: −4< fNL < 80 (95% C.L.). Planck should improve this
constraint with its better measurement of the anisotropies on smaller scales; a detection
limit of fNL ∼ 5 is forecasted [163].

6. SECONDARY ANISOTROPIES

Secondary anisotropies are generated after recombination. They can arise from grav-
itational effects (the integrated Sachs-Wolfe effect or gravitational lensing) and from
scattering events during or after the epoch of reionization. We have already met some
examples, such as the large-angle polarization generated from scattering at reioniza-
tion (Sec. 3.3). In this section we briefly review the other main sources of secondary
anisotropy and their cosmological potential. For a recent, thorough review of the sub-
ject, see [13]. Fully exploiting the primary anisotropies on multipoles l ∼ 2000, for
example to tighten constraints on ns, requires careful modelling of secondary effects.
Such modelling is also important since the secondary signals themselves contain valu-
able cosmological information about structure formation at late times and reionization.
A number of ongoing ground-based surveys with arcmin resolution are seeking to ex-
ploit the secondary anisotropies in this way [165, 166, 167, 168].

6.1. Gravitational secondary effects

6.1.1. Integrated Sachs-Wolfe effect

The integrated Sachs-Wolfe (ISW) effect is described by the last term on the right
of Eq. (14). It is an additional source of anisotropy due to the temporal variation of
the gravitational potentials along the line of sight. If a potential well were to deepen
as a photon crossed it, the photon would receive a net redshift, and there would be
a decrement to the CMB temperature along the line of sight. Conversely, a decaying
potential well gives a temperature increment. At late times, the potential evolves only
when dark energy (or curvature) start to dominate the background dynamics – a linear-
theory effect – or as non-linear structures form.
The linear effect from evolving potentials contributes to the temperature anisotropies

only on large scales (see Fig. 11). This is because there is little power in the gravitational
potentials today on scales that entered the Hubble radius during radiation domination,
and, furthermore, as an integrated effect, the contribution of small-scale fluctuations is
suppressed. The physics of dark energy affects the decay of the potential through the
background expansion rate (via its energy density and equation of state) and through
its clustering properties (i.e. sound speed). Both impact on the amplitude and detailed
scale-dependence of the ISW contribution [169]. The late-time ISW effect is the only

Lecture notes on the physics of cosmic microwave background anisotropies March 30, 2009 46



JAVazquez

Examen sorpresa!


