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1
Inflation

Even though the Hot Big Bang model possesses a strong observational support, there are still

certain inconsistencies or unexplained features to deal with: the flatness, horizon and monopole

problems, amongst many others. The inflationary model o↵ers the most elegant way, so far

proposed, to solve these problems and therefore to understand why the universe is so remarkably

in agreement with the standard cosmology. This model was initially introduced by Guth [5],

followed by Linde [12]. For an extended review we refer to the textbooks Liddle and Lyth

[10], Linde [13], Mukhanov [16]; and papers: Baumann [2], Liddle [8], Lyth and Riotto [15], Olive

[17], Riotto [18]. The inflationary universe, Alan Guth, The first three minutes, StevenWeinberg,

Endless Universe, P Steinhardt and N Turok.

Let us examine some of the problems of the Hot Big Bang model.

1.0.1 Shortcomings of the Hot Big Bang

Flatness problem

The Friedmann equation (59) can be seen in the following form

⌦ � 1 =
kc

2

(RH)2
. (1.1)

Written in this way, we notice that ⌦ = 1 is a very special case. If at the beginning the universe

was perfectly flat, then it remains so for all time. Nevertheless, a flat geometry is an unstable

critical situation, that is, for even a tiny deviation from it, ⌦ would have evolved quite di↵erently

and very quickly the universe would become more curved. This can be seen as a consequence
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1. INFLATION

of RH being a decreasing function of time during radiation or matter domination epoch. We

observe from (1.1) and Table 1 that:

| ⌦ � 1 | / t radiation domination,

| ⌦ � 1 | / t
2/3 dust domination.

Since the present age of the universe is estimated to be t0 ' 1017 sec [7], from the above

equations we can deduce the required value of | ⌦ � 1 | at di↵erent early-times in order to

obtain the correct value of spatial-geometry at present time | ⌦0 � 1 |:

| ⌦ � 1 |
| ⌦0 � 1 | =

t

t0
.

For instance, let us consider some particular epochs:

• Decoupling (t ' 1013 sec), we would need | ⌦ � 1 |  10�3.

• Nucleosynthesis (t ' 1 sec), we would need | ⌦ � 1 |  10�16.

• Planck epoch1 (t ' 10�43 sec), we would need | ⌦ � 1 |  10�64.

Consequently, at early times | ⌦ � 1 | had to be fine-tuned extremely close to zero in order to

reach its actual observed value [6].

Figure 1.1: ⌦k drives away from a = 1

HW: Show that a flat universe is an unstable fixed point if the strong energy condition is

satisfied. Hint: Show that the density parameter evolves with the scale factor R as:

d⌦

d lnR
= (1 + 3w)⌦(⌦ � 1) (1.2)

1Planck time: tP =
q

~G
c5

.
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Figure 1.2: Temperature fluctuations observed in the CMB measured by the WMAP-7 experi-

ment. The colour scale represents temperature fluctuations: from �30µK to 30µK. Figure reprinted

from [7]. [update this figure]

Horizon problem

The horizon problem is one of the most important problems within the Big Bang model, as it

refers to the communication between di↵erent regions of the universe. The age of the universe

is finite and hence even light should have only travelled a finite distance by any given time.

According to the standard cosmology, photons decoupled from the rest of the components at

temperatures about Tdec ⇡ 0.3 eV (zdec ⇡ 1100), from this time on photons free-streamed and

travelled basically uninterrupted until reach us, giving rise to the region known as the observable

universe. This spherical surface at which decoupling process occurred is called the surface of

last scattering. The primordial photons are responsible for the CMB radiation we observe today.

Looking at their fluctuations is thus analogous to taking a snapshot of the universe at that time

(about tdec ⇡ 380, 000 years after the Big Bang), as seen in Figure 1.2.

Figure 1.2 shows light seen in all directions of sky. These primordial photons have nearly

the same temperature Tcmb = 2.725 K plus small fluctuations (about one part in one hundred

thousand). Being at the same temperature is a property of thermal equilibrium, hence

observations are easily explained if di↵erent regions of the sky have been able to interact

and moved towards thermal equilibrium before decoupling. Oddly, the comoving horizon over

which causal interactions occurred before photons decoupled was significantly smaller than the

comoving distance that radiation travelled after decoupling. This means that photons coming

from sky regions separated by more than the horizon scale at last scattering, typically about

1.7�, would not have been able to interact and establish thermal equilibrium before decoupling.

Therefore, the Big Bang model by itself does not o↵er an explanation of why temperatures

seen in opposite directions of the sky are so nearly the same; the homogeneity must have been
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1. INFLATION

part of the initial conditions.

HW (for k = 0): Show that the comoving particle horizon at the decoupling time (z ' 1100)

was

dp(z) =
2c

H0(1 + z)3/2

����
z=1100

' 164 kpc.

Show that the angular diameter distance (from us to decoupling) is given by

dA(z) =
2c

H0

✓
1 � 1

(1 + z)1/2

◆
1

1 + z
.

The angle subtended on the sky, ⇥hor, is defined as the ratio of these two quantities. Show

that

⇥hor ⌘ dp(z)

dA(z)
⇡
✓

1

1 + z

◆1/2

⇡
✓

1

1 + 1100

◆1/2

.

Hence ⇥hor ⇡ 1

33
radians = 1.7 degrees.

Monopole problem

The monopole problem was initially the motivation to develop the Inflationary cosmology [4].

The monopole, and other relics, are components of the universe that are expected to emerge

as a consequence of unified models. From particle physics models, monopoles would have a

mass of 106 orders the proton mass. Hence, based on their non-relativistic character, a crude

calculation predicts an extremely high abundance at present time, ⌦M,0 ' 1016 [3]. According

to this prediction, the universe would be dominated by magnetic monopoles, in contrast with

current observations: no one has found any monopole yet [1]. [add textures, string, etc...]

1.0.2 Cosmological Inflation

Inflation is defined as the epoch in the evolution of the universe in which decreases the comoving

horizon (comoving Hubble radius) or equivalently the scale factor is quickly accelerated in just

a fraction of a second:

INFLATION () d

dt

✓
1

RH

◆
< 0, (1.3)

() R̈ > 0, (1.4)

() ⇢ + 3p < 0, (1.5)

() ✏ ⌘ � Ḣ

H2
< 1. (1.6)
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Figure 1.3: Schematic behaviour of the comoving Hubble radius during the Inflationary period

(sketched by the red circle).

HW: Probe the equivalence amongst the above relations.

The first term corresponds to the comoving Hubble radius (77), which is interpreted as the

observable universe becoming smaller during the inflationary period (sketched by the red circle

in Figure 1.3). This process allowed our present observable universe to lie within a region

located well inside the Hubble radius early on during inflation [10].

Accelerated expansion:

Shrinking the comoving Hubble radius implies an accelerated expansion.

d

dt
(RH)�1 =

d

dt
(Ṙ)�1 = � R̈

Ṙ2
< 0 ! R̈ > 0. (1.7)

Slowly-varying Hubble parameter:

We introduce the fractional change of the Hubble parameter per e-fold, ✏, as

✏ ⌘ � Ḣ

H2
= �d lnH

d lnR
= �d lnH

dN
< 1. (1.8)

where dN ⌘ d lnR = Hdt defines de number of e-folds of the inflationary expansion. Hence

d

dt
(RH)�1 = � ṘH + RḢ

(RH)2
= � 1

R
(1 � ✏). (1.9)

This represents that the fractional change of the Hubble parameter per e-fold is small, so the

last term tell us that if ✏ is small, then inflation happens. Also, ✏ = 1 indicates when the

comoving Hubble radius stops shrinking, therefore inflation ends up. The case ✏ = 0 describes
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1. INFLATION
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Figure 1.4: Evolution of the density parameter ⌦T , during the inflationary period. ⌦T is driven

towards unity.

a de-Sitter space (H=constant). We want inflation to last for a su�ciently long time, then we

introduce

⌘ ⌘ d ln ✏

dN
=

✏̇

H✏
(1.10)

therefore if ✏ needs to remain small for a su�ciently large number of Hubble times, then ⌘

should be a small quantity (we’ll show that later): |⌘| ⌧ 1.

Accelerated expansion:

From the acceleration equation, we can write the condition for inflation in terms of the required

material to drive the expansion:

✏ = � Ḣ

H2
=

3

2

✓
1 +

p

⇢

◆
< 1 ! w =

p

⇢
< �1

3
. (1.11)

If this brief period of accelerated expansion occurred, then it is possible that the aforementioned

problems of the Big Bang can be solved. However, because in standard physics it is commonly

assumed ⇢ as positive, then to satisfy the acceleration condition it is necessary for the overall

pressure to have p < �⇢/3.

Nonetheless, neither a radiation nor a matter dominated epoch satisfies such condition. A typical

solution would be a universe dominated by a cosmological constant ⇤ at the earliest stages.

As we have shown in Table 1, a cosmological constant leads to an exponential expansion, a de

Sitter stage, and hence the condition (1.4) would be naturally fulfilled. Let us postpone for a

bit the problem of finding a component which may satisfy this inflationary condition, and look

what happens when a general solution is considered.
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Figure 1.5: Physical evolution of the observable universe during the inflationary period.

Flatness solution

If somehow there was an accelerated expansion, 1/(RH) tends to decrease with time, and hence

from the expression (1.1), ⌦ is driven towards the unity rather than away from it. In this sense,

inflation magnifies the curvature radius of the universe, so locally the universe seems to be flat

with great precision, as shown in Figure 1.4. Then, we may ask ourselves by how much should

1/(RH) decrease. If the inflationary period started at time t = ti and ended approximately at

the beginning of the radiation dominated era (t = tf ), then

| ⌦(10�34sec) � 1 |t=tf ⇠ 10�54
,

and
| ⌦ � 1 |t=tf

| ⌦ � 1 |t=ti

=

✓
Ri

Rf

◆2

⌘ e
�2N

. (1.12)

So, the required condition to reproduce the value of ⌦0 today is that inflation lasted for at least

N ⌘ lnR & 50, then ⌦ will be extraordinarily close to one that we still observe it today.

Horizon problem

During inflation the universe expanded drastically and there was a reduction in the comoving

Hubble length. That is, a tiny region located inside the Hubble radius evolved and constituted

our present observable universe, as seen in Figure 1.5, which represents the physical process of

Figure 1.3. Scales that were outside the horizon at CMB decoupling were in fact inside the hori-

zon before inflation. The region of space corresponding to the observable universe therefore was

in thermal equilibrium before inflation and the uniformity of the CMB is essentially explained.
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1. INFLATION

Monopole problem

The monopole problem is partially solved by noticing that during the inflationary epoch the uni-

verse led to a dramatic expansion over which the density of the unwanted particles were diluted

away. Generating enough expansion, the dilution made sure that particles stayed completely

out of our observable universe, making pretty di�cult to localise any single monopole.

1.0.3 Single-field Inflation

As we have pointed out, a period of accelerated expansion can be created by a cosmological

constant ⇤, and hence solve the aforementioned problems. After a brief period of time, however,

inflation must end and its energy being converted into conventional matter/radiation; this

process is called reheating. In a universe dominated by a cosmological constant, the reheating

process is seen as ⇤ decaying into conventional particles. Nevertheless, claiming that ⇤ is able

to decay is still a naive way to face the problem. On the other hand, scalar fields (spin-0

particles) can behave like a dynamical cosmological constant. There currently exists a broad

diversity of models suggested to give rise the Inflationary period, see for instance [14, 15, 17].

Here, we limit ourselves to single scalar-field models based on general gravity, i.e. derived from

the Einstein-Hilbert action. [later present BD models, Higgs, inflaton, curvaton, quintessence].

Let us consider a scalar field minimally coupled to gravity, with an arbitrary potential V (�),

specified by the action

S =

Z
d
4
x

p
�g


1

2
@µ�@

µ
� � V (�)

�
. (1.13)

From the action, the Euler-Lagrange equations with a FLRW universe (
p

�g = R
3) lead to

the Klein-Gordon equation, which describes a relativistic wave equation

⇤2
� +

dV

d�
= 0.

HW: get KG

�̈ + 3H�̇ � r2
� + V,� = 0, (1.14)

where the second term is referred as the friction due to the expansion.

The energy-momentum tensor corresponding to this scalar field is given by

Tµ⌫ = @µ�@⌫� � gµ⌫


1

2
@��@

�
� � V (�)

�
. (1.15)
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By comparing (1.15) to the energy-momentum tensor of perfect fluids (31), one can identify an

associated energy-density ⇢� and pressure p� for the scalar-field. In a FRW background, they

are found to be

T00 = ⇢� =
1

2
�̇
2 + V (�) +

1

2
(r�)2, (1.16)

Tii = p� =
1

2
�̇
2 � V (�) +

1

6
(r�)2, (1.17)

with its corresponding equation-of-state p� = w�⇢�.

HW: Get ⇢� and p�.

To provide a better understanding of the inflaton field, � can be split up as

�(t,x) = �(t) + ��(t,x), (1.18)

where �(t) is considered a classical field, that is, the mean value of the inflaton field on the

homogeneous and isotropic state; whereas ��(t,x) describes the quantum fluctuations around

�(t) (we will see more about perturbations of the field �� in Section ??). The evolution equation

for the background field � is thus given by

�̈ + 3H�̇ +
dV

d�
= 0. (1.19)

From the structure of the e↵ective energy-density and pressure, the Friedmann and the accel-

eration equations for a homogeneous single-scalar field become

H
2 =

8⇡G

3


1

2
�̇
2 + V (�)

�
, (1.20)

ä

a
= �8⇡G

3

h
�̇
2 � V (�)

i
. (1.21)

with an analogous equation of state

w� =
�̇
2 � 2V (�)

�̇2 + 2V (�)
. (1.22)

Therefore, the inflationary condition to be satisfied is �̇
2 ⌧ V (�), which is easily fulfilled with a

suitable flat potential. Inflation is driven by the vacuum energy of the inflaton field p� ⇡ �⇢�.

When the condition h�̇2i = V (�) is satisfied, then the field beahaves as a dust component,

ie. w� ⇡ 0, thus a good candidate to be the dark matter component. [Using Friedmann and

acceleration with p� and ⇢�, get KG equation.]
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1. INFLATION

1.0.4 Slow-Roll Inflation

HW: show that Ḣ = �4⇡G�̇
2

By Substituting Ḣ into ✏ (Eqn. 1.8), we have

✏ =
4⇡G�̇

2

H2
= 3

 
�̇
2

2

�̇2

2
+ V (�)

!
. (1.23)

Therefore, Inflation (✏ ⌧ 1) occurs when the kinetic energy 1

2
�̇
2 makes a small contribution to

the total energy �̇
2 ⌧ ⇢� ⇠ H

2, or equivalently �̇
2 ⌧ V (�).

Also, the acceleration of the scalar field has to be small or analogously the friction term

in the KG equation is dominated by the cosmological expansion. By di↵erentiating the above

expression, �̇
2 ⌧ H

2, we have (deriving this expression)

2�̇�̈ ⌧ 2HḢ ⇠ �2H�̇
2

!

�����
�̈

H�̇

�����⌧ 1. (1.24)

Then, we define the dimensionless acceleration per Hubble time.

� ⌘ � �̈

H�̇
, (1.25)

to get (1.10)

✏̇ = 8⇡G

 
�̇�̈

H2
� �̇

2
Ḣ

H3

!
,

! ⌘ =
✏̇

H✏
= 2

 
�̈

H�̇
� Ḣ

H2

!
= 2(✏ � �), (1.26)

therefore, the slow-roll parameters, during inflation, become

{✏, |�|} ⌧ 1 imply {✏, |⌘|} ⌧ 1. (1.27)

So far, no approximations have been made.

1.0.5 Slow-Roll approximation

Based on the single scalar-field approach, it is useful to suggest a model starting with a nearly

flat potential, i.e. initially satisfies the condition �̇
2 ⌧ V (�), and its derivative �̈ ⌧ V,�. In this

case the field is slowly rolling down on its potential; such an approximation is called slow-roll
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reheating

Figure 1.6: Schematic Inflationary process followed by a reheating epoch. Figure reprinted from

[2].

inflation [9, 11]. The equations of motion (1.19) and (1.20), under the slow-roll approximation,

then become

|�| ⌧ 1 !

�����
�̈

H�̇

�����⌧ 1

therefore (1.19) ! 3H�̇ ' �dV

d�
. (1.28)

✏ ⌧ 1 ! 1

2
�̇
2 ⌧ V (�) ⇠ ⇢�,

therefore (1.20) ! H
2 ' 8⇡G

3
V (�). (1.29)

The inflationary process can be summarised as an accelerated universe which takes place when

the kinetic part of the inflaton field is subdominant over the potential V (�) term. Then, when

both quantities become comparable inflation ends giving rise to the reheating process. Figure

1.6 displays the schematic behaviour of the inflationary process.

The slow-roll approximation is consistent if the slope and curvature of the potential are small:

V,�, V,�� ⌧ V . Thus, it is now useful to introduce the potential slow-roll parameters ✏v and ⌘v

in the following way [9]:

Combining the above equations, (1.28 and 1.29) into (1.23), we have

✏ =
4⇡G�̇

2

H2
' 1

16⇡G

✓
V,�

V

◆2

⌘ ✏v(�), (1.30)

and combining equations (1.8) and (1.25), with the di↵erential of (1.28), it yields to

✏ + � = � Ḣ

H2
� �̈

H�̇
' 1

8⇡G

V,��

V
⌘ ⌘v(�). (1.31)
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1. INFLATION

which define the potential slow-roll parameters ; where ✏v measures the slope of the potential

and ⌘v its curvature

✏v(�) ⌘ 1

16⇡G

✓
V,�

V

◆2

, |⌘v(�)| ⌘ 1

8⇡G

|V,��|
V

. (1.32)

Equations (1.29) and (1.28) are in agreement with the slow-roll approximation when the

following conditions hold

✏v(�) ⌧ 1, | ⌘v(�) |⌧ 1. (1.33)

However, these conditions are necessary but not su�cient since even if the potential is flat, it

may happen that the scalar field has a large velocity, hence one should also consider that the

condition �̇
2 ⌧ V (�) holds. Notice that ✏ and ⌘ are often called the Hubble slow-roll parameters,

and during the slow-roll approximation these are related by

✏v ' ✏, ⌘v ' 2✏ � 1

2
⌘. (1.34)

Within these approximations, it is straightforward to find out the scale factor R between the

beginning (ti) and end (te) of inflation, defined by ✏(ti) = ✏(te) ⌘ 1. Then, the e-fold number is

Ntot ⌘
Z

Re

Ri

d ln a =

Z
te

ti

H(t)dt, (1.35)

in slow-roll

Hdt =
H

�̇
d� '|{z}

(1.28)

�3
H

2

V,�

d� '|{z}
(1.29)

�8⇡G
V

V,�

d� =
p
8⇡G

d�p
2✏v

,

and therefore

Ntot =
p
8⇡G

Z
�e

�i

d�p
2✏v

. (1.36)

An estimate of the e-folds number N(k) is given by [10]:

N(k) = 62 � ln
k

a0H0

+ corrections,

where the comoving wavenumber k is evaluated at the crossing Hubble radius during inflation.

The last ‘corrections’ is a small term related with energy scales during the inflationary process.

The precise value for the second quantity depends on the model as well as normalisation

factors, however it does not present any significant change to the total amount of e-folds.

Therefore, the value of the e-folds number is ranged to 50-70 [15].
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Example 1.0.1: Massive scalar field

The potential that describes a massive scalar field is given by:

V (�) =
1

2
m

2
�
2
. (1.37)

Considering the slow-roll approximation, equations (1.29) and (1.28) become:

H
2 ' 4⇡G

3
m

2
�
2
,

3H�̇ ' �m
2
�.

Thus, the dynamics of this type of model is described by

�(t) = �i � mp
12⇡G

t, (1.38)

R(t) = Ri exp

"
m

r
4⇡G

3

✓
�it � mp

48⇡G
t
2

◆#
,

where �i and Ri represent the initial conditions at a given initial time t = ti. The
slow-roll parameters for this particular potential are computed from equations (1.32)

✏v = ⌘v =
1

4⇡G

1

�2
, (1.39)

that is, an inflationary epoch takes place whilst the condition |�| > 1/
p
4⇡G =

p
2Mpl ⌘

�e
a is satisfied, and the total amount that lapses during this accelerated period is encoded

on the e-folds number

N = 2⇡G
⇥
�
2 � �

2

e

⇤
= 2⇡G�

2 � 1

2
. (1.40)

The field value N e-folds before the end of inflation, to the scales relevant for the CMB
is

�60 ⇠ 15Mpl. (1.41)

The steps shown before might, in principle, apply to any inflationary single-field model.
That is, the general information we need to characterised cosmological inflation is spec-
ified by its potential.

awhere M2
pl =

1
8⇡G .
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