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0.7 Distances and Horizons

Now we have all the components of the universe and its dynamics, let’s see how they may a↵ect

the distances in the universe.

The particle horizon is the distance light could have travelled since the origin of the

universe. Regions further apart could never have been causally connected. In a time dt light

travels a comoving distance d� = cdt/R, thus the total comoving distance travelled since the

big-bang corresponds to

�
p ⌘ c

Z
t

0

dt

R(t)
. (94)

Considering

dz = d(1 + z) = d

✓
R0

R

◆
= �R0

R2
dR = �R0

R2
Ṙdt = �(1 + z)H(z)dt, (95)

therefore, this expression becomes

�
p =

c

R0

Z
R

0

dR

R2H(R)
=

c

R0

Z 1

z

dz

H(z)
. (96)

No information could have propagated further than �
p on the comoving grid since the

beginning of time [7]. We must know how H(z) varies with redshift, which requieres knowledge

of the evolution of the scale factor.

Moreover, by changing the order of integration of (96), we can also define the comoving distance

dc, or event horizon, as the distance light could have travelled between a source at scale factor

R and an observer today [7], as

�
e = c

Z
t0

t

dt

R(t)
=

c

R0

Z
z

0

dz

H(z)
. (97)

Considering the FRW metric in terms of the conformal time (20), the distance multiplying the

solid angle provides the metric distance

dm = R(t0)Sk(�). (98)

In a flat universe (k = 0) the metric distance is equal to the comoving distance � (97). We

emphasize that the comoving distance dc and the metric distance dm are not observables.

A related concept is the proper distance dp corresponding to the particle horizon:
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0.7 Distances and Horizons

dp(t) ⌘ cR(t)

Z
t

0

dt

R(t)
= R(t)�p(t). (99)

Regions separated by distances greater that the proper distance dp are not causally connected.

Furthermore, the Hubble radius or Hubble distance is defined by

dH(t) = cH
�1(t). (100)

The Hubble distance dH(t), often described simply as the ‘horizon’ and corresponds to the

typical length-scale over which physical processes in the universe operate coherently. It is also

the length-scale at which general-relativistic e↵ects become important; on scales much less

than dH(t) (within the horizon), Newtonian theory is often su�cient to describe the e↵ects of

gravitation [12].

We also introduce the comoving Hubble distance as:

�
H =

dH(t)

R(t)
=

c

H(t)R(t)
=

c

Ṙ(t)
, (101)

which gives the �-coordinate corresponding to the Hubble distance.

Figure 10: Supernovae

0.7.1 Luminosity distance

A classical way of measuring distances in astronomy is to measure the flux of a given object of

known luminosity, for example from Supernovae Type Ia (SNe Ia). Let us consider the observed
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flux Fobs, of an astronomical source, located at a distance dL from an emitting source of known

absolute luminosity L (J s�1):

Fobs =
L

4⇡d
2

L

. (102)

The quantity dL is called the luminosity distance of the source.

The flux of an emitting astronomical source is defined as the energy Eem per unit time, �t1,

passing through an area A, or equivalently, the flux of the photons collected by a detector is

the power Pem per unit area: Fem = Pem/A.

The photons emitted with wavelengths �1 at certain time interval �t1 have an associated

power:

Pem =
Eem

�t1
=

hc

�1�t1
=

h⌫1

�t1
.

Notice the photon frequency received by an observer is redshifted by a factor

⌫0

⌫1
=

R(t1)

R(t0)
=

1

1 + z
,

and the rate of the photons that fall into the detector is also reduced by the same factor

�t0

�t1
=

R(t1)

R(t0)
=

1

1 + z
.

The received power is then

Pobs =
h⌫0

�t0
=

h⌫1

�t1

1

(1 + z)2
=

Pem

(1 + z)2
.

In a FRW Universe, the radiation received is distributed over the pseudo spherical surface

A = 4⇡R
2(t0)S

2

k
(�). (103)

Therefore, the observed flux will be

Fobs =
Pobs

A
=

L

4⇡[R0Sk(�)]2
1

(1 + z)2
.

with the Luminosity L given by the total power emitted at all wavelengths. Then, comparing

with (102), the luminosity distance dL in terms of measurable quantities is

dL(z) ⌘ (1 + z)R0Sk(�). (104)

The distance-redshift relation is, in fact, one of the most important cosmological tests. This is

because given the observables H0, ⌦i,0 and the expression (104) we can compute the luminosity
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0.7 Distances and Horizons

distance to an object at any redshift z. Conversely, for a population of standard candles with

absolute magnitude M , and apparent magnitude m, we can measure the object’s distance

modulus µ at a given redshift z, defined by

µ ⌘ m � M = 5 log
10

✓
dL(z)

1Mpc

◆
+ 25. (105)

Then, the relationship of µ with redshift allows us to estimate the luminosity distance and

thereby constrain the cosmological parameters, as we will see in Chapter ??.

Figure 11: redo

0.7.2 Angular distance

Another classical distance measurement in astronomy is to measure the angle �✓ subtended by

an object of known physical size D. The proper distance of the object D is related to its angular

size �✓ (for �✓ ⌧ 1), from the angular part of the FRW metric, we have

�✓ =
D

R(te)S(�)

Then angular diameter distance is then defined as

dA ⌘ D/�✓.

so that, the angular distance is given by

dA = R(te)S(�) = R(t0)
R(te)

R(t0)
S(�) =

R(t0)S(�)

1 + z
.
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or the comoving angular distance

dM = R0Sk(�). (106)

Figure 12: [do it again]

Curvature a↵ects dM (z) both through its influence on H(z) and through the geometrical

factor. The luminosity distance (relevant to supernovae) is related to the angular distance by

dL = dM (1 + z) = dA(1 + z)2.

If redshift-space distortions are weak, which is a good approximation for luminous galaxy

surveys after reconstruction, not for the LyaF though, then the constrained quantity is the

volume averaged distance

dV (z) = [zdH(z)d2
M
(z)]1/3. (107)

Figure 14 sketches the distances dc, dL and dA in terms of redshift. It is worthwhile noticing

that for small scales, all these distance measures coincide

d ' z

H0

, (108)

where the linear evolution of distance with redshift is referred as the Hubble law [13].

0.7.3 Look-back time

A general expression for the look-back time

t0 � t =

Z
t0

t

dt =

Z
z

0

dz

(1 + z)H(z)
(109)
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0.7 Distances and Horizons
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Figure 13: (jav: see: https://arxiv.org/pdf/1411.1074.pdf)

⌦m,0 ⌦⇤,0 H0=50 70 90

1.0 0.0 13.1 9.3 7.2

0.3 0.0 15.8 11.3 8.8

0.3 0.7 18.9 13.5 10.5

Table 3: Age of the Universe (Gyr). Fijar parametros, usar w0=-1.5, -1, -0.5, wa=-0.5, 0, 0.5

t emitted, and t0 received.

t0 � t =

Z
z

0

dz̄

(1 + z̄)H(z̄)
(110)

=
1

H0

Z
1

(1+z)�1

xdxp
⌦m,0x + ⌦r,0 + ⌦⇤,0x

4 + ⌦k,0x
2

(111)

The oldest star in globular clusters tstar ⇡ 11.5 ± 1.3 Gys, hence t0 > tstar.
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Figure 14: Comoving distance dc, luminosity distance dL, and angular distance dA for a universe

filled with the same constituents as in Figure 6. (jav: Add a dash line with di↵erent components.

Use python)

0.7.3.1 Alternatives to the ⇤CDM model

The ⇤CDM model has had great success in modeling a wide range of astronomical observations.

However, it is in apparent conflict with some observations on small-scales within galaxies (e.g.

cuspy halo density profiles, overproduction of satellite dwarfs within the Local Group, amongst

many others, see for example [? ? ]). In addition, all attempts to detect WIMPs either directly

in the laboratory, or indirectly by astronomical signals of distant objects have failed so far.

Also, a large range of the particle parameters – predicted to be detectable – have thereby been

ruled out. For some of these reasons, it seems necessary to explore alternatives to the standard

⇤CDM model. With this in mind, several alternatives have been suggested. For instance the

Scalar Field Dark Matter (SFDM) model proposes the dark matter is a spin 0 bosson particle

[? ? ? ? ? ]; or the Self Interacting Dark Matter, as its name states, it relies on the cold dark

matter to be made of self interacting particles [? ]. On the other hand, in order to explain the

accelerated expansion of the universe there exist di↵erent modifications to the theory of General

Relativity, i.e. f(R) theories [10? ], braneworld models [? ? ]. There are also several candidates

to be the dark energy of the universe – alternatives to the cosmological constant –, i.e. scalar

fields (quintessence, K-essence, phantom, quintom, non-minimally coupled scalar fields [? ? ?

] ; or many more alternatives i.e. anisotropic universes [? ? ? ]. Finally, if the dark energy is

assumed to be a perfect fluid, then one of the most popular time-evolving parameterization

for its equation of state consists of expanding ! in a Taylor series, for example the Chevallier-
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0.7 Distances and Horizons

Polarski-Linder (CPL) ! = !0+!a (1 � a), with two free parameters !0, !a [6, 15]. It may also

be expanded into Fourier series [? ] or many more Bayesian approaches have been suggested to

account for a dynamical dark energy [? ].
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